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——— Abstract

Feasibility analysis for Conditional DAG tasks (C-DAGs) upon multiprocessor platforms is shown
to be complete for the complexity class PSPACE. It is shown that as a consequence integer linear
programming solvers (ILP solvers) are likely to prove inadequate such analysis. A demarcation is
identified between the feasibility-analysis problems on C-DAGs that are efficiently solvable using ILP
solvers and those that are not, by characterizing a restricted class of C-DAGs for which feasibility
analysis is shown to be efficiently solvable using ILP solvers.

2012 ACM Subject Classification Computer systems organization — Embedded and cyber-physical
systems; Software and its engineering — Real-time schedulability

Keywords and phrases Multiprocessor feasibility analysis; Conditional Directed Acyclic Graphs;
PSPACE-complete

1 Introduction

This paper investigates the feasibility analysis problem for C-DAG tasks: the problem
of determining whether a given real-time workload which is specified in the Conditional
Directed Acyclic Graph task (C-DAG) model [?, 7] and is to be implemented upon a particular
multiprocessor platform, can be scheduled to always complete by a specified deadline. Since it
follows from earlier results [?] that a simpler version of this problem, in which the workload is
specified as a DAG (i.e., without any conditional nodes) is already NP-hard in the strong sense,
we should not expect to obtain algorithms with polynomial or pseudo-polynomial running
times that solve our problem exactly. Two approaches to such feasibility analysis problems
(i.e., those that are provably NP-hard in the strong sense) have previously been investigated
in the real-time literature: (i) design approximation algorithms that run in polynomial or
pseudo-polynomial time; or (ii) derive exact algorithms that (necessarily, assuming P # NP)
run in exponential time. The latter approach is often based upon transforming the feasibility
analysis problem into an integer linear program (ILP), and leveraging the tremendous recent
improvements that have been obtained in the performance of ILP solvers to achieve running
times that are acceptable in practice for reasonably large problem instances.! In this paper
we prove that an approach based on transformation to ILPs is unlikely to be applicable to
the general C-DAG feasibility-analysis problem — to our knowledge, this is amongst the first
feasibility-analysis problems for which such a negative result regarding the use of ILPs has
been obtained in the real-time literature. We also identify an important restricted case for
which ILP-solvers can in fact prove helpful: this special case essentially limits the number of
conditional constructs that may be present.

Our Contributions. Two major technical results are proved in this paper:
1. the C-DAG feasibility analysis problem is PSPACE complete; and
2. it is in NP if the number of conditional constructs is a priori bounded by a constant.

L We point out that determining whether an ILP has a solution is known [?] to be NP-complete in the
strong sense; hence the overall worst-case run-time complexity of this approach remains exponential.
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N Gy = (V{,E}) ¢ b Vertices s1 and t1 (vertices s2 and t2, resp.)
are the sole source vertex and sink vertex of
G (of G%, resp.).

St Gh= () 47

Figure 1 A canonical conditional construct

While at first glance these may appear to be highly theoretical results that are a poor fit for
ECRTS, we will establish that they do in fact have major implications to real-time systems
design and implementation. We will show that it follows from our first result that it is highly
unlikely we will be able to solve general C-DAG feasibility analysis problems in polynomial
time even when calls to an ILP solver are ?for free? (and hence, regardless of how good
your ILP solver may be). The second result clearly shows that the root cause of this is
the presence of the conditional constructs, and thereby demarcates the boundary between
feasibility-analysis problems that are efficiently transformable to ILPs and those that are
not. We also offer evidence that the size of the ILP for solving an instance of this restricted
case grows exponentially with the number of conditional constructs that are present. This in
turn suggests a design guideline: conditional constructs be considered as a scarce ?resource?
to be used only when their increased expressiveness is essential, since their presence can slow
down feasibility analysis exponentially.

Organization. The remainder of this manuscript is organized as follows. We describe the
Conditional DAG model in Section 2, and briefly review some needed results from complexity
theory in Section 3. Our main technical results are in Section 4 (the PSPACE completeness
proof) and Section ?? (the more tractable special case). We conclude in Section ?? by listing
some additional implications of our findings and placing these within the context of related
research, and briefly list some interesting directions for future research.

2 The Conditional DAG (C-DAG) Model

Task models based upon Directed Acyclic Graphs (DAGs) seek to expose parallelism in real-
time workloads: the sporadic DAG model [?] (see [?, Chapter 21] for a text-book description)
is an early example. A task in this model is specified as a 3-tuple (G, D,T'), where G is a
directed acyclic graph (DAG), and D and T are positive integers representing the relative
deadline and period parameters of the task respectively. The task repeatedly releases dag-jobs,
each of which is a collection of sequential jobs. Successive dag-jobs are released a duration
of at least T' time units apart. The DAG G is specified as G = (V, E), where V is a set of
vertices and F a set of directed edges between these vertices. Each v € V represents a job,
which corresponds to the execution of a sequential piece of code and is characterized by a
worst-case execution time (WCET). The edges represent dependencies between the jobs:
if (v1,v2) € E then job v; must complete execution before job vy can begin execution. A
release of a dag-job of the task at time-instant ¢ means that all |V| jobs v € V are released
at t. If a dag-job is released at time ¢ then all |V| jobs that were released at ¢ must complete
execution by time t + D.

Conditional DAG tasks. The Conditional DAG (C-DAG) task model was introduced [?,
?] to model the execution of conditional (e.g., if-then-else) constructs in parallel real-time
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code. A C-DAG task, too, is specified as a 3-tuple (G, D,T'), where G = (V, E) is a DAG,
and D and T are positive integers denoting the relative deadline and period parameters of
the task. They differ from regular sporadic DAGs in that certain vertices € V are designated
as conditional vertices that are defined in matched pairs, each such pair defining a conditional
construct. Let (c1,ca) be such a pair in the DAG G = (V, E) — see Figure 1. Informally
speaking, vertex c; represents a point in the code where a conditional expression is evaluated
and, depending upon the outcome of this evaluation, control will subsequently flow along
one of two different possible branches.? It is required that these two different branches meet
again at a common point in the code, represented by the vertex co. More formally,

1. There are two outgoing edges from ¢; in F (say, to the vertices s; and sg), and two
incoming edges to co (say, from the vertices t; and t3), in E — see Figure 1.

2. For each £ € {1,2}, let V/ C V and E, C E denote all the vertices and edges on paths
reachable from sy that do not include vertex co. By definition, sy is the sole source vertex
of the DAG G, = (V/, E}). Vertex t, must be the sole sink vertex of G.

3. It must hold that V/ N V4 = 0. Additionally for each ¢ € {1,2}, with the exception of
(c1, s¢) there should be no edges in E into vertices in V;/ from vertices that are not in V.

Edges (v1, v2) between pairs of vertices neither of which are conditional nodes represent prece-

dence constraints exactly as in traditional sporadic DAGs, while edges involving conditional

nodes represent conditional execution of code. More specifically, let (c1,c2) denote a defined

pair of conditional vertices that together define a conditional construct. The semantics of

conditional DAG execution mandate that

e After the job ¢; completes execution, exactly one of its two successor jobs becomes eligible
to execute; it is not known beforehand which successor job this may be.

e Job ¢y begins to execute upon the completion of exactly one of its two predecessor jobs.
In the remainder of this paper we make the simplifying assumption that each of the conditional
vertices ¢ and co demarcating a conditional construct has zero execution time.

The C-DAG feasibility analysis problem. We are interested, from a real-time systems
perspective, in understanding how to implement specified collections of C-DAG tasks upon
a shared multiprocessor platform in a correct and resource-efficient manner. The federated
scheduling paradigm [?], in which each task is restricted to execute upon a specified subset of
the processors (and each processor is assigned to no more than one task), is a widely-studied
approach for implementing collections of tasks represented using DAG-based models upon
multiprocessor platforms. It is readily seen that federated scheduling of constrained-deadline
tasks — tasks (G, D, T) for which the deadline parameter D is no larger than the period T —
reduces to the problem of scheduling a single C-DAG upon a dedicated set of processors within
a duration not exceeding the relative deadline parameter. Hence the problem considered in
this paper is this:

» Definition 1 (The C-DAG feasibility analysis problem). GIVEN a C-DAG G, a number m € N
of processors upon which G is to execute, and a relative deadline parameter D, DETERMINE
whether it is feasible to schedule G on the m processors such that it always completes execution
within an interval of duration D, regardless of which conditional constructs in G evaluate to
true and which evaluate to false? <

2 The model is more generally defined [?, ?] to allow for > 2 possible branches; however any task with
more than 2 branches is easily transformed in polynomial time to one with always only two branches.
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The problem definition above is incomplete: several variants can be defined based upon

restrictions that are placed on how jobs may execute. For instance permitting or prohibiting

preemption results in different variants. Variants may be also be defined based upon which

processors each job is allowed to execute on:

global: any job may execute upon any processor, and the decision as to which processor a job
executes upon may be made at run-time. When preemption is permitted, a preempted
job may resume execution upon a different processor.

partitioned: each job may execute upon only one processor, and the determination as to
which processor a job executes upon is made prior to run-time.

restricted (or typed [?]): each job is pre-assigned to a particular processor. L.e., a mapping
from vertices to processors is provided as part of the problem specifications.

Why this is a difficult problem. It has been widely recognized [?, ?, ?, ?] that combinatorial
explosion is a major reason why C-DAG feasibility analysis is such a difficult problem:
exponentially many different combinations of outcomes are possible of the evaluation of the
conditional constructs in a single task, each of which may require a very different collection
of jobs to be scheduled for execution. There is, however, an additional aspect to the difficulty
of this problem that has received somewhat less attention: its inherently on line nature.
Consider the following simple illustrative example for a typed C-DAG (i.e., where vertices
are pre-assigned to individual processors):

Example: Fach vertex has WCET equal to one (except the
conditional vertices — recall they have WCET zero). Processor
assignments are color-coded: A, Hy, € Ho share a processor, as
do B,C,J, 6 K; D & F; and E € G.

If the conditional construct executes D, then C should execute
during [0,1] —otherwise the ?blue? processor will idle over
@ E El [2,3]. Else (i.e., the conditional construct executes ), B should
ezecute during [0, 1].

There are two possible outcomes of the sole conditional construct, and it may be verified that
upon either outcome the set of vertices that must be executed is individually schedulable.
However, which of vertices B or C', both assigned to the same processor, should execute
over time-interval [0, 1] necessarily differs in these two schedules and hence depends upon
the outcome of the conditional construct’s evaluation. But the conditional construct is only
executed after time-instant 1, and hence this information is revealed too late. Thus this
C-DAG is infeasible despite the sets of vertices needing to be executed upon either outcome
being feasible.

Summarizing Prior Complexity Results. Ullman showed [?] that it is NP-complete
in the strong sense to determine whether a given DAG can be scheduled to meet a specified
deadline under global or partitioned scheduling upon an identical multiprocessor platform,
regardless of whether preemption is permitted or forbidden. Jansen subsequently showed [?]
that feasibility analysis of DAGs is NP-hard in the strong sense for restricted/ typed C-DAGs
(where each job is pre-assigned to a particular processor), again under both preemptive and
non-preemptive scheduling. Since these basic problems are already NP-hard in the strong
sense, so are the corresponding problems for the more general C-DAG model. (It is easily
seen that all these problems are also in NP for (regular) DAGs; one of the contributions of
this paper is to prove that such is not the case with C-DAGs.)
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The innermost (blue) solid line represents the problems in
P, the intermediate (teal) one includes problems that are in
NP, and the outermost (red) one further includes problems
that are in PSPACE. The dotted black line depicts the class
PP,

As shown in the Venn diagram, the problem of solving ILPs
is in NP but not in P (assuming P#NP).

PSPACE

Figure 2 Venn diagram depicting the relationship between some complexity classes

3 Computational Complexity: Some Background

We now provide a brief introduction to concepts of computational complexity theory that are

used in this manuscript.® We will make reference to the following four complexity classes:

1. P is the set of problems that can be solved by algorithms with running time polynomial
in the size of their inputs.

2. NP is the set of problems that can be verified by algorithms with running time polynomial
in the size of their inputs.

3. PP is the set of problems that can be solved in polynomial time by an algorithm that
has access to an oracle for some NP-complete problem, where an oracle can be thought
of as a Tblack box? that is able to solve a specific decision problem in a single step.

4. PSPACE is the set of problems that can be solved by algorithms using an amount of space
(memory) that is polynomial in the size of their inputs. Since this complexity class has
not previously been widely used in real-time scheduling theory, we discus it a bit more
below, and provide some intuition of its relationship to C-DAG feasibility analysis.

It is widely believed, although not proved, that (P C NP C PNP C PSPACE) — see Figure 2.

PSPACE The class PSPACE can be thought of as representing the existence of a winning
strategy for a particular player in bounded-length perfect-information games that can be
played in polynomial time. I.e., consider a two-player game where players alternate making
moves for a total of n moves. Given moves my, ..., m, by the players, let M(mq,...,m,) =1
if and only if player 1 has won the game. Then player 1 has a winning strategy in the game
if and only if there exists a move m; that player 1 can make such that for every possible
response mo of player 2 there is a move mg for player 1, ...and so on. Formalizations of
many popular two-player games, including checkers, generalized geography, and Sokoban,
have been proven to be PSPACE-complete [7].

We can cast C-DAG feasibility in this two-player game framework. Given a C-DAG and
a deadline D, then the first move of player 1 (the scheduler) is to decide the set of jobs to
be scheduled until the first branch is executed; then player 2 (the environment) decides the
outcome of the branch. The game continues until the scheduling is completed and the first
player wins the game if and only if its strategy is able to complete the schedule in D time
units for all outcomes of branches (i.e. all decisions of the second player).

3 In order to keep things simple the presentation in this section is intentionally informal and not always
precise: for instance, while most of the concepts discussed below differ in their applicability to decision
problems — those for which there is a ?YES/ NO? answer — and optimization problems, we do not make
this distinction here but treat both decision and optimization problems in similar fashion.



188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

Feasibility Analysis of Conditional DAG Tasks

ILP solvers. Determining whether an integer linear program (ILP) has a solution or not is
known to be NP-complete in the strong sense [?]. Assuming P # NP, this implies that ILP
solvers with polynomial or pseudo-polynomial running time cannot be developed. Despite
this inherent intractability, however, the optimization community has devoted immense effort
to devise very efficient implementations of ILP solvers, and highly optimized libraries with
such efficient implementations are widely available today in both open-source and commercial
offerings. Modern ILP solvers, executing upon powerful computing clusters, are commonly
capable of solving ILPs with tens of thousands of variables and constraints.

4 C-DAG feasibility analysis is PSPACE-complete

One of our main results is a negative one: that the C-DAG feasibility analysis problem
(Definition 1) is PSPACE-hard for all the variants — preemptive and non-preemptive; global and
partitioned and restricted (or typed) — described in Section 2. As stated in Section 3 above,
a PSPACE complete problem is highly unlikely to be in NP or PNP: hence we cannot solve it in
polynomial time by making additional calls to an ILP-solver, even if each such call took ©(1)
(i.e., constant) time. In the remainder of this section we will prove this intractability result
for the variant* of the C-DAG feasibility analysis problem where preemption is permitted
and migration is restricted (i.e., each job is pre-assigned to a particular processor):

» Theorem 1. The C-DAG feasibility problem when each job is pre-assigned to a particular
processor is PSPACE complete.

It is trivial to show that this problem is € PSPACE — an algorithm that repeatedly simulates
the scheduling of the C-DAG under all possible combinations of outcomes of the conditional
constructs would require polynomial space. The rest of this section is devoted to proving
that this problem is also PSPACE-hard.
(This proof is rather detailed and technical: the reader may wish to skim it, or skip it
entirely, on a first reading. However, we do recommend that it eventually be read and
understood, since it contains some novel techniques and interesting ideas that are likely to
prove useful in further research. We consider these techniques and ideas an important part
of the contribution of this paper.)

PSPACE-hardness for our C-DAG feasibility analysis problem is proved by deriving a
polynomial-time reduction to the C-DAG feasibility analysis problem from the following
problem, which has previously [?, ?] been shown to be PSPACE complete:

» Definition 2 (The Quantified Boolean Formula Problem (QBF)).
INSTANCE. A boolean formula in the following form:

m

dz, Vyl dxo Vyg .. dxg, Vyn /\ (€j71 V fj}g V €j73) (1)

Jj=1

where each x; and each y; is a boolean variable, and each ¢; ; is one of the z; or y; Boolean
variables or its negation.

4 We have also proved this result for the variant that allows for global preemptive scheduling. We are
choosing to present the variant with pre-assigned processors for pedagogical reasons: the main ideas in
the proof of the hardness of the global preemptive case are also revealed in this proof while a lot of
grungy details that are not particularly novel but must be addressed for the global preemptive version
are not needed here.
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QUESTION. Does this formula evaluate to true?® <

We will describe a polynomial-time algorithm that accepts as input a Boolean formula of
the form given in Expression 1 above, and outputs a C-DAG, an assignment of jobs of the
C-DAG to processors, and a deadline D & 2n + 3, such that the C-DAG can complete
execution by the deadline if and only if Expression 1 is true. Since QBF is known to be
PSPACE-complete, this polynomial-time reduction from QBF to C-DAG feasibility analysis
suffices to show that C-DAG feasibility analysis is PSPACE hard. We start with a high-level
overview of our polynomial-time reduction.

e We will define three kinds of ?gadgets? — subgraphs that have each been designed to
achieve some particular purpose — in Sections 77, 7?7, and ??. The first kind of gadget we
will define is used to represent the clauses in Expression 1; the second, the existentially
quantified (i.e., x;) variables and the third, the universally quantified (i.e., y;) variables.
Our C-DAG will be the union of m gadgets of the first kind, n gadgets of the second
kind, and n gadgets of the third kind.

e For each boolean variable x; (y;, respectively), our C-DAG will have two jobs labeled X;

and —X; (Y; and Y}, respectively). We will state that job X; ?corresponds to? literal
x; and job =X corresponds to the literal —z; (analogously, that Y; corresponds to y; and
—Y; corresponds to —y;).
We will see, in Sections 7?7 and 77, that we construct the gadgets for the x;’s and the y;’s
in a manner that enforces the constraint that at most one of each pair of jobs X; and =X
(Y; and —Y;, respectively) can execute to completion by time-instant 2n in any schedule.
We can think of all these jobs that complete execution by time-instant 2n as defining a
truth assignment to the 2n variables {x1,z2,...,2,} U{y1,¥y2,...,yn}: boolean variable
x; is assigned true if job X is executed and false if =X is executed, and analogously
for the y; variables.® Furthermore, we will see in Sections ?? and ?? that such a truth
assignment happens in a manner that is consistent with the order and interpretation of
the quantifiers upon the boolean variables.

e We will show, in Section 7?7 below, that the gadget representing each clause will complete
by the deadline if and only if at least one of the literals in the clause evaluates to true
in the truth assignment defined as above. Therefore, the gadgets representing all the
clauses can complete by the deadline if and only if the truth assignment defined above is
a satisfying one for all the clauses.

We detail the construction of the three kinds of gadgets in Sections ?77-?7; in Section 77 we

show that the C-DAG thus obtained is feasible if and only if Expression 1 is true, and hence

this is indeed a polynomial-time reduction from QBF to C-DAG feasibility analysis.

4.1 Gadget for representing the clause ((;;V {;2V {;3)

For the j’th clause (¢;1V {2V ¢;3), we have four jobs with precedence constraints as
depicted in Figure 77, all of which are assigned to a single dedicated processor. The WCET
of each job is written above the job in Figure 7?7. We will say that each of the three unit-sized
jobs ?represents? one of the three literals in the clause. Observe that the sum of the
WCETs of the four jobs is 2n + 141+ 1 = 2n 4+ 3, which equals the deadline D; since all

5 Le., can z1 be assigned some value such that regardless of whether y; is assigned true or false, z2 be
assigned some value such that. .., such that each of the m conjuncts has some literal assigned true?

6 If neither X; nor —X; (neither Y; nor —Y;, respectively) are executed for any 4, the truth assignment
will be a partial one.
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From £;,1 -~ . _ - ! These four jobs are all assigned to the same processor; no
From ¢; 2 _ A Lin other jobs are assigned to this processor. The WCET of
M, ) 1 each job is written above the job (i.e., the job with no prede-
‘. cessors has WCET = 2n and the other three jobs each have
4,2 WCET = 1). Each of the unit-sized jobs represents a literal
1 of the clause; the dotted lines represent edges from the jobs
R VA that correspond to the literals (the notions of representation

From £j3 -- -~ " and correspondence are explained in Section 4).

Figure 3 7Gadget? representing the j'th clause.

these jobs are assigned to the same processor the processor must therefore never idle over

[0, D] in schedules that meet the deadline. This enforces the following schedule for these jobs:

1. the job with WCET 2n must execute over the interval [0, 2n], and

2. at least one of the three unit-sized jobs, each of which has one additional input edge from
the job corresponding to the literal that it represents, must become eligible to execute at
time-instant 2n.

Equivalently, in order for the part of the C-DAG we are constructing that is represented by

this gadget to complete by the deadline, it is necessary that the truth assignment defined

by the X;, the =X, the Y; and the =Y, jobs that completed execution by time-instant 2n

have at least one of the literals ¢; 1, £;2, and ¢; 3 assigned the value true. ILe., this truth

assignment must be a satisfying one for the clause (¢;1 V £;2V ¢} 3).

Hence all m gadgets of the form depicted in Figure ?7?, constructed for all m clauses in
Expression 1, can complete by the deadline if and only if the truth assignment defined by
the X;, the =X;, the Y; and the —Y; jobs that completed execution by time-instant 2n is
a satisfying one for each of the clauses in the QBF given in Expression 1. This is formally
stated in Fact 77:

» Fact 1. A schedule can complete the jobs representing (as depicted in Figure ?7) all m
clauses by the deadline D = 2n + 3 if and only if the truth assignment, defined by the jobs
in Uy <;«p1Xi, X5, Y5, 7Y} that have executed to completion by time-instant 2n in the
schedule, is a satisfying assignment for all the clauses. |

Requirements of the remaining gadgets. The remainder of the C-DAG —i.e., the gadgets
for the x; and the y; boolean variables— must ensure that this truth assignment that is
defined by the X;, the =X, the Y; and the —Y; jobs that completed execution by time-instant
2n is an accurate reflection of the alternating quantifiers in Expression 1:

E|$1 Vyl 3332 vyg e Ela:n Vyn

This desired alternation of quantifiers is achieved by ensuring the C-DAG is constructed to

enforce the requirement that for each i, 1 <i < n,

1. Prior to time-instant 2n, in any correct schedule the scheduler can execute the pair of
jobs X; and —X;, both of which are assigned to the same processor, only over the interval
[2i — 2,2i — 1] — see Figure ??. Therefore, it can choose to execute only one of this pair
of jobs to completion prior to time-instant 2n. (We will also see that it can execute the
other job in the pair over [2n,2n + 1]; hence both complete by time-instant 2n + 1.)

2. Prior to time-instant 2n, in any correct schedule the scheduler can execute only one of the
pair of jobs Y; and —Y;, over the interval [2i — 1, 2i] — see Figure ??. The decision as to
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The scheduler may choose to execute one of {X;, =X} over
the interval [2i — 2, 2¢ — 1]. Run-time evaluation of condi-
tional constructs enables only one of {Y;, —Y;} to execute
over interval [2¢ — 1, 21].

(20 — 2) (2 — 1) 2i
} H +— time

Figure 4 Illustrating the schedule over [2¢ — 2, 2i] for each i.

which job in the pair is able to execute over [2i — 1,21] is not made by the scheduler, but

is determined during run-time based on whether certain conditional constructs evaluate to

true or false. (We will also see that the scheduler can execute the other job in the pair

over the time-interval [2n, 2n + 1]; hence both the jobs complete by time-instant 2n + 1.)
The existential quantification (3) of the x; variables is reflected by the fact that the scheduler
gets to decide whether to execute X; or —X; over the interval [2i — 2,2i — 1], while the
universal quantification (V) of the y; variables is reflected by the fact that the environment
(i.e., run-time conditions) determines which of Y; or =Y; to execute, and the scheduler must
make subsequent scheduling decisions for both outcomes (i.e., regardless of whether Y; or
—Y; is the job that was selected) by the environment. Notice that the order of the quantifiers
is also maintained: the scheduler must decide to execute one of {X;,—X;} before one of
{Y;, ~Y;} is scheduled. And after one of {Y;, ~Y;} is chosen for execution by the environment,
the scheduler must decide to schedule one of {X;;1,-X;11}, and so on. In this manner the
truth assignment to the variables {x1,za,...,2,} U{y1,¥y2,...,yn} that is defined by the
schedule based on the jobs that complete execution by time-instant 2n reflects the order and
alternation of the quantifiers in Expression 1.

It remains to describe how these restrictions on the execution of the X;, -X;,Y;, and —Y;
jobs in a manner that reflects the order and nature of the quantifiers is enforced — this
we do in describing our other two kinds of gadgets. As stated previously, we will have one
gadget for each x; variable and one for each y; variable; each gadget is defined on a unique
set of jobs that are assigned to a unique set of processors. Our C-DAG is the union of all 2n
of these gadgets and the m subgraphs of the form of Figure ?? (one per clause).

4.2 Gadget for enforcing the desired execution of X; and —X;

We first discuss the instantiation of this gadget for (i < 1), before subsequently describing
the general case. The four jobs labeled A, By, C7 and D; depicted below serve to ensure
that prior to time-instant 2n the scheduler can execute the two jobs labeled X7, =X only
over the time-interval [0, 1] in any correct schedule.

1
X1
0
1
X1
1 (2n—1) 3

2 o]

The jobs Ay, X1,—X1, and C; are all assigned to one processor, while By and D; are both

assigned to another processor; furthermore, these two processors are used for no other
purpose. (In these diagrams vertex colors encode their processor assignments.) Since the
chain of jobs By — C; — Dj has cumulative WCET 1+ (2n — 1) + 3 = 2n + 3 which is
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1 For each job its WCET is written above, and the
) processor to which it is assigned is written below, the
X
(2i —2) . job.
P(1,1) A possible schedule for these jobs is depicted below, in
| Ai ! Gantt-chart form.
P(1,4) -X;
P(1,4
(26 —1) (L,9) 2n— (21 —1)) 3
| - {2 ]
P(2,1) P(1,4) P(2,1)
(2i — 2) 2 2 2n + 2
(26 —-1) | 2n+1 |
| 1 | | 1 |
P(1,14) A; x| @y -X; |
P(2,1) B, [ D;
| |

Figure 5 Gadget for X;, comprising the four jobs A;—D; plus the two jobs X; and —X;, and the
four edges shown, assigned to the two processors P(1,7) and P(2,1).

equal to the deadline D, these three jobs must execute without interruption. Hence in any
correct schedule the processor shared by jobs Ay, X1,—X;, and C] is only available to jobs
X1 and —X; during the interval [0, 1], and after time 2n. Thus at most one of these jobs
may complete execution prior to time-instant 2n, and this job must do so by executing over
the interval [0,1]. (We point out that the other one may execute over the time-interval
[2n,2n 4 1] and thereby complete by time-instant 2n + 1.)

The gadget depicted in Figure ?? generalizes the one described above for all i, 1 < i < n.
In this figure the two processors upon which the jobs are to execute are named as P(1,1)
and P(2,i) — the processor to which each job is assigned is written below the job. A correct
schedule for the jobs upon these two processors is depicted as a Gantt chart below the gadget.

4.3 Gadget for enforcing the desired execution of Y; and —Y;

As with the x;’s above, we first discuss the instantiation of this gadget for (i +— 1); we will
subsequently generalize to arbitrary i. The eight jobs labeled E;, Fi, G1,Hy, J1, K1, L1,
and M; along with one conditional construct,” and ten edges as depicted below, together
ensure that at most one of the two jobs labeled Y7, =Y7, execute over the time-interval [1, 2]
in any correct schedule while the other must execute after time-instant 2n; furthermore,
which of Y7, =T} executes over [1,2] is determined not by the scheduler but by which branch
of the conditional construct ends up being executed during run-time.

" Recall that in this paper we are assuming that the two nodes demarcating the start and the end of a
conditional construct each have WCET zero.
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(2n —2) 3

(2n —2) 3

Kl |—>| Ml

These ten jobs (F1—Mj, plus the jobs Y; and —Y]) are assigned to four processors in the
following manner; no other jobs are assigned to any of these four processors®;
Jobs E1,G1, Y7 and J; are assigned to one processor.
Jobs Fy, H1,Y; and K, are assigned to a second processor;
Job L; is assigned to a third processor; and job M; to a fourth processor.
Let us first suppose that during some execution of this C-DAG the conditional construct
takes the upper branch (i.e., causes job G to execute).
Since the WCETs of the chain of jobs Fy — G — J; — L7 sum to the deadline 3n + 3,
this chain of jobs must execute without interruption in any correct schedule. This in
turn implies that job —Y7, which is assigned to the same processor as jobs F1, Gy, and
Jp, cannot execute prior to time-instant 2n. (It may execute over the interval [2n,2n + 1]
since there are no other jobs assigned to its processor.)
In order for the chain F; — G; — J; — Lq to be able to execute without interruption,
job F} must execute over the time-interval [0, 1]. Furthermore, the chain of jobs K1 — M,
is only eligible to execute after the conditional construct completes: this happens when
job G7 completes (at time-instant 2). Note that jobs K7 and L; must now execute
without interruption over the interval [2,2n + 3] in order to meet the deadline D = 2n+ 3.
Therefore, the processor shared by jobs Fy, H; (which does not need to execute when the
conditional construct takes the upper branch), Y7, and K7, is only free over the interval
[1,2] prior to time-instant 2n; this implies that the job Y7 must execute over the interval
[1,2] if it is to complete prior to time-instant 2n.
When the conditional construct takes the lower branch and causes H; to execute, the
situation mirrors the one above: job —Y; may execute over the interval [1,2] but job Y;
may only execute after time-instant 2n. Summarizing, we conclude that one of the two
jobs Y1,—Y1 may execute over the interval [1,2] and the other may execute over [2n,2n + 1];
the determination as to which does which is made during run-time based on whether the
conditional construct evaluates to true or false.
The gadget depicted in Figure 77 generalizes the one described above for all i, 1 <
1 < m. In this figure the four processors upon which the jobs are to execute are named
as P(3,i),P(4,i), P(5,i) and P(6,7); as in Figure ??, the processor to which each job is
assigned is again written below the job. A correct schedule for the jobs upon these four
processors is depicted as a Gantt chart below the gadget.

8 As in Figure ??, processor assignments are color-coded in this diagram. (Note that a fresh set of
processors is used for each gadget and hence these colors do not ?carry over? from Figure ?77.)
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1
-Y;
(20 —1) P(3,1) (2n — 2i) 3
| E; Ji L
P(3,4) P(3,4) P(5,4)
(26 —1) (2n — 29) 3
| F; K; bl M
P(4,4) P(4,4) P(6,4)
2n 2n + 2
o 2ntl
| | |
P(3,1) ~Y; : :
P(4,9) L
P(5,4) L
P(6,1) M;

Figure 6 Gadget for Y; (discussed in Section ?7).

The restrictions upon the execution of the jobs X;, = X;,Y;, and —Y; that are enforced
by the gadgets of Figure ?? and Figure 77 are stated in Facts ?? and ?? below (also see
Figure ?77):

» Fact 2. For each i, 1 < i < n, a scheduler may complete at most one of the two jobs
{X;,—X;} by time-instant 2n in any correct schedule. The choice as to which of these two
jobs (if any) to complete by time-instant 2n must be made by the scheduler after it has
already been decided which of the jobs <U1§j<i{Xj, -X;,Y;, —\Y]}> will complete by time
instant 2n.

» Fact 3. For each i, 1 < i < n, a scheduler may complete at most one of the two
jobs {Y;,—Y;} by time-instant 2n. The determination as to which of these two jobs (if
either) to complete by time-instant 2n is made based on the outcome of the execution
of a conditional construct during run-time, after it has already been decided which of

<U1§j<i{Xj7 -X;,Y;, Y U{XG, —|Xi}) will complete by time instant 2n. <

4.4 Putting the pieces together

Consider now the truth assignment to the 2n variables {x1,z2,...,2,} U {y1,92,...,yn}
that is defined by the schedule over [0,2n] in the following manner: for each 7, 1 < i < n,
boolean variable z; is assigned true if job X is executed and false if =X is executed, and
boolean variable y; is assigned true if job Y; is executed and false if —Y; is executed. By
Fact 77, a value is assigned by the scheduler to x; in this assignment after values have been
determined for x; and y; variables for all j < i, while by Fact 7?7 the value of y; that is
determined by the execution of conditional constructs at run-time happens after values have
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been determined for x; and y; variables for all j < 7, as well as after the value of z; has been
assigned by the scheduler. Fact ?? follows.

» Fact 4. The truth assignment to the x; and y; variables defined by the execution of
X;,—X;,Y;, and —Y; jobs over [0, 2n] is done in a manner that is compliant with the order of
alternation of quantifiers in Expression 1. |

Summarizing the reduction. We have seen that the DAG we construct for a given quantified
boolean formula

m

3.%1 Vyl E|$2 Vyg RN HZL'n Vyn /\ (‘gj,l V gj,g \Y gj’g)
j=1

comprises

1. For each of the m clauses, a sub-graph with four vertices and six edges as depicted in
Figure 77?7 that is to execute upon a single processor;

2. For each of the n x; variables, a sub-graph with the six vertices and four edges as depicted
in Figure 77 that is to execute upon two processors; and

3. For each of the n y; variables, a sub-graph with the ten vertices, one conditional construct,
and ten edges as depicted in Figure ?? that is to execute upon four processors.

It is easily seen that the reduction from quantified boolean formula to DAG is a polynomial-

time one: the resulting DAG has (4m+16n) vertices, n conditional constructs, and (6m+14n)

edges, and is to be scheduled upon (m 4+ 6n) processors, and that it can be obtained in

polynomial time from the quantified boolean formula.

» Lemma 1. If Expression 1 is true, then the C-DAG constructed above can be scheduled to
always complete by its deadline.

Proof. Suppose that Expression 1 is true. This implies that variable z; can be assigned a
value such that for every assignment of value to y; the formula

m

ngvygax;g e /\ (@‘71 V gj,g \Y €j73)

j=2

is true. If the assigned value to x; is true (false) then the scheduler completes job X; (—X7)
by time 2n; then, when the outcome of the first conditional construct is known, the job from
amongst {Y7, Y7} that can be completed by time 2n is scheduled. By Fact ?7? this decision
is made before the scheduler gets to decide which job of the jobs amongst {Xa, - X5} will
complete by time 2n.

By repeated applications of Facts 7?7 and 77?7, we can ensure that the jobs amongst the X;,
-X;,Y;, and —Y; jobs that execute over the interval [0,2n] mimic each truth assignment to
the boolean variables {x1, z2, ..., zn} U {y1, y2, ..., yn} that are made in a manner consistent
with the alternation of quantifiers in Expression 1. It follows from Fact 7?7 that the gadget
representing each clause (these are the gadgets depicted in Figure ??) will complete by the
deadline for each such truth assignment.

<

» Lemma 2. [f the C-DAG constructed above can be scheduled to always complete by its
deadline, then Expression 1 is true.

13
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Proof. Suppose that the C-DAG that we have constructed can be scheduled to always
complete by its deadline, for all possible evaluations of the n conditional constructs (recall
that one conditional constructs is present in each of the gadgets described in Section ?7?, and
these are the only conditional constructs) in it.

Consider the schedule for any one of the 2™ different possible combinations of outcomes
for the execution of these n conditional constructs. Fact 7?7 ensures that the truth assignment
defined by the jobs in (J, ., , {Xi, 7X;,Y;, ~Y;} that have executed to completion by time-
instant 2n in this schedule is a satisfying assignment for all the clauses in Expression 1; by
Fact 77, this truth assignment is compliant with the order of alternation of quantifiers in
Expression 1.

Our premise is that the C-DAG completes by its deadline for each of the 2" different
possible combinations of outcomes for the execution of the conditional constructs. It follows
that each clause in Expression 1 evaluates to true in the corresponding truth assignments
defined by the jobs in (J; <<, {Xi, 7X;,Y;, Y;} that have executed to completion by time-
instant 2n. Finally, it follows from Fact ?? that these 2" different possible combinations of
outcomes of the execution of the conditional constructs represent all possible interpretations
of the universal quantifications of the y; variables. The lemma follows. <

Lemmas 77 and ?7? together establish that the C-DAG feasibility problem is PSPACE-hard
when each job is pre-assigned to a particular processor. We have already seen that this
problem is in PSPACE; this therefore completes the proof of Theorem 1.

5 A More Tractable Special Case

Theorem 1 above tells us that we are unlikely to be able to efficiently (i.e., in polynomial
time) reduce the problem of determining whether a C-DAG is feasible to the problem of
solving one, or even polynomially many, ILPs. In this section we will show that for C-DAGs
satisfying the additional restriction that the number of conditional constructs is bounded by a
constant, the feasibility-analysis problem can indeed be polynomial-time reduced to a single
ILP. Our method of showing this is indirect, and based upon the following reasoning.

e As mentioned in Section 3, it is NP-complete to determine whether an ILP has a
solution [?]. It follows from definition that a consequence of a problem being NP-complete
is that all other problems in NP can be reduced to it in polynomial time.

e Hence in order to show that feasibility analysis for C-DAGs in which the number of
conditional constructs is bounded by some constant can be reduced to an ILP in polynomial
time, it suffices to show that this feasibility analysis problem is in NP.

Below we will show that this problem is indeed in NP. We do so by appealing to the definition

of the complexity class NP: as stated in Section 3, a problem is defined to be in NP if a

claimed solution to any problem instance can be verified by an algorithm with running time

polynomial in the size of the instance. Hence we will describe a wverification algorithm [?,
page 1063] that accepts as input a C-DAG and a ?certificate? claiming to show that the

C-DAG is feasible, and verifies, in time polynomial in the representation of the C-DAG,

whether the certificate does indeed show feasibility.”

The certificate for a C-DAG instance with k conditional constructs will be an explicit
enumeration of the at most 2% individual schedules, one each for the vertices that must be

9 We acknowledge that the following description of this verification algorithm is at a high level and
somewhat ?hand-wavy?; however we believe it is adequate for conveying the main ideas as to what
information is contained in the certificate, and how the verifier checks this information.
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1./|lA ¢ B o D F
2. A ¢ B ¢ E F
3. A o C F

Figure 7 A C-DAG instance with two conditional constructs. Each vertex has WCET=1, and all
are assigned to the same processor. Its ?certificate? of feasibility is shown on the right: it comprises
three schedules, all of which are identical until the first conditional construct is executed (depicted
as a ¢). The top two schedules, which correspond to the upper branch being taken, are further
identical until the second conditional construct is executed.

executed upon each possible combination of outcomes of the execution of the k& conditional
expressions. The number of schedules in the certificate may be fewer than 2 since not all
outcomes may be possible — e.g., the C-DAG depicted in Figure 77 has two conditional
constructs but only 3 possible outcomes. A certificate with the three schedules is provided in
Figure ?? for when this C-DAG is to be implemented on a single processor.

Given such a certificate, the verification algorithm verifies that

1. Each schedule in the certificate is indeed a feasible schedule for the vertices that must be
executed upon some possible outcome of the execution of the conditional constructs.

2. The sets of vertices that must be executed upon all possible outcomes have schedules in
the certificate.

3. The schedules in the certificate are consistent in the following sense:

e They are all identical (i.e., schedule the same jobs at the same instants) until the end
of the first execution of a conditional expression (the diamond-shaped node marking
the beginning of a conditional construct).

e After then the set of schedules is partitioned into two subsets, one representing each of
the two possible outcomes of the execution of that conditional expression.

e FEach of these two subsets must satisfy the two properties above: all schedules in the
subset are identical up to the next execution of a conditional expression, and split into
two sets representing the schedules for the two different outcomes thereafter.

e This repeats until each set contains a single schedule.

This establishes that C-DAG feasibility analysis is in NP, and can therefore be reduced in
polynomial time to the NP-complete problem ILP. We are currently working on developing
such a polynomial-time algorithm: although the main ideas are fairly straightforward — in
essence, use integer decision variables to specify the different schedules in the certificate and
write constraints to enforce the requirements listed above as being checked by the verification
algorithm, there are a lot of rather tedious details that must be enumerated.

The number of variables and the number of constraints in the ILP depend upon the
number of schedules in the certificate. Notice the relationship between the number of
conditional constructs k& and the number of schedules in the certificate (at most 2¥) — this
suggests that ILPs with fewer conditional constructs are likely to be representable using
smaller ILPs.

6 Context and Conclusions

Real-time scheduling theory has begun considering the use of ILP solvers to obtain efficient
algorithms for solving feasibility analysis problems. Several schedulability analysis problems

15
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have recently been solved by representing them as ILPs (e.g.,[?, ?]); here we have shown

that an important problem cannot be solved efficiently in this manner. We also note some

additional implications of our main technical results.

1. Observe that the workload model for heterogeneous multiprocessor platforms is unchanged
from the one for identical multiprocessors for typed systems (those in which all vertices
are pre-assigned to individual processors). Therefore our results for typed systems also

hold for heterogeneous multiprocessors. Many are also applicable to the recently proposed
more general Heterogeneous Parallel Conditional (HPC) DAG model [?].

2. Most solvers that are used in system design (including SAT solvers, many SMT [?] solvers,
etc.) actually solve problems that are in NP.1® Hence our main negative conclusion holds
for all these solvers as well: they’re unlikely to be helpful for C-DAG feasibility analysis.

3. In this work we have required that problems be reducible to ILPs in polynomial time in
order to be considered tractable. As an alternative, we could have instead required that
there be a polynomial-sized ILP representation. However, this alternative definition is
unsatisfactory: one could conceivably determine feasibility for any instance of a problem
via exhaustive enumeration by taking inordinate amounts of time, and then represent
its feasibility as a simple ILP of just one or two variables and constraints which has a
solution if and only if the instance is feasible. Hence, one could argue that just about
any feasibility-analysis problem can be represented by a small ILP: the true measure of
tractability is how rapidly such an ILP can be obtained.

Some Related Work. ILP solvers have previously been used in real-time system design and
analysis — see, e.g., [?, ?]. But in the real-time scheduling theory community, where the focus
has primarily been on obtaining efficient algorithms with polynomial or pseudo-polynomial
running times, ILP-based techniques have traditionally not found much favor for obvious
reasons. The recent dramatic improvements in performance of modern solvers mentioned
in Section 3 is starting to change this, and the real-time scheduling theory community has
begun to investigate the use of ILP-based methods [?, 7, 7, ?].

Future work. We have established a conceptual and technical framework for both showing
problems to not be efficiently solvable using ILP solvers, and for identifying restricted versions
that are so solvable. We plan to apply our framework to better demarcate the boundary
between what if efficiently solvable and what is not with ILP solvers, as well as extend the
framework to answer additional questions of interest. For a start, we plan to investigate
notions of approximability — we could, e.g., seek sufficient ILP-based feasibility-analysis
algorithms of the following kind: given an instance gemerate, in polynomial time, an ILP
such that (i) if it is feasible, then the instance is feasible upon unit-speed processors; and
(it) if it is infeasible, then the instance is not feasible on speed-s processors (for some s < 1).

With regards to C-DAG feasibility, we have identified one specific structural property
—restrict the number of conditional constructs— that enables efficient solution via ILP’s. The
reason such instances are efficiently solved is that certificates attesting to their feasibility
contain relatively few schedules. We are currently identifying other such structural properties
of C-DAGs that also possess this property (of having ?small? certificates of feasibility).

10 One important reason for this is that the results returned by such solvers can be verified efficiently, in
polynomial time. Solutions obtained by using solvers that solve problems not in NP must either be
accepted ?on faith?, or inordinate amounts of time are required to validate their correctness.
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