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Abstract— In this paper, we present a simple geometric
attitude controller that is globally, exponentially stable. To
overcome the topological restriction, the controller is designed
to follow a reference trajectory that in turn converges to the
desired equilibrium (making it discontinuous in the initial
conditions, but continuous in time). The system and reference
dynamics are studied as a single augmented system that can be
analyzed and tuned simultaneously. The controller’s stability
is proved using contraction analysis (on the manifold), and
the bounds on the convergence rate can be found via a semi-
definite program with linear matrix inequalities. Additionally,
our approach allows the use of the Nelder-Mead algorithm to
automatically select controller gains and reference trajectory
parameters by optimizing the aforementioned bounds. The
resulting controller is verified through simulations.

I. INTRODUCTION

Rigid body attitude control is crucial to the successful
operation of many systems; whether the task is to steer a
vehicle, observe space with a satellite, or install a light bulb
with a robotic arm. In particular, drones (multi-rotor aircrafts),
typically rely on attitude control to maneuver [1]; quadrotors,
for instance, have to first rotate its body in order to provide
thrust in a specific desired direction.

Traditional controllers are generally developed using a
specific parameterization of the space of rotations; however,
these controllers often cannot guarantee global stability due
to the additional singularities or ambiguities introduced by
representations such as Euler angles and quaternions [2].

More recent approaches have instead worked directly on
the underlying differential manifold (e.g., SO(3) for rotations,
SE(3) for rotations and translations, SO(3)×S2 for rotations
with suspended load, etc.) of the configuration space. These
geometric controllers [3]–[8], often combined with Lyapunov
theory, have been shown to exhibit almost global stability
with local exponential convergence (for SO(3), the region is
typically given by a ball of radius π

2 around the origin).
Hybrid approaches such as [9], [10], building on the work

of [11], [12], represent the state of the art for attitude control.
These hybrid controllers are able to achieve global stability
by switching between multiple potential functions (inspired
by non-hybrid controllers). The switching conditions are
designed in a way as to avoid undesired equilibria or regions
of slow convergence. However, these approaches are generally
more complex and more computationally demanding than
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static feedback controllers. In addition, sudden changes in
the control can lead to undesired system behaviors.

Another approach to achieve global stability is presented
in [13], where the authors proposed a time-varying feedback
controller that follows an intermediate reference trajectory
converging to the desired equilibrium. The controller has the
added benefit of being continuous in time (but discontinuous
in the initial conditions), thereby bypassing the previously
mentioned issue with hybrid controllers.

Most of the works cited above ensure stability by posing
constraints on the tuning parameters. Such constraints gener-
ally derive from conditions on the eigenvalues of matrices,
and may also depend on additional parameters from the
analysis. As a result, the convergence conditions are difficult
to decipher, and selecting good gains is challenging: the
corresponding literature does not provide any method to
identify suitable parameters, let alone ones that are optimal in
some sense (e.g. providing the best convergence rate bounds).

In our previous work [14], we combined contraction
analysis (as opposed to Lyapunov analysis) with optimization
to study the stability of a system on the space of rotations.
However, due to the topology and geometry of SO(3), the
proposed controller and framework can only achieve quasi-
global exponential stability [15], [16].

Paper contributions. In this paper, we show that a simple,
easy-to-implement geometric PD controller, can globally
(as opposed to quasi-globally) and exponentially stabilize
rigid body attitudes. To overcome the topological restriction
on SO(3), our controller introduces an intermediate time-
varying reference as in [13] (even for stabilizing to a fixed
equilibrium), but we allow for a more flexible choice of
such trajectory. From an analytical standpoint, we avoid
the introduction of time-varying systems by considering the
reference as part of the state space, and we analyze and tune
gains in this single augmented system using contraction theory
and optimization. Although the analysis is, at a high level,
similar to [14], we improve the framework by analyzing
dynamics on product spaces (instead of a single bundle
manifold), by proposing a less conservative and more general
method to bound the contraction matrix eigenvalues, and by
searching the gain space more efficiently.

II. PRELIMINARIES AND NOTATION

A. Riemannian Geometry

The work in this paper relies on core concepts from
Riemannian geometry. A brief overview is provided; for
a more in-depth discussion see, e.g., [17]. A rigid body’s
attitude in three dimensions can be uniquely represented by



a rotation matrix R ∈ SO(3), where SO(3) = {R ∈ R3×3 :
RTR = I3, det(R) = 1}. The tangent space at a point R
on SO(3) is denoted as TRSO(3) = {RV : V ∈ so(3)},
where so(3) is the set of all 3× 3 skew-symmetric matrices.
In addition, a tangent vector W ∈ TRSO(3) can be mapped
to a vector ω ∈ R3 using the hat (·)∧ and vee (·)∨ operators:

ω =

ω1

ω2

ω3

 (·)∧

�
(·)∨

W = R

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (1)

For convenience and clarity, we denote the hat operator at the
identity R = I3 as ·̂ (i.e., without parentheses). Following this
notation, the statements W ∈ TRSO(3): W = (ω)∧ = Rω̂
represent the same tangent vector.

The exponential and logarithm maps defined at a rota-
tion R ∈ SO(3) locally transforms tangent vectors into points,
and vice versa. The maps are denoted as expR : TRSO(3)→
SO(3) and logR : UR → TRSO(3) where UR ⊂ SO(3) is
the neighborhood around R for which expR is diffeomorphic.
A metric g : TRSO(3)× TRSO(3)→ R is a family of inner
products defined on the tangent space. We use g(·, ·)M to
denote the metric defined by parameters contained in a
matrix M (see §III for the precise definition). The covariant
derivative ∇XY is a generalized derivative that takes in
two smooth vector fields X,Y (e.g. X,Y ∈ X(SO(3))) and
returns the variation of the field Y along the flow of X . In
general the covariant derivative is not unique, however we
use the unique torsion-free connection called the Levi-Civita
connection derived from the metric g.

Second-order rigid body dynamics evolve on the tangent
bundle TSO(3) = {(R,W ) : R ∈ SO(3),W ∈ TRSO(3)},
where the state variables are the rotations R and the an-
gular velocities ω = W∨ ∈ R3 [17]. The tangent space at a
point (R,W ) is denoted as TWTRSO(3) = {(U, V ) : U, V ∈
TRSO(3)}, and since the tangent space of a tangent space
can be identified with itself, we can represent tangent vectors
in TWTRSO(3) as vertically concatenated matrices using the
stack function, e.g. stack(U, V ) = [ UV ].

B. Rigid Body Dynamics

Rigid body rotations can be modeled using two reference
frames: an inertial frame, and a body-fixed frame with origin
at the center of mass. The equations of motion are

Ṙ = Rω̂,

ω̇ = Γ− J−1 (ω × Jω) ,
(2)

where R ∈ SO(3) is the rotation from the body to the inertial
frame, ω ∈ R3 is the angular velocity, J ∈ R3×3 is the inertia
matrix, and Γ ∈ R3 is the total moment vector (control input),
all expressed in the body frame.

C. Contraction Theory

In this section we review contraction theory [18], [19]. The
motivation behind this theory is that if nearby trajectories of a
system converge to some nominal motion, i.e., if the infinitesi-
mal displacements δx between neighboring trajectories (vector
fields, in differential geometry terminology) converge to zero,
then the system is stable. Moreover, the convergence of the

displacements can be shown by analyzing how the vector
field generating the trajectories changes along the infinitesimal
displacements. More formally, a nonlinear system ẋ = f(x)
on Rn (f viewed as a vector field) is contracting if, at
any point x ∈ Rn, the infinitesimal displacement between
neighboring trajectories vanish exponentially fast,

g(δx(t), δx(t))M = ‖δx(t)‖M ≤ ‖δx(0)‖Me−βt. (3)
The above observation leads to the following result.

Proposition 1 (Adapted from [18]): The system ẋ = f(x)
is contracting if there exist a positive definite constant
matrix M such that

d

dt

(
δTxMδx

)
= δTx

(
∂f

∂x

T

M +M
∂f

∂x

)
δx ≤ −βδTxMδx.

(4)
The general result considers matrices M that are functions
of the state x and time t, although here we only consider
constant matrices. The parameter β represents the minimum
guaranteed exponential convergence rate of the system.
Contraction analysis can be generalized to systems evolving
on Riemannian manifolds.

Proposition 2 (Adapted from [19]): A system ẋ = f(x)
evolving on a manifold is contracting if there exist a metric g
with Levi-Civita connection ∇ such that

g (∇δxf, δx)M ≤ −βg (δx, δx)M (5)
for any vector field δx.
Proposition 2 reduces to Proposition 1 when the manifold is
Euclidean or the matrix M represents the coefficients of g
after choosing local coordinates.

III. ATTITUDE CONTROLLER

In this section, we present a geometric attitude controller
for stabilizing a desired rotation (Rd, ωd) ∈ TSO(3), and de-
velop a framework to study closed-loop stability. Without loss
of generality, we choose Rd = I3 and ωd = stack(0, 0, 0).

Inspired by [13], we introduce a reference rotation Rref
that exponentially converges to the desired rotation Rd
through a prescribed trajectory, and a geometric PD controller
driving our rigid body dynamics R toward Rref . We consider
the dynamics of the rigid body, reference trajectory, and
controller in a single system defined by a time-invariant vector
field evolving on the product manifold TSO(3)× SO(3).
The closed-loop vector field is discontinuous in the initial
conditions, but continuous in time which is beneficial for
practical applications, and we show that if the initial rota-
tions (R,Rref , Rd) are within some distance of each other,
the system will converge to Rd ∈ SO(3) exponentially fast.

More formally, the state of the augmented system is
(R,ω,Rref ) ∈ TSO(3) × SO(3) where (R,ω) ∈ TSO(3)
and Rref ∈ SO(3); the tangent space at a point
(R,ω,Rref ) is denoted as T(ω)∧TRSO(3) × TRref

SO(3).
We also represent tangent vectors in this tangent space
as vertically concatenated matrices, e.g. stack(X,Y, Z)
for (X,Y ) ∈ T(ω)∧TRSO(3) and Z ∈ TRref

SO(3).
Next, we choose two cost functions ΨR(R,Rref )

and ΨRref
(Rref , Rd) which are bounded, star-convex (with

Lipschitz continuous Hessian) [?] with respect to Rref and Rd



in the neighborhood URref
and URd

, respectively, and such
that they are zero when the arguments are identical. By
specifying two cost functions, the behaviors of R and Rref
can be independently designed. Then, define the rotation and
velocity errors as

eR =
(
grad1(ΨR)

)∨
, (6)

eRref
=
(
grad1(ΨRref

)
)∨
, (7)

eω = ω − ωd = ω, (8)
where gradi(·) is the gradient operator with respect to the
i-th argument. We then define a geometric PD controller of
the form

Γ = J−1 (ω × Jω)− kdeR − kveω, (9)
where the feedforward term cancels the gyroscopic ef-
fects, and kd, kv are positive feedback gains. In addition,
let −krefeRref

be the dynamics of the reference trajec-
tory Rref for some positive gain kref . The closed-loop
equations for the augmented system become,

Ṙ = Rω̂
.
= fR(R,ω,Rref ),

ω̇ = −kdeR − kveω
.
= fω(R,ω,Rref ),

Ṙref = −krefRref êRref

.
= fRref

(Rref )

(10)

where the system dynamics evolve on the product mani-
fold TSO(3)× SO(3). We denote this vector field as

¯̄Ysys(R,ω,Rref ) = (fR, fω, fRref
). (11)

Remark 1: The dynamics for Rref could be integrated into
an explicit closed form; however the implicit form in (10)
allows us to keep the system time-invariant.

We study the stability of (10) through four steps:
1) Derive the generalized contraction metric (5) for the

closed-loop vector field ¯̄Ysys; this involves defining a
metric on the product manifold and finding a correspond-
ing covariant derivative;

2) Diagonalize and bound the contraction metric to obtain
convex objectives and constraints; this includes bounding
over rotations and velocities, and using Gershgorin discs;

3) Solve for the matrix M through optimization such
that (5) is satisfied for given gains;

4) Automatically select the gains kd, kv, kref while maxi-
mizing β through a gradient-free bisection search.

1) Closed-Loop System and Contraction: The system
¯̄Ysys(R,ω,Rref ) defines a vector field on the product mani-
fold TSO(3)× SO(3). To begin, we choose a non-natural
Riemannian metric of the form

¯̄g
(

¯̄X, ¯̄Y
)
M

=
1

2
tr
(

¯̄XT (M ⊗ I3) ¯̄Y
)

(12)

where ¯̄X, ¯̄Y ∈ T(ω)∧TRSO(3)× TRref
SO(3),

M =

m1 m2 m6

m2 m3 m5

m6 m5 m4

 > 0, (13)

and ⊗ is the Kronecker product. As a convention, all matrix
inequalities in this paper denotes positive (semi-)definite
matrices. This metric gives us six parameters mi ∈ R, i ∈
1, ..., 6 to choose for satisfying the contraction condition (5).
This, however, first requires finding a covariant derivative

compatible with the general non-natural metric. On a product
manifold, one can derive the covariant derivative correspond-
ing to the natural metric from the covariant derivatives of the
individual manifolds. A natural metric only pairs tangent
vectors from the same manifolds and thus the covariant
derivative is a linear combination of the individual manifold’s
derivatives (with the proper mapping). In our case, this
corresponds to setting m5 = m6 = 0. However, in doing
so, the set of possible metrics satisfying the contraction
condition (5) is greatly reduced.

Instead, in this paper we show that it is possible to obtain
the covariant derivative corresponding to the non-natural
metric by using linear coordinate transformations to bring
ourselves to the natural case.

Using Schur complement [21, Appx. A.5.5], we can find
the linear transformation

J =

 1 0 0
0 1 0

m6/m4 m5/m4 1

 (14)

to reduce the metric to the natural case with parameters

Mn =

 m1 −m2
6/m4 m2 −m5m6/m4 0

m2 −m5m6/m4 m3 −m2
5/m4 0

0 0 m4

 (15)

with the matrix (13) transformed as M = JTMnJ , and the
non-natural metric (12) as

¯̄g( ¯̄X, ¯̄Y )M = ¯̄g
(

(J ⊗ I3) ¯̄X, (J ⊗ I3) ¯̄Y
)
Mn

. (16)

Note that Mn = blkdiag(Mn,TSO(3),Mn,SO(3)), where

Mn,TSO(3) =

[
m1 −m2

6/m4 m2 −m5m6/m4

m2 −m5m6/m4 m3 −m2
5/m4

]
(17)

parametrizes a non-natural metric on TSO(3) and
Mn,SO(3) =

[
m4

]
(18)

parametrizes a metric on SO(3).
Remark 2: Transformed tangent vectors, e.g. (J ⊗ I3) ¯̄X ,

must still be tangent vectors in T(ω)∧TRSO(3)×TRref
SO(3).

Therefore, the individual components of the tangent vector
must be transported to the correct tangent space. On SO(3)
there is a natural (or canonical) way given by the left-
translation. For the transformation matrix (14), the two
tangent vectors on TSO(3) are scaled, left-translated from R
to Rref , and added to the tangent vector on SO(3).

The product manifold of interest is TSO(3) × SO(3),
and the covariant derivatives for TSO(3) and SO(3) are
available [22], [23]. Let ∇̄X̄ Ȳ and ∇XY denote the covariant
derivatives on TSO(3) and SO(3) compatible with the
metrics given in (17) and (18), where X̄, Ȳ ∈ X(TSO(3))
and X,Y ∈ X(SO(3)), respectively. Then the covariant
derivative ¯̄∇ ¯̄X

¯̄Y on TSO(3)× SO(3) compatible with the
metric (16) (equivalently (12)) is given as

¯̄∇ ¯̄X
¯̄Y = stack(∇̄X̄ Ȳ ,∇XY ) (19)

where ¯̄X = stack(X̄,X) and ¯̄Y = stack(Ȳ , Y ) are vector
fields on the product manifold.

Remark 3: In computing the standard derivative compo-
nent of the covariant derivative on TSO(3) and SO(3)
for transformed vector fields, e.g. ¯̄∇(J⊗I3) ¯̄X(J ⊗ I3) ¯̄Y , the



derivative is taken along the original vector field ¯̄X because
the curve is invariant under coordinate transformations.

The contraction condition for the closed-loop system
can be computed by first finding the covariant derivative
using (19) where the lower argument is an arbitrary vec-
tor δx = (J ⊗ I3)stack(Rζ̂,Rη̂, Rref ν̂) for ζ, η, ν ∈ R3 and
the second argument is the transformed system dynamics
vector field (10), i.e. (J ⊗ I3) ¯̄Ysys. Plugging the derivative
and δx into the metric (16) and then into inequality (5), the
contraction condition is[

ζ η ν
]
M
[
ζ η ν

]T ≤ 0 (20)
where M is a symmetric matrix composed of six distinct
block matrices given below:

M1,1 = −m2kd
2

(
DeR +DeTR

)
+

1

4
m′2ω̂

2

+m1βI3, (21)

M2,1 = −m3kd
2

DeTR −
kd
4
m′3êR

+
1

8
m′3ω̂

2 − 1

4
(m′2 −m′3kv) ω̂

+
1

2
(m1 −m2kv + 2m2β) I3, (22)

M2,2 = (m2 −m3kv +m3β) I3, (23)

M3,1 =
kd
2

(m2 −m5)DeTR +
m5m6kd

4m4
êR

− m6kref
2

DeRref
+
m6kref

4
êRref

+
m2

6 −m5m6kv
4m4

ω̂ +m6βI3, (24)

M3,2 =
m3kd

2
DeTR +

m2
5kd

4m4
êR −

m5kref
2

DeRref

+
m5kref

4
êRref

+
m5m6 −m2

5kv
4m4

ω̂

+
1

2
(m6 −m5kv + 2m5β) I3, (25)

M3,3 =
m5kd

2

(
DeR +DeTR

)
+m4βI3

− m4kref
2

(
DeRref

+DeTRref

)
, (26)

where

m′2 = m2 −
m5m6

m4
, m′3 = m3 −

m2
5

m4
(27)

and DeR and DeRref
are the differentials of the rotation

errors (6) and (7) at R and Rref , respectively.
Remark 4: To simplify notation and for the particular cost

functions of interest (42), the Hessian of ΨR (ΨRref
) taken

at Rref (I3) is given by the matrix transpose DeTR (DeTRref
,

respectively). The analysis is identical for the general case.
2) Contraction Matrix Bounds: Notice that the require-

ment (20) is equivalent to M≤ 0, which is satisfied if the
maximum eigenvalue of M is nonpositive. In addition, (20)
has to be considered for all possible (R,ω,Rref ), resulting in
an infinite number of constraints. Furthermore, although the
analytical equations for all eigenvalues of M are non-convex
with respect to mi, i = 1, ..., 6, the elements of M are at
most quadratic in the same variables (with m4 fixed).

Our next step is to derive convex constraints for bounding
the eigenvalues of M using the following strategy:

1) Perform a similarity transformation such that the block-
diagonal matrices of M are mostly diagonalized and
depend on the eigenvalues of DeR and DeRref

;
2) Bound the eigenvalues using Gershgorin discs, and

extract quadratic constraints that depend on the singular
values of each off-diagonal block matrix;

3) Convexify all non-convex quadratic constraints.
In the first step, we choose a transformation matrix

S =

P 03 03

03 Q 03

03 03 Q

 , (28)

where P,Q are orthogonal matrices, i.e. PTP = QTQ = I3,
that diagonalize

(
DeR +DeTR

)
and (DeRref

+DeTRref
),

respectively [24, Thm. 4.1.5]. Then the matrix M can
be transformed, via STMS, such that the block-diagonal
matrices are mostly diagonalized,[

STMS
]
1,1

= −m2kdRe(ΛR) +
1

4
PTm′2ω̂

2P

+m1βI3 (29)[
STMS

]
2,1

= QTM2,1P,
[
STMS

]
2,2

=M2,2 (30)[
STMS

]
3,1

= QTM3,1P,
[
STMS

]
3,2

= QTM3,2Q

(31)[
STMS

]
3,3

= −m4krefRe(ΛRref
) +m4βI3

+
m5kd

2
QT

(
DeR +DeTR

)
Q (32)

where Re(·) is the real part of a complex matrix, ΛR
and ΛRref

are the diagonal matrix containing the eigenvalues
of DeR and DeRref

, respectively.
Next since similar matrices have the same eigenvalues, we

focus on bounding the eigenvalues of STMS. A general
result to bound the eigenvalues of any square matrix is given
by the Gershgorin discs theorem (see [24]). We show that
the Gershgorin disc bounds on STMS lead to eigenvalue
bounds that do not depend directly on the states (R,ω,Rref ),
but geometric parameters and/or eigenvalues in ΛR,ΛRref

.
To do so, we introduce a useful lemma.

Lemma 1: For any n×n matrices A and B, the maximum
absolute row sum, ‖A + B‖∞, is bounded by the sum of
their maximum singular values σmax,

max
1≤i≤n

n∑
j=1

|ai,j + bi,j | ≤
√
n
(
σmax(A) + σmax(B)

)
(33)

Proof: By norm equivalence, ‖A+B‖∞ ≤
√
n‖A+B‖2.

Then by Cauchy-Schwarz, ‖A+B‖2 ≤ ‖A‖2+‖B‖2. Finally,
‖·‖2 = σmax(·) and the proof is complete [24, Chap. 5.6].

Applying Gershgorin, the centroid of the discs are given
by the diagonal elements of

[
STMS

]
i,i

. However for the
case where i = 1 and 3, there are diagonal elements with
dependencies on P or Q, e.g. 1

4P
Tm′2ω̂

2P . It is difficult to
extract a closed-form expression for the diagonal elements
of these matrices since P and Q are general orthogonal
matrices, and the matrix being multiplied also depends on the
states (R,ω,Rref ). This issue can be resolved by considering



these diagonal elements and their corresponding block matrix
as part of the disc’s radius.

The radii are then computed by taking the absolute row
sum of all off-diagonal elements. Again there are difficulties
in extracting closed-form expressions for these terms due
to P,Q, and the dependencies on (R,ω,Rref ). Nonetheless,
since we seek bounds that encompass all states, we consider
the worst case (or largest radius components). In other words,
for each off-diagonal block matrix,

[
STMS

]
i,j
, i 6= j, the

absolute row sum of any row is bounded by the maximum
absolute row sum, ‖

[
STMS

]
i,j
‖∞, i 6= j. Furthermore, the

dependencies on P and Q can be removed since they are
orthogonal; therefore any induced matrix norm of products in-
volving them are invariant, i.e. ‖

[
STMS

]
i,j
‖∞ = ‖Mi,j‖∞

[24, Chap. 5.6]. Thus, Lemma 1 can be used to compute the
radii of the Gershgorin discs.

Also, since the radius of each block row is bounded by the
same value, and Re(ΛR) and Re(ΛRref

) are strictly positive
and bounded, the centroid producing the largest bound is
given by the smallest real eigenvalue.

The maximum bounds on the eigenvalues of STMS, using
the relaxations above on (29)-(??), results in:

D1 = −m2kd min
(

dg
(
Re(ΛR)

))
+ B2,1 + B3,1

+
√

3 max

∣∣∣∣14m′2‖ω‖2
[

0
−1

]
+m1β

∣∣∣∣ , (34)

D2 = m2 −m3kv +m3β + B2,1 + B3,2, (35)

D3 = −m4kref min
(

dg
(
Re(ΛRref

)
))

+ B3,1 + B3,2

+
√

3 max
∣∣m5kddg

(
Re(ΛR)

)
+m4βI3

∣∣ , (36)
where

B2,1 =
√

3

∣∣∣∣−1

8
m′3‖ω‖2

∣∣∣∣+
√

3

∣∣∣∣−1

4
(m′2 −m′3kv) ‖ω‖

∣∣∣∣
+
√

3 max

∣∣∣∣ (m1 −m2kv + 2βm2)−m3kddg(ΛR)

2

∣∣∣∣
+
√

3

∣∣∣∣kd4 m′3θR
∣∣∣∣ , (37)

B3,1 =
√

3 max

∣∣∣∣kd2 (m2 −m5) dg(ΛR)

∣∣∣∣+
√

3

∣∣∣∣m5m6kd
4m4

θR

∣∣∣∣
+
√

3

∣∣∣∣m2
6 −m5m6kv

4m4
‖ω‖

∣∣∣∣+
√

3

∣∣∣∣m6kref
4

θRref

∣∣∣∣
+
√

3 max

∣∣∣∣−m6kref
2

dg
(
ΛRref

)
+m6β

∣∣∣∣ , (38)

B3,2 =
√

3 max

∣∣∣∣m3kd
2

dg
(
ΛR
)

+
1

2
(m6 −m5kv)

∣∣∣∣
+ max

∣∣∣∣−m5kref
2

dg
(
ΛRref

)
+m5β

∣∣∣∣+
√

3

∣∣∣∣m2
5kd

4m4
θR

∣∣∣∣
+
√

3

∣∣∣∣m5m6 −m2
5kv

4m4
‖ω‖

∣∣∣∣+
√

3

∣∣∣∣m5kref
4

θRref

∣∣∣∣ ,
(39)

and ‖ω‖, θR, and θRref
are the norms of ω, eR, and eRref

respectively, and dg(·) extracts the diagonal elements of a
matrix as a vector or the inverse for a vector argument. The
eigenvalue bounds are still state dependent (through ΛR,

ΛRref
, θR, θRref

, ‖ω‖). However, these can be reduced to a
finite number of bounds using the following remarks. As a
result, the constraints on STMS (and M) will only depend
on mi, i = 1, ..., 6.

Remark 5: The θR and θRref
parameters represent a

distance error between any two rotations on SO(3) and are
state dependent. To remove the state dependency, since (37)-
(39) are linear with respect to θR and θRref

, we can select
maximum values θR,max and θRref ,max that geometrically
specify a region of the manifold (further below, we show that
this region only limits the initial conditions of Rref ), without
affecting the overall convergence. Additionally, the eigenval-
ues ΛR and ΛRref

are also bounded [?] therefore appropriate
values can be selected to maximize the bounds (34)-(36) in
the region of θR,max and θRref,max

.
Remark 6: The eigenvalue bounds scale with ‖ω‖. There

might not exist a set of mi, i = 1, ..., 6 that satisfies M≤ 0
for all ‖ω‖, since ω ∈ R3 is unbounded. Therefore, we
assume that there is a bound on the initial speed ‖ω‖max, as
is standard in the literature [5], [6].

Remark 7: In computing B2,1,B3,1,B3,2, we assumed that
DeR and DeTR (DeRref

and DeTRref
, respectively) share the

same eigenvectors and thus the singular value is simply
max(|ΛR|) (max(|ΛRref

|), respectively). This is the case
for our particular cost function (42), but the process and form
of the bounds are similar for the general case.

The last step is to produce convex constraints from the
bounds (34)-(36). First, observe that each bound can be ex-
panded into γi bounds where the max function is replaced by
one of its γi arguments, considering all possible combinations
if multiple max are present. Similarly, αk absolute values
can be expanded into 2αk bounds by replacing them with
the combinations of positive and negative arguments. For
example, (34) has γ1γ2γ3γ4 = 2 · 3 · 3 · 3 = 54 bounds after
expanding its four max functions, which result in 54 · 210

bounds after expanding the 10 absolute value terms.
Remark 8: Although there are many constraints, they

only need to be solved offline during the design phase. In
implementation, the controller is a simple static feedback. The
number of constraints is easily handled by modern solvers. In
the case of the CVX modeling environment, the constraints
can be entered without the max and absolute value function
expansions if written with only linear variables. In practice,
the total number of constraints can be drastically reduced
depending on the cost functions ΨR,ΨRref

. In some cases,
individual terms can be combined or written without absolute
values which reduces the number of constraints exponentially.

Expanding each bound (34)-(36) and by inspection, the
resulting bounds can be written in quadratic matrix form since
they are at most quadratic with respect to mi, i = 1, ..., 6
and m4 fixed (see Remark 11 below). In addition, the bounds
are constrained to be less than or equal to zero to satisfy (20).
Define y = stack(m1,m2,m3,m5,m6), then each of the
constraints can written as

yTAjy+BTj y+Cj(m4) ≤ 0, j = 1, ...,
3∑
1

2αkΠγi, (40)



where ATj = Aj , Bj ∈ R5, and Cj ∈ R. The Aj’s are sparse
with only non-zero elements in the bottom right 2× 2 block
matrix and are, in general, non-convex (Aj � 0).

Remark 9: Since Aj is real and symmetric, it can be
diagonalized by some orthogonal matrix V , i.e. Aj = V ΛV T

where Λ is the diagonal eigenvalues matrix. Next,
choose A′j = V Λ′V T where Λ′i,i = max (0,−Λi,i) and zero
elsewhere. Then, the constraint involving Aj can be made
convex if it is replaced with Aj +A′j ≥ 0. By making (40)
convex, the constraints can be solved quickly using standard
convex solvers.

3) Feasibility Problem: In this section, we formulate
a feasibility problem to bound the maximum eigenvalue
of the contraction matrix (20) using convex constraints
from (40) to solve for (13) under the assumption that all
other parameters are given. The feasibility problem can be
solved as a semidefinite program (SDP).

Theorem 1: The closed-loop system given in (10) with
controller (9) is globally, exponentially stable with minimum
convergence rate β > 0 for all R ∈ SO(3), if there
exist mi, i = 1, ..., 6 satisfying,[
−BTj y − Cj yT

(
Aj +A′j

)1/2(
Aj +A′j

)1/2
y I5

]
≥ 0

j = 1, ...,
3∑
1

(2αk)Πγi,
(

eigenvalue bounds
)

m1 m2 m6

m2 m3 m5

m6 m5 m4

 > 0,
(

metric on TSO(3)× SO(3)
)

(41)
for given kd, kv, kref , β, ‖ω‖max, θR,max,
θRref ,max, m4, θR,max + θRref ,max ≥ π, and
y = stack(m1,m2,m3,m5,m6).

Proof: The constraints in (40) bounds the maximum pos-
sible eigenvalue ofM for all states (R,ω,Rref ) within the re-
gions specified by the parameters θR,max, ‖ω‖max, θRref ,max.
The convex constraints, using Remark 9, can be transformed
into equivalent linear matrix inequalities (LMI) via the Schur
complement lemma [21, Appx. A.5.5] resulting in the first set
of constraints. The second set of constraints is the requirement
stemming from the non-natural metric (12) on the product
manifold. Then, if suitable mi, i = 1, ..., 6 are found, the
system is converging exponentially by contraction theory
since (20) is always nonpositive.

Furthermore, the set of states R that are exponentially
converging is given by ΦR = {R ∈ SO(3) : θR(R, I3) ≤
θR,max +θRref ,max}. To see this, note that R is converging if
there exist a Rref such that θR(R,Rref ) ≤ θR,max. Similarly,
the set of converging Rref is given by ΦRref

= {Rref ∈
SO(3) : θRref

(Rref , I3) ≤ θRref ,max}. Then, the set ΦR
must include ΦRref

and all rotations up to θR,max distance
away. Since θR,max + θRref ,max ≥ π, ΦR completely cov-
ers SO(3).

Finally, the closed-loop vector field (11) is the gradient
of the Lyapunov function V (R,ω,Rref ) = ‖ ¯̄Ysys‖2M where
the norm is with respect to the metric (12), and thus the

contraction region is forward-invariant and forward complete
by [18, Corollary 5.1]. Since ΦR covers SO(3), the system
is globally, exponentially stable.

Remark 10: Due to the relaxations used to find mi, i =
1, ..., 6, the parameters θR,max, ‖ω‖max, θRref ,max represent
a conservative contraction region of the state space. It is
possible to back-solve (e.g. numerically) for the actual
limiting parameters (states). However our analysis guarantees
exponential convergence if the system starts in the contracting
region R0 ∈ ΦR, ‖ω‖0 ≤ ‖ω‖max and Rref,0 ∈ ΦRref

∩
θR(R0, Rref,0) ≤ θR,max, which is sufficient.

Remark 11: The contraction metric (20) is homogeneous
in M . If a particular solution M∗ exist, then any scaling
of M∗ is also a solution. Therefore, we add the con-
straint m4 = 1 to improve the numerical stability and to
remove some nonlinearity in the eigenvalue bounds (34)-(36).

4) Automated Gain Selection: The problem in Theorem 1
might be infeasible for the given parameters, and even if it is
feasible, it might not provide the best convergence guarantees.
In this section, we introduce Algorithm 1, a gradient-free
bisection search algorithm that uses the Nelder-Mead algo-
rithm [25] to automatically select the best gains k∗d, k

∗
v , k
∗
ref

with the largest minimum convergence rate β∗ for given
parameters ‖ω‖max, θR,max and θRref ,max. The Nelder-Mead
algorithm is used because it can search quickly around desired
gains for a local optimal and it can optimize over any general
nonlinear scalar-valued function (as the one generated by the
bisection search here).

Algorithm 1 Gradient-free bisection search algorithm
to find k∗d, k

∗
v , k
∗
ref with largest minimum convergence

rate β∗ satisfying Theorem 1. The system input param-
eters are the maximum angular speed ‖ω‖max, distance
errors θR,max, θRref ,max, and initial desired gains gainsList.

Require: gainsList, ‖ω‖max, θR,max, θRref ,max

for [kd, kv, kref ] in gainsList do
[k′d, k

′
v, k
′
ref , β

′]← NelderMead(kd, kv, kref ) {
β′ ← bisectionSearch(k′d, k

′
v, k
′
ref ) {

Solve feasibility problem (41)}}
optParams← [k′d, k

′
v, k
′
ref , β

′]
end for
return [k∗d, k

∗
v , k
∗
ref , β

∗] = maxConRate(optParams)

The underlying principle of the algorithm is that it solves
the feasibility problem (41) multiple times with different gains
(generated by Nelder-Mead) and convergence rates (generated
by bisection search), ultimately selecting the combination with
the largest guaranteed minimum convergence rate β.

Remark 12: The general strategy presented in Algorithm 1
can be used to select gains for any controller with explicit
bounds on the convergence rate (such as the one from [6]).
In our case, with results based on contraction and convex
optimization, the implementation is greatly simplified.

Remark 13: If the gainsList is densely defined and the
number of test iterations in the Nelder-Mead algorithm is
one, then Algorithm 1 reduces to a brute force grid-search.



However, a more sparse gainsList utilizing the Nelder-Mead
algorithm can sample the gain space more efficiently.

IV. RESULTS AND SIMULATION

In this section, we validate the controller and theory
presented in Section III with a simulation. Recall that we are
stabilizing to the point Rd = I3 and ωd = stack(0, 0, 0). To
begin, we choose ΨR and ΨRref

to be (with r ∈ {R,Rref}),

Ψr(R1, R2) =
1

2
d(R1, R2)2 =

1

2
‖
(
logR1

R2

)∨‖2, (42)

which is the squared geodesic distance on SO(3) with
metric [26]

g
(
Rα̂,Rξ̂

)
=

1

2
tr
(
α̂T ξ̂

)
. (43)

Then, the gradient of Ψr is given by [27, Prop. 2.2.1] as
grad1(Ψr) = − logR1

R2 = R1R
T
2 logR2

R1. (44)

Remark 14: Note that our formulation separates the metric
used to compute the errors and control (43) from the metric
for proving convergence (16).
Since êr and its differential Der share the same
eigenvectors [27], they can be simultaneously
diagonalized resulting in diagonal eigenvalue
matrices Λêr = dg (stack(0, θri,−θri)) and Λr =
dg
(
stack(1, θr2 cot θr2 + θr

2 i,
θr
2 cot θr2 −

θr
2 i)
)

[27, Prop.
E.2.1] where cot(·) is the cotangent function, i is
the imaginary unit, and θr = ‖

(
logR1

R2

)∨‖. The θr
parameter represents the geodesic distance between any two
rotations on SO(3) with respect to the metric (43), and is
bounded between 0 and π [27]. Thus, the real part of the
eigenvalue θr

2 cot θr2 ∈ (0, 1) is continuous for θr ∈ [π, 0]

and min
(

dg
(
Re(Λr)

))
= θr

2 cot θr2 .
Next, with Remark 8 in mind, some terms in the off-

diagonal block matrices of M can be combined when
computing the singular values. For example, from (22) these
two terms can be combined,

σmax

(
−m3kd

2
DeTR −

m3kd
4

êR

)
=
m3kd

2
(45)

because DeTR and êR share the same eigenvectors,
m3, kd,Re(ΛR) > 0, and max (dg(Re(ΛR))) = 1. After
expanding the bounds (34)-(36), our cost function resulted
in 3072 constraints which is considerably less than expected.

The system and Algorithm 1 parameters are reproduced
in Table I; the initial attitude R0 has been selected to
be the maximum distance (π) away from the identity I3,
the initial reference rotation Rref,0 has been randomly
selected to be θRref ,max distance away from the iden-
tity and θR,max from R0, and the initial angular veloc-

ity ω0 =
(logR0

Rref,0)
∨

‖(logR0
Rref,0)

∨‖
. The initial gains kd, kv are se-

lected near the optimal results in [14] with varying kref . The
algorithm results are shown in Table II with

M =

0.0347 0.0003 0.0140
0.0003 0.0001 0.0003
0.0140 0.0003 1.000

 (46)

where we solved the feasibility problem in Theorem 1,
utilizing Remark 11 to constrain m4 = 1.000, using the

(a) Rotation error

(b) Velocity error

(c) Control input

(d) Max Eigenvalue of Contraction matrix

Fig. 1: Simulation results using parameters from Table II.
The system, starting at the maximum distance, converges
exponentially (contraction metric is nonpositive 1d) to the
desired rotation.

CVX modeling system [28] and SDPT3 solver [29]. The
algorithm found a metric guaranteeing minimum convergence
rate β = 0.4022, although the actual rate is in fact faster (see
Fig. 1). The looseness of the bound could be due to several
reasons, such as the use of the Gershgorin discs, the singular
value relaxation, convex constraints relaxation, and the fact
that the bound needs to hold in a large convergence basin
(θR,max + θRref ,max = π).

The results of our algorithm are confirmed via a simulation
in Matlab R2020a using ’ode45’. The tracking errors of the
closed-loop system are shown in Fig. 1. From Fig. 1a and 1b,
it can be concluded that the system starting at the maximum
rotation away and experiencing angular speeds greater than
‖ω‖max = 1 converges, seemingly with an exponential rate.
Additionally, the control torque, Fig. 1c, is continuous and
smooth which is desirable.



Exponential convergence of the system can be verified by
analyzing the contraction matrix M. The largest eigenvalue
of the matrixM is shown in Fig. 1d. As expected, the largest
eigenvalue is always nonpositive thus confirming global
exponential convergence by contraction theory. Furthermore,
the simulation results suggest that tighter bounds on the
contraction matrix (and convergence rate) can be obtained.
In particular, the general Gershgorin disc theorem produces
conservative bounds on the eigenvalues. There exist a plethora
of modified Gershgorin theorems that may produce tighter
bounds (such as resizing of the discs via a similarity
transformation); this will be explored in future work.

V. CONCLUSION

We have shown that a simple geometric PD controller can
globally, exponentially stabilize 3-D rigid body rotations. The
controller achieves this by following a reference trajectory
that is designed and tuned in tandem with the controller
itself. Stability of the system is proved using contraction
theory combined with optimization. The result is a convex
optimization problem that uses the linear matrix inequalities
stemming from the contraction metric bounding the mini-
mum convergence rate. Additionally, we proposed a way to
automatically choose suitable controller gains and reference
trajectory parameters that optimizes the convergence bound.

In future work, we plan to investigate other cost functions
on SO(3), and methods to tighten the eigenvalue bounds.
Additionally, we want to apply our framework to the manifold
of three-dimensional rigid poses SE(3). We expect our
framework to generalize well to any manifold (and product
manifolds) of interest.
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