
Feasibility Analysis of Conditional DAG Tasks is co-NPNP-Hard
(Why This Matters)

Sanjoy Baruah∗

Department of Computer Science & Engineering
Washington University in Saint Louis

Saint Louis, Missouri, USA
baruah@wustl.edu

ABSTRACT

Feasibility-analysis algorithms have traditionally been required

to have running times no worse than pseudo-polynomial in their

inputs, in order to be considered efficient. But this is changing:

motivated by a vast improvement in the performance of Integer

Linear Programming (ILP) solvers, some recent work has begun to

consider the limited use of ILP solvers as acceptably efficient for

the purposes of feasibility analysis. In this paper, a characterization

is proposed for the class of feasibility-analysis problems that can

be solved efficiently under this more expansive interpretation of

efficiency. This characterization is applied to the conditional di-

rected acyclic graph (DAG) workload model, and a demarcation is

identified between the feasibility-analysis problems on DAGs that

are efficiently solvable using ILP solvers and those that are not.

KEYWORDS

Feasibility analysis; Computational Complexity; Conditional Di-

rected Acyclic Graphs; Integer Linear Programming

ACM Reference Format:

Sanjoy Baruah. 2021. Feasibility Analysis of Conditional DAG Tasks is co-

NP
NP-Hard: (Why This Matters). In 29th International Conference on Real-

Time Networks and Systems (RTNS’2021), April 7ś9, 2021, NANTES, France.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3453417.3453422

1 INTRODUCTION

Safety-critical systems are required to have the correctness of their

run-time behavior verified prior to deployment: such verification

is usually done by analysis of models of the run-time behavior. In

choosing a model for this purpose, one is driven by two concerns

that are typically at odds with each other. On the one hand, the

model should be expressive in order that it may accurately represent

the relevant characteristics of the system being modeled. On the

other, it is necessary that we be able to design efficient algorithms

that let us derive interesting properties of the model, if it to be of

much use in system design and analysis.

∗Funded in part by National Science Foundation Grants CNS-1814739 and CPS-1932530

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS’2021, April 7ś9, 2021, NANTES, France

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9001-9/21/04. . . $15.00
https://doi.org/10.1145/3453417.3453422

Thanks to the compounding effects of Moore’s Law applied over

decades, there has been an enormous increase in computing capa-

bilities over time. As a consequence, our understanding of what

forms of analysis may be considered łefficientž has also evolved. In

this paper, we consider a particular aspect of run-time correctness

ś the ability to meet deadlines ś that has long been a prime focus

of the real-time scheduling community. The pre-run-time analy-

sis of systems to check whether they can be scheduled to always

meet their deadlines during run-time is called feasibility analysis.

In the early years of the discipline of real-time computing, feasibil-

ity analysis algorithms were required to have worst-case running

times that are low-degree polynomials of input size in order to be

considered efficient. Examples of efficient algorithms of this first

generation include the utilization-based schedulability tests [10, 16]

for Earliest-Deadline First (EDF) and Rate-Monotonic scheduling

of collections of independent implicit-deadline sporadic tasks (łLiu

and Layland tasksž) upon preemptive uniprocessors. By the mid- to

late-1980s, computing capabilities had increased enough that feasi-

bility analysis algorithms with pseudo-polynomial running times

were considered efficient. Early examples of efficient algorithms

of this kind include the preemptive uniprocessor EDF feasibility

test for bounded-utilization 3-parameter sporadic task systems [8],

and Response-Time Analysis for fixed-priority task systems [14].

Ever since, there appears to have been a sort of consensus that

pseudo-polynomial running time equates to efficiency, and there

has been a continued quest to identify the most general models

for which feasibility analysis can be done in pseudo-polynomial

time [3, 19, 21] (please see [20] for an excellent survey on this topic).

More recently, the continued increase in computing capabilities,

combined with the increasingly complex nature of many feasibility-

analysis problems that one encounters whilst seeking to verify the

correctness of modern safety-critical cyber-physical systems, has

motivated some real-time scheduling theory researchers to take

the first tentative steps past the pseudo-polynomial time barrier.

Many such investigations seek to transform a feasibility-analysis

problem to some other form such as an integer linear program

(ILP) or some satisfiability modulo theories (SMT) [2], which can

then be solved by a solver of the appropriate kind (i.e., an ILP

solver or an SMT-solver, respectively). Although solving an integer

linear program, or deciding satisfiability modulo any non-trivial

ground theory, is computationally intractable (NP-hard or harder),

excellent off-the-shelf solvers exist that, by incorporating a combi-

nation of expert techniques, special-purpose heuristics, and highly

optimized implementation, are able to handle surprisingly large

problem instances in reasonable amounts of time. In this paper, we

focus on feasibility-analysis research efforts that seek to go beyond

RTNS’2021, April 7ś9, 2021, NANTES, France Sanjoy Baruah

Summarizing Complexity Results.We now briefly summarize

relevant current knowledge regarding the computational complex-

ity of feasibility-analysis problems for DAGs. As mentioned earlier,

most multiprocessor feasibility-analysis problems for DAGs are

known to be NP-hard in the strong sense. The first such result, to

our knowledge, dates back to 1975 when Ullman showed [23] that

it is NP-hard in the strong sense to determine whether a given DAG

can be scheduled to meet a specified deadline under global schedul-

ing upon an identical multiprocessor platform, under both preemp-

tive and non-preemptive scheduling. (An even earlier result [13],

showing that non-preemptive partitioned scheduling of indepen-

dent jobs is NP-hard in the strong sense, of course implies that

non-preemptive partitioned scheduling of DAGs is also NP-hard in

the strong sense; however [13] did not explicitly consider DAGs).

Jansen subsequently showed [12] that feasibility analysis of DAGs

is NP-hard in the strong sense if each job is pre-assigned to a partic-

ular processor, again under both preemptive and non-preemptive

scheduling. Since these basic problems are already NP-hard in the

strong sense, so are the feasibility-analysis problems for the more

general models that allow for enhanced features such as hetero-

geneous processor types, conditional nodes, alternative nodes, etc.

A recent work [17] studied the list-scheduling [11] of conditional

DAGs for a given fixed list-ordering, and showed that determining

the minimum schedule duration here is also an NP-hard problem.

3 ILP REPRESENTATIONS OF

DAG-SCHEDULABILITY

We now briefly review the current state of the art regarding the

representation of feasibility-analysis problems for DAGs as integer

linear programs. We start with a definition:

Definition 1 (ILP-tractability). A schedulability-analysis prob-

lem is said to be ILP-tractable if it can be solved by an algorithm

that has polynomial running time and may in addition make polyno-

mially many calls to an ILP-solver.

Problems that are not ILP-tractable are ILP-intractable. □

This definition captures the intuitive notion that with the avail-

ability of fast modern ILP solvers, it may reasonably be considered

quite efficient to make a few calls to such a solver. Hence, we have

chosen to require that an efficient feasibility-analysis algorithm run

in polynomial time and make polynomially many calls to such a

solver.

Standard techniques from the łtraditionalž (i.e., Operations Re-

search (OR)/ Theoretical Computer Science) scheduling-theory lit-

erature, such as sequence-position decision variables and precedence

decision variables (see, e.g, [1, Appendix C] for a text-book intro-

duction to these and similar techniques) can be applied to obtain

ILP representations of most forms of non-preemptive feasibility

analysis for łregularž DAGs (i.e., those without conditional nodes)

in polynomial time; hence, the corresponding feasibility-analysis

problems are all ILP-tractable. When preemption is permitted, these

techniques are not by themselves adequate for representing fea-

sibility as an ILP, and some other techniques that can be used

(in particular, time-indexed decision variables [1, page 473]) tend

to yield ILPs of size exponential (or at least, pseudo-polynomial)

in the representation of the DAG for which feasibility-analysis is

sought. A paper [4] that was presented at RTNS last year integrated

some traditional OR techniques with some other ideas (such as the

demand-bound function [8]) that are explicitly from the domain

of real-time scheduling theory to obtain, in polynomial time, a

polynomial-sized ILP for representing the feasibility-analysis prob-

lem for DAGs in which each job is pre-assigned to a particular

processor (i.e., the problem shown to be NP-hard in the strong

sense in [12]).2 Hence the results in [4, 9] bear witness to the fact

that this feasibility-analysis problem is also ILP-tractable. It is rel-

atively straightforward to extend the method of [4, 9] to handle

several generalizations including partitioned scheduling when jobs

are not pre-assigned to individual processors, fixed-job-priority

scheduling, and choosing optimally between a pair of matched

alternative nodes [25]; hence, feasibility analysis for DAG-based

real-time workload models that incorporate some or all of these

features can be represented as ILPs in polynomial time, and are all

ILP-tractable.

The main technical result that we will derive in this paper is

that certain feasibility-analysis problems for DAG models that allow

for conditional nodes are ILP-intractable Ð they cannot be solved

in polynomial time with polynomially many calls to an ILP-solver

(modulo certain assumptions, such as P , NP, that are very widely

believed to be true in the theoretical computer science community).

Furthermore, we will see that ILP-intractability holds even if the

conditional constructs that are present in our DAGs are very simple:

not nested, and with just a single job along each branch of the

conditional construct. It thus appears that the precise demarcation

between ILP-tractability and ILP-intractability is with conditional

nodes: their presence, even in very modest form, introduces ILP-

intractability.

4 COMPUTATIONAL COMPLEXITY: SOME

BACKGROUND

In this section we provide a brief introduction to those concepts of

computational complexity theory that are needed in the remainder

of this manuscript. (In order to keep things simple the presentation

in this section is intentionally informal and not always precise:

for instance, while most of the concepts discussed below differ in

their applicability to decision problems ś those for which there is a

łyes/ nož answer ś and optimization problems, we do not make this

distinction here but treat both decision and optimization problems

in similar fashion.)

The class P of problems that are known to be solved by algorithms

with running time polynomial in the size of their inputs, and the

class NP of problems for which claimed solutions can be verified by

algorithms with running time polynomial in the size of their inputs,

are foundational cornerstones of computational complexity theory.

It is very widely believed that P ⊊ NP; i.e., there are polynomial-

time verifiable problems that cannot be solved in polynomial time.

The class NP may be further sub-divided into the sub-classes NP

in the strong sense and NP in the weak sense. Somewhat informally,

a problem is in the class NP in the weak sense if its specification

includes numbers, and there is an algorithm for solving the problem

that has running-time polynomial in the values of the numbers of

2A subtle error in the ILP formulation in [4] was identified, and a fix provided, by
Ben-Amor [9, Appendix A].

Feasibility Analysis of Conditional DAG Tasks RTNS’2021, April 7ś9, 2021, NANTES, France

conditional construct that causes the job ¬Ai to execute

would prevent job ¬Xi from executing, but would permit

job Xi to execute, by time-instant 1.

(2) The assignment of truth values to the boolean variables
(

y1,y2, . . . ,yny

)

that causes each of them clauses of Expression 1 to evaluate

to true can be emulated by executing the appropriate one

of the two jobs that were generated for each yj . Suppose,

for instance, that yj ← F in this assignment; this can be

emulated by executing the job ¬Yj by time-instant 1.

(3) Hence, each truth-assignment to the boolean variables that

cause them clauses of Expression 1 to evaluate to true can

be emulated such that the jobs corresponding to the literals

that are true in such a truth-assignment are executed by

time-instant 1.

(4) Consequently, at least one of the three jobs Ck,1,Ck,2, and

Ck,3 corresponding to each clause is eligible to execute by

time-instant 1, thereby allowing all three jobs to complete

execution on their shared processor by the deadline at time-

instant 4.

And this concludes the proof of Lemma 1.1. □

Lemma 1.2. If the conditional DAG constructed above can be sched-

uled to always complete by its deadline, then Expression 1 is true.

Proof. Suppose that the conditional DAG we have constructed

can be scheduled to always complete by its deadline.

(1) The jobBi that was defined for each variable xi has execution

requirement 3, and so must begin execution no later than

time-instant 1 in order to complete by the deadline. Hence

the conditional construct defined for the variable xi must

complete execution by time-instant 1.

(2) Since each of the nx conditional constructs are independent

of each other, the choice of which branches of each to execute,

which in turn restricts which of the pair of jobs Xi ,¬Xi
may execute over the interval [0, 1] for each i , 1 ≤ i ≤ nx ,

can force each of the 2nx possible truth-assignments to the

variables
(

x1,x2, . . . ,xnx
)

to be emulated by time-instant 1.

(3) For each of these truth-assignments, it must be the case that

at least one of the three jobsCk,1,Ck,2, andCk,3 correspond-

ing to the k’th clause is eligible to execute by time-instant 1

(in order that all three of these jobs may complete on their

common processor by time-instant 4), for each k , 1 ≤ k ≤ m.

(4) Hence it must be possible to execute exactly one of the two

jobs Yj ,¬Yj upon their shared processor during the time-

interval [0, 1] for each j , 1 ≤ j ≤ ny , such that the assignment

of truth values to the boolean variables
(

y1,y2, . . . ,yny

)

,

when combined with the choice of assignment to the boolean

variables
(

x1,x2, . . . ,xnx
)

implied by the conditional branches

that were executed, causes each of the clauses to be satisfied.

This establishes that Expression 1 is true, and concludes the proof

of Lemma 1.2. □

Taken together, Lemmas 1.1 and 1.2 lead us to conclude that de-

termining whether a conditional DAG can be scheduled to always

meet its deadline is co-NPNP-hard. We have thus established the

truth of Theorem 1. □

The following corollary is an immediate consequence of Theorem 1

and the widely-held belief that each of the subset-of relationships

depicted in Figure 3 is strict (i.e., ⊊).

Corollary 1. There cannot be a polynomial-time procedure that

may in addition call an ILP solver polynomially many times, for

solving the feasibility-analysis problem for conditional DAGs in which

jobs are pre-assigned to processors. □

Our next corollary follows by observing that all the numerical pa-

rameters (i.e., the job execution durations and the overall deadline)

characterizing the conditional DAG that was constructed during

the reduction in the proof of Theorem 1 are of value no larger than

polynomial in the size of the input ∀∃ 3SAT instance (Expression 1);

hence, a pseudo-polynomial algorithm for determining its feasibil-

ity on the oracle-equipped computer would imply a polynomial-

time algorithm for the ∀∃ 3SAT Problem upon this same computer,

thereby showing that PNP ≡ co-NPNP. Since it is widely believed

that this is not the case, we conclude

Corollary 2. There cannot be a pseudo-polynomial-time proce-

dure that may in addition call an ILP solver pseudo-polynomially

many times, for solving the feasibility-analysis problem for condi-

tional DAGs in which jobs are pre-assigned to processors.

7 DISCUSSION

To our knowledge, most current efforts at representing feasibility

analysis problems as ILPs are ad hoc. The technical results of Sec-

tions 5 and 6 suggest a methodical approach to determiningwhether

a feasibility-analysis (or indeed, any) problem can be solved effi-

ciently by using ILP solvers:

• To determine whether we can efficiently represent a problem

as an ILP, we should try to show that the problem is in the

complexity class NP.

• To determine whether we can efficiently solve a problem

in polynomial time with one or more additional calls to an

ILP solver, we should try to show that the problem is in the

complexity class PNP.

• If we are not able to make progress in efforts at efficiently

solving a problem with the help of an ILP solver, we should

checkwhether the problem is in fact hard forNPNP or co-NPNP

(in which case our efforts are unlikely to bear fruit).

8 CONTEXT AND FUTUREWORK

Real-time scheduling theory has begun considering the use of ILP

solvers to obtain efficient algorithms for solving feasibility anal-

ysis problems. In this paper, we report on our findings from a

recently-initiated methodical study of what efficiency means from

this perspective: how does one recognize when a feasibility-analysis

problem can be efficiently solved via ILPs? We have identified the

boundaries of what can reasonably be considered to be efficiently

solvable ś see Figure 5, and have demonstrated how one shows

a problem to not be efficiently solvable in this framework. Based

on this categorization, an important question that merits further

investigation is this: what is the most general real-time workload

model for which the feasibility-analysis problem remains tractable

	Abstract
	1 Introduction
	2 The Conditional DAG Model
	3 ILP representations of DAG-schedulability
	4 Computational complexity: some background
	5 Implications for Conditional DAG feasibility-analysis
	6 An ILP-intractable scheduling problem
	7 Discussion
	8 Context and Future Work
	References

