
Real-Time Systems manuscript No.
(will be inserted by the editor)

Algorithms for Implementing Elastic Tasks on

Multiprocessor Platforms

A Comparative Evaluation

James Orr · Sanjoy Baruah

Received: date / Accepted: date

Abstract The elastic task model enables the adaptation of systems of recur-
rent real-time tasks under uncertain or potentially overloaded conditions. A
range of permissible periods is specified for each task in this model; during run-
time a period is selected for each task from the specified range of permissible
periods to ensure schedulability in a manner that maximizes the quality of pro-
vided service. This model was originally defined for sequential tasks executing
upon a preemptive uniprocessor platform; here we consider the implementation
of sequential tasks upon multiprocessor platforms. We define algorithms for
scheduling sequential elastic tasks under the global and partitioned paradigms
of multiprocessor scheduling for both dynamic and static-priority tasks, and we
provide an extensive simulation-based comparison of the different approaches.

Keywords elastic scheduling · multi-processor scheduling · real-time
systems · scheduling algorithms · simulation

1 Introduction

Buttazzo et al. introduced the elastic task model as a way of modeling recurrent
real-time tasks, such as multimedia players or adaptive control systems, whose
periods can change depending on the stress on the system [6]. The authors
compare real-time tasks to physical springs, where changing a task’s period

This research was supported in part by NSF grants CSR-1911460 Medium “Resource Effi-
cient Implementation of Mixed-Criticality Systems” and CSR-1814739 Small “Dynamically
Customizable Safety Critical Embedded Systems’.

Department of Computer Science and Engineering
Washington University in St. Louis
Campus Box 1045
One Brookings Drive
St. Louis, MO 63130
Tel.: 314-935-6160
E-mail: james.orr, baruah@wustl.edu

2 James Orr, Sanjoy Baruah

(and therefore processor utilization) is analogous to changing the length of the
spring, and keeping the system-wide processor utilization below a certain value
is analogous to compressing multiple contiguous springs to below a cumulative
length. As originally presented, elastic scheduling seeks to schedule a task set
on a single preemptive processor. Each such task has a worst-case execution
time and a range of acceptable periods, rather than a single period parameter
(as in the original Liu and Layland recurrent task model [21]). Each task must
be assigned a period within its acceptable range such that the overall task set
utilization remains below a desired value. To determine the appropriate period
value to assign each task, every task also has an elastic coefficient which acts as
an indicator of the task’s resistance to increasing its period from the minimum
(and desired) period, analogous to a spring’s resistance to being compressed.

In the decades since the elastic task model was introduced, real-time sys-
tems have increasingly come to be implemented upon platforms comprising
multiple processors, which enables the exploitation of both inter-task and
intra-task parallelism. It is therefore entirely appropriate that the elastic task
model should also be extended to consider multiprocessors. We have previ-
ously extended the elastic task model to include scheduling of tasks with
intra-task parallelism on heterogeneous multi-core systems under the feder-
ated scheduling paradigm [26]. We have also initiated the process of better
understanding how to implement sequential tasks (i.e., those whose internal
parallelism is not exposed to the scheduler) upon homogeneous multi-core
systems, and have performed some experiments comparing several different
algorithms that we had proposed for this purpose [24]. In this paper we ex-
pand upon our previous work [24] and perform a more thorough study of
the issue of implementing sequential elastic tasks upon multi-core platforms.
We present additional algorithms for scheduling systems of such tasks upon a
homogeneous multiprocessor platform under both the global and partitioned
paradigms of multiprocessor scheduling for tasks with both static and dynamic
priority assignments. We compare the effectiveness of the different algorithms
via an extensive series of simulation experiments; based upon the outcomes
of these simulations, we make some recommendations regarding the choice of
algorithms for the multiprocessor scheduling of sequential elastic tasks.

Organization. The remainder of this paper is structured as follows. Section
2 presents our task model. Sections 3 and 4 present algorithms for the global
and partitioned scheduling of systems of sequential elastic tasks respectively.
Section 5 details our experimental evaluation of the different schemes. Sec-
tion 6 describes related work, and Section 7 concludes and provides future
direction.

2 Task Model and Assumptions

In the elastic model for recurrent real-time processes that was proposed by
Buttazzo et al. [6], each individual elastic task τi is characterized by four

parameters C1, T
(min)
i , T

(max)
i , and Ei, where

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 3

– C1 is the worst-case execution time (WCET) of each job of task τi;

– T
(min)
i is the minimum –and preferred– period at which successive jobs of

τi should be invoked;

– T
(max)
i is the largest acceptable period; and

– Ei is the elasticity coefficient – a measure of a task’s resistance to changing
its period, analogous to a spring’s resistance to changing its length.

Most of the scheduling approaches that we will be considering in this pa-
per have utilization-based schedulability conditions: only the utilization pa-
rameters of tasks appear in these schedulability conditions. We therefore find

it convenient to convert the period parameters of each task (the T
(min)
i and

T
(max)
i parameters) to corresponding utilization parameters U

(max)
i and U

(min)
i

respectively:

U
(max)
i = Ci/T

(min)
i

U
(min)
i = Ci/T

(max)
i

In the remainder of this manuscript, we have therefore chosen to characterize
each task τi by three parameters rather than four, as follows

τi = (U
(max)
i , U

(min)
i , Ei)

In this work we seek to schedule a set of n such independent sequential elastic
tasks Γ = τ1...τn on m homogeneous processors.

Example 1 Running example for this paper.

τ1 has C1 = 4, T
(min)
1 = 5, T

(max)
1 = 20, and E1 = 1. Translates to

τ1 = (0.8, 0.2, 1).
System Γ comprises four tasks, with parameters as follows:

τi U
(max)
i U

(min)
i Ei

τ1 0.8 0.2 1
τ2 0.8 0.2 2
τ3 0.8 0.2 3
τ4 0.8 0.2 4

to be scheduled on m = 2 processors. ut

In systems such as the one illustrated in Example 1 above where the U
(max)
i

parameters of the tasks sum to greater than the number of processors, it is
not possible to schedule each task to receive an actual utilization equal to
its desired maximum utilization. We seek instead to schedule such systems
such that the utilization of each task τi is as close to its desired maximum
utilization as possible. Let Ui denote the actual utilization “allocated” to each

task τi; we would like to have Ui be as close to U
(max)
i as possible (equivalently,

minimize (U
(max)
i −Ui)) for all tasks τi. The elasticity (Ei) parameters denote

4 James Orr, Sanjoy Baruah

the relative tolerances of the different tasks to receiving a lower-than-desired
utilization: the amounts by which tasks’ allocated utilizations are reduced from
their desired maximums should be in proportion to their elasticity coefficients:

∀ i, j,
(U

(max)
i − Ui

Ei

)

=
(U

(max)
j − Uj

Ej

)

(1)

Letting λ denote the ratio
U

(max)
i

−Ui

Ei

in Expression 1 above:

λ
def
=
(U

(max)
i − Ui

Ei

)

(2)

the optimization objective in elastic scheduling is to have λ be as small as

possible (equivalently, have Ui be as close to U
(max)
i as possible).

Example 2 The example instance of Example 1, scheduled using fluid schedul-
ing (Section 3.1). The desired solution has U1 = 0.68, U2 = 0.56, U3 = 0.44,
and U4 = 0.32, since

U1 + U2 + U3 + U4 = 0.68 + 0.56 + 0.44 + 0.32 = 2

and it may be verified that

(

0.80− 0.68

1

)

=

(

0.80− 0.56

2

)

=

(

0.80− 0.44

3

)

=

(

0.80− 0.32

4

)

= 0.12

In this example, the value of λ (as defined in Expression 2) is 0.12 ut

Recall that U
(min)
i denotes a lower bound on the acceptable values of Ui, in

the sense that no task τi may be allocated an actual utilization smaller than
Ui.

Example 3 Suppose that the parameter U
(min)
4 of the example task system of

Example 1 were equal to 0.5 (rather than 0.2 as specified in Example 1). The
actual allocation U1 = 0.68, U2 = 0.56, U3 = 0.44, and U4 = 0.32 of Example 2
is then no longer a valid one since U4, at 0.32 is smaller than its minimum
acceptable value of 0.5. So the algorithm of Buttazzo et al. [6] would assign

U4 a value equal to U
(min)
4 of 0.5, and seek to assign the (2− 0.5 =) 1.5 units

of remaining utilization amongst τ1, τ2, and τ3 in proportion to their elasticity
parameters. This results in assigning U1, U2, and U3 the values of 0.65, 0.5,
and 0.35 respectively since

U1 + U2 + U3 = 0.65 + 0.5 + 0.35 = 1.5

and
(

0.80− 0.65

1

)

=

(

0.80− 0.50

2

)

=

(

0.80− 0.35

3

)

= 0.15

Here, λ (as defined in Expression 2) takes on the value 0.15. ut

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 5

By algebraic simplification of Expression 1, we have

Ui ← U
(max)
i − λEi

However, as illustrated in Example 3 we also require Ui ≥ U
(min)
i . For a given

value of λ, we therefore define Ui(λ) as follows:

Ui(λ)← max
(

U
(max)
i − λEi, U

(min)
i

)

(3)

Example 4 Consider again the example instance of Example 1 as modified
in Example 3. For λ = 0.15, we have

U1(0.15) = max (0.8− 0.15× 1, 0.2) = max (0.8− 0.15, 0.2) = max (0.65, 0.2) = 0.65

U2(0.15) = max (0.8− 0.15× 2, 0.2) = max (0.8− 0.30, 0.2) = max (0.50, 0.2) = 0.50

U3(0.15) = max (0.8− 0.15× 3, 0.2) = max (0.8− 0.45, 0.2) = max (0.35, 0.2) = 0.35

U4(0.15) = max (0.8− 0.15× 4, 0.5) = max (0.8− 0.60, 0.5) = max (0.20, 0.5) = 0.50

as claimed in Example 3. ut

The problem considered. Note that for a given value of λ, an elastic task

τi = (U
(max)
i , U

(min)
i , Ei) is just a “regular” Liu and Layland task with uti-

lization Ui(λ) as given by Expression 3 above. For each of the multiprocessor
scheduling strategies we will study in this paper, the question we ask is: given
a task system

Γ =
{

τi = (U
(max)
i , U

(min)
i , Ei)

}n

i=1

that is to be scheduled upon an m-processor platform, what is the smallest
value of λ for which the Liu and Layland task system comprising n tasks
with utilizations U1(λ), U2(λ), . . ., Un(λ) is successfully schedulable by that
particular scheduling strategy?

3 Global Scheduling

Under the global paradigm of multiprocessor scheduling for recurrent tasks, in-
dividual tasks are not restricted to executing upon specific processors. Instead,
a newly-arrived job of a task may begin execution upon any available processor
and a preempted job may resume execution at a later point in time upon any
processor, not just the one it had been executing upon prior to preemption.
We consider four different global scheduling algorithms: fluid (Section 3.1),
Earliest Deadline First (Section 3.2) and an algorithm called PriD [15] that
can be thought of as a generalization of EDF (Section 3.3) for fixed-job prior-
ity scheduling, and Global Rate Monotonic for fixed-task priority scheduling
(Section 3.4).

6 James Orr, Sanjoy Baruah

3.1 Fluid Scheduling

The fluid scheduling paradigm of multiprocessor real-time scheduling permits
that individual tasks be assigned a fraction f , 0 ≤ f ≤ 1, of a processor at
each instant in time (in contrast to non-fluid schedules, in which each task
may execute either upon zero processors or upon a single processor at each
instant). Fluid scheduling is a convenient abstraction that considerably simpli-
fies many multiprocessor real-time scheduling problems; techniques are known
(see, e.g, [23,16,3,20]) for converting fluid schedules to non-fluid ones for many
problems and under a wide range of conditions and circumstances.

Fluid scheduling of Liu and Layland tasks – a review. Consider some
Liu and Layland task system Γ , and let Ui denote the utilization of τi ∈
Γ . It has been shown [16] that a necessary and sufficient condition for Γ to
be fluid-schedulable upon a multiprocessor platform comprising m unit-speed
processors is that

maxτi∈Γ {Ui} ≤ 1 (4)

and
(

∑

τi∈Γ

Ui

)

≤ m (5)

Any task system satisfying Conditions 4 and 5 can be fluid-scheduled by simply
assigning each job of τi a fraction Ui of one of the m processors at each instant
between its release date and its deadline.

Extension to period-elastic tasks. The actual utilization Ui of each task
τi ∈ Γ when Γ is fluid-scheduled can be computed in the manner that was
illustrated in Examples 3 and 4:

1. Let Utot denote the total amount of computing capacity remaining to be
allocated. Initially, Utot ← m.
Let Γ ′ denote the tasks for which actual utilizations (Ui’s) have not been
computed. Initially, Γ ′ ← Γ .

2. We compute Ui values for all the tasks in Γ ′ by (i) ignoring the lower

bounds (the U
(min)
i values); and (ii) ascertaining that the Ui values so

computed do not sum to more than Utot.
In the absence of the lower bounds, note that elastic scheduling seeks the
smallest value of λ such that each task τi ∈ Γ ′ can be assigned a utilization
Ui equal to

U
(max)
i − λEi (6)

Hence the total utilization for all the tasks equals

∑

τi∈Γ ′

U
(max)
i − λ

∑

τi∈Γ ′

Ei

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 7

This total utilization is required to be ≤ the total available computing
capacity Utot:

∑

τi∈Γ ′

U
(max)
i − λ

∑

τi∈Γ ′

Ei ≤ Utot

⇔ λ ≥

(

∑

τi∈Γ ′ U
(max)
i

)

− Utot
∑

τi∈Γ ′ Ei

The smallest λ satisfying the expression above is given by

λ←









(

∑

τi∈Γ ′ U
(max)
i

)

− Utot
∑

i Ei









This value of λ is used to compute the value of Ui for each τi ∈ Γ according
to Expression 6 above.

3. If each such computed Ui value is ≥ the corresponding U
(min)
i value, then

these are the desired Ui values and we are done.
4. Else, there are some τi ∈ Γ ′ for which the computed Ui value is strictly

smaller than the corresponding U
(min)
i value. For each such τi

– we assign it an actual utilization equal to its U
(min)
i value: Ui ← U

(min)
i ;

– we subtract this assigned utilization from the total available capacity:

Utot ← Utot − U
(min)
i ; and

– we remove this task from the set Γ ′ of tasks for which it remains to
compute the actual utilization: Γ ′ ← Γ ′ \ {τi}.

5. We then repeat the process from Step 2 onwards.

Example 5 Reference Examples 3 and 4 here. ut

The idea outlined above was codified in the original elastic scheduling pa-
per [6], Buttazzo et al. as the iterative algorithm Task Compress(Γ ,Ud) that
assigns a period to each task in Γ such that the total system utilization stays
below a desired value Ud, that has running time Θ(|Γ |2) — this algorithm is
reproduced in this paper as Algorithm 1. It is evident that Algorithm 1 is,
in essence, determining the smallest value of λ for which

(

n
∑

i=1

Ui(λ)

)

≤ Ud ,

where the Ui(λ)s are as defined according to Expression 3. Observe, too, that
Algorithm 1 never increases the actual utilization assigned to any any task τi
to beyond U

(max)
i — this follows from the observation that in Line 19, the value

assigned to the actual utilization —the parameter Ui— is obtained by subtract-

ing a positive quantity from U
(max)
1 . Hence given an elastic task system Γ of

sequential tasks that is to be fluid-scheduled upon m unit-speed processors,
we can determine the effective utilizations of the individual tasks that satisfy

8 James Orr, Sanjoy Baruah

Algorithm 1 Task Compress(Γ ,Ud)

1: U(max) =
∑n

i=1 Ci/T
(min)
i

2: U(min) =
∑n

i=1 Ci/T
(max)
i

3: if Ud < U(min) then

4: return INFEASIBLE
5: end if

6: ok= 0
7: while ok == 0 do

8: Uf = Ev = 0
9: for each τi do

10: if Ei == 0 or Ti == T
(max)
i then

11: Uf = Uf + Ui

12: else

13: Ev = Ev + Ei

14: end if

15: end for

16: ok= 1
17: for each τi ∈ Γv do

18: if Ei > 0 and Ti < T
(max)
i then

19: Ui = U
(max)
i − (U(max) − Ud + Uf) ∗ Ei/Ev

20: Ti = Ci/Ui

21: if Ti > T
(max)
i then

22: Ti = T
(max)
i

23: ok= 0
24: end if

25: end if

26: end for

27: end while

28: return FEASIBLE

Conditions 4 and 5, and therefore bear witness to the fluid-schedulability of
Γ , by simply calling the procedure Task Compress(Γ ,Ud) of Algorithm 1 with
Ud ← m. The instance Γ can then be fluid-scheduled by assigning each job of
each τi ∈ Γ a fraction of a processor equal to this effective utilization at each
instant between its release date and its deadline.

3.2 Global EDF

While the fluid scheduling model is a convenient abstraction for considering
multiprocessor scheduling, it is not in general directly implementable. As men-
tioned above, techniques are known for converting fluid schedules to non-fluid
ones under a variety of conditions; however, most such conversions yield sched-
ules with a large number of preemptions and inter-processor migrations. In
environments in which there is a considerable overhead associated with each
preemption and/ or inter-processor migration, this approach of obtaining a
fluid schedule and then converting to a non-fluid one may incur unacceptably
high overhead costs.

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 9

Review of results for Liu and Layland tasks. The global Earliest Dead-
line First (EDF) scheduling algorithm has the property that the total number
of preemptions and inter-processor migrations in a schedule is bounded from
above at the number of jobs in the schedule. (This is easily seen by observing
that a job may preempt an already-executing one only upon its arrival, if it
happens to have an earlier deadline; such preemption may later lead to an
inter-processor migration if the preempted job resumes upon a different pro-
cessor.) Global EDF may therefore be a more appropriate algorithm to use
in environments characterized by significant preemption/ migration overhead
costs. Goossens et al. showed [15, Theorem 5] that a system Γ of Liu & Lay-
land tasks is scheduled by global EDF to meet all deadlines upon m unit-speed
processors if the following condition holds:

∑

τi∈Γ

Ui ≤ m− (m− 1)×max
τi∈Γ

{Ui} (7)

(This condition was also shown [15, Theorem 6] to be tight from a utilization-
based perspective: there are systems in which

(
∑

τi∈Γ Ui

)

is greater than
(m− (m− 1)×maxτi∈Γ {Ui}) by an arbitrarily small amount, upon which
global EDF misses deadlines.)

Extension to period-elastic tasks. Given a system Γ of period-elastic tasks

Γ =
{

τi = (U
(max)
i , U

(min)
i , Ei)

}n

i=1

that is to be scheduled upon an m-processor platform, our objective is to find
the smallest value of λ such that the Liu & Layland task system with the
following utilizations

Ui ←
{

max
(

U
(max)
i − λEi, U

(min)
i

)}n

i=1
(8)

is schedulable using global EDF. We have chosen to solve this problem by iter-
ating through the possible values of λ — see Algorithm 2. This algorithm steps
through the range [0, Φ] with a “granularity” ε (Line 1 of Algorithm 2), where

Φ is the maximum value among all tasks of the equation
(

U
(max)
i

−U
(min)
i

Ei

)

. The

algorithm seeks the smallest value of λ or which the Liu & Layland task system
of Expression 8 above is global EDF-schedulable according to Expression 7.
Once this smallest value of λ is determined and returned by Algorithm 2, we
can convert the period-elastic task system to a regular Liu & Layland task
system by computing the effective utilizations of the tasks according to Ex-
pression 3, and then schedule the Liu & Layland task system so obtained by
global EDF. Algorithm 2 is Θ(Φ

ε
× n).

3.3 Algorithm PriD

It was observed [2] that global EDF tends to under-perform when there is even
a single task with high utilization. This is easily explained by examining the

10 James Orr, Sanjoy Baruah

Algorithm 2 Global EDF(Γ ,m)
1: ε← 0.05× Φ . “Granularity” of the test...
2: for λ← 0 to Φ by ε do

3: S ← 0.0 . Total utilization of compressed tasks
4: M ← 0.0 . Max. utilization amongst compressed tasks
5: for i← 1 to |Γ | do

6: tmp← max
(

U
(max)
i − λEi, U

(min)
i

)

7: S ← S+ tmp
8: M ← max(M, tmp)
9: end for

10: if (S ≤ m− (m− 1)×M) then

11: . By Eqn. 7, the compressed tasks are global-EDF schedulable,
12: return λ
13: end if

14: end for

15: return (global EDF fails)

Algorithm PriD (Γ,m)
The Liu & Layland task system Γ = {τ1, τ2, . . . τn} is to be scheduled on m processors
Assume the tasks are indexed according to utilization: Ui ≥ Ui+1 for all i, 1 ≤ i < n
for i = 1 to m do

if {τi+1, τi+2, . . . , τn} is global-EDF schedulable upon (m− i) processors
then

During run-time {τ1, τ2, . . . , τi}’s jobs will be assigned highest priority
and {τi+1, τi+2, . . . , τn}’s jobs will be assigned EDF-priority
return success

return failure // Not schedulable by PriD

Fig. 1 Algorithm PriD priority-assignment rule

utilization-based global-EDF schedulability condition of Inequality 7: observe
the presence of the

(

(m− 1)×max
τi∈Γ

{Ui}
)

term on the right-hand side. Since this term is subtracted from the total com-
puting capacity of the platform (i.e., m), the consequence is that a capacity of
(m−1) times the largest individual utilization becomes unavailable due to the
presence of this large-utilization task. This phenomenon can be looked upon
a consequence of the well-known Dhall effect [11,12] which has been widely
studied in multiprocessor real-time scheduling theory. Several results have been
obtained within the real-time scheduling theory community for dealing with
such utilization loss; below we first review some of these results and then seek
to extend their applicability to incorporate period-elasticity.

Review of results for Liu and Layland tasks. Recall that one major
advantage of EDF-generated schedules over those obtained by converting a
fluid-based one is the reduced number of preemptions and inter-processor mi-
grations: the total number of preemptions and migrations in an EDF-generated

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 11

is no greater than the number of jobs that are scheduled. It turns out that this
property is in fact enjoyed by an entire class of algorithms: all those in which
each job is assigned a single fixed priority and at each instant during run-time
the highest-priority jobs that are eligible to execute are selected for execu-
tion. Algorithms in this class are referred to as Fixed Job Priority (FJP) [9]
scheduling algorithms. The algorithm fpEDF was proposed [2] as an FJP algo-
rithm that circumvents the utilization loss caused by the Dhall effect. Under
the fpEDF run-time scheduling algorithm, jobs of tasks with utilization > 0.5
are statically assigned highest priority while priorities to jobs of the remaining
tasks are assigned according to EDF. It has been shown [2, Theorem 4] that a
task system Γ is scheduled by fpEDF to meet all deadlines upon m unit-speed
processors if the following condition holds:

∑

τi∈Γ

Ui ≤
m+ 1

2
(9)

A pragmatic improvement to fpEDF, called Algorithm PriD (for “priority
driven”) was proposed by Goossens et al. [15] — this is the algorithm that
we will be adapting below for period-elastic tasks. Algorithm PriD is pre-
sented in pseudo-code form in Figure 1. Algorithm PriD, like fpEDF, seeks
to circumvent the Dhall effect by assigning greatest priority to jobs of tasks
with high utilization; however, while fpEDF designates all tasks with utiliza-
tion > 0.5 to be “high-utilization” ones, Algorithm PriD determines which
tasks are “high-utilization” based on the characteristics of the task system
under consideration. It is shown [15] that Algorithm PriD strictly dominates
fpEDF: all instances that are deemed schedulable by fpEDF are also deemed
schedulable by PriD while the converse of this statement is not true – there
are instances deemed schedulable by Algorithm PriD that will not pass the
fpEDF schedulability test of Expression 9.

Extension to period-elastic tasks. Our adaptation of Algorithm PriD to
period-elastic tasks is similar to our adaptation of global EDF: given an in-
stance of periodic-elastic tasks

Γ =
{

τi = (U
(max)
i , U

(min)
i , Ei)

}n

i=1

to be scheduled upon m unit-speed processors, we iterate through possible
values of λ between 0 and Φ, seeking the smallest value such that the Liu &
Layland task system with utilizations

Ui ←
{

max
(

U
(max)
i − λEi, U

(min)
i

)}n

i=1

is deemed schedulable by Algorithm PriD upon m unit-speed processors. (The
pseudo-code for this algorithm is very similar to the pseudo-code in Algo-
rithm 2, and hence omitted.)

Algorithm PriD is Θ
(

n× log(n) +m
)

. Therefore, the overall complexity

of iterating over λ values for elastic tasks to be scheduled under Algorithm

PriD is Θ
(

Φ
ε
× (n× log(n) +m)

)

12 James Orr, Sanjoy Baruah

3.4 Global Rate-Monotonic

Both Global EDF and Algorithm PriD consider tasks whose priorities may
vary from job to job. Under Global Rate-Monotonic (RM) scheduling, all jobs
of a task have a single fixed priority – tasks with a shorter period are given
higher priority and will always preempt a task with a longer period.

Review of results for Liu and Layland tasks. The best known utilization
bound for global (RM) scheduling was established by Bertogna et al. [5] A
system Γ of Liu & Layland tasks is scheduled by global EDF to meet all
deadlines upon m unit-speed processors if:

∑

τi∈Γ

Ui ≤
m

2

(

1−max
τi∈Γ

{Ui}

)

+max
τi∈Γ

{Ui} (10)

Once again the presence of the maxτi∈Γ {Ui} term demonstrates the presence
of the Dhall effect.

Extension to period-elastic tasks. The adaptation of global RM to period-
elastic tasks is similar to our adaptation of global EDF and Algorithm PriD
discussed earlier: given an instance of periodic-elastic tasks

Γ =
{

τi = (U
(max)
i , U

(min)
i , Ei)

}n

i=1

to be scheduled upon m unit-speed processors, we iterate through possible
values of λ between 0 and Φ, seeking the smallest value such that the Liu &
Layland task system with utilizations

Ui ←
{

max
(

U
(max)
i − λEi, U

(min)
i

)}n

i=1

is deemed schedulable by global Rate-Monotonic upon m unit-speed proces-
sors. (The pseudo-code for this algorithm is again very similar to the pseudo-
code in Algorithm 2, and hence omitted.) The overall complexity is the same
as Algorithm 2, Θ(Φ

ε
× n).

4 Partitioned Scheduling

The partitioned scheduling of Liu & Layland task systems is known to be
equivalent to the bin-packing problem[18,17], and hence NP-hard in the strong
sense. Several polynomial-time heuristics have been proposed for solving this
problem approximately: most of these heuristic algorithms for partitioning
have the following common structure. First, they specify an order in which the
tasks are to be considered. Then in considering each task (in the order chosen),
they specify the order in which to consider upon which processor to attempt
to allocate the task. A task is successfully allocated upon a processor if it is
observed to “fit” upon the processor; within the context of the partitioned
EDF-scheduling, a task fits on a processor if the task’s utilization does not

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 13

exceed the processor capacity minus the sum of the utilizations of all tasks
previously allocated to the processor. The algorithm declares success if all
tasks are successfully allocated; otherwise, it declares failure.

Lopez et al. [22] have extensively compared several widely-used heuristic
algorithms that fit this overall structure. They define the concept of a Reason-

able Allocation (RA) partitioning algorithm: an RA algorithm is one that fails
to allocate a task to a multiprocessor platform only when the task does not fit
into any processor upon the platform. All the heuristic algorithms considered
by Lopez et al. [22] are RA ones — indeed, there seems to be no reason why
a system designer would ever consider using a non-RA partitioning algorithm.
Within the RA algorithms, Lopez et al. [22] compared heuristics that

1. use three different ways for ordering the tasks to consider: arbitrary, in
order of increasing utilization, and in order of decreasing utilization; and

2. also use three different heuristics for ordering the processors to consider:
“first fit” (assign a task to the first processor upon which it fits), “worst fit”
(assign a task to the processor with the maximum remaining capacity), and
and “best fit” (assign a task to the processor with the minimum remaining
capacity that exceeds the task’s utilization).

Extension to period-elastic tasks. Any of the partitioning heuristics can
be adapted for period-elastic tasks in a manner that is very similar in structure
to the manner in which global EDF, PriD, and global RM were adapted for
elastic tasks. That is, given an instance of periodic-elastic tasks

Γ =
{

τi = (U
(max)
i , U

(min)
i , Ei)

}n

i=1

to be scheduled upon m unit-speed processors, we iterate through possible
values of λ between 0 and Φ, seeking the smallest value such that the Liu &
Layland task system with utilizations

Ui ←
{

max
(

U
(max)
i − λEi, U

(min)
i

)}n

i=1

is deemed schedulable by upon m unit-speed processors by the partitioning
heuristic. (The pseudo-code for doing so is again very similar to the pseudo-
code in Algorithm 2, and hence omitted.)

Although the partitioning heuristics are nearly identical, we differentiate
between partitioning tasks with fixed-job priority vs tasks with fixed-task
priority: the task acceptance criteria onto a processor are very different for
fixed-job priority and fixed-task priority algorithms. For fixed-job priority al-
gorithms, it follows from the optimality property of preemptive uniprocessor
EDF that each processor may use up to its full capacity. Hence in order to
determine whether a task may be assigned to a processor under partitioned
fixed-job priority scheduling the procedure Task Compress(Γ ,Ud) of Buttazzo
et al. [6] (reproduced here as Algorithm 1) can be applied to each proces-
sor with Ud ← 1.0. However for fixed-task priority scheduling each processor
may suffer a schedulability loss that could be close to 30% of its utilization.

14 James Orr, Sanjoy Baruah

Uniprocessor RM scheduling is known to be an optimal fixed-task priority al-
gorithm (hence our decision to use it for scheduling the individual processors),
but utilization-based schedulability test can be overly pessimistic [21]: using
response-time analysis [19,1] provides a better admission criterion. In response
time analysis, rather than using a utilization-based schedulability test, a task
being partitioned computes the interference the task will receive, the amount
of time each of its jobs will be preempted by higher-priority tasks already
assigned to a processor. If the task’s required computation time plus the inter-
ference it suffers from higher-priority tasks already on a processor is less than
or equal to its relative deadline, then the task is able to be partitioned to the
processor.

5 Simulation Experiments

We have performed a simulation-based comparison of the various algorithms
presented in Sections 3 and 4 for the multiprocessor scheduling of sequential
period-elastic tasks; we report on the findings of this comparison below. We
describe the setup for these simulation experiments in Section 5.1 and present
our findings in Section 5.2; based upon these findings, we draw some high-level
conclusions in Section 5.3.

5.1 Experimental Setup

We randomly generate sets of sequential period-elastic tasks and attempt
to schedule them upon a given number of processors m using the different
scheduling algorithms – fluid, global EDF, PriD, global RM, and partitioned
scheduling of both fixed-job (RM) and fixed-task (RM) priorities – described
in Sections 3 and 4 above. Specifically,

– We separately consider multiprocessor platforms containing m = 4, 8, and
16 identical processors.

– For each of these values for m, we consider task sets with n = 2 × m,
n = 4×m, and n = 8×m tasks.

– For each combination of values of m and n, we also vary the maximum
utilization value any individual task is allowed to be assigned, denoted α.
This value can directly impact schedulability of a task set, particularly
when using the global EDF, PriD, and global RM algorithms. We study
values of of α = {0.6, 0.8, 1.0}.

– For each selected combination of values ofm and n, we generate task sets in

which the maximum utilizations of the tasks (i.e., their U
(max)
i parameters)

sum to 1.1×m× α, 1.5×m× α, and 1.9×m× α.

Hence a total of 3× 3× 3× 3 = 81 different combinations of values of m,n, α,

and
(

∑

i U
(max)
i

)

are considered. For each such combination, we generate 500

task sets in the following manner. We generate the individual U (max) values

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 15

using the Randfixedsum algorithm [13] to provide an unbiased distribution
of maximum utilizations. The corresponding individual task minimum utiliza-

tion values U
(min)
i are uniformly generated over the range (0, U

(max)
i). In the

case that a task set’s U
(min)
i values sum to more than m (i.e. the task set is

not schedulable under fluid scheduling, or therefore, any other scheduling al-

gorithm), we repeatedly generated new U
(min)
i values for each task until their

sum is sufficiently low. Tasks’ elastic coefficients is chosen uniformly randomly
over the range [1, 5]. For all algorithms a “granularity” of ε = Φ

1,000 was used.
We attempt to schedule each task set generated as described above using

the various algorithms discussed in Sections 3 and 4: fluid, global EDF, PriD,
global RM, partitioned fixed-job priority (FJP) with uniprocessor EDF, and
partitioned fixed-task priority (FTP) with uniprocessor RM. For partitioned
algorithms, we first sort the tasks. For FJP we sort in order of decreasing
utilization (their Ui(λ) parameters) whereas for JTP we sort by increasing
period, in order to assign the highest priority tasks to schedulers first and
make the response-time analysis simpler. In both cases we then attempt to
assign them to the available processors using the the “first-fit,” “worst-fit,”
and “best-fit” heuristics. We return the first λ value that deems the task set
schedulable by any of these heuristics. We note that the ability to partition
tasks onto processors in an efficient manner is an advantage of partitioned over
global scheduling algorithms, since it is infeasible to carry out full simulation
of global EDF, PriD, or global RM.

5.2 Observations

In our experiments, we noted (i) the fraction of task-sets that were determined
to be schedulable by each of our considered algorithms; and (ii) for those
task-sets that were deemed schedulable by all the algorithms, the minimum λ
needed to achieve schedulability by each algorithm. Our results are presented
in graphical form in Figures 2–19. In these graphs we show results of both
the average minimum normalized λ value (λ

Φ
–this gives a value on the interval

[0, 1] and is needed to compare λ values across task sets) needed to achieve
schedulability for a given scheduling algorithm, and the percentage of the 500
task sets that each algorithm deemed scheduleable. To ensure a consistent
comparison, we only compare lambda values for task sets deemed schedulable
by all scheduling algorithms.

As mentioned in Subsection 5.1, there are 81 combinations of m,n, α, and
(

∑

i U
(max)
i

)

considered in this simulation.

Figures 2–19 show both the λ values and percentage of schedulable task sets
for all the considered scheduling algorithms (fluid, global EDF, PriD, and par-
titioned) for α = 0.6, 0.8, and 1.0. Some trends can be noticed across all graphs.
We note that fluid scheduling is an idealized optimal scheduling algorithm; not
surprisingly, therefore, it schedules the largest percentage of task-sets and re-
turns the smallest λ value. This is seen consistently across all results. It serves

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 25

as an upper bound for achievable simulation results for the other scheduling
algorithms. We also note that partitioned scheduling algorithms consistently
dominate global algorithm PriD, global EDF, and global RM in both λ value
and in percentage of schedulable task sets. This is consistent with prior ob-
servations [4] regarding global versus partitioned multiprocessor scheduling;
in essence, this is likely a reflection of the fact that while global schedul-
ing algorithms like PriD apply schedulability tests that are utilization-based
and incorporate considerable pessimism since they must consider “worst-case”
task-sets with the same utilization parameters as running full simulations is
infeasible, partitioned schedulability tests actually attempt to perform a parti-
tion and hence do not necessarily pay the price in terms of such analysis-based
pessimism.

Note that global RM scheduling always requires the highest λ value, and
that the percentage of task sets deemed schedulable under global RM decreases

as
(

∑

i U
(max)
i

)

increases. Global EDF consistently requires the second highest

λ and is the second most difficult to schedule. This is a manifestation of the
Dhall effect, and our experiments revealed that this worsens as the number of

processors and tasks increase: for some combinations ofm, n, and
(

∑

i U
(max)
i

)

that we considered, global RM, global EDF, and more rarely PriD fail to
schedule a single task set out of 500. In such cases the reported λ is off the
chart. The Dhall effect can be observed to worsen as α increases.

Our experiments also reveal that it becomes more difficult to schedule tasks
(in terms of both λ value and schedulability percentage) for all the schedul-

ing algorithms as
(

∑

i U
(max)
i

)

increases. The same is true as the number of

processors increases but the ratio of processors to tasks remains the same. On
a constant number of processors, fluid and partitioned scheduling can return
a lower λ value with more tasks in the task set, and a higher percentage of
task sets are deemed schedulable under partitioned scheduling (while PriD
and global EDF seem less affected). We believe this improvement seen to be a
reduction in the Dhall effect: as more tasks are introduced into the system the
largest single task is more likely to decrease. Naturally fluid scheduling always
deems 100% of tasks to be schedulable.

5.3 Recommendation

Based on our observations in the previous subsection and the graphs in Fig-
ures 2–19, we recommend that in the absence of specific knowledge regarding
task characteristics that may advocate in favor of global RM, global EDF, or
PriD, partitioned scheduling be used for the scheduling of sequential period-
elastic tasks on uniform multiprocessor systems, particularly in systems with
a large number of tasks. Among the realistic (i.e., excluding the idealized fluid
scheduling algorithm) scheduling algorithms considered in this paper, parti-
tioned scheduling 1) consistently returns the lowest value of λ (i.e., compresses
tasks the least); and 2) schedules the highest percentage of task sets. While

26 James Orr, Sanjoy Baruah

running uniprocessor EDF on each partitioned processor yields the best re-
sults in our simulation, we note that uniprocessor RM has been noted to have
several implementation advantages in practice; as such, it may be worth the
slight scheduling inefficiency.

6 Related Work

Buttazzo et al. first introduced the elastic task model for sequential tasks on
a preemptive uniprocessor [6]. The sequential model was later extended to
include resource sharing [7] and unknown computational loads [8]. Chantem
et al. proved Buttazzo’s initial scheduling algorithm to be equivalent to solving
a quadratic optimization problem and introduced a period-based optimization
problem scheme for period selection [10]; they further extended the model to
include constrained deadlines [10]. Our prior work introduced elastic schedul-
ing of tasks with internal parallelism under the federated scheduling paradigm
[26] and the concept of computational elasticity [25]. Recent work by Gill et al.,
has applied elastic scheduling to mixed-criticality systems [14]. We leave the
sequential multi-core scheduling extensions to all of these problems as future
work.

7 Conclusion

In this paper we have introduced elastic scheduling for sequential tasks on
multiprocessor systems. We have introduced algorithms for scheduling such
tasks under both global (in a variety of manners) and partitioned scheduling
paradigms. We ran an extensive simulation to compare these methods and
conclude that partitioned scheduling should be used if possible.

References

1. Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.: Applying new schedul-
ing theory to static priority preemptive scheduling. Software Engineering Journal 8(5),
285–292 (1993)

2. Baruah, S.: Optimal utilization bounds for the fixed-priority scheduling of periodic task
systems on identical multiprocessors. IEEE Transactions on Computers 53(6) (2004)

3. Baruah, S., Cohen, N., Plaxton, G., Varvel, D.: Proportionate progress: A notion of
fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)

4. Bastoni, A., Brandenburg, B., Anderson, J.: An empirical comparison of global, parti-
tioned, and clustered multiprocessor real-time schedulers. In: Proceedings of the Real-
Time Systems Symposium, pp. 14–24. IEEE Computer Society Press, San Diego, CA
(2010)

5. Bertogna, M., Cirinei, M., Lipari, G.: New schedulability tests for real-time tasks sets
scheduled by deadline monotonic on multiprocessors. In: Proceedings of the 9th In-
ternational Conference on Principles of Distributed Systems. IEEE Computer Society
Press, Pisa, Italy (2005)

6. Buttazzo, G.C., Lipari, G., Abeni, L.: Elastic task model for adaptive rate control. In:
IEEE Real-Time Systems Symposium (RTSS) (1998)

Algorithms for Implementing Elastic Tasks on Multiprocessor Platforms 27

7. Buttazzo, G.C., Lipari, G., Caccamo, M., Abeni, L.: Elastic scheduling for flexi-
ble workload management. IEEE Trans. Comput. 51(3), 289–302 (2002). DOI
10.1109/12.990127. URL http://dx.doi.org/10.1109/12.990127

8. Caccamo, M., Buttazzo, G., Sha, L.: Elastic feedback control. In: Proceedings 12th
Euromicro Conference on Real-Time Systems. Euromicro RTS 2000, pp. 121–128 (2000).
DOI 10.1109/EMRTS.2000.853999

9. Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., Baruah, S.: A cate-
gorization of real-time multiprocessor scheduling problems and algorithms. In: J.Y.T.
Leung (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis.
CRC Press LLC (2003)

10. Chantem, T., Hu, X., Lemmon, M.: Generalized elastic scheduling for real-time tasks.
IEEE Transactions on Computers 58(4), 480–495 (2009). DOI 10.1109/TC.2008.175

11. Dhall, S.: Scheduling periodic time-critical jobs on single processor and multiprocessor
systems. Ph.D. thesis, Department of Computer Science, The University of Illinois at
Urbana-Champaign (1977)

12. Dhall, S.K., Liu, C.L.: On a real-time scheduling problem. Operations Research 26,
127–140 (1978)

13. Emberson, P., Stafford, R., Davis, R.: Techniques for the synthesis of multiprocessor
tasksets. WATERS’10 (2010)

14. Gill, C., Orr, J., Harris, S.: Supporting graceful degradation through elasticity in mixed-
criticality federated scheduling. In: Proceedings of the 6th International Workshop on
Mixed Criticality Systems (WMC) (2018)

15. Goossens, J., Funk, S., Baruah, S.: Priority-driven scheduling of periodic task systems
on multiprocessors. Real Time Systems 25(2–3), 187–205 (2003)

16. Horn, W.: Some simple scheduling algorithms. Naval Research Logistics Quarterly 21,
177–185 (1974)

17. Johnson, D.: Fast algorithms for bin packing. Journal of Computer and Systems Science
8(3), 272–314 (1974)

18. Johnson, D.S.: Near-optimal bin packing algorithms. Ph.D. thesis, Department of Math-
ematics, Massachusetts Institute of Technology (1973)

19. Joseph, M., Pandya, P.: Finding response times in a real-time system. The Computer
Journal 29(5), 390–395 (1986)

20. Lee, J., Phan, K.M., Gu, X., Lee, J., Easwaran, A., Shin, I., Lee, I.: MC-Fluid: Fluid
model-based mixed-criticality scheduling on multiprocessors. In: Real-Time Systems
Symposium (RTSS), 2014 IEEE, pp. 41–52 (2014)

21. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM 20(1), 46–61 (1973)

22. Lopez, J.M., Diaz, J.L., Garcia, D.F.: Utilization bounds for EDF scheduling on real-
time multiprocessor systems. Real-Time Systems: The International Journal of Time-
Critical Computing 28(1), 39–68 (2004)

23. McNaughton, R.: Scheduling with deadlines and loss functions. Management Science 6,
1–12 (1959)

24. Orr, J., Baruah, S.: Multiprocessor scheduling of elastic tasks. In: Proceedings of
the 27th International Conference on Real-Time Networks and Systems, RTNS ’19,
p. 133–142. Association for Computing Machinery, New York, NY, USA (2019). DOI
10.1145/3356401.3356403. URL https://doi.org/10.1145/3356401.3356403

25. Orr, J., Gill, C., Agrawal, K., Baruah, S., Cianfarani, C., Ang, P., Wong, C.: Elas-
ticity of workloads and periods of parallel real-time tasks. In: Proceedings of the
26th International Conference on Real-Time Networks and Systems, RTNS ’18, pp.
61–71. ACM, New York, NY, USA (2018). DOI 10.1145/3273905.3273915. URL
http://doi.acm.org/10.1145/3273905.3273915

26. Orr, J., Gill, C., Agrawal, K., Li, J., Baruah, S.: Elastic scheduling for parallel real-time
systems. Leibniz Transactions on Embedded Systems 6(1), 05–1–05:14 (2019). DOI
10.4230/LITES-v006-i001-a005. URL https://ojs.dagstuhl.de/index.php/lites/

article/view/LITES-v006-i001-a005

