
Optimal Synthesis of IDK-Cascades

Sanjoy Baruah
Washington University in St. Louis

Saint Louis, USA
baruah@wustl.edu

Alan Burns
The University of York

York, UK
alan.burns@york.ac.uk

Yue Wu
Washington University in St. Louis

Saint Louis, USA
yuewu767@wustl.edu

ABSTRACT

A classifier is a software component, often based upon deep learning

(DL), that categorizes each input provided to it into one of a fixed

set of łclassesž. An IDK classifier may additionally output an łI

don’t knowž (IDK) on certain input. Given several different IDK

classifiers for the same operation, the problem is considered of

using them in concert in such a manner that the average duration

to successfully classify any input is minimized. Optimal algorithms

are proposed for solving this problem, both as is and under an

additional constraint that the operation must be completed within

a specified hard deadline).

KEYWORDS

Deep Learning; Classifiers; IDK-Cascades; Hard deadlines; Optimal

Synthesis

ACM Reference Format:

Sanjoy Baruah, Alan Burns, and Yue Wu. 2021. Optimal Synthesis of IDK-

Cascades. In 29th International Conference on Real-Time Networks and Sys-

tems (RTNS’2021), April 7ś9, 2021, NANTES, France. ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3453417.3453425

1 INTRODUCTION

We start out with a brief description, in abstract terms, of the real-

time scheduling problem that is studied in this paper; this descrip-

tion is followed by a discussion that motivates the problem by

explaining the kinds of scenarios being modeled by it, and why

these scenarios are relevant to the design, analysis, and implemen-

tation of safety-critical real-time systems.

ğ1. The scheduling problem considered. Suppose that there

is some operation that needs to be performed, and several different

components C1,C2, . . . , Cn that are each designed to perform this

operation in a different manner. Component Ci = (di ,pi) is char-

acterized by an execution duration di and a success probability pi ,

indicating that it takes at most di time units to complete execution

and has a probability pi of successfully performing the intended

operation. We will execute these components until one success-

fully performs the operation. (We assume that when a component

completes execution it becomes known whether the operation was

performed successfully or not.) Our objective is to schedule the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS’2021, April 7ś9, 2021, NANTES, France

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9001-9/21/04. . . $15.00
https://doi.org/10.1145/3453417.3453425

execution of the components such that the expected time taken to

successfully complete the operation is minimized.

ğ2. Motivation for this problem. Software components that

are based on deep learning and related AI technologies are in-

creasingly being deployed for classification problems in complex

resource-constrained cyber-physical systems. Such systems often

require accurate predictions to be delivered in real time using lim-

ited computing resources. However, much of the recent focus in

deep neural network (DNN) research has been on improving the

accuracy of classification. From a real-time perspective this ongoing

quest for improved accuracy has arguably gone too far, resulting

in DNN designs that take large durations of time processing even

simple inputs that should be relatively straightforward to classify.

(For instance with regards to image classification it was shown [9]

that an order-of-magnitude increase in the execution duration of

DNNs has resulted in a negligible improvement in the accuracy

of predictions, for a considerable fraction of the ImageNet 2012

benchmark of validation images.) Balancing the trade-off between

accuracy and latency becomes important if such DNNs are to be

adopted for use in CPS’s that are expected to respond in a timely

manner. Towards this end Wang et al. [9] observed that if one were

to only use the advanced (and slower) DNNs in the more challeng-

ing cases, then one could speed up computation without impacting

accuracy by combining fast DNNs with accurate ones to reduce

mean latency without a loss in accuracy. This observation moti-

vated them to explore the use of IDK classifiers [3, 7], which may

be be looked upon as bringing some degree of self awareness to

classifiers. An IDK-classifier is obtained from an existing (łbasež)

classifier by attaching a computationally light-weight augmenting

classifier that enables the base classifier to additionally predict an

auxiliary łI Don’t Knowž (IDK) class depending upon the degree

of uncertainty of the base model predictions. Specifically, the IDK

classifier classifies an input as being in the IDK class if the base classi-

fier is not able to predict some actual class for that input with a level

of confidence that exceeds some pre-specified threshold value ś see

Figure 1. Different IDK classifiers, of varying execution duration

and likelihood of outputting IDK, may be devised for a single classi-

fication problem. (It is such IDK classifiers that are modeled as the

components C1, C2, . . . ,Cn in the scheduling problem introduced

at the beginning of this paper.) Wang et al. [9] proposed that several

different such IDK classifiers for the same classification problem be

arranged into IDK-cascades, which are linear sequences of IDK

classifiers designed to work as follows:

(1) The first classifier in the cascade is invoked first, for any

input signal that needs to be classified.

(2) If the classifier outputs a real class (i.e., not łIDKž), then the

cascade terminates and characterizes the input as being of

the identified class.

Optimal Synthesis of IDK-Cascades RTNS’2021, April 7–9, 2021, NANTES, France

ğ. Some notes. We emphasize that the problem of determining

the value of pi for the IDK classifier is distinct from the problem

of ensuring that the base classifier’s predictions are accurate Ði.e.,

that the classes to which each input is mapped, and the associated

probabilities, are meaningful. The latter problem is the subject of

much ongoing research in the AI community, addressed as part of

several initiatives (such as the Assured Autonomy program [6] of

the United States Defense Advanced Research Projects Agency) that

seek to develop trust-worthy machine-learning. However this prob-

lem is not the subject of this paper: here we assume that the base

classifiers are indeed accurate in the sense that if a base classifier

classifies some input as being to a particular class with a probability

≥ pT , then we can assume, with adequately high confidence, that

this classification is the correct one.

We can also take a mixed-criticality [8] perspective upon IDK

classifiers, by looking upon the problem of minimizing expected

response time as a performance objective rather than a safety con-

straint. In that case the parameter pi is not safety-critical in the

sense that if an incorrect value is assigned to it then the only conse-

quence is suboptimal performance (not a safety hazard). In contrast,

accurate classification may well be safety-critical and in those cases,

studied in Section 4, where a hard deadline is specified as a safety

constraint, accurate (or at least, conservative) estimation of the di
parameters śi.e., the WCETsś is also safety-critical.

ğ. Some simple examples. Given a collection of several distinct

IDK classifiers for a particular classification problem, one should,

informally speaking, construct an IDK-cascade by placing perhaps

less accurate but faster classifiers earlier in the sequence in the

hope that these would successfully classify the input most of the

time, with more accurate classifiers that have greater execution

duration being invoked in the (hopefully, rare) occasions that these

earlier classifiers fail. This is illustrated in the following example.

Example 1. Suppose that we had a (regular, i.e., not IDK) classi-

fier Co for some classification problem that executes for no more

than ten time units (represented as its execution duration parameter

do = 10) and always predicts a real class ś p0 = 1 (and may hence

be the last classifier in an IDK-cascade).

Suppose that we also have an IDK classifier C1 with execution

duration d1 = 5 that returns a real class 60% of the time (and hence

returns łIDKž 40% of the time) Ð as stated above, we represent this

information by assigning the success probability parameter p1 of

this classifier the value 0.6.

Consider the IDK-cascade [C1;Co], which executes C1 first and

subsequently executes C0 only if C1 fails (i.e., returns łIDKž). Since

C1 is always executed on all inputs but Co only executes when C1

outputs łIDKž (this is expected to happen with probability (1−0.6)),

the expected running time of this IDK-cascade is

5 + (1 − 0.6) × 10 = 5 + 4 = 9

which is smaller than 10, the running time if we were to always

execute only the non-IDK classifier Co . □

Of course, the down-side to going for the IDK-cascade rather

than always executing Co in the example above is that the worst

case running times has increased: while we complete within five

time units 60% of the time, we execute for fifteen time units the

remaining 40% of the time. Whether this matters or not depends

i di pi
0 10 1.00

1 5 0.60

2 3 0.20

3 6 0.75

Table 1: An example instance

upon whether we are required to complete the classification by a

specified deadline (in addition to having the objective of minimizing

expected running time); in this paper we consider both possibilities.

The problem of designing the cascade gets more interestingwhen

there are more IDK classifiers available to choose from. However

even the simple case where there is only one IDK classifier available

(that was illustrated in Example 1) is a bit nuanced; the reader may

verify that given a non-IDK classifier Co with execution duration

do (and success probability po = 1) and an IDK classifier C1 with

execution duration d1 and success probability p1, it is preferable to

use the IDK-cascade ⟨C1;Co⟩ rather than just executing the non-

IDK classifier Co in stand-alone fashion only if

d1 < p1 · do .

Let us now step through a series of additional simple examples

to gain further insights and help develop our intuition regarding

this problem of synthesizing IDK-cascades.

Example 2. Consider again the instance from Example 1 above.

Suppose that there were an additional IDK-classifier C2 with ex-

ecution duration d2 = 3 that returns a real class only 20% of the

time (i.e., its success probability parameter p2 = 0.2) Ð see Table 1.

It may be verified that the IDK-cascade [C1;C2;Co] has expected

running time

5 + (1 − 0.6) × 3 + (1 − 0.6) × (1 − 0.2) × 10 = 5 + 1.2 + 3.2 = 9.4

while the IDK-cascade [C2;C1;Co] has expected running time

3 + (1 − 0.2) × 5 + (1 − 0.2) × (1 − 0.6) × 10 = 3 + 4 + 3.2 = 10.2

and the IDK-cascade [C2;Co] has expected running time

3 + (1 − 0.2) × 10 = 3 + 8 = 11

Each of these cascades has expected running time larger than that

of the IDK-cascade ⟨C1;Co⟩ (which, we saw in Example 1, has an

expected running time of 9); hence if minimizing expected running

time is the objective then the IDK-classifier C2 should not be used

at all. □

Example 2 above illustrates one manner of synthesizing IDK-

cascades optimally: simply enumerate all possible IDK-cascades and

compute the expected running time for each, and choose the one

with minimum expected running time. However such an approach

is highly inefficient: given n IDK-classifiers (in addition to the clas-

sifier Co that has po = 1 ś i.e., always predicts the real class), the

number of possible IDK-cascades is a very rapidly-growing expo-

nential function of n. In this paper we will derive far more efficient2

algorithms for synthesizing optimal IDK-cascades.

2Pseudo-polynomial if a hard deadline constraint is specified; quasi-linear running
time (Θ(n logn)) without deadlines.

Optimal Synthesis of IDK-Cascades RTNS’2021, April 7–9, 2021, NANTES, France

OptOrder(
{

(d1,p1), (d2,p2), . . . , (dn ,pn)
}

)

1 Compute di/pi for all i, 1 ≤ i ≤ n

2 Sort in non-decreasing order of di/pi
3 Output the classifiers according to their position in the sorted list above, stopping at the first one that has success probability

equal to 1

Figure 2: Algorithm for synthesizing a schedule with minimum expected duration

Expression 4 above, and are therefore identical. The middle term,

however is now

Π
i−1

j=1(1 − p̂j)
(

d̂i+1 + (1 − p̂i+1)d̂i

)

(5)

since the order of the i’th and (i+1) components has been swapped.4

Schedule Sopt is, by definition, an optimal schedule. Its expected

duration is therefore no larger than the expected duration of S1, i.e.,

the middle term of Expression 4 is no larger than Expression 5:

Π
i−1

j=1(1 − p̂j)
(

d̂i + (1 − p̂i)d̂i+1

)

≤Π
i−1

j=1(1 − p̂j)
(

d̂i+1 + (1 − p̂i+1)d̂i

)

Observing that the termΠ
i−1

j=1(1 − p̂j) appears on both sides of the

expression above, we have that
(

d̂i + (1 − p̂i)d̂i+1

)

≤
(

d̂i+1 + (1 − p̂i+1)d̂i

)

⇔
(

d̂i + d̂i+1 − p̂i d̂i+1

)

≤
(

d̂i+1 + d̂i − p̂i+1d̂i

)

⇔ p̂i+1d̂i ≤ p̂i d̂i+1

⇔
d̂i

p̂i
≤

d̂i+1

p̂i+1

and the proof is complete. □

Synthesizing an optimal schedule. Lemma 2 implies that clas-

sifiers scheduled adjacent to each other in any schedule of minimum

expected duration must have the ratio of their execution duration

to their success probability arranged in non-decreasing order. An

algorithm for synthesizing schedules of minimum expected dura-

tion immediately suggests itself : simply determine these ratios for

all the classifiers, and sort this list in non-decreasing order ś see

Figure 2. Note, as depicted in Figure 2, that the schedule need not

enumerate the classifiers beyond the first one that has its success

probability (its pi parameter) equal to one, since it is guaranteed

to complete successfully (and hence classifiers listed after it in the

schedule will never execute).

Example 4. Consider again the example instance of Table 1,

comprising the four classifiers C0,C1,C2 and C3. The pi/di values

are as follows:

i di pi (di/pi)

0 10 1.00 10

1 5 0.60 8.33

2 3 0.20 15

3 6 0.75 8

4We point out that the difference between Expression 5 and the middle term of Expres-

sion 4 is that the roles of i and (i +1) are swapped in the expression
(

d̂x + (1−p̂x)d̂y
)

.

Sorted in non-decreasing order of these di/pi ratios, the four

classifiers are ordered as follows:

[C3, C1, C0, C2]

Sincepo = 1, the classifiers listed afterCo in the list above will never

be executed (and may hence be removed from the final schedule);

the final schedule is therefore

[C3, C1, C0]

as had been claimed in Example 3. □

Running time. The algorithm of Figure 2 is very efficient: its

running time is dominated by the sorting step and it can hence be

implemented to execute in Θ(n logn) time.

Characterization of timing behavior. The actual execution

duration of an IDK-cascade depends upon which component in the

cascade first returns a real class rather than IDK, and may therefore

be different on different executions. The worst-case execution dura-

tion of the cascade is simply the sum of the worst-case execution

durations of all the components in the cascade. If the individual

WCET estimates (the di ’s) are safe WCET estimates for the respec-

tive components, then
∑n
i=1 di is a safe WCET estimate for the

IDK-cascade.

A stochastic characterization of the run-time timing behavior of

an IDK-cascade can also be obtained in terms of the di and pi values

characterizing the individual components comprising the cascade.

Notice that for each i , the duration if the cascade terminates upon

execution of the i’th component is equal to

i
∑

j=1

di

and the probability that this will happen is given by the expression

pi ×Π
i−1

j=1

(

1 − pj
)

.

Analysis of systems comprising multiple such IDK-cascades ex-

ecuting upon a shared processor may be done using previously-

proposed techniques (see, e.g, [4, 5]) for schedulability analysis of

systems with stochastic task execution times.

4 A DEADLINE IS SPECIFIED

We now consider the variant of the problem in which a hard dead-

line is also specified, and the objective is to achieve the minimum

expected duration subject to the constraint that the hard deadline

is guaranteed to be met. Specifically, an instance is specified as
〈

{Ci = (di ,pi)}
n
i=1 ,D

〉

(6)

where C1,C2, . . . ,Cn are n IDK classifiers, and D ∈ N is the speci-

fied deadline. Our objective is to deploy the classifiers in order to

RTNS’2021, April 7–9, 2021, NANTES, France Sanjoy Baruah, Alan Burns, and Yue Wu

minimize the expected duration taken to successfully complete the

operation; however, we must ensure that the operation always com-

pletes within a duration D. It is obvious that such a guarantee can

be made for an instance if and only if there is some classifier with

success probability one and execution duration ≤ D ś instances

satisfying this property are said to be feasible instances (while

instances lacking this are infeasible).

As in the case without deadlines (Section 3), if the amount of

available computational resources is unbounded then for feasible

instances the optimal strategy is to execute all the classifiers in

parallel,5 each on its own dedicated processor, and stop upon the

first successful completion. (The expected completion time for this

schedule can be determined in a manner similar to the manner in

which this was done Section 3.) In the remainder of this section

we consider the uniprocessor case where we have just a single

processor upon which to execute the classifiers. As for the no-

deadline version of the problem (Section 3), a uniprocessor schedule

is a linear sequence of some or all of the classifiers; during run-time

we execute classifiers one at a time according to this schedule until

some classifier is successful. The new wrinkle introduced by the

presence of the added constraint of a hard deadline is that the sum

of the execution durations of all the classifiers included in this linear

sequence cannot exceed D (and as before, the last classifier in the

sequence must have a success probability equal to one).

Some assumptions for this section. Note that Lemma 2 con-

tinues to hold regardless of the presence of deadlines: adjacent

classifiers in an optimal schedule will satisfy the property that the

ratio of their execution duration to their success probability (i.e.,

di/pi) is non-decreasing. Without loss of generality, let us therefore

assume that the classifiers are indexed according to non-decreasing

di/pi : for all i we have

di

pi
≤

di+1

pi+1

This assumption can be realized for any instance by sorting, in

Θ(n logn) time. Additionally, consider the smallest i such that pi =

1; as in Section 3, it can be argued that classifiers with index greater

than i will never be executed in any optimal schedule. Therefore,

we assume without loss of generality that n denotes the index of

this component: i.e., we assume that pn = 1.0 and pi < 1.0 for all

i < n.

Example 5. Consider an instance with the following three clas-

sifiers,6 and a deadline D = 10.

i di pi
0 2 0.4

1 4 0.8

2 6 1.0

The schedule must terminate withC2, sincep2 = 1.0 (and further,

neither p0 nor p1 is 1.0). Since d0 + d1 + d2 = 12 which exceeds

the deadline of 10, we cannot schedule all three for execution. We

therefore have a choice of two schedules: [C0,C2] or [C1,C2].

5In fact, it suffices to only execute those that have duration ≤ D .
6It may be verified that these three classifiers are indeed arranged in non-decreasing
order of di /pi .

ś The expected duration of the schedule [C0,C2] is

do + (1 − po)d2

= 2 + (1 − 0.4)6 = 2 + 3.6 = 5.6

ś The expected duration of the schedule [C1,C2] is

d1 + (1 − p1)d2

= 4 + (1 − 0.8)6 = 4 + 1.2 = 5.2

Hence the second schedule, [C1,C2], is the optimal one □

We suspect (but have not yet proved) that the problem of synthe-

sizing an optimal schedule of this form ś i.e., of minimum expected

duration that always meets a specified deadline) is an NP-hard one.

Given a problem specified as in Expression 6 (and with the assump-

tions that the classifiers are indexed in non-decreasing di/pi order,

and that pn = 1.0 while pi < 1.0 for all i < n), in the remainder

of this section we will apply the technique of dynamic program-

ming [1] to determine an optimal schedule: a schedule of duration

≤ D in which the last classifier is the deterministic classifier Cn .

We start with a definition.

Definition 1. Let E(d,k) denote the minimum expected duration

for the following sub-problem of the problem instance specified in

Expression 6:
〈

{Ci = (di ,pi)}
n
i=k
,d
〉

That is, only the classifiersCk ,Ck+1, . . . ,Cn are available to us and

we have a deadline of d .

Using this notation, the expected duration of the optimal solution

to the problem instance specified in Expression 6 is E(D, 1): the

deadline is D, all n classifiers C1,C2, . . . ,Cn are available.

Let us first look at the sub-problem when only the classifier Cn
is available to us, and compute the values of E(d,n) for all values

of d . We claim

E(d,n) =

{

∞, if d < dn
dn , otherwise (i.e., d ≥ dn)

(7)

That is, if we have a deadlined and only the (deterministic) classifier

Cn available, then the instance is infeasible (represented here as

having an expected duration of infinity) if the deadline is smaller

than the Cn ’s execution duration dn . If d ≥ dn , then our optimal

schedule comprises the classifier Cn and hence the expected dura-

tion (which in fact, equals the specified WCET) is dn .

Now, let us assume that we have already determined the values

of E(d ′,k + 1) for all d ′; we wish to compute the value of E(d,k).

We have

E(d,k) = min
{

E(d,k + 1),dk + (1 − pk) · E(d − dk ,k + 1)
}

(8)

where

ś The first term within themin reflects the decision to not use

the classifier Ck (and hence the expected duration is equal

to the minimum expected duration using only the classifiers

Ck+1,Ck+2, . . . ,Cn).

ś The second term within the min reflects the decision to use

the classifier Ck . In that case

The classifier Ck is definitely executed (since, according

to Lemma 2, it precedes the remaining classifiers in the

optimal schedule), and takes a duration dk .

Optimal Synthesis of IDK-Cascades RTNS’2021, April 7–9, 2021, NANTES, France

OptOrder(
〈

{

(d1,p1), (d2,p2), . . . , (dn ,pn)
}

,D
〉

)

// Input should be sorted according to di/pi : di/pi ≥ di+1/pi+1 for all i

// It is assumed that (i) pn = 1.0; and (ii) dn ≤ D (else the instance is infeasible).

// Also, assume that pi < 1 for all i < n.

1 E[(0, . . . ,D) × (1, . . . ,n)] of integers //Will be filled in using Dynamic Programming

// Initializing E[d,n] for all d (Expression 7)

2 for d = 0 to (dn − 1)

3 E[d,n] = ∞

4 for d = dn to D

5 E[d,n] = dn
// Implementing the recurrence (Expression 8)

6 for k = (n − 1) downto 1

7 for d = 1 to D

// Compute E[d,k] according to Expression 8

8 E[d,k] = E[d,k + 1] // Initialize E[d,k] to first term in the łminž of Expression 8

9 if (d ≥ dk) // It is possible to execute Ck . . .

10 tmp = dk + (1 − pk) × E[d − dk ,k + 1] // Minimum expected duration if Ck is executed (second term

in the łminž of Expression 8)
11 if (tmp < E[d,k]) // It is better to execute Ck . . .

12 E[d,k] = tmp // Update E[d,k] to second term in the łminž of Expression 8

// Printing the optimal schedule

13 d = D

14 for k = 1 to n

15 if (E[d,k] , E[d,k + 1])

// Ck must have been selected. . .

16 print out Ck
17 d = d − dk

Figure 3: Algorithm for synthesizing a schedule with minimum expected duration and bounded worst-case duration

Ck fails to complete successfully with a probability (1 −

pk). When this happens, the remainder of the schedule is

executed, and has an expected duration E(d − dk ,k + 1).

The second termwithin themin is obtained as the sum ofCi ’s

execution duration (dk), and the contribution to the expected

duration in the event that Ci fails to complete successfully

((1 − pk) · E(d − dk ,k + 1)).

We can use Equation 7 to determine E(d,n) for alld . Having done so,

repeated applications of Equation 8 enable to determine E(d,n − 1),

E(d,n − 2),. . . , E(d, 1), for all d , and thereby obtain the value of

E(D, 1) which (as mentioned earlier) is the expected duration of the

optimal schedule. Furthermore, the actual optimal schedule that

has this duration can be deduced by observing whether the the first

or the second term in the łminž is smaller in each application of

Equation 8. An algorithm for determining the optimal schedule by

doing so is depicted in pseudo-code form in Figure 3.

Running time. The worst-case running time of the pseudo-code

of Figure 3 is dominated by the running time of the nested for

loops. The outer for loop executes n times and the inner one, D

times; the overall running time is therefore Θ(n D) where n denotes

the number of classifiers and D, the specified hard deadline.

A simple heuristic (that is not optimal). We have seen that

the algorithm of Figure 3 has running time pseudo-polynomial in

the representation of its input. We believe this is efficient enough

for many applications: in most real-time CPS’s it is unlikely that

the specified deadline (the łDž) will be very large. However in the

unlikely event that a pseudo-polynomial running time is considered

unacceptably high, we can always derive a greedy heuristic from

the algorithm of Section 3, by extending it to account for deadlines

as follows.

Given the classifiers indexed in non-decreasing order of their

di/pi ratios, we greedily schedule the classifiers in the given order

while ensuring that the classifierCn can be accommodated. That is,

we consider the classifiers in index order: in considering a classifier,

we schedule it if and only if doing so will leave us with ≥ dn time

before the deadline (so that the deterministic classifier Cn can be

accommodated).

This heuristic, like the algorithm of Section 3 (Figure 2), has

linear (i.e., Θ(n)) running time if the classifiers are already sorted,

or Θ(n logn) if the cost of sorting must also be accounted for. It

is, however, easily seen to be non-optimal: consider the following

example.

Example 6. We have three classifiersC1 = (d1,p1),C2 = (d2,p2),

and C3 = (d3, 1.0), and a deadline D satisfying

D ≥
(

max(d1,d2) + d3
)

and D < (d1 + d2 + d3).

Hence exactly one of C1 and C2, and the deterministic classifier C3,

can be scheduled. Let us suppose that d1/p1 is a bit smaller than

d2/p2, and p1 is also a bit smaller than p2. (E.g., (d1,p1) = (10, 0.5)

and (d2,p2) = (13, 0.6), so that d1/p1 = 20 while d2/p2 = 21 23 .)

RTNS’2021, April 7–9, 2021, NANTES, France Sanjoy Baruah, Alan Burns, and Yue Wu

Our greedy heuristic would schedule [C1,C3] for an expected

duration of

d1 + (1 − p1)d3

which, for (d1,p1) = (10, 0.5) and (d2,p2) = (13, 0.6), evaluates to

(10 + 0.5d3).

Now suppose the optimal algorithm (Figure 3) were to come up

with the schedule [C2,C3], with expected duration

d2 + (1 − p2)d3

Ð for our example of (d1,p1) = (10, 0.5) and (d2,p2) = (13, 0.6), this

evaluates to (13 + 0.4d3).

Consider now the approximation ratio of our greedy heuristic:

d1 + (1 − p1)d3

d2 + (1 − p2)d3

It is straightforward to observe that as d3 → ∞, this approximation

ratio approaches
(1−p1)
(1−p2)

which, for (d1,p1) = (10, 0.5) and (d2,p2) =

(13, 0.6), evaluates to 0.5/0.4 or 1.25. □

There is nothing particularly intrinsic about the value 1.25 that

was derived as the lower bound on the approximation ratio in Ex-

ample 6 above; we leave it to the reader to verify that the technique

can be generalized to show a lower bound equal to any positive

number. This allows us to conclude that the greedy heuristic may

perform arbitrarily poorly in comparison to the optimal algorithm of

Figure 3.

5 CONTEXT & CONCLUSIONS

Learning-enabled components, particularly those based on Deep

Neural Networks (DNNs), are being increasingly used in safety-

critical real-time systems. It is imperative that the real-time sched-

uling theory community respond to this development by coming

up with appropriate techniques to enable the pre-runtime analysis

of systems that use such components.

In this work, we have adapted and applied algorithmic techniques

from real-time scheduling theory to a proposed DNN use-case [9]

that seeks to strike a balance between accuracy and timeliness

by arranging individual DNN-based classifiers, augmented by the

ability to classify inputs as belonging to an additional łIDKž class,

into IDK-cascades. The intuition behind the design of IDK-cascades

is simple and elegant: the earlier classifiers in a cascade should

successfully classify simple-to-classify inputs, thus requiring that

the later classifiers only be invoked upon truly challenging inputs.

We were able to formalize this intuition and thereby develop algo-

rithms that synthesize IDK-cascades from a given set of classifiers

in an optimal manner, both when the sole objective is optimizing

expected timeliness and when there is an additional hard deadline

constraint.

We look upon our results in this paper as a proof of concept of the

principle that real-time scheduling can contribute to better design

of real-time systems that use of learning-enabled components ś it

behoves us, as a community, to take a closer look at such systems.

A rich agenda of research in this direction can be defined. One

such example: we plan to develop algorithms for solving both the

problems considered in this paper (i.e., the no-deadline and the

hard-deadline variants) upon multiprocessor platforms.

REFERENCES
[1] Richard Bellman. 1957. Dynamic Programming (1 ed.). Princeton University Press,

Princeton, NJ, USA.
[2] Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. 2020. Timing isolation

and improved scheduling of deep neural networks for real-time systems. Software:
Practice and Experience 50, 9 (2020), 1760ś1777. https://doi.org/10.1002/spe.2840
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2840

[3] F. Khani, M. Rinard, and P. Liang. 2016. Unanimous Prediction for 100% Precision
with Application to Learning Semantic Mappings. In Association for Computational
Linguistics (ACL).

[4] S. Manolache, P. Eles, and Z. Peng. 2001. Memory and time-efficient schedulability
analysis of task sets with stochastic execution time. In Proceedings 13th Euromicro
Conference on Real-Time Systems. 19ś26. https://doi.org/10.1109/EMRTS.2001.
933991

[5] Sorin Manolache, Petru Eles, and Zebo Peng. 2004. Schedulability Analysis of
Applications with Stochastic Task Execution Times. ACM Trans. Embed. Comput.
Syst. 3, 4 (Nov. 2004), 706ś735. https://doi.org/10.1145/1027794.1027797

[6] Dr. Sandeep Neema. [n.d.]. Assured Autonomy. https://www.darpa.mil/program/
assured-autonomy. Accessed: 2019-03-07.

[7] T. P. Trappenberg and A. D. Back. 2000. A classification scheme for applications
with ambiguous data. In Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges
and Perspectives for the New Millennium, Vol. 6. 296ś301 vol.6.

[8] Steve Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Vary-
ing Degrees of Execution Time Assurance. In Proceedings of the Real-Time Systems
Symposium. IEEE Computer Society Press, Tucson, AZ, 239ś243.

[9] XinWang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, and Joseph E. Gonzalez.
2017. IDK Cascades: Fast Deep Learning by Learning not to Overthink. CoRR
abs/1706.00885 (2017). arXiv:1706.00885 http://arxiv.org/abs/1706.00885

	Abstract
	1 Introduction
	2 Problem Definition
	3 There is no hard deadline
	4 A deadline is specified
	5 Context & Conclusions
	References

