
Graceful Degradation in Semi-Clairvoyant

Scheduling

Sanjoy Baruah !

Washington University in Saint Louis, USA

Pontus Ekberg !

Uppsala University, Sweden

Abstract

In the Vestal model of mixed-criticality systems, jobs are characterized by multiple different estimates

of their actual, but unknown, worst-case execution time (WCET) parameters. Some recent research

has focused upon a semi-clairvoyant model for mixed-criticality systems in which it is assumed that

each job reveals upon arrival which of its WCET parameters it will respect. We study the problem

of scheduling such semi-clairvoyant systems to ensure graceful degradation of service to less critical

jobs in the event that the systems exhibit high-criticality behavior. We propose multiple different

interpretations of graceful degradation in such systems, and derive efficient scheduling algorithms

that are capable of ensuring graceful degradation under these different interpretations.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical

systems; Software and its engineering → Real-time schedulability

Keywords and phrases Mixed criticality, semi-clairvoyance, graceful degradation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.9

Funding Sanjoy Baruah: National Science Foundation Grants CNS-1814739 and CPS-1932530.

Pontus Ekberg: Swedish Research Council grant 2018-04446.

1 Introduction

A model for mixed-criticality workloads was proposed by Vestal [30] as a means of achieving

timing predictability upon modern processors. In this model, individual pieces of real-time

code are represented as jobs with associated deadlines that are characterized by multiple

worst-case execution time (WCET) parameters. These different WCET parameters represent

different estimates, made at differing levels of assurance, of the actual unknown WCET of the

code. Each job is also assigned a criticality — in the two-criticality level model considered in

this paper (and much of the mixed-criticality scheduling theory literature), these are called

hi and lo, denoting greater and lesser criticality respectively. The two WCET parameters

are determined for each job, one at a level of assurance consistent with hi criticality and

a second at a level of assurance consistent with lo criticality. The correctness criterion in

the Vestal mixed-criticality model is that if each job completes execution within a duration

not exceeding its lo-criticality WCET estimate then all the jobs should complete execution

by their respective deadlines, whereas if some jobs do not complete execution within their

lo-criticality WCET estimates (but all jobs would complete execution if allowed to execute

for as much as their hi-criticality WCET), then all the hi-criticality jobs should complete

execution by their respective deadlines although the lo-criticality jobs may fail to do so.

Run-time monitoring. The methodology introduced by Vestal [30] was initially applied for

the verification of timing correctness of criticality-agnostic scheduling algorithms: algorithms

that do not seek to determine during run-time whether or not lo-criticality WCET estimates

have been exceeded. It was later observed [12] that if system state were monitored during

run-time to determine when jobs execute in excess of their lo-criticality WCETs, then

© Sanjoy Baruah and Pontus Ekberg;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baruah@wustl.edu
mailto:pontus.ekberg@it.uu.se
https://doi.org/10.4230/LIPIcs.ECRTS.2021.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Graceful Degradation in Semi-Clairvoyant Scheduling

custom-designed mixed-criticality scheduling algorithms could be developed that explicitly

exploit such run-time information. Several such mixed-criticality algorithms were developed

— OCBP [10], MC-EDF [29], EDF-VD [5], AMC [7], MC-Fluid [26], etc. — that determine

during run-time if and when the system “mode” transitions from lo-criticality mode (no job

has executed beyond its lo-criticality WCET) to hi-criticality mode (some job has executed

for more than its lo-criticality WCET), and adjusts its scheduling decisions accordingly.

Forms of Clairvoyance. The notion of clairvoyance, which has previously been used to

quantify the effectiveness of on-line algorithms (see, e.g., [25]), forms the basis of the speedup

factor metric that is widely used for quantitatively characterizing these mixed-criticality

scheduling algorithms. In the context of mixed-criticality scheduling, a clairvoyant algorithm

is one that knows prior to run-time whether any job is going to exceed its lo-criticality WCET

or not. Generally speaking, a clairvoyant scheduling algorithm is an idealized abstraction

against which to compare the performance of actual scheduling algorithms.

More recently, the concept of semi-clairvoyance was introduced for mixed-criticality

scheduling [1] (also see [14]). A semi-clairvoyant scheduling algorithm is one that knows,

at the instant of a job’s arrival, whether it will complete execution within its lo-criticality

WCET. Unlike [full] clairvoyance, which is a purely conceptual abstraction that is not

realisable in practice, it is persuasively argued in both [1] and [14] that semi-clairvoyance

is a realistic and practically useful model for certain circumstances. For instance, a system

developer may provide two separate implementations of a job: upon arrival, the system

determines which implementation it is appropriate to execute given the current circumstances –

i.e., the current mode. (E.g., one implementation may be intended for execution under regular

conditions, and another for execution under unexpected – i.e., hi criticality – conditions: the

hi-criticality implementation including code to perform crisis-mitigation functionalities). As

stated in [14], semi-clairvoyance is particularly applicable “when the execution time [. . . ]

depends on the state of the system at the time the job arrives, rather than on some internal

property that emerges as it executes.”

Graceful degradation and mixed-criticality scheduling. Despite its very significant impact

on the real-time scheduling theory literature, Vestal’s mixed-criticality workload model [30]

has been criticized [20, 19, 31] for not matching systems developers’ expectations in some

important aspects. Our focus here is upon one such aspect: that lo-criticality jobs ought to

be guaranteed some amount of execution prior to their deadlines even in hi-criticality modes.

Modifications to the Vestal model have been proposed (e.g., in [13] and [18]) that allows for

the specification of some degraded service for lo-criticality jobs even in hi-criticality system

behaviors – we will describe such a model in Section 2. Many algorithms have been proposed

(e.g., [8, 23, 24, 22]) that seek to ensure such graceful degradation for systems.

This research. In this paper, we study graceful degradation for semi-clairvoyant algorithms

upon preemptive uniprocessors – to our knowledge, this is the first piece of research that

integrates consideration of these two concepts. We consider three different notions of graceful

degradation, characterized here as three different correctness criteria, by placing different

requirements as to which lo-criticality jobs it is acceptable to provide degraded service to,

upon some hi-criticality job’s arrival signalling hi-criticality mode:

CC-1. all lo-criticality jobs that have deadlines after this instant;

CC-2. all lo-criticality jobs that begin execution after this instant; or

CC-3. all lo-criticality jobs that arrive after this instant.



S. Baruah and P. Ekberg 9:3

Although the three correctness criteria appear very similar, differing only in the treatment

accorded to lo-criticality jobs that span a mode-change instant, we will see that the associated

schedulability analysis problems are very different. We will show that determining whether a

collection of independent jobs can be scheduled correctly upon a preemptive uniprocessor can

be done in polynomial time via reduction to a linear program for correctness criterion CC-1,

is NP-complete in the strong sense for CC-2, and reduces to a variant of EDF-schedulability

analysis for CC-3 that is also solvable in polynomial time.1

Correctness criterion CC-1 is consistent with standard interpretations of mixed-criticality

scheduling (and most prior work). It can be a sensible criterion when lo-criticality jobs,

unlike hi-criticality jobs, do not have multiple available implementations, but their execution

times are instead enforced by budgeting. The reduced execution time of lo-criticality jobs

in hi-criticality mode is then simply achieved by lowering their execution-time budgets.

This can be done even to started jobs, and jobs that do not finish within their budgets are

suspended or discarded.

However, there are circumstances where the other two criteria are more appropriate.

Under the scenario in which multiple implementations of each job are available and the

run-time system chooses which to execute based upon current system state, it is reasonable to

expect, as in CC-2, that once an implementation is chosen and its execution has commenced,

it must be completed.

For systems observing “commitment upon job arrival” semantics [16], the choice as to

which available implementation of a job to execute must be made upon the job’s arrival. It

is reasonable to expect that for jobs arriving before the mode-change instant, this choice will

favor the lo-criticality implementations — this is what CC-3 requires.

Contributions. We have seen above that there are very good reasons for studying all three

correctness criteria, which is what we do in this research. Specifically

We formally define our three correctness criteria in Section 2, within the framework of a

workload model integrating graceful degradation and mixed criticality considerations.

In Section 3 we present a table-based run-time scheduling algorithm for scheduling

collections of independent jobs, and a fluid-based algorithm for scheduling implicit-

deadline sporadic task systems, under correctness criterion CC-1. Exact schedulability

tests that run in polynomial time are presented for both cases.

In Section 4 we prove that it is NP-hard in the strong sense to determine schedulability

of a collection of independent jobs under correctness criterion CC-2. We also provide

a mixed integer linear program (MILP) representation of this schedulability problem:

solving this MILP allows one to construct a table-based run-time scheduling algorithm.

In Section 5 we show that EDF is an optimal scheduling algorithm under CC-3 and

present exact schedulability tests for scheduling both collections of independent jobs and

three-parameter sporadic task systems with bounded utilization under this correctness

criterion. These tests run in polynomial and pseudo-polynomial time, respectively.

We place all these above results within a broader context in Section 6, explaining how

they fit together and how they suggest some guidelines for implementation and analysis

of semi-clairvoyant systems; while the benefits of these guidelines will be quite evident,

we will additionally provide a quantitative evaluation of their cost.

1 By comparison, schedulability analysis for non-clairvoyant scheduling of mixed-criticality jobs under
the ordinary mixed-criticality semantics (corresponding to CC-1) without graceful degradation — this
is the default mixed-criticality setting seen in most previous work — is NP-hard in the strong sense [4].

ECRTS 2021



9:4 Graceful Degradation in Semi-Clairvoyant Scheduling

2 Workload Model

As mentioned in Section 1 we will restrict our attention here to dual-criticality systems:

systems with two distinct criticality levels denoted lo and hi, that are to execute upon a

single preemptive processor. We consider both collections of independent jobs and recurrent

(sporadic) tasks.

For jobs, an instance is a collection of n dual-criticality jobs J = ¶J1, J2, ..., Jn♢. Each

job Ji is characterized by a tuple of parameters: Ji = (χi, ai, [ci(lo), ci(hi)], di) where

χi ∈ ¶lo,hi♢ and the remaining parameters are non-negative integers, with the interpretation

that

χi denotes the criticality of the job;

ai denotes its release time;

di denotes its deadline; and

ci(lo) and ci(hi) denote lo-criticality and hi-criticality specifications of the job’s worst-

case execution time (WCET) parameter respectively. We require that the WCETs satisfy

the constraint that

(

ci(hi) ≤ ci(lo), if χi = lo
)

and
(

ci(hi) ≥ ci(lo), if χi = hi
)

(I.e., a lo-criticality job receives degraded service whereas a hi-criticality job receives

enhanced service in hi-criticality mode.)

For sporadic tasks, an instance (or system) τ is a collection of n tasks ¶τ1, τ2, . . . , τn♢.

Each τi is characterized by the parameters (χi, [Ci(lo), Ci(hi)], Di, Ti), where χi ∈ ¶lo,hi♢
denotes its criticality, Ci(lo) and Ci(hi) its lo and hi criticality WCETs, Di ∈ N its relative

deadline parameter, and Ti ∈ N its period. Analogously to jobs, we require that the WCETs

satisfy the constraint

(

Ci(hi) ≤ Ci(lo), if χi = lo
)

and
(

Ci(hi) ≥ Ci(lo), if χi = hi
)

Some additional notation: Let τ (lo) and τ (hi) denote the subsets of tasks τi with χi = lo

and χi = hi, respectively. Let Ui(lo) = Ci(lo)/Ti and Ui(hi) = Ci(hi)/Ti. Finally, let

Ulo =
∑

τi∈τ Ui(lo) and Uhi =
∑

τi∈τ Ui(hi).

Correctness criteria. Any task system or collection of jobs is assumed to begin execution

in lo-criticality mode, with each job requiring an amount of execution that is no greater

than its lo-criticality WCET. Any hi-criticality job may signal a transition to hi-criticality

mode upon its arrival. If this happens at some time-instant tswitch, then each hi-criticality

job that arrives at or after tswitch may require up to its (potentially larger) hi-criticality

WCET. Likewise, each lo-criticality job with deadline at or before tswitch requires up to its

lo-criticality WCET, while each lo-criticality job that arrives at or after tswitch can only

require up to its (potentially smaller) hi-criticality WCET. As mentioned in Section 1, we

consider three different notions of correctness for lo-criticality jobs that are active at time

point tswitch, and we will see that this choice has significant consequences for how to schedule

and analyse such systems. These three different correctness criteria are defined as follows.

CC-1. Any lo-criticality job that has its deadline after time tswitch may only require its

smaller hi-criticality WCET.

CC-2. Any lo-criticality job that is active and has already started executing at time tswitch

is permitted to require its larger lo-criticality WCET.

CC-3. Any lo-criticality job that is active at time tswitch is permitted to require its larger

lo-criticality WCET.



S. Baruah and P. Ekberg 9:5

Here we can note that if we restrict all lo-criticality jobs/tasks to have zero-valued WCETs

at hi-criticality (i.e., ci(hi) and Ci(hi) equal zero for all lo-criticality jobs/tasks), then

correctness criterion CC-1 reduces to the model that was studied in previous work on

semi-clairvoyant scheduling [1, 14].

3 Correctness Criterion CC-1

In this section we devise algorithms for scheduling dual-criticality instances of independent

jobs (Section 3.1), and implicit-deadline sporadic task systems (Section 3.2) under the

requirement that all lo-criticality jobs completing after the arrival of a hi-criticality job that

signals hi-criticality mode receive an amount of execution at least equal to their hi-criticality

WCETs. The following example illustrates some of the challenges in determining whether

such an instance can be correctly scheduled under semi-clairvoyant scheduling.

▶ Example 1. Consider an instance comprising the following three jobs:

χi ai ci(lo) ci(hi) di

J1 lo 0 1 0 2

J2 lo 0 2 1 3

J3 hi 1 0 2 3

First, we point out that this instance is clairvoyant schedulable:

in lo-criticality mode one could execute J1 over the interval [0, 1], and J2 over [1, 3];

in hi-criticality mode one could execute J2 over [0, 1], and J3 over [1, 3].

Observe that a different job is scheduled over [0, 1] in the two modes. However under

semi-clairvoyant scheduling the mode only becomes known at time-instant 1 (i.e., upon

J3’s arrival). An EDF schedule would choose J1 over the interval [0, 1]; if job J3 were to

signal hi-criticality mode upon arrival, that would require that an execution amount equal

to c2(hi) + c3(hi) = (1 + 2) = 3 units be completed over the next two time units. Hence

EDF is not able to schedule this instance correctly; we leave it to the reader to verify that

the following on-line scheduling strategy is correct:

Execute J2 over [0, 1]

if J3 signals lo-criticality mode upon its arrival

execute J1 over [1, 2], and J2 over [2, 3]

else // (i.e., J3 signals hi-criticality mode upon its arrival)

execute J3 over [1, 3] ◀

In the remainder of this section we describe how such strategies may be determined

for collections of jobs and implicit-deadline task systems. Our results for CC-1 are closely

inspired by those of [1] (which effectively targets CC-1 without graceful degradation), though

in order to enable graceful degradation we take a very different approach to the formulation

of the linear program that we will see next.

3.1 Jobs

We partition the time-line by the release-dates and the deadlines (the ai and di parameters)

of the jobs. I.e., the time-line from the first release date to the last deadline is divided into

subintervals by dividing it at every ai and di. Let I1, I2, . . . denote these subintervals and

note that there are at most 2n− 1 of them. Let t1, t2, . . . denote the distinct time instants

ECRTS 2021



9:6 Graceful Degradation in Semi-Clairvoyant Scheduling

at which hi-criticality jobs arrive, in order (i.e., tk < tk+1). There are at most n such time

instants tk.

In the following we let i range over jobs Ji, let j range over subintervals Ij , and let k

range over the time points tk where a hi-criticality job arrives.

Variables. Our LP uses the following variables:

1. The variable xij represents the amount of execution assigned to the i’th job Ji in the

j’th interval Ij , in a schedule in which no hi-criticality job signals the transition to

hi-criticality mode. There are O(n2) such variables.

2. For each k, the variable y
(k)
ij represents the amount of execution assigned to job Ji in

the interval Ij , in a schedule in which hi-criticality mode is signalled at time-instant tk.

There are O(n3) such variables – O(n2) for each value of k.

For the example instance of Example 1 there are 3 × 3 = 9 xij variables, and the same

number of y
(1)
ij variables.

Constructing Scheduling Tables. A solution to our LP will assign values to these variables.

We will use these assigned values to construct several scheduling tables prior to run-time:

Scheduling table So will schedule job Ji for a duration xij during the interval Ij .

For each k, there will be a scheduling table Sk that schedules job Ji for a duration y
(k)
ij

during the interval Ij .

Our run-time scheduling strategy is then to start out making scheduling decisions according to

So, and to switch to Sk if hi-criticality mode is first signalled by the arrival of a hi-criticality

job at tk. The Constraints in Eq. 1 below enforce that y
(k)
ij = xij for all intervals Ij before

tk; hence in the event that the arrival of a hi-criticality job at time tk signals hi-criticality

mode we are effectively following scheduling table Sk from the very beginning.

▶ Example 2. For the 3-job example instance in Example 1, there are three subintervals

I1 = [0, 1], I2 = [1, 2], and I3 = [2, 3]. Since there is only one hi-criticality job, we have

t1 = 1 as the only instant at which hi-criticality jobs arrive. Below is a possible assignment

of values for xij and y
(1)
ij for this example instance (these happen to be the xij and y

(1)
ij

values corresponding to the correct scheduling strategy described in Example 1):

j = 1 j = 2 j = 3

i = 1 x11 = 0, y
(1)
11 = 0 x12 = 1, y

(1)
12 = 0 x13 = 0, y

(1)
13 = 0

i = 2 x21 = 1, y
(1)
21 = 1 x22 = 0, y

(1)
22 = 0 x23 = 1, y

(1)
23 = 0

i = 3 x31 = 0, y
(1)
31 = 0 x32 = 0, y

(1)
32 = 1 x33 = 0, y

(1)
33 = 1

The following scheduling tables are constructed from these xi,j and yi,j values:

1. So schedules J2 over I1 = [0, 1], J1 over I2 = [1, 2], and J2 over I3 = [2, 3].

2. S1 schedules J2 over I1, and J3 over both I2 and I3.

During run-time we start out scheduling according to So; if job J3 signals hi-criticality mode

upon arrival at time-instant 1 then we subsequently switch to schedule S1. ◀

Constraints. We will now describe the constraints added to our LP in order to ensure

that the variables defined above have their intended interpretations.

(Non-clairvoyance.) For each k, for all i, and for all j such that the interval Ij completes

no later than time-instant tk, we have

y
(k)
ij = xij (1)



S. Baruah and P. Ekberg 9:7

There are O(n3) such constraints.

(Correctness in lo criticality.) For each i

∑

Ij⊆[ri,di]

xij ≥ ci(lo) (2)

There are O(n) such constraints – one per job.

(Correctness in hi criticality.) For each k (hi-criticality signalled at tk)

For each i for which χi = hi

∑

Ij⊆[ri,di]

y
(k)
ij ≥



ci(lo) if ri < tk
ci(hi) if ri ≥ tk

(3)

There are O(n2) such constraints.

For each i for which χi = lo

∑

Ij⊆[ri,di]

y
(k)
ij ≥



ci(lo) if di ≤ tk
ci(hi) if di > tk

(4)

There are O(n2) such constraints.

Notice the difference between Expression 3 and Expression 4: the first case in Expression 3

applies to all jobs that arrive before tk; in Expression 4, to all jobs that have deadlines

no later than tk.

(Adequate computing capacity to construct scheduling table So.) For each j

∑

i

xij ≤ ♣Ij ♣, (5)

where ♣I♣ denotes the length of an interval I. There are O(n) such constraints.

(Adequate computing capacity to construct scheduling table Sk.) For each k, for each j

∑

i

y
(k)
ij ≤ ♣Ij ♣ (6)

There are O(n2) such constraints.

3.2 Tasks

We now give an optimal algorithm for scheduling systems of implicit-deadline sporadic

tasks2 – task systems in which the relative deadline parameter Di of each task τi is equal

to its period parameter Ti. Our algorithm is based on the fluid scheduling paradigm. Such

algorithms are allowed to assign individual tasks a fraction ≤ 1 of a processor (rather than an

entire processor, or none) at each instant in time. The MC-Fluid non-clairvoyant scheduling

algorithm [26, 9] was designed for scheduling dual-criticality implicit-deadline sporadic task

systems upon identical multiprocessor platforms. Prior to run-time, MC-Fluid computes

lo-criticality and hi-criticality execution rates θi(lo) and θi(hi) for each task τi ∈ τ . Each

task τi is initially scheduled at a rate θi(lo); if any job does not complete despite having

2 We do not yet have an algorithm for scheduling task systems in which the Di and Ti parameters of
individual tasks may differ—to our knowledge, there are no non-trivial speedup-competitive prior results
known for semi-clairvoyant scheduling of task systems that are not implicit-deadline. In Section 6 we
will describe how a correct but non-optimal algorithm may be obtained for scheduling such systems.

ECRTS 2021



9:8 Graceful Degradation in Semi-Clairvoyant Scheduling

executed for its lo-criticality WCET, all lo-criticality tasks are immediately discarded and

each hi-criticality task τi henceforth executes at a rate θi(hi). An algorithm for computing

suitable values for the θi(lo) and θi(hi) parameters is presented in [26], and a somewhat

simpler algorithm subsequently derived in [9], and shown to be speedup-optimal3, with

speedup factor 4
3 .

The non-clairvoyant MC-Fluid algorithm is easily modified to form an optimal semi-

clairvoyant algorithm for dual criticality implicit-deadline tasks upon uniprocessors. Observe

first that for an implicit-deadline sporadic task system τ to be schedulable by any scheduler

(including a clairvoyant one), it is necessary that the following condition hold:

Ulo ≤ 1 and Uhi ≤ 1 (7)

The schedulability test associated with our optimal semi-clairvoyant scheduling algorithm is

straightforward: any task system τ satisfying the condition above will be correctly scheduled

by our algorithm. The algorithm assigns the θi(lo) and θi(hi) execution rates to each task

τi as follows:


θi(lo) = Ui(lo)


and


θi(hi) = Ui(hi)


(We point out that therefore θi(hi) ≤ θi(lo) for lo-criticality tasks while θi(hi) ≥ θi(lo) for

hi-criticality tasks.) It initially executes each task τi at a rate θi(lo); if any hi-criticality job

signals a transition to hi-criticality mode upon arrival, the algorithm subsequently executes

each task τi at a rate θi(hi). It is evident that this algorithm is feasible upon a uniprocessor

since the rates of all the tasks both before and after such a transition sum to ≤ 1.

Proof of Correctness. We show that any task system τ satisfying the necessary schedula-

bility conditions in Eq. 7 is scheduled correctly as per correctness criterion CC-1.

It is evident that all tasks execute correctly in all lo-criticality behaviors (since each

job of each task τi receives a total execution θi(lo) × Ti = Ui(lo) × Ti = Ci(lo) units of

execution). Consider now some hi-criticality behavior, and let tswitch denote the instant at

which hi-criticality behavior is signalled. It is evident that any job that has both its arrival

time and its deadline ≤ tswitch, as well as any job that has both its arrival time and its

deadline ≥ tswitch, receives adequate execution. It remains to consider jobs that arrive before,

but have deadline after, time-instant tswitch.

hi-criticality tasks. Under semi-clairvoyant scheduling, all such hi-criticality jobs, having

arrived before hi-criticality mode was signalled, are guaranteed to complete upon having

executed for no more than their lo-criticality WCETs. Since θi(lo) ≤ θi(hi) for any

hi-criticality task τi, any job of such a τi clearly receives at least θi(lo) × Ti = Ci(lo)

units of execution by its deadline.

lo-criticality tasks. Symmetrically to the case above, under correctness criterion CC-1 all

such lo-criticality jobs are to be assigned an amount of execution not exceeding their

hi-criticality WCETs. Since θi(lo) ≥ θi(hi) for any lo-criticality task τi, any job of such

a τi receives at least θi(hi) × Ti = Ci(hi) units of execution by its deadline.

4 Correctness Criterion CC-2

lo-criticality jobs that begin executing before a mode-transition has been signalled are

required to execute for their (larger) lo-criticality WCETs under correctness criterion CC-2.

3 The reader is referred to [25, 15] for in-depth discussions about speedup factors.



S. Baruah and P. Ekberg 9:9

It turns out that establishing the schedulability of systems under this correctness criterion is

a computationally harder problem than under correctness criterion CC-1: while we saw above

(Section 3.1) that schedulability analysis of collections of jobs can be done in polynomial

time under CC-1, we now show that this is NP-complete in the strong sense under CC-2.

▶ Theorem 3. Under correctness criterion CC-2, it is NP-hard in the strong sense to deter-

mine whether an instance of jobs can be correctly scheduled upon a preemptive uniprocessor.

Proof. We will give a reduction from the 3-Partition problem, which is well known to be NP-

complete in the strong sense [21]. An instance of 3-Partition is a set S = ¶s1, s2, . . . , s3m♢
of 3m positive integers, such that

∑

si∈S si = mk for some integer k. We are asked whether

S can be partitioned into m disjoint subsets, such that each subset sums to k.

Let an instance S = ¶s1, s2, . . . , s3m♢ of 3-Partition be given. We create the following

set J of jobs.

Ji = (lo, 0, [2si, si], 2mk), for 1 ≤ i ≤ 3m

J3m+j = (hi, 2jk, [0, k], (2j + 1)k), for 1 ≤ j < m.

It is clear that this reduction can be carried out in polynomial time and that the values of

the produced numerical parameters are polynomially related to those given. In the following

we show that J is schedulable under correctness criterion CC-2 if and only if S can be

partitioned into subsets S0, S1, . . . , Sm−1 with the same sum. We consider the two directions

separately. Let Jlo and Jhi denote the sets of lo- and hi-criticality jobs in J , respectively.

S can be partitioned ⇒ J is schedulable: Assume S can be partitioned into S0, S1, . . . , Sm−1

such that each partition sums to k. Let Jj denote the set of jobs Ji ∈ Jlo such that si ∈ Sj ,

for 0 ≤ j < m. That is, Ji ∈ Jj if and only if si ∈ Sj .

The following scheduling strategy will be successful: We allocate time interval [0, 2k) for

the jobs in J0 where they are executed in any order. Then for all j such that 1 ≤ j < m we

allocate time interval [2jk, 2(j + 1)k) for first executing hi-criticality job J3m+j and then the

jobs in Jj in any order. If the jobs that are allocated to a time interval have finished early,

then we idle the processor until the start of the next allocated time interval.

We note that the total execution time of the jobs in J0 is at most
∑

Ji∈J0
ci(lo) =

∑

si∈S0
2si = 2k, and therefore they can all finish in their allocated time interval [0, 2k).

We then note that for 1 ≤ j < m, if neither J3m+j nor any previous hi-criticality job

has signaled hi-criticality behavior, then the lo-criticality jobs in Jj have the entire time

interval [2jk, 2(j + 1)k) to execute in, which is enough since
∑

Ji∈Jj
ci(lo) = 2k. If, on the

other hand, J3m+j or some previous hi-criticality job has signaled hi-criticality behavior,

then the jobs in Jj might only have the time interval [(2j + 1)k, 2(j + 1)k) to execute in, but

this is still enough as they then only need to execute for up to
∑

Ji∈Jj
ci(hi) = k.

The hi-criticality tasks J3m+j , for 1 ≤ j < m, all execute first in their allocated time

intervals. Those time intervals start at the arrival time of the corresponding hi-criticality

job, so the hi-criticality jobs will always finish no later than their deadlines.

S cannot be partitioned ⇒ J is unschedulable: Assume that S cannot be partitioned into

m subsets of equal sum. We will show that no matter what scheduling decisions are

taken, there will always exist some runtime behaviors that lead to a deadline miss. In the

following we consider only behaviors where each job Ji requires an execution time of either

exactly ci(lo) or ci(hi). We then note that no job has a deadline later than 2mk and that
∑

Ji∈Jlo
ci(lo) = 2mk. Therefore, no idle time can possibly be allowed in a successful

schedule as long as hi-criticality behavior has not been signaled. In time interval [0, 2k),

ECRTS 2021



9:10 Graceful Degradation in Semi-Clairvoyant Scheduling

lo-criticality jobs must then be scheduled for the entire 2k time units. Let J start
lo be the

jobs that begin execution in [0, 2k), and let x =
∑

Ji∈J start
lo

ci(lo). We consider two cases.

Case 1 (x > 2k) Suppose the hi-criticality job J3m+1 that arrives at time 2k signals hi-

criticality behavior, and that this and all following hi-criticality jobs require their hi-

criticality WCETs. The total execution time of the hi-criticality jobs is then (m− 1)k,

and the total time left over for the lo-criticality jobs until their deadline at 2mk is

2mk− 2k− (m− 1)k = (m− 1)k. However, the lo-criticality jobs that started execution

before time 2k require their larger lo-criticality WCET. The total remaining execution

time requirement of the lo-criticality jobs is then

∑

Ji∈Jlo\J start
lo

ci(hi) +
∑

Ji∈J start
lo

ci(lo) − 2k =
∑

Ji∈Jlo

ci(hi) +
∑

Ji∈J start
lo

ci(hi) − 2k

= mk +
x

2
− 2k

> (m− 1)k,

and they can not all finish before their deadline.

Case 2 (x = 2k) Since
∑

Ji∈J start
lo

ci(lo) = 2k, the jobs in J start
lo correspond to a subset of

S that sums to k. In this case, let the hi-criticality job J3m+1 that arrives at time 2k

require zero execution time and therefore not signal hi-criticality behavior.

If the second case holds, we simply note that the lo-criticality jobs that were executed

corresponds to a subset of S that sums to k and repeat the same argument, but starting

from time 2k instead. If again the second case holds, we note that the rest of S again has a

subset that sums to k and repeat the argument from time 4k and so on. Since by assumption

S cannot be partitioned completely into subsets that each sum to k, any scheduler must

eventually either idle the processor or behave according to Case 1 above, both of which can

then lead to a deadline miss. ◀

An MILP for schedulability analysis under CC-2. Theorem 3 above establishes that we

cannot analyze schedulability of collections of jobs under CC-2 even in pseudo-polynomial

time (assuming P̸=NP). This means that we cannot solve it with a polynomially-sized LP,

but below we adapt the LP obtained in Section 3.1 for correctness criterion CC-1 to make it

applicable to schedulability analysis under correctness criterion CC-2 by introducing some

additional binary integer variables, which in effect turns the LP into a mixed-integer linear

program (MILP). Since it is known [11] that determining whether an MILP has a feasible

solution is in NP, the existence of this MILP also serves to show that schedulability analysis

of collections of jobs under correctness criterion CC-2 is in the complexity class NP. This

fact, in conjunction with Theorem 3, establishes that the problem is NP-complete.

Observe that the difference between correctness criteria CC-1 and CC-2 is in the execution

time that lo-criticality jobs may require when some hi-criticality job signals hi-criticality

behavior. This was captured by the constraints in Eq. 4 for CC-1; reproduced below:

For each i for which χi = lo

∑

Ij⊆[ri,di]

y
(k)
ij ≥



ci(lo) if di ≤ tk
ci(hi) if di > tk

We replace the constraints in Eq. 4 by the following set of constraints, keeping the other

constraints of the LP in Section 3.1 as they are.



S. Baruah and P. Ekberg 9:11

For each lo-criticality job Ji and time instant tk where some hi-criticality job arrives, let

b
(k)
i be a new binary (i.e., 0–1 valued) integer variable. The intended interpretation is that

job Ji has started execution before tk in schedule So if and only if b
(k)
i = 1. Instead of the

constraints in Eq. 4 we add the following constraints.

For each k (hi-criticality signalled at tk) and each i for which χi = lo:

If di ≤ tk (i.e., the entire job must be scheduled by time-instant tk),

∑

Ij⊆[ri,di]

y
(k)
ij ≥ ci(lo) (8)

If ri > tk (i.e., the entire job must be scheduled after time-instant tk),

∑

Ij⊆[ri,di]

y
(k)
ij ≥ ci(hi) (9)

Otherwise (i.e., the job spans tk),

∑

Ij⊆[ri,di]

y
(k)
ij ≥ ci(lo) × b

(k)
i (10)

∑

Ij⊆[tk,di]

y
(k)
ij ≥ ci(hi) × (1 − b

(k)
i ) (11)

∑

Ij⊆[ri,tk]

y
(k)
ij ≤ M × b

(k)
i , (12)

where M is some large enough positive constant (e.g., M = maxi(ci(lo)) can be used).

We note that if b
(k)
i = 1, then the constraint in Eq. 10 “forces” job Ji to be allocated at least

ci(lo) units of execution, while the constraints in Eqs. 11 and 12 are trivially satisfied. If

instead b
(k)
i = 0, then the constraint in Eq. 10 is always satisfied, while the constraint in

Eq. 11 forces Ji to be allocated at least ci(hi) units of execution after tk, and the constraint

in Eq. 12 forces Ji to not have begun execution before tk.

5 Correctness Criterion CC-3

Under correctness criterion CC-3, it is required that all lo-criticality jobs arriving before

mode-change is signalled receive an amount of service equal to their (larger) lo-criticality

WCETs. It is easily seen that unlike with regards to correctness criteria CC-1 and CC-2,

under correctness criterion CC-3 the WCET of each job is known upon the job’s arrival

regardless of whether some future job will signal hi-criticality mode upon arrival or not. And

it follows from the optimality property of the Earliest Deadline First scheduling algorithm

(EDF) upon preemptive uniprocessor platforms [27, 17] that any collection of such jobs that

can be scheduled to all complete by their deadlines is scheduled to all complete by their

deadlines by EDF. Therefore, under correctness criterion CC-3 EDF is an optimal run-time

algorithm. This is in contrast to correctness criteria CC-1 and CC-2, for neither of which do

we have a general, efficient, run-time scheduling algorithm. In the remainder of this section

we derive efficient schedulability-analysis for the EDF scheduling of dual-criticality instances

of independent jobs (Section 5.1), and three-parameter sporadic task systems (Section 5.2)

under this correctness criterion.

ECRTS 2021



9:12 Graceful Degradation in Semi-Clairvoyant Scheduling

5.1 Jobs

In Sections 3.1 and 4, we had solved a linear program and an MILP respectively in order

to construct scheduling tables for the run-time scheduling of collections of jobs subject

to correctness criteria CC-1 and CC-2. Such an approach is not necessary for CC-3: as

observed above, we know that EDF is an optimal algorithm for scheduling instances subject

to correctness criterion CC-3. An associated schedulability test is easily obtained: simply

simulate the EDF scheduling of the instance multiple times, once assuming lo-criticality

behavior and once each under the assumption that each individual hi-criticality job is the

one that signals transition to hi-criticality behavior.4 For an instance with n jobs, O(n) such

simulations of EDF need to be performed; each can be done in O(n logn) time [28], yielding

an overall complexity of O(n2 logn) for the schedulability test.

5.2 Tasks

As stated above, EDF is an optimal run-time scheduling algorithm under correctness criterion

CC-3. We now derive an exact EDF schedulability test for 3-parameter sporadic task

systems under this correctness criterion; our test holds for “arbitrary-deadline” systems —

i.e., systems in which tasks may have relative deadlines smaller than, equal to, or larger than

their periods. We will show that our schedulability test has pseudo-polynomial running time

upon systems in which max(Ulo, Uhi) is a priori bounded by some constant c < 1.

Demand bound function. Let dbfi(t, s) denote the demand bound function [2] (see [3,

Chapter 10.3] for a text-book description) of task τi in an interval of length t, where hi-

criticality mode is first signalled s time units into the interval (possibly by some other task).

That is, the function dbfi(t, s) bounds the maximum sum of execution times of jobs from τi

that have both release times and deadlines within any such interval.

Let t and s be given. We make the following observations (illustrated in Figure 1).

For a hi-criticality task τi, the execution demand is maximized when as many jobs as

possible fit into the interval, and as many of those as possible are released at or after the

signalling of hi-criticality mode, and therefore can have the larger WCET Ci(hi). This

corresponds to a scenario where one job from τi has its deadline at the end of the interval,

and the previous jobs are each released as late as possible.

For a lo-criticality task τi, the execution demand is instead maximized when the maximum

number of jobs from τi fit into the interval, but as many as possible are released before

the time instant where hi-criticality mode is signalled, and therefore can have the larger

WCET Ci(lo). This corresponds to a scenario where one job is released at the start of

the interval and subsequent jobs as early as possible.

We use the above observations to express dbfi(t, s). Let ψi(t) denote the maximum

number of jobs of τi that both arrive in, and have their deadlines within, any contiguous

interval of duration t; it is known [2] that

ψi(t) = max



t−Di

Ti

⌋

+ 1, 0



.

4 It follows from the sustainability property of EDF [6] that each such simulation can be done assuming
that each job executes to exactly its WCET.



S. Baruah and P. Ekberg 9:13

x x+ s x+ t

hi task hihihihilo

lo task lo lo hi

Figure 1 An interval of length t with hi-criticality mode revealed s time units into the interval.

The lo-criticality task maximizes execution demand within the interval by fitting two jobs with

WCET C(lo) and one job with WCET C(hi). The hi-criticality task maximizes demand by fitting

four jobs with WCET C(hi) and one with WCET C(lo).

For a hi-criticality task τi, a total of ψi(t) jobs can fit inside the interval, and a total of

ψi(t− s) of those jobs can have an execution time requirement of Ci(hi). We therefore have

dbfi(t, s) = ψi(t) × Ci(lo) + ψi(t− s) × (Ci(hi) − Ci(lo)).

For a lo-criticality task τi the number of jobs that can fit in the interval is also at most ψi(t).

No more than ⌊s/Ti⌋ + 1 of those jobs can be released before5 the instant when hi-criticality

behavior is first signaled, and therefore have the larger execution time requirement Ci(lo).

We have

dbfi(t, s) = ψi(t) × Ci(hi) + min



ψi(t),



s

Ti

⌋

+ 1



× (Ci(lo) − Ci(hi)).

Putting the above together, we have the following expression to bound the maximum total

execution time demand of jobs from task τi in an interval of size t, where hi-criticality

behavior is first revealed s time units into the interval.

dbfi(t, s) =







ψi(t) × Ci(lo) + ψi(t− s) × (Ci(hi)−Ci(lo)), if χi = hi

ψi(t) × Ci(hi) + min
(

ψi(t),
⌊

s
Ti

⌋

+ 1
)

× (Ci(lo)−Ci(hi)), if χi = lo

(13)

The Schedulability Test

We assume here that max(Ulo, Uhi) < 1. Before establishing the schedulability test we

present three lemmas. Let B and S(t) be defined for any task system τ as follows.

B =

∑

τi∈τ Ci(χi)

1 − max(Ulo, Uhi)
,

S(t) =
⋃

τi∈τ(hi)

¶t− kTi −Di ♣ 0 ≤ k < ψi(t)♢ ∪ ¶t♢.

5 In fact, this captures the maximum number of jobs that can be released before or at the time point
where hi-criticality is signaled. It seems as if we should replace ⌊s/Ti⌋ + 1 by ⌈s/Ti⌉, but we will see
later that this is in fact the suitable formulation in order to use the demand bound function for an
efficient schedulability test that is both sufficient and necessary. Specifically, this formulation is required
for Lemma 6, but we will see in Theorem 7 that it does not detract from the exactness of the test.

ECRTS 2021



9:14 Graceful Degradation in Semi-Clairvoyant Scheduling

As we will see in the following, B is the upper bound for the values of t that we need to

consider when using dbfi(t, s) for a schedulability test, and S(t) is the set of values for s

that needs to be considered for each t. In our first lemma we show that the demand bound

function for a task set is maximized at some value of s ∈ S(t), which corresponds to a release

of a job from a hi-criticality task when its jobs are aligned as in Figure 1.

▶ Lemma 4. Let t and s be given, where t > 0 and s ∈ [0, t]. Then there exists s′ ∈ S(t)

such that
∑

τi∈τ dbfi(t, s) ≤ ∑

τi∈τ dbfi(t, s
′).

Proof. Let s′ be the smallest s′ ∈ S(t) such that s′ ≥ s.

For all τi ∈ τ (hi), the set of values s′ where ψi(t−s′) is discontinuous in the interval [0, t] is

a subset of S(t). As ψi is a right-continuous step function, we must have ψi(t−s) = ψi(t−s′).

Hence, dbfi(t, s) = dbfi(t, s
′) if χi = hi.

If τi ∈ τ (lo), then dbfi(t, s) in non-decreasing in s. Therefore dbfi(t, s) ≤ dbfi(t, s
′) if

χi = lo, which completes the proof. ◀

Our second lemma puts an upper bound on the values of t that need to be considered.

▶ Lemma 5. If t ≥ B, then
∑

τi∈τ dbfi(t, s) ≤ t for all s ∈ [0, t].

Proof. Take any τi ∈ τ . We first note that ψi(x) ≤ x/Ti + 1 and then consider two cases.

Case 1 (χi = hi): We must have

dbfi(t, s) ≤


t

Ti

+ 1



× Ci(lo) +



t− s

Ti

+ 1



× (Ci(hi) − Ci(lo))

=
Ci(lo)

Ti

× t+ Ci(lo) +
Ci(hi) − Ci(lo)

Ti

× (t− s) + Ci(hi) − Ci(lo)

= Ui(hi) × (t− s) + Ui(lo) × s+ Ci(hi).

Case 2 (χi = lo): Similarly, we have

dbfi(t, s) ≤


t

Ti

+ 1



× Ci(hi) +



s

Ti

+ 1



× (Ci(lo) − Ci(hi))

=
Ci(hi)

Ti

× t+ Ci(hi) +
Ci(lo) − Ci(hi)

Ti

× s+ Ci(lo) − Ci(hi)

= Ui(hi) × (t− s) + Ui(lo) × s+ Ci(lo).

In both cases we then have

dbfi(t, s) ≤ Ui(hi) × (t− s) + Ui(lo) × s+ Ci(χi)

and therefore
∑

τi∈τ

dbfi(t, s) ≤ Uhi × (t− s) + Ulo × s+
∑

τi∈τ

Ci(χi)

≤ max(Ulo, Uhi) × t+
∑

τi∈τ

Ci(χi).

But if t ≥ B, then
∑

τi∈τ

dbfi(t, s) ≤ max(Ulo, Uhi) × t+
∑

τi∈τ

Ci(χi) ≤ t,

which concludes the proof. ◀



S. Baruah and P. Ekberg 9:15

Our third lemma puts the above two together to limit the values of both t and s that we

must consider.

▶ Lemma 6. If
∑

τi∈τ dbfi(t, s) > t for some t > 0 and s ∈ [0, t], then there exists

t′ ∈ ¶0, 1, . . . , ⌊B⌋♢ and s′ ∈ S(t′) such that
∑

τi∈τ dbfi(t
′, s′) > t′.

Proof. Assume that
∑

τi∈τ dbfi(t, s) > t for some t > 0 and s ∈ [0, t]. By Lemma 4 there

exists s′ ∈ S(t) such that
∑

τi∈τ dbfi(t, s
′) ≥ ∑

τi∈τ dbfi(t, s).

Let t′ = ⌊t⌋ and s′′ = ⌊s′⌋. We note then that for any task τi, we have ψi(t) = ψi(t
′)

as ψi is a right-continuous step function that only changes value at integers. Further, we

note that by definition of S(t) it must be the case that the fractional parts of t and s′

are the same. We must then have t − s′ = t′ − s′′ and ψi(t − s′) = ψi(t
′ − s′′). Also, we

note that as Ti is integer we must have ⌊s/Ti⌋ = ⌊s′/Ti⌋. From Eq. 13 it follows then that
∑

τi∈τ dbfi(t, s
′) =

∑

τi∈τ dbfi(t
′, s′′).

Finally, by Lemma 4 there must exist s′′′ ∈ S(t′) such that
∑

τi∈τ dbfi(t
′, s′′) ≤

∑

τi∈τ dbfi(t
′, s′′′). Putting the above together we have

∑

τi∈τ

dbfi(t
′, s′′′) ≥

∑

τi∈τ

dbfi(t
′, s′′)

=
∑

τi∈τ

dbfi(t, s
′)

≥
∑

τi∈τ

dbfi(t, s)

> t

≥ t′

By Lemma 5 we must have t < B and therefore t′ ∈ ¶0, 1, . . . , ⌊B⌋♢. As s′′′ ∈ S(t′), the

lemma follows. ◀

We can now establish the schedulability test.

▶ Theorem 7. Let τ be a task set of arbitrary-deadlines sporadic mixed-criticality tasks with

max(Ulo, Uhi) < 1. The task set τ is schedulable by EDF under correctness criterion CC-3

on a single preemptive processor if and only if

∀t ∈ ¶0, 1, 2, . . . , ⌊B⌋♢,∀s ∈ S(t) :
∑

τi∈τ

dbfi(t, s) ≤ t.

Proof. We separately prove the necessity and sufficiency of the schedulability test.

Test fails ⇒ τ is unschedulable: Assume there exists t ∈ ¶1, 2, . . . , ⌊B⌋♢ and s ∈ S(t) such

that
∑

τi∈τ dbfi(t, s) > t. Let τ release jobs in an interval of length t+ ϵ, for some 0 < ϵ < 1,

such that all lo-criticality tasks release a job at the start of the interval and then subsequent

jobs as early as possible. Let hi-criticality tasks instead release jobs such that one job has a

deadline at the end of the interval, and previous jobs are released as late as possible in the

interval.

By definition of S(t), at least one hi-criticality task must then release a job exactly s+ ϵ

time units into the interval. Let that job be the first to signal hi-criticality behavior, and let

all other jobs require their largest allowed execution time.

Any hi-criticality task τi then releases ψi(t+ ϵ) jobs with both release times and deadlines

within the interval, of which ψi(t+ ϵ− (s+ ϵ)) are released at or after the time point where

ECRTS 2021



9:16 Graceful Degradation in Semi-Clairvoyant Scheduling

hi-criticality behavior is signaled, for a total execution time requirement of

ψi(t+ ϵ) × Ci(lo) + ψi(t+ ϵ− (s+ ϵ)) × (Ci(hi)−Ci(lo))

= ψi(t) × Ci(lo) + ψi(t− s) × (Ci(hi)−Ci(lo))

= dbfi(t, s),

where ψi(t+ ϵ) = ψ(t) since t is integer and ψi only changes value at integers.

Similarly, any lo-criticality task τi will release ψi(t+ ϵ) jobs in total, of which at most

⌈(s+ ϵ)/Ti⌉ are released before the time point where hi-criticality behavior is signaled, for a

total execution time requirement of

ψi(t+ ϵ) × Ci(hi) + min


ψi(t+ ϵ),
⌈s+ ϵ

Ti

⌉

× (Ci(lo)−Ci(hi))

= ψi(t) × Ci(hi) + min


ψi(t),
⌊ s

Ti

⌋

+ 1


× (Ci(lo)−Ci(hi))

= dbfi(t, s),

where ⌈(s+ ϵ)/Ti⌉ = ⌊(s+ ϵ)/Ti⌋ + 1 = ⌊s/Ti⌋ + 1 since both s and Ti are integer.

The total workload of jobs with both release time and deadline within the interval

of size t + ϵ is then
∑

τi∈τ dbfi(t, s). Since
∑

τi∈τ dbfi(t, s) is integer-valued and since
∑

τi∈τ dbfi(t, s) > t by assumption, we must also have
∑

τi∈τ dbfi(t, s) > t+ ϵ. It follows

that the total workload that must be scheduled inside the interval is greater than the length

of the interval, hence it is impossible to meet all deadlines on a single processor.

τ is unschedulable ⇒ test fails: Assume that τ is unschedulable by EDF and let t2 be the

time point of a deadline miss. Let t1 be the earliest time point before t2 such that there

exists at least one active job with deadline no later than t2 at any time in the interval [t1, t2].

By definition of t1, there are no active jobs in [t1, t2] with deadline latest at t2 that are also

released earlier than t1. It follows that EDF schedules jobs that both arrive no earlier than

t1 and have deadline no later than t2 during the entirety of [t1, t2]. Still one of those jobs

misses its deadline at t2, so the total workload of those jobs must exceed t2 − t1.

We let t = t2 − t1 and consider three cases.

hi-criticality behavior is signaled before t1: The total workload of all jobs scheduled by

EDF in [t1, t2] can be no more than
∑

τi∈τ ψi(t) × Ci(hi). By Eq. 13 we have

∑

τi∈τ

ψi(t) × Ci(hi) ≤
∑

τi∈τ

dbfi(t, 0).

hi-criticality behavior has not been signaled by t2: The total workload of all jobs scheduled

by EDF in [t1, t2] can be no more than
∑

τi∈τ ψi(t) × Ci(lo). Using ψi(t) ≤ ⌊t/Ti⌋ + 1

and Eq. 13 we get
∑

τi∈τ

ψi(t) × Ci(lo) =
∑

τi∈τ

dbfi(t, t).

hi-criticality behavior is first signaled in [t1, t2]: Let tsignal be the time point where

hi-criticality behavior is first signaled. The total workload of all jobs scheduled by EDF

in [t1, t2] can be no more than
∑

τi∈τ dbfi(t, tsignal − t1).

In all three cases, the total workload of the jobs scheduled by EDF in [t1, t2] can be no

more than
∑

τi∈τ dbfi(t, s) for some s ∈ [0, t]. Since the total workload of those jobs must

exceed t, we then have
∑

τi∈τ dbfi(t, s) > t for some s ∈ [0, t].



S. Baruah and P. Ekberg 9:17

By Lemma 6, there must then exist t′ ∈ ¶0, 1, . . . , ⌊B⌋♢ and s′ ∈ S(t′) such that
∑

τi∈τ dbfi(t
′, s′) > t′. This demonstrates the sufficiency of the test and concludes the

proof. ◀

▶ Corollary 8. The schedulability test described in Theorem 7 can be implemented to run in

pseudo-polynomial time if max(Ulo, Uhi) ≤ c for some constant c < 1.

Proof. If max(Ulo, Uhi) ≤ c, then B is clearly pseudo-polynomially bounded. It follows that

¶0, 1, . . . , ⌊B⌋♢ is of pseudo-polynomial size, and so is S(t) for any t ∈ ¶0, 1, . . . , ⌊B⌋♢. ◀

6 Comparison and Recommendations

The results in Sections 3–5 above establish that CC-3 is the most tractable of our three

correctness criteria both from the run-time complexity perspective and in the sense that we

have the most positive results regarding sporadic task systems about this criterion. We point

out that correctness criterion CC-3 is a stronger constraint than correctness criterion CC-2 —

any schedule for an instance that satisfies correctness criterion CC-3 also satisfies correctness

criterion CC-2 for that instance (this follows from the observation that CC-3 guarantees any

lo-criticality job spanning a mode-transition instant its larger WCET, while correctness

criterion CC-2 only requires this for those lo-criticality jobs that have already begun execution

prior to the mode transition). In a similar vein correctness criterion CC-2 is a stronger

constraint than correctness criterion CC-1 since CC-2 guarantees some lo-criticality jobs

spanning a mode-transition instant (those that began execution prior to the transition) their

larger WCET, while correctness criterion CC-1 does not require this for any lo-criticality

job. It therefore follows that a schedule for an instance satisfying correctness criterion CC-3

also satisfies correctness criteria CC-2 and CC-1: correctness criterion CC-3 is a conservative

over-approximation of correctness criteria CC-2 and CC-1. Based on this observation and

the additional tractability of CC-3 compared to CC-1 and CC-2, we recommend that when

graceful degradation is the goal correctness criterion CC-3 be considered the default

correctness criterion for semi-clairvoyant scheduling, and furthermore that EDF be

considered the default preferred run-time semi-clairvoyant scheduling algorithm.

Quantifying the cost. We now quantify the cost of our recommendation: how much faster

does a processor need to be in order to ensure that an instance that can be correctly scheduled

under either of the weaker correctness criteria CC-1 or CC-2 can also be correctly scheduled

under the more conservative correctness criterion CC-3? We formalize this metric as the

criteria loss:

▶ Definition 9 (Criteria Loss). For two different correctness criteria CC-x and CC-y for

x, y ∈ ¶1, 2, 3♢, (x ̸= y), the criteria loss of CC-x compared to CC-y is the smallest number ℓ

such that any collection of jobs J that is schedulable under correctness criterion CC-y on

a unit-speed processor is also schedulable on a speed-ℓ processor under correctness criterion

CC-x.

We start with an upper bound for the criteria loss of CC-3 compared to the others.

▶ Lemma 10. The criteria loss of CC-3 compared to CC-1 or CC-2 is no greater than 2.

Proof. First, we note that a necessary condition for schedulability of a collection of jobs J
with any algorithm under CC-1 or CC-2 is that it should meet all deadlines in the two cases

where either (i) every job Ji ∈ J executes for exactly ci(lo) time units (i.e., hi-criticality

ECRTS 2021



9:18 Graceful Degradation in Semi-Clairvoyant Scheduling

mode is never signaled) or (ii) every job Ji ∈ J executes for exactly ci(hi) time units (i.e.,

hi-criticality mode is signaled at the first hi-criticality job arrival, and each lo-criticality job

completes upon having executed for exactly ci(hi) time units, even if it would be allowed to

execute for ci(lo) time units).

Second, due to the sustainability of EDF [6], we note that a sufficient condition for EDF

to successfully schedule J under CC-3 is that it could meet all deadlines if (iii) every job

Ji ∈ J executes for exactly max(ci(lo), ci(hi)) time units. It follows directly from standard

analysis of EDF on non-mixed criticality jobs that it will succeed with (iii) on a speed-2

processor if any algorithm can succeed with both (i) and (ii) on a unit-speed processor. ◀

Next we see that this bound is tight compared to CC-2.

▶ Lemma 11. The criteria loss of CC-3 compared to CC-2 is at least 2.

Proof. Consider the collection J = ¶J1 = (lo, 0, [k − 1, 0], k), J2 = (hi, 1, [0, k − 1], k)♢ of

two jobs. Clearly J is schedulable under CC-2: simply idle the processor until the arrival of

J2 at time instant 1, after which there will be at most (k − 1) work to be done no matter if

J2 signals hi-criticality behavior or not.

Under CC-3, J1, having arrived prior to J2, can require up to c1(lo) = k − 1 units of

execution. If J2 then signals hi-criticality behavior, the total workload over [0, k] may be as

high as 2(k − 1). As k → ∞, we see that this would require a speed-2 processor. ◀

Lemmas 10 and 11 together yield the following theorem which completely characterizes the

worst-case penalty of over-approximating CC-1 or CC-2 by CC-3.

▶ Theorem 12. The criteria loss of CC-3 compared to either CC-1 or CC-2 is exactly 2.

Proof. From Lemma 10 we know that the criteria loss of CC-3 compared to CC-1 or CC-2

is at most 2. From Lemma 11 we know that the criteria loss of CC-3 compared to CC-2 is at

least 2. Since CC-2 is a conservative over-approximation of CC-1, the criteria loss of CC-3

compared to CC-1 must be at least 2 as well. ◀

For the sake of completeness we also present bounds on the criteria loss of CC-2 compared

to CC-1.

▶ Lemma 13. The criteria loss of CC-2 compared to CC-1 is in [φ, 2], where φ is the golden

ratio φ = (1 +
√

5)/2 ≈ 1.618.

Proof. First, observe that the upper bound of 2 clearly holds here as well. For simplicity of

presentation in deriving the lower bound we use real-valued job parameters in this proof,

with the observation that we can approximate those to an arbitrary level of precision with

rational parameters. Rational parameters can in turn be changed to integer parameters by

scaling everything with the least common multiple of the denominators without affecting the

schedulability of the jobs.

Let x = (3 −
√

5)/2 and consider the collection of jobs J = ¶J1, J2♢, where

J1 = (lo, 0, [1, 0], 1),

J2 = (hi, x, [0, 1 − x], 1).

Note that J is schedulable under CC-1 since we can simply schedule J1 in [0, x) and then see

whether J2 signals hi-criticality behavior when it arrives. If J2 does not signal hi-criticality

behavior we continue executing J1 until it finishes, otherwise we execute J2 until it finishes

since J1 already has received more than c1(hi) execution time.



S. Baruah and P. Ekberg 9:19

Under CC-2 we must make the choice of whether to start executing J1 before the arrival

of J2. If we do start executing J1 immediately and J2 later signals hi-criticality behavior,

then we need to finish a total of 1 + (1 − x) units of work over [0, 1], and we need a speed-ℓ

processor where

ℓ ≥ 2 − x =
1 +

√
5

2
= φ.

If we instead decide to idle the processor until the arrival of J2 and J2 arrives without

signaling hi-criticality behavior, then we need to finish J1’s entire execution time c1(lo) = 1

in [x, 1]. For this we need a speed-ℓ processor where

ℓ ≥ 1

1 − x
=

2√
5 − 1

=
1 +

√
5

2
= φ,

which completes the proof. ◀

7 Context and Conclusions

Since the mixed-criticality model was introduced by Vestal [30], several extensions and

variations have been proposed. Criticism of the original model has made it clear that some

form of graceful degradation often is necessary for mixed-criticality scheduling to be used

in practice. In this paper we have combined graceful degradation with semi-clairvoyant

scheduling, an interesting new take on how and when information becomes available at

runtime to a scheduler, and studied this under three different correctness criteria that we

labeled CC-1, CC-2 and CC-3. Although the differences between the correctness criteria

appear minor—they differ only in the treatment of lo-criticality jobs that are active when

a hi-criticality job signals hi-criticality behavior—we have seen that they require wildly

differing solutions. The difference in the complexity of the associated schedulability problems

is also stark: schedulability for a collection of jobs is solvable in O(n2 logn) time for CC-3,

but is NP-complete in the strong sense for CC-2.

There is no single correctness criterion which is the correct one in all situations: each is a

reasonable model for some types of systems. However, as CC-3 is a safe over-approximation

of the other criteria it looks particularly useful as a default model. This is especially true

considering that it leads to easy scheduling (plain EDF is an optimal scheduler) and that

it is easy to analyze (in polynomial time for jobs, in pseudo-polynomial time for arbitrary

deadline tasks if utilization is bounded).

While we have studied these problems with the added generalization of graceful degra-

dation, it should be noted that the correctness criteria—and the results of this paper—are

equally valid without graceful degradation. This is represented by simply having ci(hi) = 0

or Ci(hi) = 0 for all lo-criticality jobs or tasks.

We also note that the correctness criteria can apply equally to systems without semi-

clairvoyance: in ordinary (non-clairvoyant) mixed-criticality scheduling we can still have

different correctness criteria for the lo-criticality jobs that are active when it is first discovered

that the system is exhibiting hi-criticality behavior (i.e., when a job has executed for its

lo-criticality WCET without signaling completion). In such systems, CC-1 would correspond

to the standard semantics as studied in most previous work, but it is not necessarily the

most appropriate one, or the one that is easiest to work with.

ECRTS 2021



9:20 Graceful Degradation in Semi-Clairvoyant Scheduling

References

1 Kunal Agrawal, Sanjoy Baruah, and Alan Burns. Semi-clairvoyance in mixed-criticality

scheduling. In Proceedings of the Real-Time Systems Symposium (RTSS), pages 458–468, Dec

2019. doi:10.1109/RTSS46320.2019.00047.

2 S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic tasks

on one processor. In Proceedings of the 11th Real-Time Systems Symposium, pages 182–190,

Orlando, Florida, 1990. IEEE Computer Society Press. doi:10.1109/REAL.1990.128746.

3 Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor Scheduling for

Real-Time Systems. Springer Publishing Company, Incorporated, 2015. doi:10.1007/

978-3-319-08696-5.

4 Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto Marchetti-

Spaccamela, Nicole Megow, and Leen Stougie. Scheduling real-time mixed-criticality jobs.

IEEE Transactions on Computers, 2012. doi:10.1109/TC.2011.142.

5 Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto Marchetti-

Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Preemptive uniprocessor scheduling

of mixed-criticality sporadic task systems. Journal of the ACM, 62(2):14:1–14:33, May 2015.

doi:10.1145/2699435.

6 Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. In Proceedings of the IEEE

Real-time Systems Symposium, pages 159–168, Rio de Janeiro, December 2006. IEEE Computer

Society Press. doi:10.1109/RTSS.2006.47.

7 Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed criticality

systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Vienna, Austria,

2011. IEEE Computer Society Press. doi:10.1109/RTSS.2011.12.

8 Sanjoy Baruah, Alan Burns, and Zhishan Guo. Scheduling mixed-criticality systems to

guarantee some service under all non-erroneous behaviors. In Proceedings of the 2016 28th

EuroMicro Conference on Real-Time Systems, ECRTS ’16, Toulouse (France), 2016. IEEE

Computer Society Press. doi:10.1109/ECRTS.2016.12.

9 Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. MC-Fluid: simplified and optimally

quantified. In Real-Time Systems Symposium (RTSS), 2015 IEEE, Dec 2015. doi:10.1109/

RTSS.2015.38.

10 Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable mixed-

criticality systems. In Proceedings of the IEEE Real-Time Technology and Applications

Symposium (RTAS). IEEE, April 2010. doi:10.1109/RTAS.2010.10.

11 I. Borosh and L. Treybig. Bounds on positive integral solutions of linear diophantine

equations. Proceedings of the American Mathematical Society, 55:299–304, 1976. doi:

10.1090/S0002-9939-1976-0396605-3.

12 A. Burns and S. Baruah. Timing faults and mixed criticality systems. In Jones and Lloyd,

editors, Dependable and Historic Computing, volume LNCS 6875, pages 147–166. Springer,

2011. doi:10.1007/978-3-642-24541-1_12.

13 Alan Burns and Sanjoy Baruah. Towards a more practical model for mixed criticality systems.

In Proceedings of the International Workshop on Mixed Criticality Systems (WMC), December

2014.

14 Alan Burns and Robert Ian Davis. Schedulability analysis for adaptive mixed criticality

systems with arbitrary deadlines and semi-clairvoyance. In Proceedings of the IEEE Real-Time

Systems Symposium, December 2020. doi:10.1109/RTSS49844.2020.00013.

15 Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Robert I. Davis. On the

Pitfalls of Resource Augmentation Factors and Utilization Bounds in Real-Time Scheduling.

In Marko Bertogna, editor, 29th Euromicro Conference on Real-Time Systems (ECRTS

2017), volume 76 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–

9:25, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:

10.4230/LIPIcs.ECRTS.2017.9.

https://doi.org/10.1109/RTSS46320.2019.00047
https://doi.org/10.1109/REAL.1990.128746
https://doi.org/10.1007/978-3-319-08696-5
https://doi.org/10.1007/978-3-319-08696-5
https://doi.org/10.1109/TC.2011.142
https://doi.org/10.1145/2699435
https://doi.org/10.1109/RTSS.2006.47
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/ECRTS.2016.12
https://doi.org/10.1109/RTSS.2015.38
https://doi.org/10.1109/RTSS.2015.38
https://doi.org/10.1109/RTAS.2010.10
https://doi.org/10.1090/S0002-9939-1976-0396605-3
https://doi.org/10.1090/S0002-9939-1976-0396605-3
https://doi.org/10.1007/978-3-642-24541-1_12
https://doi.org/10.1109/RTSS49844.2020.00013
https://doi.org/10.4230/LIPIcs.ECRTS.2017.9
https://doi.org/10.4230/LIPIcs.ECRTS.2017.9


S. Baruah and P. Ekberg 9:21

16 Lin Chen, Franziska Eberle, Nicole Megow, Kevin Schewior, and Cliff Stein. A general frame-

work for handling commitment in online throughput maximization. In Integer Programming

and Combinatorial Optimization (IPCO), pages 141–154, Cham, 2019. Springer International

Publishing.

17 Michael Dertouzos. Control robotics : the procedural control of physical processors. In

Proceedings of the IFIP Congress, pages 807–813, 1974.

18 Pontus Ekberg and Wang Yi. Bounding and shaping the demand of generalized mixed-

criticality sporadic task systems. Real-Time Systems, 50(1):48–86, 2014. doi:10.1007/

s11241-013-9187-z.

19 Rolf Ernst and Marco Di Natale. Mixed criticality systems - A history of misconceptions?

IEEE Design & Test, 33(5):65–74, 2016. doi:10.1109/MDAT.2016.2594790.

20 Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. How realistic is the

mixed-criticality real-time system model? In Proceedings of the 23rd International Conference

on Real Time and Networks Systems, RTNS ’15, pages 139–148, New York, NY, USA, 2015.

ACM. doi:10.1145/2834848.2834869.

21 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., USA, 1979.

22 G. Giannopoulou, P Huang, R Ahmed, D Bartolini, and L Thiele. Isolation scheduling on

multicores: model and scheduling approaches. Real-Time Systems: The International Journal

of Time-Critical Computing, 53:614–667, 2017. doi:10.1007/s11241-017-9277-4.

23 Xiaozhe Gu and Arvind Easwaran. Dynamic budget management with service guarantees for

mixed-criticality systems. In 2016 IEEE Real-Time Systems Symposium, RTSS 2016, Porto,

Portugal, November 29 - December 2, 2016, pages 47–56, 2016. doi:10.1109/RTSS.2016.014.

24 Z. Guo, K. Yang, S. Vaidhun, S. Arefin, S. K. Das, and H. Xiong. Uniprocessor mixed-criticality

scheduling with graceful degradation by completion rate. In 2018 IEEE Real-Time Systems

Symposium (RTSS), pages 373–383, 2018. doi:10.1109/RTSS.2018.00052.

25 B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In 36th Annual

Symposium on Foundations of Computer Science (FOCS’95), pages 214–223, Los Alamitos,

October 1995. IEEE Computer Society Press. doi:10.1109/SFCS.1995.492478.

26 Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, A. Easwaran, Insik Shin, and Insup Lee.

MC-Fluid: Fluid model-based mixed-criticality scheduling on multiprocessors. In Real-Time

Systems Symposium (RTSS), 2014 IEEE, pages 41–52, Dec 2014. doi:10.1109/RTSS.2014.32.

27 C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time

environment. Journal of the ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

28 A. Mok. Task management techniques for enforcing ED scheduling on a periodic task set. In

Proceedings of the 5th IEEE Workshop on Real-Time Software and Operating Systems, pages

42–46, Washington D.C., May 1988.

29 Dario Socci, Petro Poplavko, Saddek Bensalem, and Marius Bozga. Mixed critical earliest

deadline first. In Proceedings of the 2013 25th Euromicro Conference on Real-Time Systems,

ECRTS ’13, Paris (France), 2013. IEEE Computer Society Press. doi:10.1109/ECRTS.2013.

20.

30 Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of

execution time assurance. In Proceedings of the Real-Time Systems Symposium (RTSS), pages

239–243, Tucson, AZ, December 2007. IEEE Computer Society Press. doi:10.1109/RTSS.

2007.47.

31 Reinhard Wilhelm. Mixed feelings about mixed criticality (invited paper). In Florian Brandner,

editor, Proceedings of the 18th International Workshop on Worst-Case Execution Time Analysis,

pages 1:1–1:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/OASIcs.

WCET.2018.1.

ECRTS 2021

https://doi.org/10.1007/s11241-013-9187-z
https://doi.org/10.1007/s11241-013-9187-z
https://doi.org/10.1109/MDAT.2016.2594790
https://doi.org/10.1145/2834848.2834869
https://doi.org/10.1007/s11241-017-9277-4
https://doi.org/10.1109/RTSS.2016.014
https://doi.org/10.1109/RTSS.2018.00052
https://doi.org/10.1109/SFCS.1995.492478
https://doi.org/10.1109/RTSS.2014.32
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/ECRTS.2013.20
https://doi.org/10.1109/ECRTS.2013.20
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.4230/OASIcs.WCET.2018.1
https://doi.org/10.4230/OASIcs.WCET.2018.1

	1 Introduction
	2 Workload Model
	3 Correctness Criterion CC-1
	3.1 Jobs
	3.2 Tasks

	4 Correctness Criterion CC-2
	5 Correctness Criterion CC-3
	5.1 Jobs
	5.2 Tasks

	6 Comparison and Recommendations
	7 Context and Conclusions

