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ABSTRACT

Feasibility-analysis algorithms have traditionally been required
to have running times no worse than pseudo-polynomial in their
inputs, in order to be considered efficient. But this is changing:
motivated by a vast improvement in the performance of Integer
Linear Programming (ILP) solvers, some recent work has begun to
consider the limited use of ILP solvers as acceptably efficient for
the purposes of feasibility analysis. In this paper, a characterization
is proposed for the class of feasibility-analysis problems that can
be solved efficiently under this more expansive interpretation of
efficiency. This characterization is applied to the conditional di-
rected acyclic graph (DAG) workload model, and a demarcation is
identified between the feasibility-analysis problems on DAGs that
are efficiently solvable using ILP solvers and those that are not.
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1 INTRODUCTION

Safety-critical systems are required to have the correctness of their
run-time behavior verified prior to deployment: such verification
is usually done by analysis of models of the run-time behavior. In
choosing a model for this purpose, one is driven by two concerns
that are typically at odds with each other. On the one hand, the
model should be expressive in order that it may accurately represent
the relevant characteristics of the system being modeled. On the
other, it is necessary that we be able to design efficient algorithms
that let us derive interesting properties of the model, if it to be of
much use in system design and analysis.
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Thanks to the compounding effects of Moore’s Law applied over
decades, there has been an enormous increase in computing capa-
bilities over time. As a consequence, our understanding of what
forms of analysis may be considered “efficient” has also evolved. In
this paper, we consider a particular aspect of run-time correctness
— the ability to meet deadlines — that has long been a prime focus
of the real-time scheduling community. The pre-run-time analy-
sis of systems to check whether they can be scheduled to always
meet their deadlines during run-time is called feasibility analysis.
In the early years of the discipline of real-time computing, feasibil-
ity analysis algorithms were required to have worst-case running
times that are low-degree polynomials of input size in order to be
considered efficient. Examples of efficient algorithms of this first
generation include the utilization-based schedulability tests [10, 16]
for Earliest-Deadline First (EDF) and Rate-Monotonic scheduling
of collections of independent implicit-deadline sporadic tasks (“Liu
and Layland tasks”) upon preemptive uniprocessors. By the mid- to
late-1980s, computing capabilities had increased enough that feasi-
bility analysis algorithms with pseudo-polynomial running times
were considered efficient. Early examples of efficient algorithms
of this kind include the preemptive uniprocessor EDF feasibility
test for bounded-utilization 3-parameter sporadic task systems [8],
and Response-Time Analysis for fixed-priority task systems [14].
Ever since, there appears to have been a sort of consensus that
pseudo-polynomial running time equates to efficiency, and there
has been a continued quest to identify the most general models
for which feasibility analysis can be done in pseudo-polynomial
time [3, 19, 21] (please see [20] for an excellent survey on this topic).

More recently, the continued increase in computing capabilities,
combined with the increasingly complex nature of many feasibility-
analysis problems that one encounters whilst seeking to verify the
correctness of modern safety-critical cyber-physical systems, has
motivated some real-time scheduling theory researchers to take
the first tentative steps past the pseudo-polynomial time barrier.
Many such investigations seek to transform a feasibility-analysis
problem to some other form such as an integer linear program
(ILP) or some satisfiability modulo theories (SMT) [2], which can
then be solved by a solver of the appropriate kind (i.e., an ILP
solver or an SMT-solver, respectively). Although solving an integer
linear program, or deciding satisfiability modulo any non-trivial
ground theory, is computationally intractable (NP-hard or harder),
excellent off-the-shelf solvers exist that, by incorporating a combi-
nation of expert techniques, special-purpose heuristics, and highly
optimized implementation, are able to handle surprisingly large
problem instances in reasonable amounts of time. In this paper, we
focus on feasibility-analysis research efforts that seek to go beyond
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Figure 1: An example Conditional DAG. Conditional nodes
are depicted as diamonds, and always occur in matched pairs
(in this example, c; and c2). Jobs v; and v2 must both exe-
cute. Conditional node ¢; executes after v; completes, after
which exactly one of the jobs v3 or v4 must execute. Condi-
tional node c; executes once this job has completed. Job vs
may only execute after both c; and job v; have completed.

the pseudo-polynomial time barrier via transformation to integer
linear programs (ILPs).

The Conditional DAG Model [6, 18]. In this model, computation
is represented as a directed acyclic graph (DAG) in which some
vertices, called “conditional nodes”, represent boolean expressions
that are evaluated during run-time while the other vertices repre-
sent non-parallelizable pieces of computation, commonly referred
to as “jobs.” (The model will be described in detail in Section 2;
meanwhile, please see Figure 1 for an example.) The edges lead-
ing into and out of conditional nodes may represent control-flow
choices that happen based on the outcome of the evaluation of
the boolean expressions; the other edges represent precedence
constraints between the jobs. The feasibility analysis question for
such a conditional DAG asks whether it can be scheduled upon
a specified multiprocessor platform, under specified restrictions
(e.g., global or partitioned; preemptive or non-preemptive; etc.), to
always complete by a specified deadline.

A simpler version of this problem without conditional nodes is
equivalent to the widely-studied problem of makespan-minimization
for precedence constrained jobs: determine whether the jobs can be
scheduled to have a duration no larger than the specified deadline
upon the provided processors. This problem is known to be NP-hard
in the strong sense under most interesting restrictions including
global scheduling (when individual jobs are permitted to migrate
amongst the processors) [23], and for “typed” systems (where each
job is pre-assigned to an individual processor or a specified subset
of the processors) [12], regardless of whether preemption is permit-
ted or not. Since conditional DAGs are a generalization of regular
DAGs, these hardness results hold for conditional DAGs as well.

ILP solvers. Determining whether an integer linear program (ILP)
has a feasible solution was one of the earliest problems shown to
be NP-complete [13] (recall that an NP-complete problem is both
NP-hard and in the class NP). Indeed, it is known to be NP-complete
in the strong sense!; assuming P # NP, this implies that ILP solvers

L A brief review of complexity theory is provided in Section 4 for the reader not familiar
with some of this terminology.
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with pseudo-polynomial running time cannot be developed. De-
spite this inherent intractability of ILP, however, the optimization
community has recently been devoting immense effort to devise
extremely efficient implementations of ILP solvers, and highly op-
timized libraries with such efficient implementations are widely
available today in both open-source and commercial offerings. It is
known that the duration taken by an ILP solver to solve a problem
tends to correlate very strongly with the size of the problem to be
solved — in particular, with the number of variables and constraints
in the ILP that is being solved. Modern ILP solvers, particularly
when running upon powerful computing clusters, are commonly
capable of solving ILPs with tens of thousands of variables and
constraints.

This Research, and its Significance. We have seen above that
most feasibility-analysis problem for DAGs are NP-hard in the
strong sense. Strong NP-hardness rules out the existence of pseudo-
polynomial time algorithms for solving these problems (assuming
P#NP). Hence as real-time scheduling theory begins to consider the
use of ILP-solvers, it seems appropriate to explore their applicability
to the feasibility analysis of real-time systems that are modeled as
DAGs — this is the subject of the research reported here. We propose
(Definition 1) a classification of such feasibility analysis problems
into ILP-tractable and ILP-intractable. Informally speaking —this
will be formalized and made precise in Section 4— we consider
a problem to be ILP-tractable if and only if it can be solved by
a polynomial-time procedure that may in addition make a few
calls to an ILP solver. We provide a separation between these two
classes by identifying those modeling features for which feasibility-
analysis remains ILP-tractable, and those that render the problem
ILP-intractable. Identifying such a demarcation is significant since
it provides guidance to system developers as to what features they
should seek to avoid in their designs, in order to be able to retain
ILP-tractability of analysis.

Organization. The remainder of this paper is organized in the
following manner. In Section 2 we provide a more complete de-
scription of the DAG-based real-time workload model considered
in this work. In Section 3 we briefly summarize our current state
of knowledge concerning the representation of DAG feasibility
problems as ILPs. In Section 4 we provide a succinct primer on
relevant aspects of computational complexity; in Section 5, we in-
terpret currently-known results in the light of these aspects. In
Section 6 we present our main technical results, establishing that a
commonly-used feature of real-time DAG workload models cannot
be efficiently represented as an ILP. In Section 7 we discuss the
implications of these technical results to ILP-based schedulability
analysis. We conclude in Section 8 by enumerating some possible
directions for follow-up research.

2 THE CONDITIONAL DAG MODEL

The models used in scheduling theory for representing real-time
workloads that are to be implemented upon multiprocessor plat-
forms should be capable of exposing the parallelism that may exist
within these workloads. The sporadic DAG model [7] (see [5, Chap-
ter 21] for a text-book description) was proposed for this purpose.
A task in this model is specified as a 3-tuple (G, D, T), where G is
a directed acyclic graph (DAG), and D and T are positive integers
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representing the relative deadline and period parameters of the task
respectively. The task repeatedly releases dag-jobs, each of which
is a collection of (sequential) jobs. Successive dag-jobs are released
a duration of at least T time units apart. The DAG G is specified
as G = (V,E), where V is a set of vertices and E a set of directed
edges between these vertices. Each v € V represents the execution
of a sequential piece of code (a “job”), and is characterized by a
worst-case execution time (WCET). The edges represent dependen-
cies between the jobs: if (v1,v2) € E then job v; must complete
execution before job vy can begin execution. (Job v; is called a
predecessor job of vy, and job vy is called a successor job of v;.)
Jobs that are not predecessors or successors of each other, either
directly or transitively, may execute simultaneously upon different
processors. A release of a dag-job of the task at time-instant t means
that all |V| jobs v € V are released at time-instant ¢. If a dag-job is
released at time-instant ¢ then all |V| jobs that were released at ¢
must complete execution by time-instant ¢t + D.

Conditional nodes. Like a regular sporadic DAG, a conditional
DAG [6, 18] is specified as a 3-tuple (G, D, T), where G = (V,E) is
a DAG, and D and T are positive integers denoting (as with regular
DAGs) the relative deadline and period parameters of the task. Con-
ditional nodes are special vertices in V that are defined in matched
pairs, that together define a conditional construct. Let (c1, c2) be
such a pair in the DAG G = (V, E) — see Figure 2. Informally speak-
ing, vertex ¢ can be thought of as representing a point in the code
where a conditional expression is evaluated and, depending upon
the outcome of this evaluation, control will subsequently flow along
exactly one of several different possible paths in the code. It is re-
quired that all these different paths meet again at a common point
in the code, represented by the vertex cz. More formally,

(1) There are multiple outgoing edges from c; in E. Suppose that
there are exactly k outgoing edges from c; to the vertices
51,82, - - - » Sk, for some k > 1. We call k the branching factor
of this conditional construct. (The branching factor for an “if-
then-else" condition is 2.) Then there are exactly k incoming
edges into ¢y in E, from the vertices t1, to, . . ., .

(2) For each ¢ € {1,2,...,k},let V; C V and E, C E denote
all the vertices and edges on paths reachable from s, that
do not include vertex cy. By definition, s is the sole source
vertex of the DAG Gé, S v, Ez,). It must hold that ¢, is the
sole sink vertex of G/,.

(3) It must hold that V; N Vj’ =0 for all ¢, j, £ # j. Additionally,
with the exception of (c1, s¢) there should be no edges in
E into vertices in th from vertices not in V(f , for each ¢ €
{1,2,....k}.Te, EN((V\V}) X V) = {(c1,s¢)} should hold
for all €.

Edges (v1, v2) between pairs of vertices neither of which are con-
ditional vertices represent precedence constraints exactly as in
traditional sporadic DAGs, while edges involving conditional ver-
tices represent conditional execution of code. More specifically, let
(c1,c2) denote a defined pair of conditional vertices that together
define a conditional construct. The semantics of conditional DAG
execution mandate that
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Figure 2: A canonical conditional construct with branching
factor 2. Vertices s; and #; (vertices sz and ty, resp.) are the
sole source vertex and sink vertex of G| (Gj, resp.).

o After the job ¢; completes execution, exactly one of its suc-
cessor jobs becomes eligible to execute; it is not known be-
forehand which successor job may execute.

e Job ¢ begins to execute upon the completion of exactly one
of its predecessor jobs.

It is important to note that the conditional expressions may evaluate
differently during different executions of a conditional DAG. Let
J denote all possible complete collections of jobs that comprise a
single dag-job of the conditional DAG, along with the precedence
constraints amongst these jobs that are imposed by the edges of
the DAG. Thus each J € J denotes a collection of precedence-
constrained jobs obtained by completely executing through the
DAG once, taking into account the conditional branches within it.
There may in general be exponentially many different flows through
a graph: consider for example the following skeleton of code (here
each (Ci) represents a boolean condition that may evaluate to
either true or false, and each {Sij} a block of straight-line code):

if (C1) then {S11} else {S12}
if (C2) then {S21} else {S22}

if (Cn) then {Sn1} else {Sn2}

If the different (Ci)’s are independent, then this code fragment may
experience any of 2" different execution flows through it depending
upon whether the (Ci)’s evaluate to true or false; hence |J|, the
number of precedence-constrained collections of jobs in J, may
be exponential in the number of vertices in G. As a consequence,
algorithms for the analysis of conditional DAGs that are based upon
explicitly examining each J € J will necessarily have exponential
worst-case running time.

Alternative nodes [25]. The C-DAG model was recently pro-
posed by Zahaf et al. [25] as a further generalization to the con-
ditional DAG model. One of the additional features introduced in
this model is that of alternative nodes. Alternative nodes are syntac-
tically essentially identical to conditional nodes: like conditional
nodes, they occur in matched pairs and may be nested. However
they are interpreted very differently: they model alternative imple-
mentation possibilities for parts of the task. Prior to run-time the
system designer may choose any one of the alternative implementa-
tions that are available between a matched pair of implementation
nodes.
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Summarizing Complexity Results. We now briefly summarize
relevant current knowledge regarding the computational complex-
ity of feasibility-analysis problems for DAGs. As mentioned earlier,
most multiprocessor feasibility-analysis problems for DAGs are
known to be NP-hard in the strong sense. The first such result, to
our knowledge, dates back to 1975 when Ullman showed [23] that
it is NP-hard in the strong sense to determine whether a given DAG
can be scheduled to meet a specified deadline under global schedul-
ing upon an identical multiprocessor platform, under both preemp-
tive and non-preemptive scheduling. (An even earlier result [13],
showing that non-preemptive partitioned scheduling of indepen-
dent jobs is NP-hard in the strong sense, of course implies that
non-preemptive partitioned scheduling of DAGs is also NP-hard in
the strong sense; however [13] did not explicitly consider DAGs).
Jansen subsequently showed [12] that feasibility analysis of DAGs
is NP-hard in the strong sense if each job is pre-assigned to a partic-
ular processor, again under both preemptive and non-preemptive
scheduling. Since these basic problems are already NP-hard in the
strong sense, so are the feasibility-analysis problems for the more
general models that allow for enhanced features such as hetero-
geneous processor types, conditional nodes, alternative nodes, etc.
A recent work [17] studied the list-scheduling [11] of conditional
DAGs for a given fixed list-ordering, and showed that determining
the minimum schedule duration here is also an NP-hard problem.

3 ILP REPRESENTATIONS OF
DAG-SCHEDULABILITY

We now briefly review the current state of the art regarding the
representation of feasibility-analysis problems for DAGs as integer
linear programs. We start with a definition:

DEFINITION 1 (ILP-TRACTABILITY). A schedulability-analysis prob-
lem is said to be ILP-TRACTABLE if it can be solved by an algorithm
that has polynomial running time and may in addition make polyno-
mially many calls to an ILP-solver.

Problems that are not ILP-tractable are ILP-INTRACTABLE. ]

This definition captures the intuitive notion that with the avail-
ability of fast modern ILP solvers, it may reasonably be considered
quite efficient to make a few calls to such a solver. Hence, we have
chosen to require that an efficient feasibility-analysis algorithm run
in polynomial time and make polynomially many calls to such a
solver.

Standard techniques from the “traditional” (i.e., Operations Re-
search (OR)/ Theoretical Computer Science) scheduling-theory lit-
erature, such as sequence-position decision variables and precedence
decision variables (see, e.g, [1, Appendix C] for a text-book intro-
duction to these and similar techniques) can be applied to obtain
ILP representations of most forms of non-preemptive feasibility
analysis for “regular” DAGs (i.e., those without conditional nodes)
in polynomial time; hence, the corresponding feasibility-analysis
problems are all ILP-tractable. When preemption is permitted, these
techniques are not by themselves adequate for representing fea-
sibility as an ILP, and some other techniques that can be used
(in particular, time-indexed decision variables [1, page 473]) tend
to yield ILPs of size exponential (or at least, pseudo-polynomial)
in the representation of the DAG for which feasibility-analysis is
sought. A paper [4] that was presented at RTNS last year integrated
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some traditional OR techniques with some other ideas (such as the
demand-bound function [8]) that are explicitly from the domain
of real-time scheduling theory to obtain, in polynomial time, a
polynomial-sized ILP for representing the feasibility-analysis prob-
lem for DAGs in which each job is pre-assigned to a particular
processor (i.e., the problem shown to be NP-hard in the strong
sense in [12]).2 Hence the results in [4, 9] bear witness to the fact
that this feasibility-analysis problem is also ILP-tractable. It is rel-
atively straightforward to extend the method of [4, 9] to handle
several generalizations including partitioned scheduling when jobs
are not pre-assigned to individual processors, fixed-job-priority
scheduling, and choosing optimally between a pair of matched
alternative nodes [25]; hence, feasibility analysis for DAG-based
real-time workload models that incorporate some or all of these
features can be represented as ILPs in polynomial time, and are all
ILP-tractable.

The main technical result that we will derive in this paper is
that certain feasibility-analysis problems for DAG models that allow
for conditional nodes are ILP-intractable — they cannot be solved
in polynomial time with polynomially many calls to an ILP-solver
(modulo certain assumptions, such as P # NP, that are very widely
believed to be true in the theoretical computer science community).
Furthermore, we will see that ILP-intractability holds even if the
conditional constructs that are present in our DAGs are very simple:
not nested, and with just a single job along each branch of the
conditional construct. It thus appears that the precise demarcation
between ILP-tractability and ILP-intractability is with conditional
nodes: their presence, even in very modest form, introduces ILP-
intractability.

4 COMPUTATIONAL COMPLEXITY: SOME
BACKGROUND

In this section we provide a brief introduction to those concepts of
computational complexity theory that are needed in the remainder
of this manuscript. (In order to keep things simple the presentation
in this section is intentionally informal and not always precise:
for instance, while most of the concepts discussed below differ in
their applicability to decision problems — those for which there is a
“YEs/ NO” answer — and optimization problems, we do not make this
distinction here but treat both decision and optimization problems
in similar fashion.)

The class P of problems that are known to be solved by algorithms
with running time polynomial in the size of their inputs, and the
class NP of problems for which claimed solutions can be verified by
algorithms with running time polynomial in the size of their inputs,
are foundational cornerstones of computational complexity theory.
It is very widely believed that P C NP; i.e., there are polynomial-
time verifiable problems that cannot be solved in polynomial time.

The class NP may be further sub-divided into the sub-classes NP
in the strong sense and NP in the weak sense. Somewhat informally,
a problem is in the class NP in the weak sense if its specification
includes numbers, and there is an algorithm for solving the problem
that has running-time polynomial in the values of the numbers of

2 A subtle error in the ILP formulation in [4] was identified, and a fix provided, by
Ben-Amor [9, Appendix A].



Feasibility Analysis of Conditional DAG Tasks

the input instance — i.e., there is a pseudo-polynomial-time algo-
rithm for solving it. Otherwise, it is in the class NP in the strong
sense. It is widely believed that the class of problems that are NP in
the weak sense is strictly contained in the class of NP problems: i.e.,
the consensus (although unproved) relationship amongst the three
classes of problems is as shown in the Venn diagram (left) in Figure 3.
As mentioned earlier, determining whether an ILP has a feasible
solution is known to be NP-complete in the strong sense [13]; its
assumed position in the complexity hierarchy is depicted in the
Venn diagram: in NP, but not in the weak sense.

Recall our discussion in Section 1, that in the context of schedu-
lability analysis “efficiency”had initially meant polynomial-time;
subsequently pseudo-polynomial time; and is now beginning to be
considered to mean “solvable by an ILP” as computational capabil-
ities continue to increase over time. Notice the direct co-relation
between this evolving understanding of what efficiency means, and
the complexity classes discussed above: initially, problems in the
class P were considered efficient; later, problems that are in NP in
the weak sense. The recent inclination in real-time scheduling the-
ory to equate efficiency with ILP-tractability is essentially asserting
that thanks to the combination of improvements in ILP-solvers
and the compounding effects of Moore’s law, we may consider that
problems representable as ILPs are efficiently solvable despite being
NP-hard in the strong sense.

The polynomial-time hierarchy [22] extends computational com-
plexity theory beyond the classes P and NP by considering com-
puters equipped with an oracle: a “black box” that is able to solve a
specific decision problem in a single step, and hence in ©(1) (i.e.,
constant) time. The complexity class PNY denotes the class of all
problems that can be solved in polynomial time by a computer that
is equipped with an oracle that solves some NP-complete problem.
In a similar vein, the complexity class NPN' denotes the class of all
problems that can be verified in polynomial time by a computer that
is equipped with an oracle that solves some NP-complete problem.
(And just as co-NP denotes the class of problems whose comple-
ment problems are in NP, co-NPNF denotes the class of problems
whose complement problems are in NPNP )

The relationship amongst the six complexity classes we have
discussed above (P, NP, co-NP, PNP NPNP and co—NPNP) is depicted
in Figure 3 on the right; the arrows represent the SUBSET-OF rela-
tionship C. It is widely assumed (but unproven) that all of these
SUBSET-OF relationships are strict (i.e., C).

5 IMPLICATIONS FOR CONDITIONAL DAG
FEASIBILITY-ANALYSIS

The relationship between the complexity classes discussed in Sec-
tion 4 above, and the fact that ILP is complete for the class NP, has
immediate implications for feasibility analysis of DAGs.

LEmMA 1. ILP-tractability is equivalent to membership in the com-
plexity class PNF

Proof. As discussed in Section 4 above, PN' is the complexity
class of all problems that can be solved in polynomial time by a com-
puter that is equipped with an oracle for solving some NP-complete
problem. Since solving ILPs is an NP-complete problem [13], an
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Figure 3: Relationship between complexity classes. The inner-
most (blue) circle represents the problems in P, the intermediate
(teal) one includes problems that are in NP in the weak sense, and
the outermost (red) circle further includes problems that are in NP
in the strong sense.

The lattice on the right depicts some additional complexity classes.

ILP-solver could be such an oracle. Any problem solved in polyno-
mial time by a computer equipped with an ILP-solver as an oracle
is therefore, by definition of the complexity class, in PN, O

Recall from complexity theory that a problem is said to be complete
for a complexity class of the kinds discussed in Section 4 above if
(i) it belongs to the class; and (ii) it is hard for the class, ie., any
problem in the class can be reduced to this problem in polynomial
time. Our major result in the remainder of this paper is a proof, in
Section 6, that feasibility analysis for conditional DAGs is hard for
the complexity class co-NPNF, Since it is widely believed that PNP
is not equal to co-NPNP, this implies that it is highly unlikely that
feasibility analysis for conditional DAGs is ILP-tractable.

6 AN ILP-INTRACTABLE SCHEDULING
PROBLEM

In this section, we will show that the following feasibility-analysis
problem on conditional DAGs:

Determine whether a given conditional DAG in which each job is pre-
assigned to a particular processor is guaranteed to always complete
by a specified deadline

is hard for the complexity class co-NPN’; based on the results
discussed in Section 5 above, this would imply that this problem is
ILP-intractable. We show this hardness by presenting a polynomial-
time reduction to this problem from the ¥V 33SAT problem, which
is defined in the following manner:

DEFINITION 2 (THE VY 33SAT PROBLEM).
INSTANCE. A Boolean formula ¢(X, ) in 3CNF (Conjunctive Normal
Form - i.e., as the “and” of clauses each comprising exactly 3 literals)
QUESTION. Is is true that (VX)(3))P(X, y)? O

It is known [22, 24] that the V 3 3SAT problem is complete for the
complexity class co-NPNP,

THEOREM 1. It is co-NPNP-hard to determine whether a given
conditional DAG in which each job is restricted to execute upon a
specified processor, is guaranteed to always complete execution by a
specified deadline.
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Figure 4: The jobs constructed for boolean variable x;.

Proof. We show this by reducing a given V 33SAT expression
with (nx + ny) boolean variables and m 3CNF clauses

) \(Ca V ez v lis) ()

i=1

V(xl,x2, .. .,xnx)a(yl, Yo, - -

where each ¢y ; is one of the x; or y; boolean variables or its nega-
tion, to a conditional DAG with

- (7nx + 2ny + 3m) nodes, of which 2n, are conditional nodes
and the rest represent jobs;

- (5nx + 3m) edges;

- (3nx + ny + m) processors; and

- deadline D = 4

that is feasible if and only if the V 33SAT expression evaluates to
true. The reduction proceeds in the following manner.

FOR EACH BOOLEAN VARIABLE X;. We define four jobs labeled X;,—Xj,
Aj, —A; with unit execution requirements, and a single job B; with
execution requirement 3. (We will say that the job X; corresponds
to the literal x;, and the job —X; corresponds to the literal —x;.)

The edges connecting these vertices are as shown in Figure 4: we
have a conditional construct (start-node and associated end-node),
with A; on one branch and —A; on the other, and an edge from
the end-node of the conditional construct to the node B;. Job B;
is assigned to processor Py ;. Jobs X; and A; are both assigned to
processor P, ;. Jobs =X; and —A; are both assigned to processor
P3 ;. (Jobs that are assigned to the same processor are shaded with
the same color in the diagram above.)

Since the deadline is at time-instant 4 and job B; has an execution
duration of 3, B; must begin executing no later than time-instant 1
if it is to complete by the deadline. Hence, the conditional construct
must complete execution no later than time-instant 1, implying
that exactly one of the jobs {A;, —A;} must execute during the
time-interval [0, 1]. Since job A; (job —A;, respectively) is assigned
to the same processor as job X; (job =Xj, resp.), this in turn implies
that

FAcT 1. Foreachi,1 < i < ny, at most one of the jobs {X;, =X}
completes execution by time-instant 1 in any schedule in which the
deadline is met.

FOR EACH BOOLEAN VARIABLE y;. We define two jobs labeled Y; and
—Y; with unit execution requirements, both assigned to the same
processor Py ;. Analogously to above, we will say that the job Y;
(job =Y}, respectively) corresponds to the literal y; (the literal —y;,

resp.).
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Since both jobs Y; and —Y; are assigned to the same processor,
it follows that

FACT 2. For each j,1 < j < ny, at most one of the jobs {Yj, ~Y;}
completes execution by time-instant 1 in any schedule in which the
deadline is met.

Hence by time-instant 1 in any schedule in which the deadline
is met, at most one of each pair of jobs {X;, —X;}, and at most
one of each pair of jobs {Yj, =Y;}, could have completed execu-
tion. The literals to which the executed jobs correspond can be
considered to comprise a truth assignment to the boolean variables

({xi, x2, .., xn U {yy2, .- Yn, }) this leads to the conclusion

FacT 3. The jobs that have completed execution by time-instant 1
in any schedule in which the deadline is met are those corresponding
to the literals in some (complete or incomplete) truth-assignment to
the boolean variables of Expression 1.

FOR EACH CLAUSE ({5 1 V €k o V £k 3). We will define three unit-
sized jobs Cy 1,Ck, 2, and Cy 3, all of which are assigned to the
same processor Ps ., and show that at least one of these jobs will
be eligible to execute at time-instant 1 if and only if the truth-
assignment of Fact 3 above causes the clause (¢ 1 V {k 2 V & 3) to
evaluate to true; i.e., at least one of the three literals £y 1, {x 5, or
L3, is assigned the truth value T (for “TRUE”). We do so by having
a single incoming edge into job Cg ; from the job corresponding to
the literal £} i, a single incoming edge into job Cy ; from the job
corresponding to the literal £ 5, and a single incoming edge into
job Cy 3 from the job corresponding to the literal £y 3.

We point out that some boolean variable not being assigned a truth
value (i.e., the truth assignment of Fact 3 not being a complete one)
cannot cause some job to become eligible to execute, that would
subsequently be rendered ineligible if the truth assignment were
completed. That is,

FacT 4. The number of Cy ¢ jobs that become eligible to execute
at time-instant 1 is maximized when the truth assignment of Fact 3
is a complete one.

That concludes our description of the construction of our con-
ditional DAG from Expression 1. We now prove that it can be
scheduled to always complete by its deadline of 4 if and only if
Expression 1 is valid.

LEmMA 1.1. If Expression 1 is true, then the conditional DAG con-
structed above can be scheduled to always complete by its deadline.

Proof. Suppose that Expression 1 is valid: for any assignment of
truth values to the boolean variables (x1 S X25 ey Xy ), there is an as-
signment of truth values to the boolean variables (yl, Y2s- - s yny)

that causes each of the m clauses of Expression 1 to evaluate to true.
We point out that

(1) Each assignment of truth values to the boolean variables
(x1.x2, . .., xn,)

can be emulated by executing the appropriate branch of
the conditional construct that appears in our conditional
DAG. For instance, suppose x; « T; the execution of the
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conditional construct that causes the job —A; to execute
would prevent job —X; from executing, but would permit
job X; to execute, by time-instant 1.

(2) The assignment of truth values to the boolean variables

(y1,yz,...,yny)

that causes each of the m clauses of Expression 1 to evaluate
to true can be emulated by executing the appropriate one
of the two jobs that were generated for each y;. Suppose,
for instance, that y; < F in this assignment; this can be
emulated by executing the job —Y; by time-instant 1.

(3) Hence, each truth-assignment to the boolean variables that
cause the m clauses of Expression 1 to evaluate to true can
be emulated such that the jobs corresponding to the literals
that are true in such a truth-assignment are executed by
time-instant 1.

(4) Consequently, at least one of the three jobs Cy 1, Ck, 2, and
Ck,3 corresponding to each clause is eligible to execute by
time-instant 1, thereby allowing all three jobs to complete
execution on their shared processor by the deadline at time-
instant 4.

And this concludes the proof of Lemma 1.1. O

LEmMA 1.2. Ifthe conditional DAG constructed above can be sched-
uled to always complete by its deadline, then Expression 1 is true.

Proof. Suppose that the conditional DAG we have constructed
can be scheduled to always complete by its deadline.

(1) The job B; that was defined for each variable x; has execution
requirement 3, and so must begin execution no later than
time-instant 1 in order to complete by the deadline. Hence
the conditional construct defined for the variable x; must
complete execution by time-instant 1.

(2) Since each of the ny conditional constructs are independent
of each other, the choice of which branches of each to execute,
which in turn restricts which of the pair of jobs X;, -X;
may execute over the interval [0, 1] for each i, 1 < i < ny,
can force each of the 2"~ possible truth-assignments to the
variables (x1,x2, . ..,%p, ) to be emulated by time-instant 1.

(3) For each of these truth-assignments, it must be the case that
at least one of the three jobs Cy 1, Cy, 2, and Cy 3 correspond-
ing to the k’th clause is eligible to execute by time-instant 1
(in order that all three of these jobs may complete on their
common processor by time-instant 4), for each k, 1 < k < m.

(4) Hence it must be possible to execute exactly one of the two
jobs Yj,=Y; upon their shared processor during the time-
interval [0, 1] for each j, 1 < j < ny, such that the assignment
of truth values to the boolean variables (yl,yz, A yny),
when combined with the choice of assignment to the boolean
variables (xl, X2, ..., xnx) implied by the conditional branches
that were executed, causes each of the clauses to be satisfied.

This establishes that Expression 1 is true, and concludes the proof
of Lemma 1.2. O

Taken together, Lemmas 1.1 and 1.2 lead us to conclude that de-
termining whether a conditional DAG can be scheduled to always
meet its deadline is co-NPNF-hard. We have thus established the
truth of Theorem 1. m]
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The following corollary is an immediate consequence of Theorem 1
and the widely-held belief that each of the sUBSET-OF relationships
depicted in Figure 3 is strict (i.e., ).

COROLLARY 1. There cannot be a polynomial-time procedure that
may in addition call an ILP solver polynomially many times, for
solving the feasibility-analysis problem for conditional DAGs in which
Jjobs are pre-assigned to processors. O

Our next corollary follows by observing that all the numerical pa-
rameters (i.e., the job execution durations and the overall deadline)
characterizing the conditional DAG that was constructed during
the reduction in the proof of Theorem 1 are of value no larger than
polynomial in the size of the input V 3 3SAT instance (Expression 1);
hence, a pseudo-polynomial algorithm for determining its feasibil-
ity on the oracle-equipped computer would imply a polynomial-
time algorithm for the V 3 3SAT Problem upon this same computer,
thereby showing that PNP = ¢o-NPNP_ Since it is widely believed
that this is not the case, we conclude

CoOROLLARY 2. There cannot be a pseudo-polynomial-time proce-
dure that may in addition call an ILP solver pseudo-polynomially
many times, for solving the feasibility-analysis problem for condi-
tional DAGs in which jobs are pre-assigned to processors.

7 DISCUSSION

To our knowledge, most current efforts at representing feasibility
analysis problems as ILPs are ad hoc. The technical results of Sec-
tions 5 and 6 suggest a methodical approach to determining whether
a feasibility-analysis (or indeed, any) problem can be solved effi-
ciently by using ILP solvers:

o To determine whether we can efficiently represent a problem
as an ILP, we should try to show that the problem is in the
complexity class NP.

e To determine whether we can efficiently solve a problem
in polynomial time with one or more additional calls to an
ILP solver, we should try to show that the problem is in the
complexity class PN?.

o If we are not able to make progress in efforts at efficiently
solving a problem with the help of an ILP solver, we should
check whether the problem is in fact hard for NPNP or co-NPNP
(in which case our efforts are unlikely to bear fruit).

8 CONTEXT AND FUTURE WORK

Real-time scheduling theory has begun considering the use of ILP
solvers to obtain efficient algorithms for solving feasibility anal-
ysis problems. In this paper, we report on our findings from a
recently-initiated methodical study of what efficiency means from
this perspective: how does one recognize when a feasibility-analysis
problem can be efficiently solved via ILPs? We have identified the
boundaries of what can reasonably be considered to be efficiently
solvable — see Figure 5, and have demonstrated how one shows
a problem to not be efficiently solvable in this framework. Based
on this categorization, an important question that merits further
investigation is this: what is the most general real-time workload
model for which the feasibility-analysis problem remains tractable
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Figure 5: Complexity classes for which efficient ILP-based
solutions exist.

(i.e., below the dotted blue line in Figure 5)? We note that this is es-
sentially equivalent to identifying interesting real-time scheduling
problems that fall within the complexity class PN (see [15]).
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