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ABSTRACT

A classifier is a software component, often based upon deep learning
(DL), that categorizes each input provided to it into one of a fixed
set of “classes”. An IDK classifier may additionally output an “I
don’t know” (IDK) on certain input. Given several different IDK
classifiers for the same operation, the problem is considered of
using them in concert in such a manner that the average duration
to successfully classify any input is minimized. Optimal algorithms
are proposed for solving this problem, both as is and under an
additional constraint that the operation must be completed within
a specified hard deadline).
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1 INTRODUCTION

We start out with a brief description, in abstract terms, of the real-
time scheduling problem that is studied in this paper; this descrip-
tion is followed by a discussion that motivates the problem by
explaining the kinds of scenarios being modeled by it, and why
these scenarios are relevant to the design, analysis, and implemen-
tation of safety-critical real-time systems.

§1. The scheduling problem considered. Suppose that there
is some operation that needs to be performed, and several different
components C1,Ca, . .., Cy that are each designed to perform this
operation in a different manner. Component C; = (d;, p;) is char-
acterized by an execution duration d; and a success probability p;,
indicating that it takes at most d; time units to complete execution
and has a probability p; of successfully performing the intended
operation. We will execute these components until one success-
fully performs the operation. (We assume that when a component
completes execution it becomes known whether the operation was
performed successfully or not.) Our objective is to schedule the
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execution of the components such that the expected time taken to
successfully complete the operation is minimized.

§2. Motivation for this problem. Software components that
are based on deep learning and related Al technologies are in-
creasingly being deployed for classification problems in complex
resource-constrained cyber-physical systems. Such systems often
require accurate predictions to be delivered in real time using lim-
ited computing resources. However, much of the recent focus in
deep neural network (DNN) research has been on improving the
accuracy of classification. From a real-time perspective this ongoing
quest for improved accuracy has arguably gone too far, resulting
in DNN designs that take large durations of time processing even
simple inputs that should be relatively straightforward to classify.
(For instance with regards to image classification it was shown [9]
that an order-of-magnitude increase in the execution duration of
DNN s has resulted in a negligible improvement in the accuracy
of predictions, for a considerable fraction of the ImageNet 2012
benchmark of validation images.) Balancing the trade-off between
accuracy and latency becomes important if such DNNs are to be
adopted for use in CPS’s that are expected to respond in a timely
manner. Towards this end Wang et al. [9] observed that if one were
to only use the advanced (and slower) DNNs in the more challeng-
ing cases, then one could speed up computation without impacting
accuracy by combining fast DNNs with accurate ones to reduce
mean latency without a loss in accuracy. This observation moti-
vated them to explore the use of IDK classifiers [3, 7], which may
be be looked upon as bringing some degree of self awareness to
classifiers. An IDK-classifier is obtained from an existing (“base”)
classifier by attaching a computationally light-weight augmenting
classifier that enables the base classifier to additionally predict an
auxiliary “I Don’t Know” (IDK) class depending upon the degree
of uncertainty of the base model predictions. Specifically, the IDK
classifier classifies an input as being in the IDK class if the base classi-
fier is not able to predict some actual class for that input with a level
of confidence that exceeds some pre-specified threshold value — see
Figure 1. Different IDK classifiers, of varying execution duration
and likelihood of outputting IDK, may be devised for a single classi-
fication problem. (It is such IDK classifiers that are modeled as the
components Cy, Cy, .. .,Cyp in the scheduling problem introduced
at the beginning of this paper.) Wang et al. [9] proposed that several
different such IDK classifiers for the same classification problem be
arranged into IDK-cascades, which are linear sequences of IDK
classifiers designed to work as follows:

(1) The first classifier in the cascade is invoked first, for any
input signal that needs to be classified.

(2) If the classifier outputs a real class (i.e., not “IDK”), then the
cascade terminates and characterizes the input as being of
the identified class.
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Figure 1: Obtaining an IDK classifier from a base classifier. For a given
input, the base classifier outputs up to k ordered pairs ( y;, p; ), indicating
that it believes that the input belongs to the class y; with probaility p;. (It
is assumed that p; > py > -+ > pg, ie, xi, x2, - - -» Xk are the k most
likely classes, in order.) The threshold parameter for the IDK classifier is

pr-

(3) Else (i.e., this classifier outputs “IDK”) the subsequent classi-
fier in the cascade is invoked.

(4) This process is repeated until some classifier in the cascade
outputs a real class.

It is required that all inputs be successfully classified by the cascade;
hence it is assumed that the last classifier in the cascade always
outputs a real class. (Wang et al. [9] propose that a human expert
could be considered to be the last such classifier in the cascade - i.e.,
any input on which all the classifiers fail is placed before a human
expert.)

Given a collection of several distinct IDK classifiers for a par-

ticular classification problem, the scheduling problem introduced
at the beginning of this paper asks how they should be scheduled
for execution in order to minimize the expected (i.e., average) du-
ration taken to complete the classification operation. While that
problem is concerned solely with minimizing expected duration,
we will also consider a variant in which a hard deadline is also
specified and the objective is to minimize the expected duration
while simultaneously guaranteeing to always meet the specified
deadline.
§3. Organization. The remainder of this paper is organized in the
following manner. In Section 2 we define the problem we seek to
solve, explain how this problem may be formulated in practice, and
work through a few examples. As stated above there are two vari-
ants to our problem: (i) when there are no deadlines and (ii) when
a hard deadline is specified. We develop solutions to the former in
Section 3, and use these solutions to obtain solutions to the latter in
Section 4. We conclude in Section 5 by placing this work in context,
and briefly discussing some planned future research.

2 PROBLEM DEFINITION

In this section we formalize the problem of synthesizing IDK-
cascades, justify our formalization, and work through a series of
simple examples in order to develop our intuition regarding what
solutions to this problem should look like.

As stated at the start of Section 1, a classifier denoted C; may be
characterized by an ordered pair (d;, p;) of parameters, its execution
duration d; and its success probability p;, denoting that the classifier
takes duration d; to complete execution when invoked on an input
and returns a real class (i.e., not “IDK”) with probability p;.
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§. Problem Statement. Given n different components C1,Cy, . .., Cp,
for performing a certain operation, with each C; = (d;, p;) charac-
terized by its execution duration d; and its success probability p;
(as discussed above), determine which of these components should
be executed, and in what order, such that the expected time taken
to successfully complete the operation is minimized.

Note that for this expected duration to be finite, it is necessary

that some component C; with p; = 1 be executed; henceforth in
this paper we will therefore assume that some such component
exists.
§. Obtaining the (d;, p;) values. Since our components are charac-
terized by their d; and p; parameters, the values to these parameters
must be known in order to have complete specifications for any
given problem instance. We now discuss how these parameter val-
ues may be obtained in practice.

The execution duration d; of a classifier is exactly that parameter
of the classifier that we in the real-time computing community refer
to as its worst-case execution time (WCET). WCET estimation is not
the subject of this paper;! instead we assume that these parameter
values are obtained using state-of-the-art WCET determination
techniques.

In order to describe how the success probability p; is determined,
we must first better understand how IDK classifiers are obtained
from regular (“base”) classifiers — see Figure 1. Many DNN-based
classifiers produce probabilistic outputs that encode their uncer-
tainty in their predictions. Classifiers, for instance, produce a prob-
ability distribution over classes, and the entropy of this distribution
for a given input encodes the classifier’s confidence in the cor-
responding output. E.g., upon a particular input the output of a
classifier may be the top few most likely classes to which this par-
ticular input should be mapped, along with the probability that it
belongs to each of these classes. While classifiers may occasion-
ally make incorrect predictions, they will typically rarely do so
with high confidence. This is because such an outcome is heavily
penalized in the objective functions used to train the DNNs.

An IDK classifier is obtained from such a base classifier by spec-
ifying some threshold probability pr, reflecting the degree of confi-
dence one desires in the classification. An IDK classifier

o outputs the most likely class to which the base classifier has
mapped that input, if the base classifier determines that the
probability that it (the input) belongs to this class is > pr;

e outputs “IDK” otherwise (i.e., the input is not mapped into
any class at a confidence > pr).

The value to be assigned to the success probability parameter p;
of such an IDK classifier may be obtained by extensive testing: the
IDK classifier is tasked with classifying a wide range of inputs, and
pi set equal to the fraction of these inputs upon which the IDK
classifier outputs some class other than “IDK”. (We emphasize that
the success probability p; of an IDK classifier is distinct from its
threshold probability pr: while pr is a parameter whose value is
set to reflect the desired degree of confidence one seeks from the
classifier, the value of the p; parameter is determined based on
experimental evaluation of how frequently the classifier is able to
provide responses at this degree of confidence.)

!See, e.g. [2] for a discussion on some issues that are relevant to accurate WCET
analysis for DNN.
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§. Some notes. We emphasize that the problem of determining
the value of p; for the IDK classifier is distinct from the problem
of ensuring that the base classifier’s predictions are accurate —i.e.,
that the classes to which each input is mapped, and the associated
probabilities, are meaningful. The latter problem is the subject of
much ongoing research in the Al community, addressed as part of
several initiatives (such as the Assured Autonomy program [6] of
the United States Defense Advanced Research Projects Agency) that
seek to develop trust-worthy machine-learning. However this prob-
lem is not the subject of this paper: here we assume that the base
classifiers are indeed accurate in the sense that if a base classifier
classifies some input as being to a particular class with a probability
> pr, then we can assume, with adequately high confidence, that
this classification is the correct one.

We can also take a mixed-criticality [8] perspective upon IDK
classifiers, by looking upon the problem of minimizing expected
response time as a performance objective rather than a safety con-
straint. In that case the parameter p; is not safety-critical in the
sense that if an incorrect value is assigned to it then the only conse-
quence is suboptimal performance (not a safety hazard). In contrast,
accurate classification may well be safety-critical and in those cases,
studied in Section 4, where a hard deadline is specified as a safety
constraint, accurate (or at least, conservative) estimation of the d;
parameters —i.e., the WCETs- is also safety-critical.

§. Some simple examples. Given a collection of several distinct
IDK classifiers for a particular classification problem, one should,
informally speaking, construct an IDK-cascade by placing perhaps
less accurate but faster classifiers earlier in the sequence in the
hope that these would successfully classify the input most of the
time, with more accurate classifiers that have greater execution
duration being invoked in the (hopefully, rare) occasions that these
earlier classifiers fail. This is illustrated in the following example.

ExaMPLE 1. Suppose that we had a (regular, i.e., not IDK) classi-
fier C, for some classification problem that executes for no more
than ten time units (represented as its execution duration parameter
do = 10) and always predicts a real class — po = 1 (and may hence
be the last classifier in an IDK-cascade).

Suppose that we also have an IDK classifier C; with execution
duration d; = 5 that returns a real class 60% of the time (and hence
returns “IDK” 40% of the time) — as stated above, we represent this
information by assigning the success probability parameter p; of
this classifier the value 0.6.

Consider the IDK-cascade [C1; C, ], which executes C; first and
subsequently executes Cy only if C; fails (i.e., returns “IDK”). Since
C; is always executed on all inputs but C, only executes when C;
outputs “IDK” (this is expected to happen with probability (1—0.6)),
the expected running time of this IDK-cascade is

54+4(1-0.6)X10 = 5+4=9

which is smaller than 10, the running time if we were to always
execute only the non-IDK classifier C,. O

Of course, the down-side to going for the IDK-cascade rather
than always executing C, in the example above is that the worst
case running times has increased: while we complete within five
time units 60% of the time, we execute for fifteen time units the
remaining 40% of the time. Whether this matters or not depends
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i|d; pi

0| 10 | 1.00
1| 5 | 0.60
21 3 1]0.20
31 6 |0.75

Table 1: An example instance

upon whether we are required to complete the classification by a
specified deadline (in addition to having the objective of minimizing
expected running time); in this paper we consider both possibilities.

The problem of designing the cascade gets more interesting when
there are more IDK classifiers available to choose from. However
even the simple case where there is only one IDK classifier available
(that was illustrated in Example 1) is a bit nuanced; the reader may
verify that given a non-IDK classifier C, with execution duration
do (and success probability p, = 1) and an IDK classifier C; with
execution duration d; and success probability py, it is preferable to
use the IDK-cascade (Cy; C,) rather than just executing the non-
IDK classifier C, in stand-alone fashion only if

d1 <p1 -do.

Let us now step through a series of additional simple examples
to gain further insights and help develop our intuition regarding
this problem of synthesizing IDK-cascades.

ExaMPLE 2. Consider again the instance from Example 1 above.
Suppose that there were an additional IDK-classifier C, with ex-
ecution duration dz = 3 that returns a real class only 20% of the
time (i.e., its success probability parameter pz = 0.2) — see Table 1.
It may be verified that the IDK-cascade [Cy; Co; Co] has expected
running time

5+(1-0.6)X3+(1-0.6)x(1-0.2)x10=5+1.2+3.2=9.4
while the IDK-cascade [Cy; C1; Co| has expected running time
34(1-0.2)X5+(1-0.2)x(1-0.6)X10=3+4+3.2=10.2
and the IDK-cascade [Cy; C,] has expected running time
3+4(1-0.2)x10=3+8=11

Each of these cascades has expected running time larger than that
of the IDK-cascade (C1; C,) (which, we saw in Example 1, has an
expected running time of 9); hence if minimizing expected running
time is the objective then the IDK-classifier C; should not be used
at all. O

Example 2 above illustrates one manner of synthesizing IDK-
cascades optimally: simply enumerate all possible IDK-cascades and
compute the expected running time for each, and choose the one
with minimum expected running time. However such an approach
is highly inefficient: given n IDK-classifiers (in addition to the clas-
sifier C, that has p, = 1 - i.e., always predicts the real class), the
number of possible IDK-cascades is a very rapidly-growing expo-
nential function of n. In this paper we will derive far more efficient?
algorithms for synthesizing optimal IDK-cascades.

2Pseudo-polynomial if a hard deadline constraint is specified; quasi-linear running
time (©(n log n)) without deadlines.
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ExaMmPLE 3. Let us complete the example. Suppose we had the
entire set of classifiers listed in Table 1 — this includes the classi-
fier C3, with execution duration d3 = 6 and a success probability
p3 = 0.75, in addition to all those considered in Example 2 above -
available to us. It is not immediately obvious by inspection of the
parameters of the classifiers, what the optimal IDK-cascade should
be; exhaustive enumeration would require us to consider

3t 3t 3!

2—!+1—!+a=3+6+6=15
different possibilities. We will see later that the IDK-cascade with
minimum expected running time that can be constructed from these
classifiers is [C3; Cq; Cp|; this IDK-cascade has an expected running
time equal to

6+(1-0.75)x5+(1—0.75) X (1 - 0.6) X 10 = 6 + 1.25 + 1 = 8.25

O

3 THERE IS NO HARD DEADLINE

Let us suppose we have the collection
{Ci = (di.pi)}i,

of n IDK classifiers for performing a particular operation available
to us, and our objective is to deploy them in order to minimize the
expected duration taken to successfully complete the operation.
If the amount of computational resources available to us were
unbounded (or at least, there were n processors available to us),
then the optimal strategy would be to execute all n IDK classifiers
in parallel, each on its own dedicated processor, and stop upon the
first successful (i.e., non-“IDK”) completion. It is straightforward
to determine what the expected duration would be using such a
strategy. Let pj, d; denote the success probability and execution
duration of the classifier with the i’th smallest execution duration.
Note that the overall execution duration would equal exactly d; if
and only if the classifier with the i’th smallest execution duration
is the first one to complete successfully. This happens if and only if
this classifier succeeds and all of the smaller-duration classifiers fail
- the probability of this happening is equal to p; X Hji.;% (1-p;)). The
expected duration is now obtained by summing over all possible

values of i:
2 i-1 .
Z (szl(l —P}')) pid; (1)
i=1
In general, however, computational resources are only available

in limited amounts and it is not feasible to execute all the com-
ponents due to limited availability of computing capacity. In the
remainder of this section we consider uniprocessor platforms, on
which we can only execute one classifier at a time. > A uniprocessor
schedule for our problem is then a sequence (a linear ordering) of
some or all of the classifiers; during run-time we execute classifiers
one at a time according to this schedule until some classifier is
successful. We can use Lemma 1 below to compute the expected
duration of any such schedule.

3We point out that this is not yet common practice: the use of DNNs in such resource-
constrained platforms is currently very limited. Solving multiprocessor generalizations
of this problem formulation would be interesting follow-up work - see Section 5.
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LEmMA 1. Consider a uniprocessor schedule that orders n classifiers.
Let pr, cik denote the success probability and execution duration of the
k’th classifier in this schedule. The expected duration of this schedule
is

z k-1 .
3 (H,-:l a —p})) de @)
k=1

Proof. Note that the first classifier will always execute; the sec-
ond classifier will execute if and only if the first one fails (this
happens with probability (1 — p1)); the third classifier will execute
if and only if the first two both fail (this happens with probability
(1 = 1) - (1 = p2); and so on. Hence the expected duration is

. s . s -1 s
di+(1-p)da+(1—-p)-(1=poyds +---+ 112 (1= py)da

which is represented compactly as in Expression 2. O
Lemma 2 below identifies an important characteristic of any
schedule of minimum expected duration:

LEMMA 2. Let classifier C;j be scheduled for execution after classifier
C; in an optimal schedule (i.e., in a schedule with minimum expected
duration). It must be the case that

ﬂ < d_] (3)
pi  pj

Proof. Below we will establish that any two adjacently scheduled
classifiers C; and C; satisfy Expression 3 above. The lemma will
then follow from the transitivity of the > relationship on R (the
real numbers).

Let Sopt denote an optimal schedule, and let C; denote the clas-
sifier in the i’th position of this schedule for any i, 1 < i < n. Let
Di» d; denote the success probability and execution duration of clas-
sifier C;. Let S1 denote a schedule obtained from Sopt by swapping
the classifiers in the i’th and (i + 1)’th positions in Sept:

oo e fLew | |

5| | e[ e ] |

Note that by using Expression 2 in Lemma 1, the expected duration
for Sopt can be written in the following manner, as the sum of three
terms representing respectively the outer summation of Expres-
sion2forke{1,...,i—1},ke{i,i+1},andk e {i+2,...,n}:

i-1 fe— N
> (T a-5) de
k=1
" H;:(l -5 (di +(1 —p})dm)

n k- N
) (Hj:f(l-;;j)) di

k=i+2

//The first (i — 1) components

//The next two components
//The remaining components

4

Now let us turn our attention to the expected duration of Sq, again
using Lemma 1 (Expression 2). We can also write its expected du-
ration as the sum of three terms. Since S; only differs from Sopt in
that the i’th and (i + 1) components are swapped, the first and last
terms represent the same quantities as the first and third terms of
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OpTORDER({(d1, p1), (d2, p2), - - -» (dns pn)})
1 Computed;/p; foralli,1<i<n
2 Sort in non-decreasing order of d; /p;
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3 Output the classifiers according to their position in the sorted list above, stopping at the first one that has success probability

equal to 1

Figure 2: Algorithm for synthesizing a schedule with minimum expected duration

Expression 4 above, and are therefore identical. The middle term,
however is now

H]i:u ) ((iHl +(1 —;51'+1)0ii) ®)

since the order of the i’th and (i+1) components has been swapped.*
Schedule Sopt is, by definition, an optimal schedule. Its expected

duration is therefore no larger than the expected duration of Sy, i.e.,

the middle term of Expression 4 is no larger than Expression 5:

TG00 ) (d + (1= piddi
< HJ:1(1 -pj) (Cii+1 +(1 —ﬁi+1)62i)

i1 )
Observing that the term Hjl-zl(l — pj) appears on both sides of the
expression above, we have that

(di +(1 —ﬁi)di+1) < (di+l +(1 —ﬁi+1)di)
e (di +div1 —ﬁidi+1) < (di+1 +d; —ﬁi+1di)
e pivdi < pidiv
i, _ dus
pi  Pi+1
and the proof is complete. O
Synthesizing an optimal schedule. Lemma 2 implies that clas-
sifiers scheduled adjacent to each other in any schedule of minimum
expected duration must have the ratio of their execution duration
to their success probability arranged in non-decreasing order. An
algorithm for synthesizing schedules of minimum expected dura-
tion immediately suggests itself : simply determine these ratios for
all the classifiers, and sort this list in non-decreasing order — see
Figure 2. Note, as depicted in Figure 2, that the schedule need not
enumerate the classifiers beyond the first one that has its success
probability (its p; parameter) equal to one, since it is guaranteed

to complete successfully (and hence classifiers listed after it in the
schedule will never execute).

ExaMmPLE 4. Consider again the example instance of Table 1,
comprising the four classifiers Cy, C1, Cy and Cs. The p;/d; values
are as follows:

i|di| pi || (di/pi)
010 100 10

1] 5 | 0.60 | 833
2|3 |020| 15
3|6 0758

4We point out that the difference between Expression 5 and the middle term of Expres-
sion 4 is that the roles of i and (i + 1) are swapped in the expression (dx +(1—px)dy).

Sorted in non-decreasing order of these d;/p; ratios, the four
classifiers are ordered as follows:

[C3, C1, Co, Co]

Since p, = 1, the classifiers listed after C, in the list above will never
be executed (and may hence be removed from the final schedule);
the final schedule is therefore

[Cs, C1, Co]
as had been claimed in Example 3. O

Running time. The algorithm of Figure 2 is very efficient: its
running time is dominated by the sorting step and it can hence be
implemented to execute in ©(nlog n) time.

Characterization of timing behavior. The actual execution
duration of an IDK-cascade depends upon which component in the
cascade first returns a real class rather than IDK, and may therefore
be different on different executions. The worst-case execution dura-
tion of the cascade is simply the sum of the worst-case execution
durations of all the components in the cascade. If the individual
WCET estimates (the d;’s) are safe WCET estimates for the respec-
tive components, then 2?21 d; is a safe WCET estimate for the
IDK-cascade.

A stochastic characterization of the run-time timing behavior of
an IDK-cascade can also be obtained in terms of the d; and p; values
characterizing the individual components comprising the cascade.
Notice that for each i, the duration if the cascade terminates upon
execution of the i’th component is equal to

1
2,
j=1
and the probability that this will happen is given by the expression
pi % Hj':i (1-pj).
Analysis of systems comprising multiple such IDK-cascades ex-
ecuting upon a shared processor may be done using previously-

proposed techniques (see, e.g, [4, 5]) for schedulability analysis of
systems with stochastic task execution times.

4 A DEADLINE IS SPECIFIED

We now consider the variant of the problem in which a hard dead-
line is also specified, and the objective is to achieve the minimum
expected duration subject to the constraint that the hard deadline
is guaranteed to be met. Specifically, an instance is specified as

(tci = @poy, ) ©

where C1,Cy, . ..,Cp are n IDK classifiers, and D € N is the speci-
fied deadline. Our objective is to deploy the classifiers in order to
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minimize the expected duration taken to successfully complete the
operation; however, we must ensure that the operation always com-
pletes within a duration D. It is obvious that such a guarantee can
be made for an instance if and only if there is some classifier with
success probability one and execution duration < D - instances
satisfying this property are said to be feasible instances (while
instances lacking this are infeasible).

As in the case without deadlines (Section 3), if the amount of
available computational resources is unbounded then for feasible
instances the optimal strategy is to execute all the classifiers in
parallel, each on its own dedicated processor, and stop upon the
first successful completion. (The expected completion time for this
schedule can be determined in a manner similar to the manner in
which this was done Section 3.) In the remainder of this section
we consider the uniprocessor case where we have just a single
processor upon which to execute the classifiers. As for the no-
deadline version of the problem (Section 3), a uniprocessor schedule
is a linear sequence of some or all of the classifiers; during run-time
we execute classifiers one at a time according to this schedule until
some classifier is successful. The new wrinkle introduced by the
presence of the added constraint of a hard deadline is that the sum
of the execution durations of all the classifiers included in this linear
sequence cannot exceed D (and as before, the last classifier in the
sequence must have a success probability equal to one).

Some assumptions for this section. Note that Lemma 2 con-
tinues to hold regardless of the presence of deadlines: adjacent
classifiers in an optimal schedule will satisfy the property that the
ratio of their execution duration to their success probability (i.e.,
di/pi) is non-decreasing. Without loss of generality, let us therefore
assume that the classifiers are indexed according to non-decreasing
di/pi: for all i we have

b _din

pi  Pi+1
This assumption can be realized for any instance by sorting, in
O(nlog n) time. Additionally, consider the smallest i such that p; =
1; as in Section 3, it can be argued that classifiers with index greater
than i will never be executed in any optimal schedule. Therefore,
we assume without loss of generality that n denotes the index of
this component: i.e., we assume that p, = 1.0 and p; < 1.0 for all
i<n.

ExampLE 5. Consider an instance with the following three clas-
sifiers,® and a deadline D = 10.

ildi| pi
02|04
1| 4|08
216110

The schedule must terminate with Cy, since p, = 1.0 (and further,
neither py nor p; is 1.0). Since dy + dq + d2 = 12 which exceeds
the deadline of 10, we cannot schedule all three for execution. We
therefore have a choice of two schedules: [Cy, C2] or [Cy1, C2].

5In fact, it suffices to only execute those that have duration < D.
°Tt may be verified that these three classifiers are indeed arranged in non-decreasing
order of d; /p;.
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— The expected duration of the schedule [Cy, C2] is

do + (1= po)dz
= 2+(1-04)6=2+3.6=56

- The expected duration of the schedule [Cy, Cz] is
di + (1 — pl)dz
= 4+(1-08)6=4+1.2=52
Hence the second schedule, [Cy, C2], is the optimal one O

We suspect (but have not yet proved) that the problem of synthe-
sizing an optimal schedule of this form - i.e., of minimum expected
duration that always meets a specified deadline) is an NP-hard one.
Given a problem specified as in Expression 6 (and with the assump-
tions that the classifiers are indexed in non-decreasing d; /p; order,
and that p, = 1.0 while p; < 1.0 for all i < n), in the remainder
of this section we will apply the technique of dynamic program-
ming [1] to determine an optimal schedule: a schedule of duration
< D in which the last classifier is the deterministic classifier Cy,.
We start with a definition.

Definition 1. Let E(d, k) denote the minimum expected duration
for the following sub-problem of the problem instance specified in
Expression 6:

(tci = @piyy )

That is, only the classifiers Cy, Ciy1, - - - , Cn are available to us and
we have a deadline of d.

Using this notation, the expected duration of the optimal solution
to the problem instance specified in Expression 6 is E(D, 1): the
deadline is D, all n classifiers C1,Co, . ..,Cy are available.

Let us first look at the sub-problem when only the classifier Cp,
is available to us, and compute the values of E(d, n) for all values
of d. We claim

oo, ifd <dpy

E(d,n) = { dy, otherwise (ie.,d > dp) )

That is, if we have a deadline d and only the (deterministic) classifier
Cp, available, then the instance is infeasible (represented here as
having an expected duration of infinity) if the deadline is smaller
than the C,’s execution duration d,. If d > dj,, then our optimal
schedule comprises the classifier C, and hence the expected dura-
tion (which in fact, equals the specified WCET) is d,.

Now, let us assume that we have already determined the values
of E(d’,k + 1) for all d’; we wish to compute the value of E(d, k).
We have

E(d k) = min{E(d, k+1),dg + (1 - pg) - E(d — dy, k + 1)} ®)

where

— The first term within the min reflects the decision to not use
the classifier Cy (and hence the expected duration is equal
to the minimum expected duration using only the classifiers
Cik+1>Ck+2, - - -, Cn)

— The second term within the min reflects the decision to use
the classifier Ci. In that case

The classifier Cy is definitely executed (since, according
to Lemma 2, it precedes the remaining classifiers in the
optimal schedule), and takes a duration dj.
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/ Input should be sorted according to d; /p;: di/p; = di+1/pi+1 for all i
/ 1t is assumed that (i) p, = 1.0; and (ii) dn < D (else the instance is infeasible).

/ Also, assume that p; < 1foralli < n.

1 E[(0,...,D)x(1,...,n)] of integers # Will be filled in using Dynamic Programming

/ Initializing E[d, n] for all d (Expression 7)

2 ford =0to(d,-1)
3 Eld,n] = =
4 ford =d,toD
5 Eld,n] = dn
/ Implementing the recurrence (Expression 8)
6 fork = (n-1)downto1

7 ford = 1toD
// Compute E[d, k] according to Expression 8

8 Eld,k] = E[d, k + 1] # Initialize E[d, k] to first term in the “min” of Expression 8

9 if (d > dy) # It is possible to execute C...
10 tmp = di + (1 — pr) X E[d — dy., k + 1] # Minimum expected duration if Cy. is executed (second term

in the “min” of Expression 8)
11 if (tmp < E[d, k]) # 1t is better to execute Cy...
12 E[d,k] = tmp # Update E[d, k] to second term in the “min” of Expression 8
/ Printing the optimal schedule
13 d=D
14 fork =1ton
15 if (E[d, k] # E[d, k + 1])
/ Ci must have been selected...

16 print out C.
17 d=d-dg

Figure 3: Algorithm for synthesizing a schedule with minimum expected duration and bounded worst-case duration

Cy. fails to complete successfully with a probability (1 —
Pi)- When this happens, the remainder of the schedule is
executed, and has an expected duration E(d — d, k + 1).
The second term within the min is obtained as the sum of C;’s
execution duration (dy), and the contribution to the expected
duration in the event that C; fails to complete successfully
(1= pg) - E(d = di, k +1)).
We can use Equation 7 to determine E(d, n) for all d. Having done so,
repeated applications of Equation 8 enable to determine E(d,n — 1),
E(d,n — 2),..., E(d, 1), for all d, and thereby obtain the value of
E(D, 1) which (as mentioned earlier) is the expected duration of the
optimal schedule. Furthermore, the actual optimal schedule that
has this duration can be deduced by observing whether the the first
or the second term in the “min” is smaller in each application of
Equation 8. An algorithm for determining the optimal schedule by
doing so is depicted in pseudo-code form in Figure 3.
Running time. The worst-case running time of the pseudo-code
of Figure 3 is dominated by the running time of the nested for
loops. The outer for loop executes n times and the inner one, D
times; the overall running time is therefore ®(n D) where n denotes
the number of classifiers and D, the specified hard deadline.
A simple heuristic (that is not optimal). We have seen that
the algorithm of Figure 3 has running time pseudo-polynomial in
the representation of its input. We believe this is efficient enough
for many applications: in most real-time CPS’s it is unlikely that

the specified deadline (the “D”) will be very large. However in the
unlikely event that a pseudo-polynomial running time is considered
unacceptably high, we can always derive a greedy heuristic from
the algorithm of Section 3, by extending it to account for deadlines
as follows.

Given the classifiers indexed in non-decreasing order of their
d;/pi ratios, we greedily schedule the classifiers in the given order
while ensuring that the classifier C, can be accommodated. That is,
we consider the classifiers in index order: in considering a classifier,
we schedule it if and only if doing so will leave us with > d), time
before the deadline (so that the deterministic classifier C;, can be
accommodated).

This heuristic, like the algorithm of Section 3 (Figure 2), has
linear (i.e., ®(n)) running time if the classifiers are already sorted,
or O(nlogn) if the cost of sorting must also be accounted for. It
is, however, easily seen to be non-optimal: consider the following
example.

ExampLE 6. We have three classifiers C1 = (d1, p1), C2 = (d2, p2),
and C3 = (ds, 1.0), and a deadline D satisfying

D> (max(dl,dg) + d3) and D < (dy + dp + d3).

Hence exactly one of C; and Cy, and the deterministic classifier Cs,
can be scheduled. Let us suppose that dj /p; is a bit smaller than
d2/pz, and p; is also a bit smaller than ps. (E.g., (d1, p1) = (10,0.5)
and (dz, p2) = (13,0.6), so that d; /p; = 20 while dy/ps = 21%.)
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Our greedy heuristic would schedule [C1, C3] for an expected
duration of
di + (1 — pl)d3
which, for (d1,p1) = (10, 0.5) and (dz, p2) = (13, 0.6), evaluates to
(10 + 0.5 d3).
Now suppose the optimal algorithm (Figure 3) were to come up
with the schedule [Cy, C3], with expected duration

dy + (1= pa)ds
— for our example of (di, p1) = (10, 0.5) and (dz, p2) = (13, 0.6), this
evaluates to (13 + 0.4 d3).
Consider now the approximation ratio of our greedy heuristic:
di+(1-p1)ds
dz + (1 - p2)ds
It is straightforward to observe that as d3 — oo, this approximation
ratio approaches (1=p1) which, for (d, p1) = (10,0.5) and (da, p2) =

(1=p2)
(13, 0.6), evaluates to 0.5/0.4 or 1.25. O

There is nothing particularly intrinsic about the value 1.25 that
was derived as the lower bound on the approximation ratio in Ex-
ample 6 above; we leave it to the reader to verify that the technique
can be generalized to show a lower bound equal to any positive
number. This allows us to conclude that the greedy heuristic may
perform arbitrarily poorly in comparison to the optimal algorithm of
Figure 3.

5 CONTEXT & CONCLUSIONS

Learning-enabled components, particularly those based on Deep
Neural Networks (DNNSs), are being increasingly used in safety-
critical real-time systems. It is imperative that the real-time sched-
uling theory community respond to this development by coming
up with appropriate techniques to enable the pre-runtime analysis
of systems that use such components.

In this work, we have adapted and applied algorithmic techniques
from real-time scheduling theory to a proposed DNN use-case [9]
that seeks to strike a balance between accuracy and timeliness
by arranging individual DNN-based classifiers, augmented by the
ability to classify inputs as belonging to an additional “IDK” class,
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into IDK-cascades. The intuition behind the design of IDK-cascades
is simple and elegant: the earlier classifiers in a cascade should
successfully classify simple-to-classify inputs, thus requiring that
the later classifiers only be invoked upon truly challenging inputs.
We were able to formalize this intuition and thereby develop algo-
rithms that synthesize IDK-cascades from a given set of classifiers
in an optimal manner, both when the sole objective is optimizing
expected timeliness and when there is an additional hard deadline
constraint.

We look upon our results in this paper as a proof of concept of the
principle that real-time scheduling can contribute to better design
of real-time systems that use of learning-enabled components - it
behoves us, as a community, to take a closer look at such systems.
A rich agenda of research in this direction can be defined. One
such example: we plan to develop algorithms for solving both the
problems considered in this paper (i.e., the no-deadline and the
hard-deadline variants) upon multiprocessor platforms.
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