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Abstract6

Feasibility analysis for Conditional DAG tasks (C-DAGs) upon multiprocessor platforms is shown7

to be complete for the complexity class pspace. It is shown that as a consequence integer linear8

programming solvers (ILP solvers) are likely to prove inadequate such analysis. A demarcation is9

identified between the feasibility-analysis problems on C-DAGs that are efficiently solvable using ILP10

solvers and those that are not, by characterizing a restricted class of C-DAGs for which feasibility11

analysis is shown to be efficiently solvable using ILP solvers.12
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1 Introduction17

This paper investigates the feasibility analysis problem for C-DAG tasks: the problem18

of determining whether a given real-time workload which is specified in the Conditional19

Directed Acyclic Graph task (C-DAG) model [?, ?] and is to be implemented upon a particular20

multiprocessor platform, can be scheduled to always complete by a specified deadline. Since it21

follows from earlier results [?] that a simpler version of this problem, in which the workload is22

specified as a DAG (i.e., without any conditional nodes) is already NP-hard in the strong sense,23

we should not expect to obtain algorithms with polynomial or pseudo-polynomial running24

times that solve our problem exactly. Two approaches to such feasibility analysis problems25

(i.e., those that are provably NP-hard in the strong sense) have previously been investigated26

in the real-time literature: (i) design approximation algorithms that run in polynomial or27

pseudo-polynomial time; or (ii) derive exact algorithms that (necessarily, assuming P ̸= NP)28

run in exponential time. The latter approach is often based upon transforming the feasibility29

analysis problem into an integer linear program (ILP), and leveraging the tremendous recent30

improvements that have been obtained in the performance of ILP solvers to achieve running31

times that are acceptable in practice for reasonably large problem instances.1 In this paper32

we prove that an approach based on transformation to ILPs is unlikely to be applicable to33

the general C-DAG feasibility-analysis problem – to our knowledge, this is amongst the first34

feasibility-analysis problems for which such a negative result regarding the use of ILPs has35

been obtained in the real-time literature. We also identify an important restricted case for36

which ILP-solvers can in fact prove helpful: this special case essentially limits the number of37

conditional constructs that may be present.38

Our Contributions. Two major technical results are proved in this paper:39

1. the C-DAG feasibility analysis problem is pspace complete; and40

2. it is in NP if the number of conditional constructs is a priori bounded by a constant.41

1 We point out that determining whether an ILP has a solution is known [?] to be NP-complete in the
strong sense; hence the overall worst-case run-time complexity of this approach remains exponential.
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Figure 1 A canonical conditional construct

While at first glance these may appear to be highly theoretical results that are a poor fit for42

ECRTS, we will establish that they do in fact have major implications to real-time systems43

design and implementation. We will show that it follows from our first result that it is highly44

unlikely we will be able to solve general C-DAG feasibility analysis problems in polynomial45

time even when calls to an ILP solver are ?for free? (and hence, regardless of how good46

your ILP solver may be). The second result clearly shows that the root cause of this is47

the presence of the conditional constructs, and thereby demarcates the boundary between48

feasibility-analysis problems that are efficiently transformable to ILPs and those that are49

not. We also offer evidence that the size of the ILP for solving an instance of this restricted50

case grows exponentially with the number of conditional constructs that are present. This in51

turn suggests a design guideline: conditional constructs be considered as a scarce ?resource?52

to be used only when their increased expressiveness is essential, since their presence can slow53

down feasibility analysis exponentially.54

Organization. The remainder of this manuscript is organized as follows. We describe the55

Conditional DAG model in Section 2, and briefly review some needed results from complexity56

theory in Section 3. Our main technical results are in Section 4 (the pspace completeness57

proof) and Section ?? (the more tractable special case). We conclude in Section ?? by listing58

some additional implications of our findings and placing these within the context of related59

research, and briefly list some interesting directions for future research.60

2 The Conditional DAG (C-DAG) Model61

Task models based upon Directed Acyclic Graphs (DAGs) seek to expose parallelism in real-62

time workloads: the sporadic DAG model [?] (see [?, Chapter 21] for a text-book description)63

is an early example. A task in this model is specified as a 3-tuple (G, D, T ), where G is a64

directed acyclic graph (DAG), and D and T are positive integers representing the relative65

deadline and period parameters of the task respectively. The task repeatedly releases dag-jobs,66

each of which is a collection of sequential jobs. Successive dag-jobs are released a duration67

of at least T time units apart. The DAG G is specified as G = (V, E), where V is a set of68

vertices and E a set of directed edges between these vertices. Each v ∈ V represents a job,69

which corresponds to the execution of a sequential piece of code and is characterized by a70

worst-case execution time (WCET). The edges represent dependencies between the jobs:71

if (v1, v2) ∈ E then job v1 must complete execution before job v2 can begin execution. A72

release of a dag-job of the task at time-instant t means that all ♣V ♣ jobs v ∈ V are released73

at t. If a dag-job is released at time t then all ♣V ♣ jobs that were released at t must complete74

execution by time t + D.75

Conditional DAG tasks. The Conditional DAG (C-DAG) task model was introduced [?,76

?] to model the execution of conditional (e.g., if-then-else) constructs in parallel real-time77
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code. A C-DAG task, too, is specified as a 3-tuple (G, D, T ), where G = (V, E) is a DAG,78

and D and T are positive integers denoting the relative deadline and period parameters of79

the task. They differ from regular sporadic DAGs in that certain vertices ∈ V are designated80

as conditional vertices that are defined in matched pairs, each such pair defining a conditional81

construct. Let (c1, c2) be such a pair in the DAG G = (V, E) — see Figure 1. Informally82

speaking, vertex c1 represents a point in the code where a conditional expression is evaluated83

and, depending upon the outcome of this evaluation, control will subsequently flow along84

one of two different possible branches.2 It is required that these two different branches meet85

again at a common point in the code, represented by the vertex c2. More formally,86

1. There are two outgoing edges from c1 in E (say, to the vertices s1 and s2), and two87

incoming edges to c2 (say, from the vertices t1 and t2), in E — see Figure 1.88

2. For each ℓ ∈ ¶1, 2♢, let V ′
ℓ ⊆ V and E′

ℓ ⊆ E denote all the vertices and edges on paths89

reachable from sℓ that do not include vertex c2. By definition, sℓ is the sole source vertex90

of the DAG G′
ℓ

def

= (V ′
ℓ , E′

ℓ). Vertex tℓ must be the sole sink vertex of G′
ℓ.91

3. It must hold that V ′
1

⋂

V ′
2 = ∅. Additionally for each ℓ ∈ ¶1, 2♢, with the exception of92

(c1, sℓ) there should be no edges in E into vertices in V ′
ℓ from vertices that are not in V ′

ℓ .93

Edges (v1, v2) between pairs of vertices neither of which are conditional nodes represent prece-94

dence constraints exactly as in traditional sporadic DAGs, while edges involving conditional95

nodes represent conditional execution of code. More specifically, let (c1, c2) denote a defined96

pair of conditional vertices that together define a conditional construct. The semantics of97

conditional DAG execution mandate that98

• After the job c1 completes execution, exactly one of its two successor jobs becomes eligible99

to execute; it is not known beforehand which successor job this may be.100

• Job c2 begins to execute upon the completion of exactly one of its two predecessor jobs.101

In the remainder of this paper we make the simplifying assumption that each of the conditional102

vertices c1 and c2 demarcating a conditional construct has zero execution time.103

The C-DAG feasibility analysis problem. We are interested, from a real-time systems104

perspective, in understanding how to implement specified collections of C-DAG tasks upon105

a shared multiprocessor platform in a correct and resource-efficient manner. The federated106

scheduling paradigm [?], in which each task is restricted to execute upon a specified subset of107

the processors (and each processor is assigned to no more than one task), is a widely-studied108

approach for implementing collections of tasks represented using DAG-based models upon109

multiprocessor platforms. It is readily seen that federated scheduling of constrained-deadline110

tasks — tasks (G, D, T ) for which the deadline parameter D is no larger than the period T —111

reduces to the problem of scheduling a single C-DAG upon a dedicated set of processors within112

a duration not exceeding the relative deadline parameter. Hence the problem considered in113

this paper is this:114

▶ Definition 1 (The C-DAG feasibility analysis problem). Given a C-DAG G, a number m ∈ N115

of processors upon which G is to execute, and a relative deadline parameter D, determine116

whether it is feasible to schedule G on the m processors such that it always completes execution117

within an interval of duration D, regardless of which conditional constructs in G evaluate to118

true and which evaluate to false? ◀119

2 The model is more generally defined [?, ?] to allow for > 2 possible branches; however any task with
more than 2 branches is easily transformed in polynomial time to one with always only two branches.
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The problem definition above is incomplete: several variants can be defined based upon120

restrictions that are placed on how jobs may execute. For instance permitting or prohibiting121

preemption results in different variants. Variants may be also be defined based upon which122

processors each job is allowed to execute on:123

global: any job may execute upon any processor, and the decision as to which processor a job124

executes upon may be made at run-time. When preemption is permitted, a preempted125

job may resume execution upon a different processor.126

partitioned: each job may execute upon only one processor, and the determination as to127

which processor a job executes upon is made prior to run-time.128

restricted (or typed [?]): each job is pre-assigned to a particular processor. I.e., a mapping129

from vertices to processors is provided as part of the problem specifications.130

Why this is a difficult problem. It has been widely recognized [?, ?, ?, ?] that combinatorial131

explosion is a major reason why C-DAG feasibility analysis is such a difficult problem:132

exponentially many different combinations of outcomes are possible of the evaluation of the133

conditional constructs in a single task, each of which may require a very different collection134

of jobs to be scheduled for execution. There is, however, an additional aspect to the difficulty135

of this problem that has received somewhat less attention: its inherently on line nature.136

Consider the following simple illustrative example for a typed C-DAG (i.e., where vertices137

are pre-assigned to individual processors):138

A

B

C

D

E

F

G

H1 H2

J

K

D← 4 Example: Each vertex has WCET equal to one (except the

conditional vertices – recall they have WCET zero). Processor

assignments are color-coded: A, H1, & H2 share a processor, as

do B, C, J , & K; D & F ; and E & G.

If the conditional construct executes D, then C should execute

during [0, 1] —otherwise the ?blue? processor will idle over

[2, 3]. Else (i.e., the conditional construct executes E), B should

execute during [0, 1].
139

There are two possible outcomes of the sole conditional construct, and it may be verified that140

upon either outcome the set of vertices that must be executed is individually schedulable.141

However, which of vertices B or C, both assigned to the same processor, should execute142

over time-interval [0, 1] necessarily differs in these two schedules and hence depends upon143

the outcome of the conditional construct’s evaluation. But the conditional construct is only144

executed after time-instant 1, and hence this information is revealed too late. Thus this145

C-DAG is infeasible despite the sets of vertices needing to be executed upon either outcome146

being feasible.147

Summarizing Prior Complexity Results. Ullman showed [?] that it is NP-complete148

in the strong sense to determine whether a given DAG can be scheduled to meet a specified149

deadline under global or partitioned scheduling upon an identical multiprocessor platform,150

regardless of whether preemption is permitted or forbidden. Jansen subsequently showed [?]151

that feasibility analysis of DAGs is NP-hard in the strong sense for restricted/ typed C-DAGs152

(where each job is pre-assigned to a particular processor), again under both preemptive and153

non-preemptive scheduling. Since these basic problems are already NP-hard in the strong154

sense, so are the corresponding problems for the more general C-DAG model. (It is easily155

seen that all these problems are also in NP for (regular) DAGs; one of the contributions of156

this paper is to prove that such is not the case with C-DAGs.)157
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P

NP

PSPACE

• ILP

The innermost (blue) solid line represents the problems in

P, the intermediate (teal) one includes problems that are in

NP, and the outermost (red) one further includes problems

that are in pspace. The dotted black line depicts the class

PNP.

As shown in the Venn diagram, the problem of solving ILPs

is in NP but not in P (assuming P̸=NP).

Figure 2 Venn diagram depicting the relationship between some complexity classes

3 Computational Complexity: Some Background158

We now provide a brief introduction to concepts of computational complexity theory that are159

used in this manuscript.3 We will make reference to the following four complexity classes:160

1. P is the set of problems that can be solved by algorithms with running time polynomial161

in the size of their inputs.162

2. NP is the set of problems that can be verified by algorithms with running time polynomial163

in the size of their inputs.164

3. PNP is the set of problems that can be solved in polynomial time by an algorithm that165

has access to an oracle for some NP-complete problem, where an oracle can be thought166

of as a ?black box? that is able to solve a specific decision problem in a single step.167

4. pspace is the set of problems that can be solved by algorithms using an amount of space168

(memory) that is polynomial in the size of their inputs. Since this complexity class has169

not previously been widely used in real-time scheduling theory, we discus it a bit more170

below, and provide some intuition of its relationship to C-DAG feasibility analysis.171

It is widely believed, although not proved, that
(

P ⊊ NP ⊊ PNP ⊊ pspace
)

– see Figure 2.172

PSPACE The class pspace can be thought of as representing the existence of a winning173

strategy for a particular player in bounded-length perfect-information games that can be174

played in polynomial time. I.e., consider a two-player game where players alternate making175

moves for a total of n moves. Given moves m1, . . . , mn by the players, let M(m1, . . . , mn) = 1176

if and only if player 1 has won the game. Then player 1 has a winning strategy in the game177

if and only if there exists a move m1 that player 1 can make such that for every possible178

response m2 of player 2 there is a move m3 for player 1, . . . and so on. Formalizations of179

many popular two-player games, including checkers, generalized geography, and Sokoban,180

have been proven to be pspace-complete [?].181

We can cast C-DAG feasibility in this two-player game framework. Given a C-DAG and182

a deadline D, then the first move of player 1 (the scheduler) is to decide the set of jobs to183

be scheduled until the first branch is executed; then player 2 (the environment) decides the184

outcome of the branch. The game continues until the scheduling is completed and the first185

player wins the game if and only if its strategy is able to complete the schedule in D time186

units for all outcomes of branches (i.e. all decisions of the second player).187

3 In order to keep things simple the presentation in this section is intentionally informal and not always
precise: for instance, while most of the concepts discussed below differ in their applicability to decision
problems – those for which there is a ?yes/ no? answer – and optimization problems, we do not make
this distinction here but treat both decision and optimization problems in similar fashion.
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ILP solvers. Determining whether an integer linear program (ILP) has a solution or not is188

known to be NP-complete in the strong sense [?]. Assuming P ̸= NP, this implies that ILP189

solvers with polynomial or pseudo-polynomial running time cannot be developed. Despite190

this inherent intractability, however, the optimization community has devoted immense effort191

to devise very efficient implementations of ILP solvers, and highly optimized libraries with192

such efficient implementations are widely available today in both open-source and commercial193

offerings. Modern ILP solvers, executing upon powerful computing clusters, are commonly194

capable of solving ILPs with tens of thousands of variables and constraints.195

4 C-DAG feasibility analysis is PSPACE-complete196

One of our main results is a negative one: that the C-DAG feasibility analysis problem197

(Definition 1) is pspace-hard for all the variants — preemptive and non-preemptive; global and198

partitioned and restricted (or typed) — described in Section 2. As stated in Section 3 above,199

a pspace complete problem is highly unlikely to be in NP or PNP; hence we cannot solve it in200

polynomial time by making additional calls to an ILP-solver, even if each such call took Θ(1)201

(i.e., constant) time. In the remainder of this section we will prove this intractability result202

for the variant4 of the C-DAG feasibility analysis problem where preemption is permitted203

and migration is restricted (i.e., each job is pre-assigned to a particular processor):204

▶ Theorem 1. The C-DAG feasibility problem when each job is pre-assigned to a particular205

processor is pspace complete.206

It is trivial to show that this problem is ∈ pspace — an algorithm that repeatedly simulates207

the scheduling of the C-DAG under all possible combinations of outcomes of the conditional208

constructs would require polynomial space. The rest of this section is devoted to proving209

that this problem is also pspace-hard.210

(This proof is rather detailed and technical: the reader may wish to skim it, or skip it211

entirely, on a first reading. However, we do recommend that it eventually be read and212

understood, since it contains some novel techniques and interesting ideas that are likely to213

prove useful in further research. We consider these techniques and ideas an important part214

of the contribution of this paper.)215

pspace-hardness for our C-DAG feasibility analysis problem is proved by deriving a216

polynomial-time reduction to the C-DAG feasibility analysis problem from the following217

problem, which has previously [?, ?] been shown to be pspace complete:218

▶ Definition 2 (The Quantified Boolean Formula Problem (QBF)).219

Instance. A boolean formula in the following form:220

∃x1 ∀y1 ∃x2 ∀y2 . . .∃xn ∀yn

m
∧

j=1

(

ℓj,1 ∨ ℓj,2 ∨ ℓj,3

)

(1)221

where each xi and each yi is a boolean variable, and each ℓj,k is one of the xi or yi Boolean222

variables or its negation.223

4 We have also proved this result for the variant that allows for global preemptive scheduling. We are
choosing to present the variant with pre-assigned processors for pedagogical reasons: the main ideas in
the proof of the hardness of the global preemptive case are also revealed in this proof while a lot of
grungy details that are not particularly novel but must be addressed for the global preemptive version
are not needed here.
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Question. Does this formula evaluate to true?5
◀224

We will describe a polynomial-time algorithm that accepts as input a Boolean formula of225

the form given in Expression 1 above, and outputs a C-DAG, an assignment of jobs of the226

C-DAG to processors, and a deadline D
def

= 2n + 3, such that the C-DAG can complete227

execution by the deadline if and only if Expression 1 is true. Since QBF is known to be228

pspace-complete, this polynomial-time reduction from QBF to C-DAG feasibility analysis229

suffices to show that C-DAG feasibility analysis is pspace hard. We start with a high-level230

overview of our polynomial-time reduction.231

• We will define three kinds of ?gadgets? – subgraphs that have each been designed to232

achieve some particular purpose – in Sections ??, ??, and ??. The first kind of gadget we233

will define is used to represent the clauses in Expression 1; the second, the existentially234

quantified (i.e., xi) variables and the third, the universally quantified (i.e., yi) variables.235

Our C-DAG will be the union of m gadgets of the first kind, n gadgets of the second236

kind, and n gadgets of the third kind.237

• For each boolean variable xi (yi, respectively), our C-DAG will have two jobs labeled Xi238

and ¬Xi (Yi and ¬Yi, respectively). We will state that job Xi ?corresponds to? literal239

xi and job ¬Xi corresponds to the literal ¬xi (analogously, that Yi corresponds to yi and240

¬Yi corresponds to ¬yi).241

We will see, in Sections ?? and ??, that we construct the gadgets for the xi’s and the yi’s242

in a manner that enforces the constraint that at most one of each pair of jobs Xi and ¬Xi243

(Yi and ¬Yi, respectively) can execute to completion by time-instant 2n in any schedule.244

We can think of all these jobs that complete execution by time-instant 2n as defining a245

truth assignment to the 2n variables ¶x1, x2, . . . , xn♢ ∪ ¶y1, y2, . . . , yn♢: boolean variable246

xi is assigned true if job Xi is executed and false if ¬Xi is executed, and analogously247

for the yi variables.6 Furthermore, we will see in Sections ?? and ?? that such a truth248

assignment happens in a manner that is consistent with the order and interpretation of249

the quantifiers upon the boolean variables.250

• We will show, in Section ?? below, that the gadget representing each clause will complete251

by the deadline if and only if at least one of the literals in the clause evaluates to true252

in the truth assignment defined as above. Therefore, the gadgets representing all the253

clauses can complete by the deadline if and only if the truth assignment defined above is254

a satisfying one for all the clauses.255

We detail the construction of the three kinds of gadgets in Sections ??–??; in Section ?? we256

show that the C-DAG thus obtained is feasible if and only if Expression 1 is true, and hence257

this is indeed a polynomial-time reduction from QBF to C-DAG feasibility analysis.258

4.1 Gadget for representing the clause (ℓj,1 ∨ ℓj,2 ∨ ℓj,3)259

For the j’th clause (ℓj,1 ∨ ℓj,2 ∨ ℓj,3), we have four jobs with precedence constraints as260

depicted in Figure ??, all of which are assigned to a single dedicated processor. The WCET261

of each job is written above the job in Figure ??. We will say that each of the three unit-sized262

jobs ?represents? one of the three literals in the clause. Observe that the sum of the263

WCETs of the four jobs is 2n + 1 + 1 + 1 = 2n + 3, which equals the deadline D; since all264

5 I.e., can x1 be assigned some value such that regardless of whether y1 is assigned true or false, x2 be
assigned some value such that. . . , such that each of the m conjuncts has some literal assigned true?

6 If neither Xi nor ¬Xi (neither Yi nor ¬Yi, respectively) are executed for any i, the truth assignment
will be a partial one.
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2n

ℓj,1

1

ℓj,2

1

ℓj,3

1

From ℓj,1

From ℓj,2

From ℓj,3

These four jobs are all assigned to the same processor; no

other jobs are assigned to this processor. The WCET of

each job is written above the job (i.e., the job with no prede-

cessors has WCET = 2n and the other three jobs each have

WCET = 1). Each of the unit-sized jobs represents a literal

of the clause; the dotted lines represent edges from the jobs

that correspond to the literals (the notions of representation

and correspondence are explained in Section 4).

Figure 3 ?Gadget? representing the j’th clause.

these jobs are assigned to the same processor the processor must therefore never idle over265

[0, D] in schedules that meet the deadline. This enforces the following schedule for these jobs:266

1. the job with WCET 2n must execute over the interval [0, 2n], and267

2. at least one of the three unit-sized jobs, each of which has one additional input edge from268

the job corresponding to the literal that it represents, must become eligible to execute at269

time-instant 2n.270

Equivalently, in order for the part of the C-DAG we are constructing that is represented by271

this gadget to complete by the deadline, it is necessary that the truth assignment defined272

by the Xi, the ¬Xi, the Yi and the ¬Yi jobs that completed execution by time-instant 2n273

have at least one of the literals ℓj,1, ℓj,2, and ℓj,3 assigned the value true. I.e., this truth274

assignment must be a satisfying one for the clause (ℓj,1 ∨ ℓj,2 ∨ ℓj,3).275

Hence all m gadgets of the form depicted in Figure ??, constructed for all m clauses in276

Expression 1, can complete by the deadline if and only if the truth assignment defined by277

the Xi, the ¬Xi, the Yi and the ¬Yi jobs that completed execution by time-instant 2n is278

a satisfying one for each of the clauses in the QBF given in Expression 1. This is formally279

stated in Fact ??:280

▶ Fact 1. A schedule can complete the jobs representing (as depicted in Figure ??) all m281

clauses by the deadline D = 2n + 3 if and only if the truth assignment, defined by the jobs282

in
⋃

1≤i≤n¶Xi,¬Xi, Yi,¬Yi♢ that have executed to completion by time-instant 2n in the283

schedule, is a satisfying assignment for all the clauses. ◀284

Requirements of the remaining gadgets. The remainder of the C-DAG —i.e., the gadgets285

for the xi and the yi boolean variables— must ensure that this truth assignment that is286

defined by the Xi, the ¬Xi, the Yi and the ¬Yi jobs that completed execution by time-instant287

2n is an accurate reflection of the alternating quantifiers in Expression 1:288

∃x1 ∀y1 ∃x2 ∀y2 . . .∃xn ∀yn289

This desired alternation of quantifiers is achieved by ensuring the C-DAG is constructed to290

enforce the requirement that for each i, 1 ≤ i ≤ n,291

1. Prior to time-instant 2n, in any correct schedule the scheduler can execute the pair of292

jobs Xi and ¬Xi, both of which are assigned to the same processor, only over the interval293

[2i− 2, 2i− 1] — see Figure ??. Therefore, it can choose to execute only one of this pair294

of jobs to completion prior to time-instant 2n. (We will also see that it can execute the295

other job in the pair over [2n, 2n + 1]; hence both complete by time-instant 2n + 1.)296

2. Prior to time-instant 2n, in any correct schedule the scheduler can execute only one of the297

pair of jobs Yi and ¬Yi, over the interval [2i− 1, 2i] — see Figure ??. The decision as to298
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(2i − 2) (2i − 1) 2i

time

The scheduler may choose to execute one of ¶Xi, ¬Xi♢ over

the interval [2i − 2, 2i − 1]. Run-time evaluation of condi-

tional constructs enables only one of ¶Yi, ¬Yi♢ to execute

over interval [2i − 1, 2i].

Figure 4 Illustrating the schedule over [2i − 2, 2i] for each i.

which job in the pair is able to execute over [2i− 1, 2i] is not made by the scheduler, but299

is determined during run-time based on whether certain conditional constructs evaluate to300

true or false. (We will also see that the scheduler can execute the other job in the pair301

over the time-interval [2n, 2n + 1]; hence both the jobs complete by time-instant 2n + 1.)302

The existential quantification (∃) of the xi variables is reflected by the fact that the scheduler303

gets to decide whether to execute Xi or ¬Xi over the interval [2i − 2, 2i − 1], while the304

universal quantification (∀) of the yi variables is reflected by the fact that the environment305

(i.e., run-time conditions) determines which of Yi or ¬Yi to execute, and the scheduler must306

make subsequent scheduling decisions for both outcomes (i.e., regardless of whether Yi or307

¬Yi is the job that was selected) by the environment. Notice that the order of the quantifiers308

is also maintained: the scheduler must decide to execute one of ¶Xi,¬Xi♢ before one of309

¶Yi,¬Yi♢ is scheduled. And after one of ¶Yi,¬Yi♢ is chosen for execution by the environment,310

the scheduler must decide to schedule one of ¶Xi+1,¬Xi+1♢, and so on. In this manner the311

truth assignment to the variables ¶x1, x2, . . . , xn♢ ∪ ¶y1, y2, . . . , yn♢ that is defined by the312

schedule based on the jobs that complete execution by time-instant 2n reflects the order and313

alternation of the quantifiers in Expression 1.314

It remains to describe how these restrictions on the execution of the Xi,¬Xi, Yi, and ¬Yi315

jobs in a manner that reflects the order and nature of the quantifiers is enforced — this316

we do in describing our other two kinds of gadgets. As stated previously, we will have one317

gadget for each xi variable and one for each yi variable; each gadget is defined on a unique318

set of jobs that are assigned to a unique set of processors. Our C-DAG is the union of all 2n319

of these gadgets and the m subgraphs of the form of Figure ?? (one per clause).320

4.2 Gadget for enforcing the desired execution of Xi and ¬Xi321

We first discuss the instantiation of this gadget for (i← 1), before subsequently describing322

the general case. The four jobs labeled A1, B1, C1 and D1 depicted below serve to ensure323

that prior to time-instant 2n the scheduler can execute the two jobs labeled X1, ¬X1 only324

over the time-interval [0, 1] in any correct schedule.325

A1

0
X1

1

¬X1

1

B1

1

C1

(2n − 1)

D1

3

326

The jobs A1, X1,¬X1, and C1 are all assigned to one processor, while B1 and D1 are both327

assigned to another processor; furthermore, these two processors are used for no other328

purpose. (In these diagrams vertex colors encode their processor assignments.) Since the329

chain of jobs B1 → C1 → D1 has cumulative WCET 1 + (2n − 1) + 3 = 2n + 3 which is330
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Ai

(2i − 2)

P (1, i)

Xi

1

P (1, i)

¬Xi

1

P (1, i)

Bi

(2i − 1)

P (2, i)

Ci

(2n − (2i − 1))

P (1, i)

Di

3

P (2, i)

For each job its WCET is written above, and the

processor to which it is assigned is written below, the

job.

A possible schedule for these jobs is depicted below, in

Gantt-chart form.

P (1, i)

P (2, i)

(2i − 2)
(2i − 1)

2i 2n
2n + 1

2n + 2

Ai Xi Ci ¬Xi

Bi Di

Figure 5 Gadget for Xi, comprising the four jobs Ai–Di plus the two jobs Xi and ¬Xi, and the

four edges shown, assigned to the two processors P (1, i) and P (2, i).

equal to the deadline D, these three jobs must execute without interruption. Hence in any331

correct schedule the processor shared by jobs A1, X1,¬X1, and C1 is only available to jobs332

X1 and ¬X1 during the interval [0, 1], and after time 2n. Thus at most one of these jobs333

may complete execution prior to time-instant 2n, and this job must do so by executing over334

the interval [0, 1]. (We point out that the other one may execute over the time-interval335

[2n, 2n + 1] and thereby complete by time-instant 2n + 1.)336

The gadget depicted in Figure ?? generalizes the one described above for all i, 1 ≤ i ≤ n.337

In this figure the two processors upon which the jobs are to execute are named as P (1, i)338

and P (2, i) – the processor to which each job is assigned is written below the job. A correct339

schedule for the jobs upon these two processors is depicted as a Gantt chart below the gadget.340

4.3 Gadget for enforcing the desired execution of Yi and ¬Yi341

As with the xi’s above, we first discuss the instantiation of this gadget for (i← 1); we will342

subsequently generalize to arbitrary i. The eight jobs labeled E1, F1, G1,H1, J1, K1, L1,343

and M1 along with one conditional construct,7 and ten edges as depicted below, together344

ensure that at most one of the two jobs labeled Y1, ¬Y1, execute over the time-interval [1, 2]345

in any correct schedule while the other must execute after time-instant 2n; furthermore,346

which of Y1, ¬T1 executes over [1, 2] is determined not by the scheduler but by which branch347

of the conditional construct ends up being executed during run-time.348

7 Recall that in this paper we are assuming that the two nodes demarcating the start and the end of a
conditional construct each have WCET zero.
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F1

1

E1

1
¬Y1

1

Y1

1

H1

1

G1

1

K1

(2n − 2)

J1

(2n − 2)

M1

3

L1

3

349

These ten jobs (E1–M1, plus the jobs Y1 and ¬Y1) are assigned to four processors in the350

following manner; no other jobs are assigned to any of these four processors8;351

Jobs E1, G1,¬Y1 and J1 are assigned to one processor.352

Jobs F1, H1, Y1 and K1 are assigned to a second processor;353

Job L1 is assigned to a third processor; and job M1 to a fourth processor.354

Let us first suppose that during some execution of this C-DAG the conditional construct355

takes the upper branch (i.e., causes job G1 to execute).356

Since the WCETs of the chain of jobs E1 → G1 → J1 → L1 sum to the deadline 3n + 3,357

this chain of jobs must execute without interruption in any correct schedule. This in358

turn implies that job ¬Y1, which is assigned to the same processor as jobs E1, G1, and359

J1, cannot execute prior to time-instant 2n. (It may execute over the interval [2n, 2n + 1]360

since there are no other jobs assigned to its processor.)361

In order for the chain E1 → G1 → J1 → L1 to be able to execute without interruption,362

job F1 must execute over the time-interval [0, 1]. Furthermore, the chain of jobs K1 →M1363

is only eligible to execute after the conditional construct completes: this happens when364

job G1 completes (at time-instant 2). Note that jobs K1 and L1 must now execute365

without interruption over the interval [2, 2n + 3] in order to meet the deadline D = 2n + 3.366

Therefore, the processor shared by jobs F1, H1 (which does not need to execute when the367

conditional construct takes the upper branch), Y1, and K1, is only free over the interval368

[1, 2] prior to time-instant 2n; this implies that the job Y1 must execute over the interval369

[1, 2] if it is to complete prior to time-instant 2n.370

When the conditional construct takes the lower branch and causes H1 to execute, the371

situation mirrors the one above: job ¬Y1 may execute over the interval [1, 2] but job Y1372

may only execute after time-instant 2n. Summarizing, we conclude that one of the two373

jobs Y1,¬Y1 may execute over the interval [1, 2] and the other may execute over [2n, 2n + 1];374

the determination as to which does which is made during run-time based on whether the375

conditional construct evaluates to true or false.376

The gadget depicted in Figure ?? generalizes the one described above for all i, 1 ≤377

i ≤ n. In this figure the four processors upon which the jobs are to execute are named378

as P (3, i), P (4, i), P (5, i) and P (6, i); as in Figure ??, the processor to which each job is379

assigned is again written below the job. A correct schedule for the jobs upon these four380

processors is depicted as a Gantt chart below the gadget.381

8 As in Figure ??, processor assignments are color-coded in this diagram. (Note that a fresh set of
processors is used for each gadget and hence these colors do not ?carry over? from Figure ??.)
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Fi

(2i − 1)

P (4, i)

Ei

(2i − 1)

P (3, i)

¬Yi

1

P (3, i)

Yi

1

P (4, i)

Hi

1

P (4, i)

Gi

1

P (3, i)

Ki

(2n − 2i)

P (4, i)

Ji

(2n − 2i)

P (3, i)

Mi

3

P (5, i)

Li

3

P (6, i)

P (3, i)

P (4, i)

P (5, i)

P (6, i)

(2i − 2)
(2i − 1)

2i 2n
2n + 1

2n + 2

Ei Gi Ji ¬Yi

Fi Yi Ki

Li

Mi

Figure 6 Gadget for Yi (discussed in Section ??).

The restrictions upon the execution of the jobs Xi,¬Xi, Yi, and ¬Yi that are enforced382

by the gadgets of Figure ?? and Figure ?? are stated in Facts ?? and ?? below (also see383

Figure ??):384

▶ Fact 2. For each i, 1 ≤ i ≤ n, a scheduler may complete at most one of the two jobs385

¶Xi,¬Xi♢ by time-instant 2n in any correct schedule. The choice as to which of these two386

jobs (if any) to complete by time-instant 2n must be made by the scheduler after it has387

already been decided which of the jobs


⋃

1≤j<i¶Xj ,¬Xj , Yj ,¬Yj♢


will complete by time388

instant 2n.389

▶ Fact 3. For each i, 1 ≤ i ≤ n, a scheduler may complete at most one of the two390

jobs ¶Yi,¬Yi♢ by time-instant 2n. The determination as to which of these two jobs (if391

either) to complete by time-instant 2n is made based on the outcome of the execution392

of a conditional construct during run-time, after it has already been decided which of393


⋃

1≤j<i¶Xj ,¬Xj , Yj ,¬Yj♢
⋃

¶Xi,¬Xi♢


will complete by time instant 2n. ◀394

4.4 Putting the pieces together395

Consider now the truth assignment to the 2n variables ¶x1, x2, . . . , xn♢ ∪ ¶y1, y2, . . . , yn♢396

that is defined by the schedule over [0, 2n] in the following manner: for each i, 1 ≤ i ≤ n,397

boolean variable xi is assigned true if job Xi is executed and false if ¬Xi is executed, and398

boolean variable yi is assigned true if job Yi is executed and false if ¬Yi is executed. By399

Fact ??, a value is assigned by the scheduler to xi in this assignment after values have been400

determined for xj and yj variables for all j < i, while by Fact ?? the value of yi that is401

determined by the execution of conditional constructs at run-time happens after values have402
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been determined for xj and yj variables for all j < i, as well as after the value of xi has been403

assigned by the scheduler. Fact ?? follows.404

▶ Fact 4. The truth assignment to the xi and yi variables defined by the execution of405

Xi,¬Xi, Yi, and ¬Yi jobs over [0, 2n] is done in a manner that is compliant with the order of406

alternation of quantifiers in Expression 1. ◀407

Summarizing the reduction. We have seen that the DAG we construct for a given quantified408

boolean formula409

∃x1 ∀y1 ∃x2 ∀y2 . . .∃xn ∀yn

m
∧

j=1

(

ℓj,1 ∨ ℓj,2 ∨ ℓj,3

)

410

comprises411

1. For each of the m clauses, a sub-graph with four vertices and six edges as depicted in412

Figure ?? that is to execute upon a single processor;413

2. For each of the n xi variables, a sub-graph with the six vertices and four edges as depicted414

in Figure ?? that is to execute upon two processors; and415

3. For each of the n yi variables, a sub-graph with the ten vertices, one conditional construct,416

and ten edges as depicted in Figure ?? that is to execute upon four processors.417

It is easily seen that the reduction from quantified boolean formula to DAG is a polynomial-418

time one: the resulting DAG has (4m+16n) vertices, n conditional constructs, and (6m+14n)419

edges, and is to be scheduled upon (m + 6n) processors, and that it can be obtained in420

polynomial time from the quantified boolean formula.421

▶ Lemma 1. If Expression 1 is true, then the C-DAG constructed above can be scheduled to422

always complete by its deadline.423

Proof. Suppose that Expression 1 is true. This implies that variable x1 can be assigned a

value such that for every assignment of value to y1 the formula

∃x2∀y2∃x3 . . .

m
∧

j=2

(ℓj,1 ∨ ℓj,2 ∨ ℓj,3)

is true. If the assigned value to x1 is true (false) then the scheduler completes job X1 (¬X1)424

by time 2n; then, when the outcome of the first conditional construct is known, the job from425

amongst ¶Y1,¬Y1♢ that can be completed by time 2n is scheduled. By Fact ?? this decision426

is made before the scheduler gets to decide which job of the jobs amongst ¶X2,¬X2♢ will427

complete by time 2n.428

By repeated applications of Facts ?? and ??, we can ensure that the jobs amongst the Xi,429

¬Xi, Yi, and ¬Yi jobs that execute over the interval [0, 2n] mimic each truth assignment to430

the boolean variables ¶x1, x2, ..., xn♢ ∪ ¶y1, y2, ..., yn♢ that are made in a manner consistent431

with the alternation of quantifiers in Expression 1. It follows from Fact ?? that the gadget432

representing each clause (these are the gadgets depicted in Figure ??) will complete by the433

deadline for each such truth assignment.434

◀435

▶ Lemma 2. If the C-DAG constructed above can be scheduled to always complete by its436

deadline, then Expression 1 is true.437
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Proof. Suppose that the C-DAG that we have constructed can be scheduled to always438

complete by its deadline, for all possible evaluations of the n conditional constructs (recall439

that one conditional constructs is present in each of the gadgets described in Section ??, and440

these are the only conditional constructs) in it.441

Consider the schedule for any one of the 2n different possible combinations of outcomes442

for the execution of these n conditional constructs. Fact ?? ensures that the truth assignment443

defined by the jobs in
⋃

1≤i≤n¶Xi,¬Xi, Yi,¬Yi♢ that have executed to completion by time-444

instant 2n in this schedule is a satisfying assignment for all the clauses in Expression 1; by445

Fact ??, this truth assignment is compliant with the order of alternation of quantifiers in446

Expression 1.447

Our premise is that the C-DAG completes by its deadline for each of the 2n different448

possible combinations of outcomes for the execution of the conditional constructs. It follows449

that each clause in Expression 1 evaluates to true in the corresponding truth assignments450

defined by the jobs in
⋃

1≤i≤n¶Xi,¬Xi, Yi,¬Yi♢ that have executed to completion by time-451

instant 2n. Finally, it follows from Fact ?? that these 2n different possible combinations of452

outcomes of the execution of the conditional constructs represent all possible interpretations453

of the universal quantifications of the yi variables. The lemma follows. ◀454

Lemmas ?? and ?? together establish that the C-DAG feasibility problem is pspace-hard455

when each job is pre-assigned to a particular processor. We have already seen that this456

problem is in pspace; this therefore completes the proof of Theorem 1.457

5 A More Tractable Special Case458

Theorem 1 above tells us that we are unlikely to be able to efficiently (i.e., in polynomial459

time) reduce the problem of determining whether a C-DAG is feasible to the problem of460

solving one, or even polynomially many, ILPs. In this section we will show that for C-DAGs461

satisfying the additional restriction that the number of conditional constructs is bounded by a462

constant, the feasibility-analysis problem can indeed be polynomial-time reduced to a single463

ILP. Our method of showing this is indirect, and based upon the following reasoning.464

• As mentioned in Section 3, it is NP-complete to determine whether an ILP has a465

solution [?]. It follows from definition that a consequence of a problem being NP-complete466

is that all other problems in NP can be reduced to it in polynomial time.467

• Hence in order to show that feasibility analysis for C-DAGs in which the number of468

conditional constructs is bounded by some constant can be reduced to an ILP in polynomial469

time, it suffices to show that this feasibility analysis problem is in NP.470

Below we will show that this problem is indeed in NP. We do so by appealing to the definition471

of the complexity class NP: as stated in Section 3, a problem is defined to be in NP if a472

claimed solution to any problem instance can be verified by an algorithm with running time473

polynomial in the size of the instance. Hence we will describe a verification algorithm [?,474

page 1063] that accepts as input a C-DAG and a ?certificate? claiming to show that the475

C-DAG is feasible, and verifies, in time polynomial in the representation of the C-DAG,476

whether the certificate does indeed show feasibility.9477

The certificate for a C-DAG instance with k conditional constructs will be an explicit478

enumeration of the at most 2k individual schedules, one each for the vertices that must be479

9 We acknowledge that the following description of this verification algorithm is at a high level and
somewhat ?hand-wavy?; however we believe it is adequate for conveying the main ideas as to what
information is contained in the certificate, and how the verifier checks this information.
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A

B

C

D

E

F

D = 5 1. A ⋄ B ⋄ D F

2. A ⋄ B ⋄ E F

3. A ⋄ C F

Figure 7 A C-DAG instance with two conditional constructs. Each vertex has WCET=1, and all

are assigned to the same processor. Its ?certificate? of feasibility is shown on the right: it comprises

three schedules, all of which are identical until the first conditional construct is executed (depicted

as a ⋄). The top two schedules, which correspond to the upper branch being taken, are further

identical until the second conditional construct is executed.

executed upon each possible combination of outcomes of the execution of the k conditional480

expressions. The number of schedules in the certificate may be fewer than 2k since not all481

outcomes may be possible – e.g., the C-DAG depicted in Figure ?? has two conditional482

constructs but only 3 possible outcomes. A certificate with the three schedules is provided in483

Figure ?? for when this C-DAG is to be implemented on a single processor.484

Given such a certificate, the verification algorithm verifies that485

1. Each schedule in the certificate is indeed a feasible schedule for the vertices that must be486

executed upon some possible outcome of the execution of the conditional constructs.487

2. The sets of vertices that must be executed upon all possible outcomes have schedules in488

the certificate.489

3. The schedules in the certificate are consistent in the following sense:490

• They are all identical (i.e., schedule the same jobs at the same instants) until the end491

of the first execution of a conditional expression (the diamond-shaped node marking492

the beginning of a conditional construct).493

• After then the set of schedules is partitioned into two subsets, one representing each of494

the two possible outcomes of the execution of that conditional expression.495

• Each of these two subsets must satisfy the two properties above: all schedules in the496

subset are identical up to the next execution of a conditional expression, and split into497

two sets representing the schedules for the two different outcomes thereafter.498

• This repeats until each set contains a single schedule.499

This establishes that C-DAG feasibility analysis is in NP, and can therefore be reduced in500

polynomial time to the NP-complete problem ILP. We are currently working on developing501

such a polynomial-time algorithm: although the main ideas are fairly straightforward – in502

essence, use integer decision variables to specify the different schedules in the certificate and503

write constraints to enforce the requirements listed above as being checked by the verification504

algorithm, there are a lot of rather tedious details that must be enumerated.505

The number of variables and the number of constraints in the ILP depend upon the506

number of schedules in the certificate. Notice the relationship between the number of507

conditional constructs k and the number of schedules in the certificate (at most 2k) — this508

suggests that ILPs with fewer conditional constructs are likely to be representable using509

smaller ILPs.510

6 Context and Conclusions511

Real-time scheduling theory has begun considering the use of ILP solvers to obtain efficient512

algorithms for solving feasibility analysis problems. Several schedulability analysis problems513
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have recently been solved by representing them as ILPs (e.g.,[?, ?]); here we have shown514

that an important problem cannot be solved efficiently in this manner. We also note some515

additional implications of our main technical results.516

1. Observe that the workload model for heterogeneous multiprocessor platforms is unchanged517

from the one for identical multiprocessors for typed systems (those in which all vertices518

are pre-assigned to individual processors). Therefore our results for typed systems also519

hold for heterogeneous multiprocessors. Many are also applicable to the recently proposed520

more general Heterogeneous Parallel Conditional (HPC) DAG model [?].521

2. Most solvers that are used in system design (including SAT solvers, many SMT [?] solvers,522

etc.) actually solve problems that are in NP.10 Hence our main negative conclusion holds523

for all these solvers as well: they’re unlikely to be helpful for C-DAG feasibility analysis.524

3. In this work we have required that problems be reducible to ILPs in polynomial time in525

order to be considered tractable. As an alternative, we could have instead required that526

there be a polynomial-sized ILP representation. However, this alternative definition is527

unsatisfactory: one could conceivably determine feasibility for any instance of a problem528

via exhaustive enumeration by taking inordinate amounts of time, and then represent529

its feasibility as a simple ILP of just one or two variables and constraints which has a530

solution if and only if the instance is feasible. Hence, one could argue that just about531

any feasibility-analysis problem can be represented by a small ILP: the true measure of532

tractability is how rapidly such an ILP can be obtained.533

Some Related Work. ILP solvers have previously been used in real-time system design and534

analysis — see, e.g., [?, ?]. But in the real-time scheduling theory community, where the focus535

has primarily been on obtaining efficient algorithms with polynomial or pseudo-polynomial536

running times, ILP-based techniques have traditionally not found much favor for obvious537

reasons. The recent dramatic improvements in performance of modern solvers mentioned538

in Section 3 is starting to change this, and the real-time scheduling theory community has539

begun to investigate the use of ILP-based methods [?, ?, ?, ?].540

Future work. We have established a conceptual and technical framework for both showing541

problems to not be efficiently solvable using ILP solvers, and for identifying restricted versions542

that are so solvable. We plan to apply our framework to better demarcate the boundary543

between what if efficiently solvable and what is not with ILP solvers, as well as extend the544

framework to answer additional questions of interest. For a start, we plan to investigate545

notions of approximability — we could, e.g., seek sufficient ILP-based feasibility-analysis546

algorithms of the following kind: given an instance generate, in polynomial time, an ILP547

such that (i) if it is feasible, then the instance is feasible upon unit-speed processors; and548

(ii) if it is infeasible, then the instance is not feasible on speed-s processors (for some s ≤ 1).549

With regards to C-DAG feasibility, we have identified one specific structural property550

—restrict the number of conditional constructs— that enables efficient solution via ILP’s. The551

reason such instances are efficiently solved is that certificates attesting to their feasibility552

contain relatively few schedules. We are currently identifying other such structural properties553

of C-DAGs that also possess this property (of having ?small? certificates of feasibility).554

10 One important reason for this is that the results returned by such solvers can be verified efficiently, in
polynomial time. Solutions obtained by using solvers that solve problems not in NP must either be
accepted ?on faith?, or inordinate amounts of time are required to validate their correctness.
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