
Real-Time Systems manuscript No.
(will be inserted by the editor)

Linear-Time Admission Control for Elastic Scheduling

Received: date / Accepted: date

Abstract Prior algorithms that have been proposed for the uniprocessor implemen-

tation of systems of elastic tasks have computational complexity quadratic (O(n2))
in the number of tasks n, for both initialization and for admitting new tasks during

run-time. We present a more efficient implementation in which initialization takes

quasilinear (O(n logn)), and on-line admission control, linear (O(n)), time.

Keywords Preemptive uniprocessor scheduling · Elastic tasks · Admission control

§1. Introduction. The elastic recurrent real-time workload model [1,2] provides a

framework for dealing with overload by compressing (i.e., reducing) the effective uti-

lizations of individual tasks until the cumulative utilization falls below the utilization

bound that can be accommodated. Each task τi = (Umin
i ,Umax

i ,Ei) is characterized by

the minimum amount of utilization Umin
i that it must be provided and the maximum

amount Umax
i that it is able to use, as well as an additional elasticity parameter Ei

that “specifies the flexibility of the task to vary its utilization” [1]. Given a system

Γ = {τ1,τ2, . . . ,τn} of n such elastic tasks, the objective is to assign each task τi a

utilization Ui, Umin
i ≤ Ui ≤ Umax

i , such that (1) ∑
n
i=1 Ui is as large as possible but

bounded from above by a specified constant Ud which denotes the maximum cumu-

lative utilization that can be accommodated; and (2) if Ui >Umin
i and U j >Umin

j then

Ui and U j must satisfy the relationship 1

(

Umax
i −Ui

Ei

)

=

(

Umax
j −U j

E j

)

(1)

A task system Γ for which such Ui exist for all the tasks is said to be feasible. An

algorithm was presented in [1, Fig. 3] for determining feasibility and of computing

the appropriate values for the utilizations —the Ui’s— of feasible systems in O(n2)
time. Essentially this same algorithm was also repurposed in [1] for admission con-

trol: for determining whether a new task seeking to join an already-executing system

1 For tasks τi having Ei = 0, Ui =Umin
i , and therefore the relationship needs not be satisfied.



2

could be admitted without compromising feasibility, and if so, recomputing the uti-

lization values for the new task as well as for all preëxisting ones. Extensions to elas-

tic scheduling that were proposed by Chantem et al. [3,4] reformulate the problem

of determining the utilizations as a quadratic programming problem. This allows the

iterative technique in [1] to be applied to a more general class of problems. However,

this reformulation continues to have quadratic time-complexity. In this short note we

present a more efficient implementation of the algorithm of [1, Fig. 3] that determines

feasibility and computes the Ui values in O(n logn) time, and does admission control

in O(n) time.

§2. Overview of Prior Results. Let Γ denote a feasible task system with Ei > 0

for all tasks2 τi ∈ Γ , and consider the Ui values that bear witness to this feasibility

(i.e., each Ui either equals Umin
i , or satisfies Expression 1). The tasks in Γ may be

partitioned into two classes ΓVARIABLE (those tasks for which Ui > Umin
i , and which

can therefore have their utilizations “varied” –compressed– further if necessary) and

ΓFIXED (those for which Ui =Umin
i ; i.e., their utilizations are now “fixed”). It has been

shown [1, Eqn (8)] that for each τi ∈ ΓVARIABLE

Ui =Umax
i −

(

USUM− (Ud−∆)

ESUM

)

×Ei (2)

where USUM =
(

∑τi∈ΓVARIABLE
Umax

i

)

and ESUM =
(

∑τi∈ΓVARIABLE
Ei

)

respectively denote

the sum of the Umax
i parameters and the Ei parameters of all the tasks in ΓVARIABLE,

and ∆ =
(

∑τi∈ΓFIXED
Umin

i

)

denotes the sum of the Umin
i parameters of all the tasks in

ΓFIXED.3 Given a set of elastic tasks Γ , the algorithm of [1, Fig. 3] starts out com-

puting Ui values for the tasks assuming that they are all in ΓVARIABLE — i.e., their Ui

values are computed according to Expression 2. If any Ui so computed is observed

to be smaller than the corresponding Umin
i then that task is moved from ΓVARIABLE to

ΓFIXED, the values of USUM, ESUM, and ∆ are updated to reflect this transfer, and Ui

values recomputed for all the tasks. The process terminates if no computed Ui value

is observed to be smaller than the corresponding Umin
i . It is easily seen that one such

iteration (i.e., computing Ui values for all the tasks) takes O(n) time. Since an itera-

tion is followed by another only if some task is moved from ΓVARIABLE to ΓFIXED and

there are n tasks, the number of iterations is bounded from above by n. The overall

running time for the algorithm of [1, Fig. 3] is therefore O(n2).

§3. Our Approach. Let us define an attribute φi for elastic task τi as follows:

φi
def
=

(

Umax
i −Umin

i

Ei

)

(3)

2 All tasks τi with Ei = 0 must have Ui←Umax
i in order to satisfy Expression 1; we assume this is done

in a pre-processing step, and the value of Ud updated to reflect the remaining available utilization.
3 Observe that ∆ equals the amount of utilization that is allocated to the tasks in ΓFIXED; therefore

(Ud −∆) represents the amount available for the tasks in ΓVARIABLE , and
(

USUM − (Ud −∆)
)

the amount

by which the cumulative utilizations of these tasks must be reduced from their desired maximums. As

shown in the RHS of Expression 2, under elastic scheduling this reduction is shared amongst the tasks in

proportion to their elasticity parameters: τi’s share is (Ei/ESUM).



Linear-Time Admission Control for Elastic Scheduling 3

Algorithm 1: Elastic Compression(Γ ,Ud)

Input: A list Γ of elastic tasks sorted in non-decreasing order of their φi parameters (see

Expression 3) and a desired utilization Ud

Output: Feasibility and the list Γ with computed Ui values

1 USUM = 0; ESUM = 0; ∆ = 0

2 forall τi ∈ Γ do

3 USUM =USUM +Umax
i

4 ESUM = ESUM +Ei

5 end

6 forall τi ∈ Γ do

7 if
(

Umax
i − USUM−(Ud−∆)

ESUM
×Ei ≤Umin

i

)

then

8 //Task τi is no longer compressible – it’s in ΓFIXED

9 Ui = Umin
i //Since τi ∈ ΓFIXED

10 ∆ = ∆ +Umin
i //This additional amount of utilization is allocated to tasks in ΓFIXED

11 if (∆ >Ud) then return INFEASIBLE;

12 //Cannot accommodate the minimum requirements

13 USUM = USUM−Umax
i //Since τi is removed from ΓVARIABLE

14 ESUM = ESUM−Ei //As above — since τi is removed from ΓVARIABLE

15 i = i+1 //Proceed to considering the next task. . .

16 else

17 //Remaining tasks are all compressible (i.e., in ΓVARIABLE)

18 Ui = Umax
i − USUM−(Ud−∆)

ESUM
×Ei // As per Expression 2

19 end

20 end

21 return FEASIBLE

We will prove a result (Theorem 1 below) that allows us to conclude that in the

algorithm of [1, Fig. 3], tasks may be “moved” from ΓVARIABLE to ΓFIXED in order of

their φi parameters.

Assuming that the tasks are indexed in a linked list such that φi ≤ φi+1 for all

i,1≤ i < n, we can then simply make a single pass through all the tasks from τ1 to τn,

identifying, and computing Ui values for, all the ones in ΓFIXED before any of the ones

in ΓVARIABLE. With appropriate book-keeping (see the pseudo-code in Algorithm 1)

this can all be done in a single pass in O(n) time. The cost of sorting the tasks in order

to arrange them according to non-increasing φi parameters is O(n logn), and hence

dominates the overall run-time complexity: determining feasibility and computing

the Ui parameters can be done in O(n logn)+O(n) = O(n logn) time.

Admission control – determining whether it is safe to add a new task and re-

computing all the Ui parameters if so – requires that the new task be inserted at

the appropriate location in the already sorted list of preëxisting tasks — this can be

achieved in O(n) time. Once this is done, the Ui values can be recomputed in O(n)
time by the pseudo-code in Algorithm 1. Similarly, removing a task from the system

and recomputing the Ui values also takes O(n) time since sorting is not needed.

§4. A Technical Result. We now present the main technical result in this short note.

Theorem 1 If τi ∈ ΓFIXED and φi ≥ φ j then τ j ∈ ΓFIXED.



4

Proof Consider some iteration of the algorithm of [1, Fig. 3] such that τi and τ j both

start out in ΓVARIABLE, but τi is determined to belong in ΓFIXED in this iteration. This

implies that Umin
i is at least as large as the value of Ui that is computed according to

Expression 2:

Umin
i ≥Umax

i −

(

USUM− (Ud−∆)

ESUM

)

×Ei

By algebraic simplification of the above, we have

(

USUM− (Ud−∆)

ESUM

)

≥

(

Umax
i −Umin

i

Ei

)

(4)

Note that the LHS of Expression 4 does not contain any term specific to τi and so is

the same for all the tasks in ΓVARIABLE for this iteration, and that the RHS is simply

φi. Since φi ≥ φ j (as per the statement of the theorem), we may conclude by the

transitivity of the≥ operator on the real numbers that the LHS of Expression 4 would

also be ≥ φ j; equivalently, the value of Umin
j is no smaller than the value of U j that is

computed according to Expression 2, and as a consequence τ j, too, should be moved

to ΓFIXED . ut

References

1. Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni. Elastic task model for adaptive rate control. In

IEEE Real-Time Systems Symposium, 1998.

2. Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni. Elastic scheduling for flexible

workload management. IEEE Transactions on Computers, 51(3):289–302, March 2002.

3. T. Chantem, X. S. Hu, and M. D. Lemmon. Generalized elastic scheduling. In IEEE International

Real-Time Systems Symposium, 2006.

4. T. Chantem, X. S. Hu, and M. D. Lemmon. Generalized elastic scheduling for real-time tasks. IEEE

Transactions on Computers, 58(4):480–495, April 2009.


