
1

Implementing Synchronous Reactive
Components upon Multiprocessor Platforms

Sanjoy Baruah

Washington University in Saint Louis

baruah@wustl.edu

F

Abstract—Model-based design methodologies based on the synchrony

assumption are widely used in many safety-critical application domains.

The synchrony assumption asserts that actions (such as the execution

of code) occur instantaneously; however, physical platforms obviously

do not possess this property. This paper considers a scheduling problem

that arises when one seeks to implement programs that are written

under the synchrony assumption upon actual multiprocessor platforms,

and proposes algorithms for solving this problem exactly and approxi-

mately.

Synchronous programming, Multiprocessor scheduling, Deadlines,

Integer Linear Program, Approximation algorithm.

1 INTRODUCTION

The Synchronous Reactive model of computation (discussed
in detail below) possesses many attractive features that
makes it particularly suitable for specifying safety-critical
cyber-physical systems. In recent work [4] we had investi-
gated the issue of implementing systems that are so spec-
ified upon multiprocessor platforms, and had derived a
polynomial-time approximation algorithm for obtaining im-
plementations of synchronous reactive systems upon multi-
processors. In this paper we extend the work initiated in [4]
by (i) further elaborating upon the relationship between
implementation of synchronous reactive systems and multi-
processor scheduling; (ii) deriving (Section 4) an algorithm
for solving the resulting multiprocessor scheduling problem
exactly, and thereby assuring more resource-efficient imple-
mentations than was possible using the algorithm of [4]; and
(iii) describing (Section 6) how this exact algorithm, which
has exponential running time, may be used in conjunction
with the polynomial-time algorithm.

Synchronous reactive (SR) systems. Most cyber-physical
systems are reactive [10]: they repeatedly (i) monitor the
environment within which they are operating via sensors;
(ii) compute an appropriate response; and (iii) send signals
to actuators to accomplish the computed response. For large
and complex systems, it is often the case that abstractions
such as periodic and sporadic jobs [15], [16] are at too
“low” a level to enable a designer to specify such systems
in a manner that inspires great confidence regarding the
correctness of the specifications. Therefore the alternative
of model-based design (MBD) techniques, which focus on
provable correctness (at least, of functional properties), find

widespread use in industry today. The abstractions underly-
ing MBD techniques (such as the synchrony assumption [5],
the actors abstraction [13], etc.) tend to place strong empha-
sis on formal methodologies and proof techniques. Large
complex systems may be specified according to these ab-
stractions and non-trivial functional correctness properties
(such as safety, liveness, progress, etc.) of these systems
proved.

Software modeling and development methodologies and
commercial tools based on the synchronous reactive [10], [5],
[9] model of computation are widely used in the model-
based design and implementation of embedded systems.
In this model of computation, larger systems are built by
composing together individual reactive components, each of
which maintains an internal state, and interacts with other
components and the external environment via inputs and
outputs in an ongoing manner: all components execute in a
sequence of rounds with each reactive component reading
its inputs, and computing outputs and updating its internal
state based on the inputs and its current state, in each round.
The semantics of SR systems are specified or formulated
under an assumption called the synchrony hypothesis. As
described by Benveniste and Berry [5, p. 1274], “the basic
idea [underpinning the synchrony hypothesis] is very sim-
ple: we consider ideal reactive systems that produce their
outputs synchronously with their inputs, their reaction tak-
ing no observable time.” That is, SR systems are assumed to
“produce their outputs synchronously with their inputs” [5,
p. 1270]. The reaction intervals are thus reduced to reaction
instants and do not overlap with each other. Hence the
behavior of a system can be thought of as going through
a potentially infinite series of steps, one occurring at each
“logical” time-instant (often called a tick or a round): the
system reads in its inputs at the time-instant corresponding
to the t’th round and, based on its current state and these
inputs, instantaneously computes the resulting outputs and
updates its current state, and then does nothing until the
time-instant corresponding to the (t + 1)’th round. At this
time-instant the system again reads in its inputs and instan-
taneously computes the resulting outputs and updates its
state, and then waits until the time-instant corresponding to
the (t+ 2)’th round, and so on.

The synchrony hypothesis facilitates the design process
by permitting the system designer to focus on function-

2

ality and algorithmic issues, while abstracting away from
implementation details. Additionally, it makes reasoning
about concurrency a lot easier by eliminating the non-
determinism resulting from interleaving of concurrent be-
haviors. This allows deterministic semantics, therefore mak-
ing synchronous systems amenable to formal analysis and
verification and thereby aiding in the process of obtaining
statutory certification. These features help explain the im-
mense popularity of software development methodologies
based on the SR model of computation.

However, the undoubted benefits of synchronous mod-
els of computation do come at a price. The physical plat-
forms on which systems are to be implemented do not, of
course, satisfy the synchrony hypothesis: computations take
(real) time to execute. Implementations of an SR model upon
any particular computational platform must choose a time-
unit large enough so that all the actions assumed to occur
atomically at one instant complete execution upon the un-
derlying platform strictly prior to the next instant1. Due to
this and related factors, current implementation techniques
for synchronous programs tend to make poor use of the
platform resources. Although automated code-generators
from synchronous programs have been developed,2 the
code produced by such automated code-generators tends
to be rather inefficient. This is particularly true when com-
pared to implementations of models that are specified using
job-based models (see, e.g., [15], [16]), and scheduled using
priority-based scheduling strategies such as RM or EDF [15].
This, then, is the trade-off involved in using SR-based design
methodologies and tools in preference to earlier job-based
ones: one gets an easier to use and formally verify methodology
that, however, tends to make less efficient use of resources. As
embedded systems have become increasingly more complex
and difficult to design, this is a tradeoff that system design-
ers have generally been willing to make; even more so since
computational capabilities of computing platforms have, in
keeping with the predictions of Moore’s law, continued to
increase at an exponential rate thereby making the efficiency
issue less important. However, energy considerations and
thermal issues are bringing efficiency considerations back
to the forefront: even if plenty of computing capacity can
be made available on a platform, providing the energy
needed to enable all this computing capacity is fast be-
coming a bottleneck. This problem is further exacerbated
in mobile platforms that are not tethered to the power-grid.
The related problem of heat-dissipation in order to prevent
inadmissible increases in the temperature of the platform is
also often a major concern.

This Research. The work discussed in this paper should
be viewed from this perspective of achieving resource-
efficient implementations of reactive systems specified as
synchronous reactive programs, upon implementation plat-
forms comprising multiple processors that (obviously) do

1. This requirement has been stated [7, p. 101] as the bounded delay
property of the implementation: there is a maximum delay in complet-
ing the execution of the actions representing the system reaction to
any input, which is strictly less than the minimum time that elapses
between successive rounds.

2. E.g., Coder — https://www.mathworks.com/products/
simulink-coder.html — generates standalone C and C++ code
from Simulink models.

Init

s := 0 //State variable

React

out := f(s)
s := in

in out

Fig. 1. An example Synchronous Reactive (SR) component (discussed,
and used as an illustrative example, in Section 2).

not satisfy the synchrony assumption. We report upon our
investigations regarding one particular scheduling problem
that appears central to efforts at doing so: How should we
schedule a collection of pieces of sequential code some or all of
which are required to complete by specified deadlines and that is
partially ordered with regards to the order in which the individual
pieces of code may execute, upon an identical multiprocessor
platform such that the number of processors needed is mini-
mized? We propose methods, based on prior techniques from
scheduling theory, for solving this problem either exactly,
via an algorithm that has running time exponential in the
number of pieces of code in the collection, or approximately
via a polynomial-time algorithm.

Organization. The remainder of this paper is organized
in the following manner. In Section 2 we briefly describe
the synchronous reactive (SR) model of computation. In
Section 3 we formally state the multiprocessor scheduling
problem we are seeking to solve, and explain how this prob-
lem relates to the efficient multiprocessor implementation
of SR programs. We derive algorithms in Sections 4 and 5
for solving this problem exactly and approximately, and
characterize the effectiveness of the approximate algorithm
(which has a smaller running time) vis-à-vis the exact one. In
Section 6 we discuss how these two algorithms can be used
together, with the approximate algorithm rapidly providing
an initial starting point for the exact algorithm to then refine
into an optimal solution. We conclude in Section 7 with a
brief discussion placing the results presented here within
the larger context of the design and implementation of SR
programs, and a brief enumeration of some problems for
future research.

2 THE SR COMPONENT MODEL

In this section we provide a brief introduction to the Syn-
chronous Reactive (SR) component model upon which the
remainder of this paper is based. Many different formalisms
have been proposed for specifying SR computations, each
with their own benefits and drawbacks; rather than being
tied to any specific formalism, in this paper we will use the
elegant abstract representation that is presented by Alur in
the textbook [1]. In this model, an SR component

C = (I,O, S, Init,React)

is specified by

• the input variables I ;
• the output variables O;
• the state variables S;

3

C1

C2

C3

C4

Fig. 2. Illustrating the processor of composition of synchronous reactive
components – see the paragraph “Composing components” in Sec-
tion 2. (Internal details of the three components are not depicted in this
figure.)

• an initialization description Init, which specifies initial
values for all the state variables; and

• a reaction description React, which defines the com-
putation performed by the SR component during each
round.

A simple example SR component is depicted in Figure 1.
For this component, each of I , O, and S consists of a single
element: I = {in}, O = {out}, and S = {s}. (Note
that each of in, out, and s may be equi-sized vectors.)
The initialization description Init initializes the value of the
state variable to equal 0, and the reaction description React

asserts that in each round, the component (i) sets the value
of its sole output variable out to be the result of applying
some function f(·) to the current value of its sole state
variable s, and (ii) sets the value of s to be equal to the
input that is read in at its sole input variable in during
that round (and will therefore be used in computing the
value of out in the next round). Hence if the values that
are input to this component during rounds 0, 1, 2, . . . are
x0,x1,x2, . . ., the values output by the component during
rounds 0, 1, 2, . . . are f(0), f(x0), f(x1), . . .; i.e., f(xi−1) is
output during round i.

Composing components. Individual components of the
kind illustrated in Figure 1 may be composed together by
connecting the outputs of some components to inputs of
other components. There are component compatibility rules
that specify what compositions of components are permis-
sible; i.e., do not lead to non-deterministic or ill-defined
behaviors. It is not necessary for our purposes in this paper
to know these rules in detail. Figure 2 illustrates an example
composition, in which the three outputs of the SR compo-
nent C1 form the inputs to the three components C2, C3, and
C4 respectively. Under the synchronous reactive model of
computation, the execution semantics of such compositions
is that all the components execute during each round. A partial
ordering of the execution of the components is implied by

the connections between them3 – e..g, in the example of
Figure 2, component C1 must execute before components
C2, C3, and C4 may begin to execute; components C2, C3,
and C4 may execute in parallel. Although the synchrony
assumption models all this execution as occurring instanta-
neously (in “logical time”), realizations of this model must
have the real-time duration of each round be no smaller than
the actual execution duration of C1 plus the largest of the
actual execution durations of C2, C3, and C4. Note that this
is merely a lower bound on the duration of a round: the
actual duration may need to be larger if adequate computa-
tional resources are not available to permit components C2,
C3, and C4 to execute in parallel.

Task-graph representation. The reaction description of an
SR component may be considered to comprise several se-
quential jobs, that may have dependencies between them.4

For instance, the reaction description of the SR component
of Figure 1 may be split into two jobs A1 and A2, with
A1 responsible for execution of the first statement (“out

:= f(s)”) and A2 for the execution of the second statement
(“s := in”). Semantic considerations dictate that job A1

complete execution before job A2 begins to execute (since
otherwise the value assigned to out during a round may
incorrectly be computed using the current, rather than pre-
vious, round’s input value): that is, there is a precedence
constraint between these jobs:

out := f(s) s := in

A1 A2

Note that since A1 is responsible for generating the output
out of the component, this output becomes available the
instant A1 completes execution (even whilst A2 is execut-
ing). Hence any other component that uses this output
as an input may commence execution in parallel with the
execution of A2.

Task-graph representations of SR components responsi-
ble for performing non-trivial computations may be quite
complex; Figure 3 depicts the task-graph representation of
an SR component from [1, page 35], that has two inputs in1

and in2 and three outputs out1, out2, and out3 . In this
figure, the read set – variables that are read by the job – and
the write set – variables that are written to by the job – are
specified for each job Ai. (E.g., the notation states that the
job A3 reads in the variable x1 and the input in1, and writes
to the variable x1 and the output out1.)

One of the component compatibility restrictions speci-
fied in [1] is that each output variable be in the write-set
of exactly one job (this is indeed the case with the example

3. In many SR formalisms (including the one discussed in [1], the
component compatibility rules would ensure that the input-to-output
connections between components enforce such a partial ordering. Some
formalisms, however, are based on fix-point semantics and do not require
such a partial ordering to be enforced; they instead require that evalua-
tion of all dependencies converge to a unique fix-point (see [6, p. 65] for
an instructive description of the different approaches taken by different
languages). We do not consider such fix-point based formalisms in this
paper.

4. These jobs are called tasks in [1] – hence the term “task-graph
representation”. We prefer to refer to them as jobs here, since “tasks”
typically denotes recurrent (periodic or sporadic) behavior in real-time
scheduling theory.

5

cessors is very closely related to the problem of schedul-
ing precedence-constrained jobs to minimize makespan –
commonly called the makespan minimization problem, which
has been widely studied in the scheduling literature. We
therefore start with some background on the makespan
minimization problem. The makespan minimization prob-
lem seeks to obtain a schedule for any given precedence-
constrained collection of jobs, each of which is characterized
by an execution time (WCET) but no deadlines, upon an
identical multicore platform in order to minimize makespan
(for our purposes, the makespan of a schedule may be
defined as the duration between the first and last instants
at which execution occurs in the schedule). This problem
has long been known [18] to be NP-hard in the strong
sense, i.e., computationally highly intractable. However,
Graham’s list scheduling algorithm [8], which constructs a
work-conserving schedule in a greedy manner by executing
at each time instant an available job, if any are present,
upon any available processor, performs reasonably well.
It was shown [8] that list scheduling makes the following
guarantee: if So denotes the smallest makespan with which
a given precedence-constrained collection of jobs can be
scheduled upon m processors by an optimal algorithm, then
the schedule generated by list scheduling this collection of
jobs upon m processors will have a makespan no larger than
(2 − 1

m
) × So. This result, in conjunction with a hardness

result in [14] showing that determining a schedule with
makespan ≤ 4

3
So remains NP-hard in the strong sense6,

suggests that list scheduling is a reasonable algorithm to
use, and in fact most polynomial-time dynamic schedul-
ing algorithms that are used for scheduling precedence-
constrained collections of jobs upon multiprocessors use
some variant or the other of list scheduling.

An upper bound on the makespan of a schedule gen-
erated by list scheduling is easily stated. Let W denote
the cumulative worst-case execution time of all the jobs
in a given precedence-constrained collection of jobs, and
L denote the maximum cumulative worst-case execution
time of any sequence of precedence-constrained jobs in the
collection. It has been shown [8] that the makespan of the
schedule generated by list scheduling upon m processors is
guaranteed to be no larger than

W

m
+ L×

(
1−

1

m

)

4 AN EXACT SOLUTION

In this section we present an exact algorithm for determin-
ing whether a problem instance of the kind specified as in
Expression 1 in Section 3 above can be scheduled upon a
given number of processors m. Our algorithm is centered on
the idea of representing the problem instance as in Integer
Linear Program (ILP). Determining whether an ILP has a
feasible solution was one of the earliest problems shown to
be NP-complete [12]. Indeed, it is known to be NP-complete

6. In fact, assuming a reasonable complexity-theoretic conjecture that
is somewhat stronger than P 6= NP, a result of Svensson [17] implies that
a polynomial-time algorithm for determining a schedule of makespan
≤ 2So for all m is ruled out.

in the strong sense; assuming P 6= NP, this implies that ILP
solvers with pseudo-polynomial running time cannot be de-
veloped. Despite this inherent intractability of ILP, however,
the optimization community has devoted immense effort to
devise extremely efficient implementations of ILP solvers,
and highly-optimized libraries with such efficient imple-
mentations are widely available today in both open-source
and commercial offerings. It is known that the duration
taken by an ILP solver to solve a problem tends to correlate
very strongly with the size of the problem to be solved —
in particular, with the number of variables and constraints
in the ILP that is being solved. Modern ILP solvers, particu-
larly when running upon powerful computing clusters, are
commonly capable of solving ILPs with tens of thousands
of variables and constraints.

Overview of our approach. A wide variety of standard
techniques have been developed within the traditional Op-
erations Research (OR) community for ILP-based represen-
tations of scheduling problems (See, e.g, [3, Appendix C]
for a text-book introduction to some of these techniques).
Many of these techniques, including time-indexing (in which
integer variables are used to represent which job is executing
at each time-unit upon each processor) and ordering (in
which integer variables are used to represent the order in
which the jobs are to execute upon each processor), do not
seem to be particularly suitable for our problem; e.g., time-
indexing does not scale well since the number of integer
variables needed is linear in the duration (makespan) of the
schedule, while ordering is typically used for representing
non-preemptive scheduling problems and it is not obvious
how this technique should be extended to allow for pre-
emption. Our ILP does not use either of these standard
techniques, but is instead based on the following approach:

given an instance as in Expression 1 with n
def
= |V |

• Let fi denote the completion-time of job vi in some
schedule, 1 ≤ i ≤ n.

• The n completion-times f1, f2, . . . , fn partition the
makespan of the schedule into intervals. Let Ii denote
the interval between fi and the previous completion-time
(with Ii = [0, fi] if job vi is the first one to complete
execution).

• Let ci,j denote the amount of execution that job vi receives
in the interval Ij .

• Our ILP will require, for each i, 1 ≤ i ≤ n that

1) fi ≤ min(D, d(vi));
2)

∑
j ci,j ≥ c(vi); and

3) ci,j = 0 for all j for which Ij is either after fi or before
the completion-times of all predecessor jobs of vi.

Intuitively speaking, this approach requires that only poly-
nomially many pieces of information be modeled in the
ILP, thereby allowing it to be polynomial-sized. The precise
manner in which this is achieved is detailed next, and is
concurrently illustrated on a simple example instance de-
picted in Figure 4. The entire procedure is also summarized
in pseudo-code form, in Figure 6.

We start out enumerating the variables in our ILP.

1) Positive real-valued completion-time variables
f1, f2, . . . , f|V |, with fi denoting the completion-time of
the i’th job vi.

6

v2

v1

v4

v3

v6

v5

2 2 2

1 1 3

d(v4) = 5 d(v6) = 5

d(v5) = 6

0 1 2 3 4 5 6

v1 v3 v5

v2 v6 v4 v6

Fig. 4. An example instance, discussed in Section 4.. Numbers above the nodes denote the WCETs. A preemptive 2-processor schedule for the
instance is depicted on the right. The execution of v6 is depicted in a different color – note that v6’s execution is preempted at time 3 and its
execution resumed at time 4.

2) Positive real-valued interval-duration variables Ij , for
1 ≤ i ≤ |V |: the duration of the interval between
fj and the immediately-preceding completion-time. (I.e.,
Ij = |Ij |, where Ij is as described in the overview of our
algorithm above.)

3) Positive real-valued variables ci,j for 1 ≤ i, j ≤ |V |,
denoting the amount of execution vi receives in interval
Ij .

4) “Ordering” variables xi,j for 1 ≤ i, j ≤ |V |, that are
restricted to take on a value ∈ {0, 1}, with the intended
interpretation:

xi,j =

{
0, if fi ≤ fj
1, if fi ≥ fj

(2)

We will see below how this intended interpretation is
enforced by using a standard integer-programming tech-
nique.

Example 1. For the example instance of Figure 4, we
would have six completion-time variables f1, f2, . . . , f6; six
interval-duration variables I1, I2, . . . , I6; (6× 6 =) thirty-six
ci,j variables; and thirty-six xi,j variables. For the schedule
depicted in Figure 4, the completion-time variables would
take on the values f1 = 2, f2 = 1, f3 = 4, f4 = 4, f5 = 6,
and f6 = 5. The intervals, and their durations, would take
on these values (also see Figure 5):

• I1 = [0, f2] = [0, 1], and hence I1 = 1;

• I2 = [f2, f1] = [1, 2], and hence I2 = 1;

• I3 = [f1, f3] = [2, 4], and hence I3 = 2;

• I4 = [f3, f4] = [4, 4], and hence I4 = 0;

• I5 = [f4, f6] = [4, 5], and hence I5 = 1; and

• I6 = [f6, f5] = [5, 6], and hence I6 = 1.

0 1

f2

2

f1

3 4

f3, f4

5

f6

6

f5

I1
I2 I3

I5 I6

Fig. 5. Completion-times, and the intervals they define, for the example
instance and schedule of Figure 4.

The xi,jand ci,j variables would take on the following
values:

xi,j =















1 1 0 0 0 0

0 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 1

1 1 1 1 0 1















ci,j =















1 1 0 0 0 0

1 0 0 0 0 0

0 0 2 0 0 0

0 0 1 0 0 0

0 0 0 0 1 1

0 1 1 0 1 0















We will not discuss the values assigned above to all of the
thirty-six ci,j and thirty-six xi,j parameters ; instead, we
explain a few example values below:

• x1,2 = 1 since f1 > f2.
• x5,6 = 1 since f5 > f6.
• c6,1 = 0 since v6 executes for one time unit over the

interval I1 = [0, f2] = [0, 1].
• c6,2 = 1 since v6 executes for one time unit over the

interval I2 = [f2, f1] = [1, 2].
• c6,3 = 1 since v6 executes for one time unit over the

interval I2 = [f1, f3] = [2, 4].
• c6,4 = 0 since v6 executes for one time unit over the

interval I4 = [f3, f4] = [4, 4].
• c6,5 = 1 since v6 executes for one time unit over the

interval I5 = [f4, f6] = [4, 5].
• c6,6 = 0 since v6 executes for one time unit over the

interval I6 = [f6, f5] = [5, 6].

We next list the constraints in our ILP, for ensuring that the
variables defined above do indeed take on their intended
values:

1) As we had stated above, there is a standard technique
for enforcing the intended interpretation on the ordering
variables. Let M denote some large positive constant (for
the purposes of our problem instances, it suffices to set
M to have a value larger than D.) For each i, j, 1 ≤ i, j ≤
|V |, with i 6= j, we add the constraints

fj ≥ fi −M · xi,j (3)

fi ≥ fj −M · (1− xi,j) (4)

1 = xi,j + xj,i (5)

We can see why these constraints achieve the intended
interpretation by considering the first two inequalities:

• If xij = 0, then the first inequality requires that
fj ≥ fi −M · 0, i.e., fj ≥ fi, as intended. The second

7

inequality requires that fi ≥ fj − M · (1 − 0), i.e.,
fi ≥ fj−M (and since M is assumed to be a very large
positive integer, this inequality does not constrain the
possible value that may be assigned to fi).

• If xij = 1, then the first inequality requires that fj ≥
fi −M ; since M is assumed to be a very large positive
integer, this inequality does not constrain the possible
value that may be assigned to fj . However, the second
inequality requires that fi ≥ fj−M ·(1−1), i.e., fi ≥ fj ,
as intended.

The third constraint above simply ensures that exactly
one of the two orderings is specified (and therefore
ensures a total ordering on the completion-time values.)

2) We constrain each completion-time to be no larger than
the corresponding deadline: for each i

fi ≤ d(vi) (6)

3) For each j, 1 ≤ j ≤ |V |, the interval-duration variable
Ij must be constrained to be no larger than (fj − fk) for
each fk ≤ fj ; this is achieved by adding the n constraints

Ij ≤ fj − fk + (M · xkj) for k = 1, 2, . . . , n (7)

Note that the term within parenthesis (i.e., (M · xkj))
evaluates to a very large positive integer if fk is after
fj , and hence does not constrain the value of Ij .
In addition to the n constraints above, we must also
consider the possibility that vertex vj is the first one to
complete execution; if so, there is no fk constraining the
value of fj in the Constraints 7 above, and we instead
have the Constraint

Ij ≤ fj (8)

Example 2. For our example instance of Figure 4, the
following seven constraints are placed upon the value of
the interval duration I4:

I4 ≤ f4 − f1 +M · x1,4

I4 ≤ f4 − f2 +M · x2,4

I4 ≤ f4 − f3 +M · x3,4

I4 ≤ f4 − f4 +M · x4,4

I4 ≤ f4 − f5 +M · x5,4

I4 ≤ f4 − f6 +M · x6,4

I4 ≤ f4

(We point out that the fourth constraint above (I4 ≤ f4−
f4 −M · x4,4) is unnecessary and may be removed as an
optimization step; however, retaining it has no effect on
correctness.)

4) The ci,j variables are constrained in several ways.

i) First for each i and j, 1 ≤ i, j ≤ |V |, we have a constraint

ci,j ≤M · xi,j (9)

denoting that there is no benefit to executing job vi after
fi. This is achieved by this constraint because xi,j equals
0 if fj > fi, and hence ci,j is constrained to be ≤ 0.
(We note that this constraint has no effect when fk < fi
since xi,j = 1 in that case and the constraint reduces to
requiring that ci,j be no larger than the large positive
number m.)

ii) Next for each i and j, 1 ≤ i, j ≤ |V |, we have the
constraint

ci,j ≤ Ij (10)

denoting that vertex vi must execute with no internal
parallelism within interval Ij .

iii) Next for each i, 1 ≤ i ≤ |V |, we add a constraint
that the total execution for job vi must be enough to
accommodate its wcet c(vi):

∑

j

ci,j ≥ c(vi) (11)

a) Finally, we must ensure that the cumulative execution
over the j’th interval Ij does not exceed the cumulative
capacity on the m processors during that interval: for
each j, 1 ≤ j ≤ |V |,

∑

i

ci,j ≤ m · Ij (12)

Example 3. We illustrate the role of Constraints (9) on
our example instance of Figure 4. As shown in Figure 5,
vertex v6 completes before vertex v5, and should there-
fore receive no execution during the interval I6 This is
achieved by the constraint

c6,5 ≤M · x6,5

⇔ c6,5 ≤M · 0

⇔ c6,5 ≤ 0

and hence the non-negative variable c6,5 must take on
value zero.
Also notice that Constraints (9) do not restrict vertex v6
from executing in any of the earlier intervals. Consider,
for instance, the interval I3 = [2, 4]:

c6,4 ≤M · x6,4

⇔ c6,4 ≤M · 1

⇔ c6,5 ≤M

which is essentially no constraint at all since M is a large
positive number.

5) Next we consider the edges. Each edge (vj , vi) constrains
vertex vi to only begin execution after vertex vj has
completed (i.e., after instant fj). This is equivalent to
stating that ci,k should equal zero for all k for which
fk ≤ fj ; this is accomplished by the constraint

ci,j ≤ 0 (13)

denoting that there is no benefit to assigning job vj exe-
cution prior to fj , the completion-time of its predecessor,
and the following condition that extends this to intervals
preceding the one that ends at fj : for each k

ci,k ≤M · xk,j (14)

Example 4. Consider the edge (v1, v4) of the example in-
stance of Figure 4. The constraint

c4,1 ≤ 0

8

is explicitly added, thereby forbidding vertex v4 from receiv-
ing execution in I2 = [f2, f1]. Additionally, Constraint (14)
instantiated with k = 2:

c4,2 ≤M · x4,2

⇔ c4,2 ≤M · 0

⇔ c4,2 ≤ 0

ensures that vertex v4 does not receive execution in I1 =
[0, f2]. We also note that Constraint (14) does not forbid
vertex v4 from executing after f1; e.g., Constraint (14) in-
stantiated with k = 3:

c4,3 ≤M · x4,3

⇔ c4,3 ≤M · 1

⇔ c4,3 ≤M

is a vacuous constraint.

4.1 Running Time

As stated earlier in this section, solving ILPs is known [12]
to be an NP-hard problem. However excellent tools, both
commercial and open-source, have been developed that are
able to solve fairly large ILPs in reasonable amounts of
time. Hence it is important that ILPs be constructed be or
“reasonable” size; the ILP we have constructed above is of
size polynomial in the representation of the input instance:

• The number of variables is no more than (2|V | + |V |2)
real-valued variables, and |V |2 zero-one integer variables.
Hence there is a total of Θ(|V |2) variables.

• The number of constraints is no more than 4|V |+ 6|V |2 +
|E| × (1 + |V |) = Θ(|V |(|V |+ |E|)).

5 A POLYNOMIAL-TIME ALGORITHM

The ILP-based solution of Section 4 has worst-case running
time exponential in the representation of the DAG. An
algorithm was derived in [4] that solves the problem ap-
proximately. In this section we present a simplified version
of the polynomial-time algorithm of [4]. This algorithm is
presented in pseudo-code form in Figure 7; below, we will
walk through the pseudo-code and thereby describe the
algorithm.

The algorithm accepts as input the specifications
〈
G =

(V,E), c : V → N, d : V → N, D
〉

of an instance and a
number m of processors, and seeks to synthesize an m-
processor schedule for the instance. It first (Line 1) topo-
logically sorts [11] the vertices in the graph G, to obtain, in
Θ(|V | + |E|) time, an ordering of the vertices such that for
each edge (u, v) in the graph, vertex u appears before vertex
v in the ordering. Next (Lines 2–4), it performs the “due-
date modification” operation [2]: it modifies the deadline
assigned to each vertex to be the smaller of its current
value and the value that is implied by the deadlines of its
successor vertices. Once all deadlines have been modified in
this manner, the algorithm sorts the vertices into an ordered
list L according to their (thus modified) deadline parameter
values – Line 5.

Once this list L has been obtained, the algorithm simu-
lates the preemptive list-scheduling of the jobs with the jobs
ordered as listed in L (Line 6 of the pseudocode). If this

In order to determine whether the instance
〈
G =

(V,E), c : V → N, d : V → N, D
〉

can be scheduled to

meet all deadlines upon an m-processor platform, de-
termine whether the following zero-one integer linear
program is feasible:

Variables.

• For each i, 1 ≤ i ≤ |V |, non-negative real-valued
variables fi and Ii.

• For each i and j, 1 ≤ i, j ≤ |V |, non-negative real-
valued variable ci,j and zero-one integer variable
xi,j .

Constraints.

• For each i, 1 ≤ i ≤ |V |,

fi ≤ d(vi)

li ≤ fi∑

j

ci,j ≥ c(vi)

∑

j

cj,i ≤ m · Ii

• For each i and j, 1 ≤ i, j ≤ |V |,

fj ≥ fi −M · xi,j

fi ≥ fj −M · (1− xi,j)

1 = xi,j + xj,i

Ii ≤ fi − fj + (M · xji)

ci,j ≤ M · xi,j

ci,j ≤ Ij

• For each edge (vj , vi):

ci,j ≤ 0

and for all k, 1 ≤ k ≤ |V |,

ci,k ≤M · xk,j

Fig. 6. ILP Representation of schedulability upon m processors

schedule is correct (tested in Line 7) then it is returned as
the desired implementation of the component (Line 8); else,
failure is flagged (Line 9).

Difference with the algorithm in [4]. This algorithm differs
from the one that was derived in [4] in the manner in which
the ordered list L is obtained. As stated above, the algorithm
of Figure 7 obtains the list by modifying the deadlines
(“due dates”) of all the vertices and sorting according to the
modified deadlines. The algorithm in [4] does not perform
the due-date modification: rather, it adopts a first principles
approach of assigning priorities to job depending upon the
deadlines (if any) of its successor jobs). While the end effect
of the two algorithms is essentially equivalent, the approach
of Figure 7 is simpler and more direct.

9

GENERATESCHEDULE

(〈
G = (V,E), c : V → N, d : V →

N, D
〉
,m

)

1 Determine a topological ordering of the vertices
2 for each v ∈ V considered in reverse topological order
3 for each edge (v, u) ∈ E
4 d(v)← min(d(v), d(u)− c(u))

5 L
def
= the jobs sorted in non-decreasing order of their

d(v) values // Takes Θ(|V | log |V |) time
6 Simulate the preemptive list-scheduling of the jobs

upon m processors, with the jobs ordered as in L
7 if each vertex v completes by its deadline d(v)
8 return the simulated schedule

else
9 return FAILURE

Fig. 7. Pseudo-code representation of the schedule-generation algo-
rithm described in Section 5

5.1 Evaluation: Running Time

As briefly discussed above, the algorithm of Figure 7 can
be implemented to have a running time that is a low-
order polynomial in the number of vertices and edges of G,
assuming a reasonably standard representation of its input.
We briefly outline the running times of the individual parts
of the pseudo-code:

1) Topological sorting (Line 1) takes Θ(|V |+ |E|) time [11].
2) Due-date modification (Lines 2–4) requires that each

vertex, and each edge, be looked at once – Θ(|V | + |E|)
time.

3) Sorting the vertices (Line 5) can be done in Θ(|V | log |V |)
time.

4) Standard algorithms for simulating the preemptive list-
scheduling of |V | jobs on m processors have running-
time linear in |V |+m.

5.2 Evaluation of Effectiveness

We saw above that in contrast to the ILP-based approach
of Section 4, the algorithm of Figure 7 can be implemented
to have a very efficient polynomial running time. However,
it is not hard to show that the algorithm of Figure 7 is not
optimal: this is illustrated in the following example.

Example 5. Consider an instance with three jobs v1, v2, and
v3, each with wcet equal to 2 (i.e., c(v1) = c(v2) = c(v3) =
2), and deadline equal to 3 (i.e., d(v1) = d(v2) = d(v3) = 3),
that have no precedence constraints between themselves,
and that is to be scheduled upon a 2-processor platform.
Regardless of the value assigned to the list L in Line 5
of Figure 7, it may be verified that the vertex that is last
in L will complete at time-instant 4 in the simulated list-
scheduling of Line 6. However, an optimal preemptive
schedule exists:

0 1 2 3

v1 v2

v2 v3

and, it may be verified, will be found by the ILP-based exact
algorithm of Section 4.

The example above serves as witness to the fact that the
polynomial-time algorithm of Figure 7 is not optimal for
determining schedulability. It turns out that we can quantify
the “degree” to which it is not optimal. Recall that we’d
mentioned earlier (in Section 3.1) the following result [8]
for list scheduling. Let So denote the smallest makespan
with which a given precedence-constrained collection of
jobs can be scheduled upon m unit-speed processors by
an optimal algorithm (e.g, the ILP-based one of Figure 6).
The schedule generated by list scheduling this collection of
jobs upon m unit-speed processors is guaranteed to have
a makespan no larger than (2 − 1

m
) × So. Equivalently, if

the processors upon which the schedule generated by the
list-scheduling algorithm is executed were each to have a
speed ≥ (2 − 1/m), then the makespan of this schedule
would not exceed the optimal makespan upon unit-speed
processors. The following theorem, quantifying the relative
performance of the approximation algorithm of Figure 7 vis-
à-vis the optimal ILP-based algorithm, follows directly from
this prior result:

Theorem 1. If a component is correctly scheduled upon a
platform comprising m unit-speed processors by the ILP-based
algoritm of Section 4, then it is successfully scheduled by the
algorithm of Figure 7 upon a platform comprising no more than
m processors each of speed-(2− 1/m).

6 PUTTING THE PIECES TOGETHER

Recall that the algorithms of Section 4 and 5 above provide
exact and approximate solutions to the problem of deter-
mining whether a component can be successfully scheduled
upon a specified number of processors. However our objec-
tive is to determine the smallest number of processors mmin

upon which the component can be implemented. This can
be computed by

• doing binary search over the range [1, |V |] to determine
the smallest number of processors m̂ upon which the
approximation algorithm is able to schedule the in-
stance correctly; and then

• doing binary search over the range [1, m̂] to determine
the smallest number of processors mmin upon which
the ILP is able to schedule the instance correctly.

In this manner the approximation algorithm rapidly pro-
vides a safe upper bound on the number of processors
needed, and the ILP-based exact algorithm searches within
the range demarcated by this safe upper bound to determine
the actual optimal number of processors that are needed.

7 SUMMARY AND PERSPECTIVES

Research activities within the discipline of safety-critical
real-time computing seem to be proceeding along (at least)

10

two distinct tracks. One, exemplified by the work in the
Formal Methods and Model-Based Design (MBD) commu-
nities, seeks to define abstractions that enable the system
designer to develop, and formally prove correctness of,
large and complex systems. The other track, which includes
the real-time scheduling, resource-allocation, the RTOS, etc.
communities, is focused upon obtaining very efficient im-
plementations of relatively simple abstractions, in a manner
that is able to guarantee timing correctness (such as always
meeting deadlines).

In this paper we report on some of our efforts at inte-
grating these two tracks, by applying techniques of real-
time scheduling theory to enhancing the efficiency of a
popular family of MBD abstractions – those based on the
Synchronous Reactive (SR) model of computation. We have
illustrated how relatively well-known algorithms from mul-
tiprocessor real-time scheduling theory may be modified
and adapted to render them applicable to SR component
implementation.

The results reported here can be extended in several
directions. We have assumed that we are focused upon
the implementation of one particular component but the
implementations of the remaining components is provided
to us in immutable form. A natural generalization would
be to develop an iterative process in which an implemen-
tation of each component is obtained (as described in this
paper) by assuming that the others are provided, thereby
seeking to minimize the total number of processors needed
across all the components. Such a generalization also needs
to consider situations in which components are connected
in “chains” that are of length greater than two; for such
situations, the problem of assigning intermediate deadlines
is one that relates to some important fundamental problems
in multiprocessor scheduling theory.

Acknowledgement. This work was supported in part by
the National Science Foundation (NSF) under Grants CNS-
1814739 and CPS-1932530,

REFERENCES

[1] Rajeev Alur. Principles of cyber-physical systems. MIT Press, 2015.
[2] Kenneth Baker and J. Bertrand. A dynamic priority rule for

scheduling against due-dates. Journal of Operations Management,
3:37–42, 1982.

[3] Kenneth R. Baker and Dan Trietsch. Principles of Sequencing and
Scheduling. Wiley Publishing, 2009.

[4] Sanjoy Baruah. The efficient multiprocessor implementation of
synchronous reactive components. In 23rd IEEE International
Symposium on Real-Time Distributed Computing, ISORC 2020, 2020.

[5] A. Benveniste and G. Berry. The synchronous approach to reactive
and real-time systems. Proceedings of the IEEE, 79(9):1270 –1282,
sep 1991.

[6] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guer-
nic, and R. de Simone. The synchronous languages 12 years later.
Proceedings of the IEEE, 91(1):64 – 83, jan 2003.

[7] G. Berry. The Esterel v5 Language Primer: version v5 91. Centre de
Mathématiques Appliquées, Ecole des Mines and INRIA, 2000.

[8] R. Graham. Bounds on multiprocessor timing anomalies. SIAM
Journal on Applied Mathematics, 17:416–429, 1969.

[9] Nicolas Halbwachs. Synchronous programming of reactive systems.
Kluwer Academic Publisherss, 1993.

[10] David Harel and Amir Pnueli. On the development of reactive
systems. In Krzysztof R. Apt, editor, Logics and models of concurrent
systems, pages 477–498. Springer-Verlag New York, Inc., New York,
NY, USA, 1985.

[11] A. B. Kahn. Topological sorting of large networks. Communications
of the ACM, 5:558–562, 1962.

[12] R. Karp. Reducibility among combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, New York, 1972.

[13] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin.
Actor-oriented design of embedded hardware and software sys-
tems. Journal of Circuits, Systems, and Computers, 2, 2003.

[14] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling
under precedence constraints. Operations Research, 26(1):22–35,
1978.

[15] C. Liu and J. Layland. Scheduling algorithms for multiprogram-
ming in a hard real-time environment. Journal of the ACM, 20(1):46–
61, 1973.

[16] Aloysius Mok. Fundamental Design Problems of Distributed Systems
for The Hard-Real-Time Environment. PhD thesis, Laboratory for
Computer Science, Massachusetts Institute of Technology, 1983.
Available as Technical Report No. MIT/LCS/TR-297.

[17] Ola Svensson. Conditional hardness of precedence constrained
scheduling on identical machines. In Proceedings of the 42nd ACM
symposium on Theory of computing, STOC ’10, pages 745–754, New
York, NY, USA, 2010. ACM.

[18] J. Ullman. NP-complete scheduling problems. Journal of Computer
and System Sciences, 10(3):384 – 393, 1975.

[19] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Christian
Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution-time problem – overview of methods
and survey of tools. ACM Transactions on Embedded Computing
Systems, 7(3):36:1–36:53, May 2008.

	Introduction
	The SR component Model
	problem statement, and prior results
	Makespan minimization: Prior Results

	An exact solution
	Running Time

	A Polynomial-Time Algorithm
	Evaluation: Running Time
	Evaluation of Effectiveness

	Putting the pieces together
	Summary and Perspectives
	References

