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Abstract—Following the trend of increasing autonomy in cyber-physical systems, parallel embedded architectures have enabled devices

to better handle the large streams of data and intensive computation required by such autonomous systems. However, while the

explosion of highly-parallel platforms has seen a proportional growth in the number of applications/devices that utilize these platforms,

the embedded systems community’s understanding of how to build time-predictable, safety-critical systems with parallel platforms has

not kept pace. As a well-motivated but challenging parallel scheduling model, gang scheduling requires all parallel threads of each

parallel task to simultaneously execute in unison, which is in contrast to traditional, multi-threaded parallel scheduling, where a parallel

task may spawn multiple threads, and each thread will be scheduled independently of other threads of the same task. While increasing

research efforts on hard real-time (HRT) gang scheduling have recently been seen, the problem of gang scheduling in the context of soft

real-time (SRT) systems, where provably bounded deadline tardiness can be tolerated, has hardly been studied yet. In this paper, we

derive and prove the first tardiness bounds for sporadic gang task systems under preemptive GEDF scheduling. A total utilization bound

for SRT-schedulability is required for ensuring such tardiness bounds but it is shown to be tight with respect to the platform capacity and

maximum parallelism-induced idleness. Furthermore, we also empirically evaluate the effects of different degrees of task parallelism

upon the SRT-schedulability.

Index Terms—Real-time scheduling, gang tasks, schedulability test, tardiness bound, Global-Earliest-Deadline.

✦

1 INTRODUCTION

A major factor in the recent drive towards increasingly
autonomous systems (e.g., autonomous automobiles [16],
drones [7], etc.) is the proliferation of relatively inexpensive,
yet highly-parallel embedded architectures [12], [11]. These
parallel embedded architectures (e.g., graphics processing
units [18], tensor processing units [9], etc.) have enabled
devices to better handle the large streams of data and
intensive computation required to learn and make decisions
autonomously in uncertain, high-dimensional environments
with techniques like deep learning [13]. However, while the
explosion of highly-parallel platforms has seen a propor-
tional growth in the number of applications/devices that
utilize these platforms, the embedded systems community’s
understanding of how to build time-predictable, safety-
critical systems with parallel platforms has not kept pace.
In fact, the challenges and difficulty in guaranteeing timing
constraints in a parallel platform typically are only com-
pounded as architectures increase the number of parallel
processing resources on an embedded board; this is due to
the increasing potential for contention between competing
tasks executing on the different resources (e.g., contention
for a shared resource between two threads executing in
parallel on different cores).
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Fig. 1: Example gang task schedule.

A widely-accepted approach to reducing inter-
application interference between applications co-executed
upon a shared, multiprocessor/multicore platform is gang
scheduling [1], [10], [8], [5], [2]. Gang scheduled tasks
comprise k parallel threads simultaneously co-executed
(i.e., in unison) on k different processing resources. The
requirement of parallel task executing in unison is in
contrast to traditional, multi-threaded parallel scheduling,
where a parallel task may spawn multiple threads, and
each thread (once released and ready for execution) will
be scheduled independently of other threads of the same
task (until a barrier/synchronization point is reached –
e.g., a “join” phase of a fork-join task [19]). The intra-task
dependencies make the execution flow of the traditional
parallel task very complected at runtime, which may cause
rather pessimistic schedulability loss. The requirement of
unison execution for gang-scheduled tasks is attractive for
system designers as it permits a parallel task use of low-
overhead synchronization protocols for communicating
between its tasks and to commence multiple threads
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simultaneously. Especially, for data-intensive applications,
such as vision-based autonomous driving systems and
virtual reality systems, data is highly parallel and the
computations can be accelerated by gang scheduling – all
of an application’s threads of execution being grouped into
a gang and concurrently scheduled on distinct processors.

However, gang scheduling is a double-edged sword. A
released gang job can be scheduled only if the number of
idle processors is at least the number of processors required
by the corresponding gang task. This simple constraint
may introduce additional utilization loss for the multicore
platform. Consider an intuitive example, where three gang
tasks (τ1, τ2 and τ3) are scheduled on four processors (i.e.,
M1,M2,M3,M4 in Fig. 1) under global earliest-deadline-
first (GEDF). τ1 has a parallelism of three processors while
both τ2 and τ3 have a parallelism of two. As seen in Fig. 1, at
time 0, although there is an idle processor, the scheduler can
schedule neither τ2 nor τ3 onto it because both tasks have
a parallelism of two processors. From this task schedule, it
is evident to see that the response time for each gang task
increases over time but the multicore platform cannot be
fully utilized due to the gang tasks’ parallelism.

Gang tasks’ non-malleable parallelism (as illustrated in
Fig. 1) introduces a significant challenge to the derivation
soft real-time (SRT) schedulability analysis 1. For ordinary
(non-parallel, independent) sporadic task systems, Devi [4]
proved that the computing capacity of multicore platforms
can be fully utilized, which means even if the total utiliza-
tion of the task system is equal to the number of processors
on the multicore platform, the real-time tasks will still have
bounded response times. Unfortunately, as we mentioned
above, the multicore platform cannot be fully utilized by
the gang tasks. Existing results cannot be used directly to
analyze the schedulability of gang tasks. To resolve this
parallelism-induced research challenge, this work aims at
developing techniques that can upper bound parallelism-
induced utilization loss for any sporadic gang task systems
and derive a corresponding utilization-based schedulability
test. Specifically, we study gang task system scheduled on
a homogeneous multiprocessor under the classical GEDF
scheduling policy. To the best of our knowledge, this is
the first utilization-based schedulability test derived for SRT
sporadic gang task systems.

Related work. The problem of scheduling real-time gang
tasks has received much recent attention in real-time sys-
tems community, e.g., [10], [8], [5], [2]. However, these
efforts were directed on HRT systems only. On the other
hand, since the seminal work by Devi and Anderson [4]
on SRT systems that are defined by bounded tardiness, a
series of work in this direction has been done, e.g., [3],
[14], [6], which, however, address conventional sporadic
(non-parallel) tasks only. To the best of our knowledge,
the problem of gang scheduling for SRT systems has been
tackled only in [20] where non-preemptive FIFO scheduling
is considered. In contrast, we focus on preemptive GEDF
scheduling in this paper.

Paper Contributions. This paper makes the following con-
tributions to the soft real-time scheduling of gang-scheduled

1. In SRT systems, deadlines of real-time tasks may be missed as long
as the tardiness of every task is bounded (by task system parameters)

parallel sporadic tasks:

• We provide a motivating example (Section 3) to show
that there exist sporadic gang task systems with uti-
lization approaching one that cannot be scheduled by
any algorithm (online or offline) on an M -processor
platform to meet all deadlines. This motivates us to
focus upon SRT gang scheduling of sporadic tasks.

• We introduce the concept of parallelism-induced idleness
(Section 5) that refers to time intervals during which
there is a ready gang task and available processors, but
the task cannot execute due to the requirement that all
threads of a task must execute in unison. Furthermore,
we design an algorithm for quantifying the magnitude
(i.e., number of processors) of the parallelism-induced
idleness.

• We derive and prove the first tardiness bounds for gang-
scheduled sporadic task systems under preemptive
GEDF scheduling (Section 6). Under a total utilization
bound, which serves as a SRT-schedulability test, these
bounds are derived using a novel lag-based reason-
ing approach that incorporates the parallelism-induced
idleness as a factor.

• We show that the required total utilization bound for
ensuring such tardiness bounds is tight with respect
to the platform capacity and maximum parallelism-
induced idleness (Section 7).

• We empirically evaluate the effects of different degrees
of task parallelism upon the SRT-schedulability of a
sporadic gang task system (Section 8).

2 SYSTEM MODEL

In this paper, we consider the sporadic gang task model,
which extends the conventional sporadic task model by
that each task may require and occupy multiple, instead of
one, processors to commence any execution. Namely, we
consider the problem of scheduling a set τ = {τ1, ..., τn} of
n independent sporadic gang tasks on M identical proces-
sors. Each task τi needs to occupy mi available processors
simultaneously for being scheduled to execute. mi is called
the degree of parallelism of τi. Similar to the conventional
sporadic task model, each sporadic gang task τi releases a
potentially infinite sequence of jobs, where arrival times of
any two consecutive jobs of task τi must be separated by at
least pi time units. We also assume implicit deadlines in this
paper, i.e., every job of task τi has an (absolute) deadline pi
time units after its release. We denote the jth job of τi by τi,j
and denote its release time and (absolute) deadline by ri,j
and di,j , respectively, i.e.,

di,j = ri,j + pi. (1)

Letting fi,j denote its finish time, the tardiness of job τi,j is
defined by max{fi,j − di,j , 0}, and the tardiness of a task
is defined by the maximum2 tardiness over all its jobs. We
also denote the worst-case execution time (WCET) of τi by
ei, i.e., each job of τi can execute at most ei time units while
occupying mi available processors. Therefore, the worst-
case execution requirement of task τi can be represented as

2. Or more precisely, it is “supremum” instead of “maximum” to
better fit the fact that each task may release an infinite number of jobs.
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Algorithm 1: Selecting Jobs to Schedule under GEDF

input : Ready(t), which is the ready job set at time t

output: Sched(t), which is the scheduled job set at time
t

1 Sched(t)← ∅
2 for each τi,j ∈ Ready(t) in deadline increasing order

do
3 if

∑
τk,ℓ∈Sched(t) mk ≤M −mi then

4 Sched(t)← Sched(t) ∪ {τi,j}
5 end
6 end

an mi × ei rectangle in the schedule. Thus, each implicit-
deadline sporadic gang task is specified by three parame-
ters: τi = (ei,mi, pi). A simple example of a real-time gang
task system is given in Fig. 2. The parameters for each gang
task are described in Example 1.

For each job τi,j , we also call the preceding jobs (released
prior to τi,j) of the same task τi as the predecessors of τi,j . At
an arbitrary time instant t, a job is called pending if it is
released but not completed at time t, and is called ready if it
is pending and all its predecessors have been completed at
time t. We also assume that only ready jobs can commence
execution, i.e., at most one job of each task can be executed
at a time.

Furthermore, the utilization3 of each sporadic gang task
τi is defined as

ui = (ei ·mi)/pi. (2)

Note that the utilization of a gang task may be larger than
one, which differs from the traditional sporadic task model.
The utilization of the task system is Usum =

∑n
i=1 ui. While

utilization is with respect to the execution requirement per
task period, we also define

λi = ei/pi (3)

with respect to the execution time per task period and λi is
called the horizontal utilization [8] of task τi. By the definition
of ui and λi, it is clear that

λi = ui/mi. (4)

Furthermore, because it is assumed that a job can commence
execution after its release only when all its predecessors
have completed, the jobs of each task must be executed in
sequence while each individual job is executed in parallel
on multiple processors. Therefore, it is clear that λi ≤ 1.0
is a necessary condition for any task τi to possibly have
bounded tardiness. This by Eq. (4) implies that ∀i, ui ≤ mi is
necessary as well. Please note the conventional sporadic task
model is a special case of the sporadic gang task model in
this paper, where it happens that ∀i,mi = 1 which implies
∀i, ui = λi as well.

In this paper, we focus on soft-real-time (SRT) systems
where deadlines may be missed as long as the tardiness
of every task is bounded (by task system parameters), i.e.,
no task has its tardiness grow job by job without bound

3. It is also called rectangle utilization in [8] in contrast to horizontal
utilization. In this paper, references to “utilization” qualification should
henceforth be taken to mean the rectangle utilization, whereas the
horizontal one should always be explicitly specified for references.
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Fig. 2: An example gang task system.

potentially towards infinity. A task system is called SRT-
schedulable under a particular scheduling algorithm if and
only if every task is guaranteed bounded tardiness under
this algorithm in all possible scenarios allowed by the task
model. A task system is called SRT-feasible if and only
if it is SRT-schedulable under some (potentially optimal)
scheduling algorithm.

We also focus on the preemptive GEDF scheduling in
this paper. The priority of each job is determined by its
deadline — the earlier the deadline, the higher the priority.
We also assume deadline ties are broken arbitrarily but con-
sistently, and therefore there is no priority ties while deadline
ties may exist. Letting Ready(t) denote the set of ready jobs
at an arbitrary time instant t, the set of jobs Sched(t) being
scheduled at time t is determined by Algorithm 1. mk is
the degree of parallelism of τk, which has a job in Sched(t).
Please note that, in practice, Algorithm 1 does not need to be
evaluated at every time instant but only needs to be invoked
when a job is completed and when a new job is released.

Example 1. Figure 2 shows an example of scheduling a gang
task system τ under GEDF on a four-processor system consisting
of three gang tasks, τ1 = (30, 3, 70), τ2 = (50, 2, 120), and
τ3 = (50, 2, 120). All tasks release the first jobs at time instant
0 and according to GEDF, τ1,1 has the highest priority and starts
executing when it is released. Since the degree of parallelism of
both τ2 and τ3 is two, even though one processor is idle at time
instant 0, τ2,1 and τ3,1 are delayed and start executing at time
instant 30. Another interesting observation is that since τ1,1 has
completed at time instant 30, by definition, τ1,2 is pending and
ready at time instant 70 but preempted by τ2,1 and τ3,1 during
the time interval [70, 80). Therefore, τ1,2 starts executing at time
instant 80.

3 A MOTIVATION OBSERVATION

Before presenting our developed analysis techniques in
detail, we first intuitively motivate and explain the research
challenges due to the parallelisms of gang tasks.

Example 2. Consider a four-processor sporadic gang task set
τ that consists of two gang tasks scheduled under preemptive
GEDF: τ1 = (ε, 4, 50), where ε > 0, and τ2 = (50, 1, 50).
Suppose both τ1 and τ2 release their first jobs at time instant
0, which is shown in Fig. 2. It is evident that on this preemptive
GEDF schedule, the response times of both τ1 and τ2 increase over
time. Because the degree of parallelism of τ1 is four, which is equal
to the number of processors, resulting in that jobs from τ1 and
τ2 cannot execute concurrently. Because both tasks have a period
of 50 time units and there is a combined WCET of ε + 50 every
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Fig. 3: An unschedulable gang task system.

period, the tardiness of at least one of the two tasks must increase
without bound in the worst case, no matter what scheduling
algorithm is applied. That is, this system is SRT-infeasible. An
interesting observation from this example is that while τ2 are
executing, three processors are idle even τ1 is pending, which
means the computing capacity of the multiprocessor platform
cannot be fully utilized. On the other hand, the total utilization
(Usum) of this task set is 4ε

50
+ 50×1

50
= 0.08ε + 1.0, which is

greater than but arbitrarily close to 1.0 when ε → 0+.

The above example shows that a constant utilization
bound related to M only would not be very interesting
— it cannot exceed 1.0, even if for any potentially optimal
scheduler. Therefore, we will take further information from
the task system parameters to obtain a more meaningful to-
tal utilization constraint for SRT-schedulability. in particular
the ∆i parameter for each task τi will be introduced and
calculated later in Sec. 5.

Also, from above example, it is evident that the com-
puting capacity of the multiprocessor platform cannot be
fully utilized due to the gang tasks’ parallelisms: for gang
task scheduling, a released job can be scheduled only if the
number of idle processors is at least the number of proces-
sors required by the corresponding gang task. Thus, at some
time instants, a released gang job cannot be executed even
some processors are idle. In other words, the computing
capacity of the multiprocessor platform is partially lost,
namely the utilization loss, due to the idleness. Such a worst
case scenario is actually seen in the example shown in Fig. 3,
where the second job of τ1 is blocked by the first job of τ2 at
time instant 50 even though there are three idle processors.

A key insight to motivate our schedulability analysis.
For any given gang task system, if we take the tasks’ total
utilization as the only parameter to validate its schedulabil-
ity, the total utilization of the gang task system cannot be
larger than 1, otherwise, the task system is unschedulable.
Because each gang task may require multiple processors
for execution at the same time and in the worst case,
this requirement analytically converts the “multiprocessor
scheduling” problem into a “single processor scheduling”
problem (e.g., Example 2), enforcing the poor utilization. On
the other hand, applications are defined using parallel gang
structures to better exploit the parallel computing capability
provided by the multicore platform. Example 3 shows a
simple example to illustrate that a four processor platform
is fully utilized by two gang tasks. Therefore, the proposed
schedulability analysis should be able to take into account
the specific degrees of the parallelisms for the gang tasks
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Fig. 4: An example PS schedule.

and allow gang task systems with bounded response time,
as many as possible.

Example 3. Consider a four-processor sporadic gang task set
τ that consists of two gang tasks scheduled under preemptive
GEDF: τ1 = (25, 4, 50) and τ2 = (25, 4, 50). Both tasks have
zero tardiness and the total utilization of the task system is four.

In light of the above discussion, intuitively, given a gang
task system scheduled under GEDF, if the total utilization
loss of the computing platform can be upper bounded by
our analysis according to the tasks’ specific parallelisms,
then we can derive a practical utilization-based schedulabil-
ity test for the gang task system. Since our analysis is based
on the classic LAG-based reasoning, in the next section, we
introduce some preliminaries first.

4 PRELIMINARIES

Our approach towards determining tardiness bounds under
preemptive EDF involves comparing the allocations to a
concrete task system in a processor sharing (PS) schedule
for τ and an actual preemptive GEDF schedule of interest
for τ and quantifying the difference between the two. In
this section, we provide necessary preliminaries for this
approach.

4.1 Lag-based Reasoning

Definition 1. For any given gang task system τ , a PS schedule is
an ideal schedule where each task τi executes with a constant rate
equal to ui whenever it has a ready job. Furthermore, it is clear
that in the PS schedule, every job is guaranteed to complete by its
deadline and must complete exactly at its deadline if it executes
for its worst-case execution requirement. Note that for a sporadic
gang task system, ui can be larger than 1.0. Fig. 4 shows an
example PS schedule.

Example 4. The task system given in Example 1 contains three
tasks, τ1 with utilization 9

7
, τ2 with utilization 5

6
, and τ3 with

utilization 5

6
. τ1, τ2, and τ3 have a period of 70 time units, 120

time units, and 120 time units, respectively. Fig. 4 shows the PS
schedule for this system where each task executes at a rate equal
to its utilization.
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Our schedulability test is obtained by comparing the
allocations to τ in the GEDF schedule S and the correspond-
ing PS schedule, both on M processors, and quantifying the
difference between the two. We analyze task allocations on
a per-task basis.

Our analysis is based on the processing capacity alloca-
tions for the jobs, tasks, and the task set in the PS schedule
and in the actual GEDF schedule. For any concrete instance4

of the task set τ , we consider such allocations as follows. We
let A(τi,j , t1, t2,S) denote the total allocation to job τi,j in S
in [t1, t2). Then, the total time allocated to all jobs of τi in
[t1, t2) in S is given by

A(τi, t1, t2,S) =
∑

j≥1

A(τi,j , t1, t2,S). (5)

Letting PS denote the PS schedule, the difference be-
tween the allocation to a job τi,j in PS and S during time
interval [0, t) is called the lag of job τi,j at time t in schedule
S and is defined by

lag(τi,j , t,S) = A(τi,j , 0, t,PS)− A(τi,j , 0, t,S). (6)

Example 5. Figure 2 shows an example of scheduling a gang
task system τ under GEDF on a four-processor system consisting
of three gang tasks. The corresponding PS schedule is given in
Figure 3. According to Eq. 6,

lag(τ2,1, 50,S) = A(τ2,1, 0, 50,PS)− A(τ2,1, 0, 50,S)

=
5

6
× 50− 2× 20 =

5

3
. (7)

Also, the lag of task τi at time t in schedule S is defined
by

lag(τi, t,S) =
∑

j≥1

lag(τi,j , t,S)

=
∑

j≥1

(A(τi,j , 0, t,PS)− A(τi,j , 0, t,S)). (8)

Furthermore, the LAG of the entire task set τ at time t in
schedule S is defined by

LAG(τ, t,S) =
∑

τi∈τ

lag(τi, t,S). (9)

5 IDLENESS-INDUCED UTILIZATION LOSS

In this section, before taking a further step to upper bound
the utilization loss on the GEDF schedule, we introduce two
types of idleness first using the example in Fig. 5.

Definition 2. Normally, there are two types of idleness on the
GEDF schedule of gang tasks, parallelism-induced idleness and
natural idleness. A time instant t is parallelism-induced idle for
a job set J if (i) at least one processor is idle at t and (ii) at least
one gang job form J is pending but does not execute at t. A time
instant t is naturally idle for a job set J if (i) at least one processor
is idle at t and (ii) all pending gang jobs form J are executing at
t. A time interval is parallelism-induced idle (resp. naturally idle)
for J if each instant within it is parallelism-induced idle (resp.
naturally idle) for J .

4. It means a set of concrete job release times and actual execution
times that follow the task model specification of every task.
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Fig. 5: Parallelism-induced idleness VS. Natural idleness.

Example 6. Both types of idleness exist in the schedule of
Example 1, which is shown in Fig. 5. The idleness from 0 to
30 is parallelism-induced idleness, since both τ2,1 and τ3,1 are
released at 0 but do execute during [0, 30). The idleness from 80
to 120 is natural idleness, because all pending jobs execute during
[80, 120).

Intuitively, for soft real-time GEDF scheduling, the nat-
ural idleness does not hurt the schedulability of real-time
gang tasks, which can be illustrated by the following claim.

Claim 1. For any given real-time gang task system scheduled on
M identical processors under GEDF, if there is no parallelism-
induced idleness on the schedule, the task system is schedulable
(i.e., each task has bounded tardiness) even if its total utilization
is M (and at most M ).

The correctness of this claim will be formally discussed
in Sec. 7. Essentially, upper bounding the parallelism-
induced idleness on the schedule can yield a utilization-
based schedulability test for gang tasks. In order to achieve
this goal, in the rest of this section, we first calculate the
upper bound on the number of idle processors during any
parallelism-induced idle interval for an arbitrary gang task
τi.

Definition 3. Let It denote the number of idle processors at time
instant t. Thus, at time instant t, M − It processors are busy
executing jobs.

Definition 4. Let ∆i denote the maximum possible number of
idle processors at any time during τi’s non-executing intervals in
which τi has pending jobs but does not execute. In other words,
if a gang job τi,j is released before but does not execute during a
non-executing interval of τi, the number of idle processing units
during this non-executing interval is at most ∆i.

Finding ∆i. According to Definition 4, setting ∆i to be
mi−1 is safe but can be too pessimistic, which will result in
a less efficient schedulability test. We now present a polyno-
mial time algorithm based on dynamic programming, which
finds ∆i through exploring the specific tasks’ parallelism
characteristics.

In order to calculate ∆i, we need to find a subset of
tasks in τ \ τi satisfying the following two properties: (i)
the total degree of parallelism of tasks in this subset is at
least M − mi + 1, and (ii) the total degree of parallelism
of tasks in this subset is the smallest one among all subsets
satisfying property (i). The first property guarantees that
the total degree of parallelism of all tasks in the task set is



6

Algorithm 2: ∆i identification algorithm.

input : M,m1,m2, . . . ,mn

output: ∆i

1 N = mi − 1, ∆i = n.
2 if

∑n

i=1 mi ≤M then

3 τ is schedulable, and ∆i does not exist.
4 end
5 else
6 for q = 1→ n− 1 do
7 if q < i then

8 zq = mq

9 end
10 if q ≥ i then

11 zq = mq+1

12 end
13 end
14 for q = 1→ n− 1 do
15 ∆[0][q] = 0.
16 end
17 while N 6= ∆i do
18 for a = 1→ n− 1 do
19 for b = 1→M −N do
20 ∆[a][b] = 0
21 if za ≤ b then

22 if ∆[a− 1][b− za] + za ≥ ∆[a− 1][b]
then

23 ∆[a][b] = ∆[a− 1][b− za] + za
24 end
25 else
26 ∆[a][b] = ∆[a− 1][b]}
27 end
28 end
29 end
30 end
31 ∆i = M −∆[n− 1][M −N ].
32 if N 6= ∆i then

33 N = N − 1
34 end
35 end
36 end

large enough to preempt τi on M processors; the second
property ensures us to identify the minimum total degree
of parallelism (thus the maximum possible number of idle
processors under all scenarios) during τi’s non-executing
intervals.

Algorithm description. We develop a polynomial-time al-
gorithm that applies a dynamic programming approach
to reduce the complexity of finding the subset of tasks
that exhibits the smallest degree of parallelism from all
possible subsets. The detailed pseudocode of this algorithm
is described by Algorithm 2, which is given in the appendix
of [5] as well. The basic idea behind this algorithm can be
explained as follows. First we use dynamic programming to
check whether there exists a subset of tasks in τ\τi satisfying
that the total degree of parallelism of tasks in this subset is
M−mi+1. If yes, ∆i = mi−1; otherwise, we check whether
there exists a subset of tasks in τ \ τi satisfying that the total
degree of parallelism of tasks in this subset is M −mi + 2.
We continue this iteration process until we find ∆i. Note
that the dynamic programming is nearly identical to the

knapsack problem: each task τi corresponds to an item with
both size and value equal to mi; the size of the knapsack is
initially set to M −mi + 1. A run of the standard dynamic
programming formulation for knapsack will require O(Mn)
time to check if there is a subset with value exactly equal to
M−mi+1. Since we have to run this for difference knapsack
sizes, the total time to find ∆i would also be O(M2n). Since
the total degree of parallelism of all tasks in τ is at least M ,
∆i can always be found.

Example 7. We perform this algorithm on a specific gang task
system for example. Consider a ten-processor sporadic gang task
set τ that consists of 5 gang tasks scheduled under preemptive
GEDF: m1 = 4, m2 = 4, m3 = 4, m4 = 5, m5 = 5. ∆5

denotes the maximum possible number of idle processors at any
time during τi’s non-executing intervals in which τi have pending
jobs but does not execute. In step 1, ∆5 = m5 − 1 = 4 and we
use dynamic programming to check whether there exists a subset of
tasks in τ \τ5 satisfying that the total degree of parallelism of tasks
in this subset is M −m5 + 1 = 6. The answer is no, according
to Algorithm 2 (from line 17 to line 35), then ∆5 = 3. In step 2,
we check whether there exists a subset of tasks in τ \ τ5 satisfying
that the total degree of parallelism of tasks in this subset is 7. It
is evident that the answer is no. Then, according to Algorithm 2,
∆5 = 2 and we can find that the total degree of parallelisms of τ1
and τ2 is 8. Therefore, in light of Algorithm 2 (line 17), we have
∆5 = 2.

6 TARDINESS BOUNDS

In this section, we derive a tardiness bound for each SRT
task τi, given that the following total utilization constraint
holds:

Usum ≤ M −∆max, (10)

where
∆max = max

τi∈τ
{∆i}.

Overview. Before diving into the technical details, we per-
form a proof overview first to discuss the intuition behind
the proof. We will prove that each task τi has a tardiness
bound of x+ ei under GEDF scheduling, where

x = max

{

(M −∆max − 1)emax − emin

(M −∆max)(1− λmax) + λmax

, 0

}

, (11)

λmax = max
τi∈τ

{λi}, emax = max
τi∈τ

{ei}, and emin = min
τi∈τ

{ei}.

This proof is by contradiction. We suppose a tardiness
bound does not hold, and let τk,ℓ denote the job with the
earliest deadline that breaks its tardiness bounds. We also
denote the absolute deadline of τk,ℓ by td (i.e., dk,ℓ = td).
That is, τk,ℓ has not completed by td + x + ek, while any
other job τi,j with higher priority than τk,ℓ under GEDF
have tardiness at most x + ei. Please note that we assume
deadline ties are broken arbitrarily but consistently under
GEDF scheduling. In the rest of this section, we will derive
a contradiction with the definition of x in Eq. (11). The
contradiction implies that the supposition cannot be true,
and therefore a tardiness bound of x + ei for every task τi
must hold.

Because of the preemptive GEDF scheduling rule (G) in
Sec. 2, only jobs with absolute deadlines at or before time td
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may have an impact, directly or indirectly, on the execution
of job τk,ℓ. Therefore, letting Υ denote the set of jobs with
absolute deadlines at or before time td, it suffices to consider
jobs in Υ only in the rest of this section. That is, without
loss of generality, all jobs with deadline later than td are
considered as removed from the GEDF schedule we are
investigating as their removal will not change the deadline
miss that arises at td.

Then, we let W (t) denote the total pending workload
(by jobs in Υ) at time t in the GEDF schedule S and a
contradiction will be obtained in three steps: (i) derive an
upper bound on W (td) by the total utilization constraint;
(ii) derive a lower bound on W (td) by the supposition that
job τk,ℓ has tardiness greater than x + ek; and (iii) the first
two steps will imply a condition that x must satisfy and
this condition will directly contradict the definition of x in
Eq. (11).

For ease of reading, we summarize, by Table. 1, the
notations defined in the previous sections as well as those
to be introduced in this section.

Symbol Meaning

τ Task set
n Number of tasks in τ
M Number of processors
τi ith task in τ
mi Degree of parallelism of τi
pi Period of τi
ei Worst-case execution time (WCET) of τi
ui (Rectangle) utilization of τi
λi Horizontal utilization of τi
τi,j jth job of τi
ri,j Release time of τi,j
di,j Absolute deadline of τi,j
fi,j Finish time of τi,j
t An arbitrary time instant
A Processing capability allocation
lag “Lag” of a task
LAG “Lag” of the entire system
S GEDF schedule
PS Processor sharing (PS) schedule
∆i Maximum possible number of idle proces-

sors at any time when τi has pending jobs
but does not execute.

τk,ℓ Job of interest being analyzed
td Absolute deadline of τk,ℓ
x Part of the tardiness bound expression and

defined by Eq. (11)
y Length of gang-busy time interval after td,

to be used and more formally defined in
the proof of Lemma 7

Υ Set of jobs with absolute deadlines at or
before time td

W (t) Total pending workload by jobs in Υ at
time t in the GEDF schedule S

Z Temporal notation in the proofs for certain
accumulated actual execution requirement

TABLE 1: Notation Summary.

Definition 5. A time instant t is called gang-busy if at least
(M −∆max) processing units execute jobs in Υ at time t and is
called gang-idle if at most (M − ∆max − 1) processing units
execute jobs in Υ (i.e., at least (∆max + 1) processing units
are “idle” at time t. A time interval is gang-busy (gang-idle,
respectively) for Υ if every instant within the time interval is
gang-busy (gang-idle, respectively) for Υ.

6.1 An upper bound on W (td)

We first derive upper bound on the lag of each individual
task at a certain time instant t by either of the following two
lemmas, depending on whether the task has pending jobs at
time t.

Lemma 1. For each task τi and for all t ≤ td, if task τi does have
pending jobs at time t, then

lag(τi, t,S) ≤ mi(λi · x+ ei). (12)

Proof. As task τi does have pending jobs at time t, we let
τi,j denote the ready one, i.e., all predecessors of τi,j have
completed by time t. Thus, letting Z denote the accumulated
actual execution requirement by the jobs of τi prior to job τi,j
and letting δ ∈ [0, ei) denote the number of time units that
job τi,j has been executed by time t, we have that

A(τi, 0, t,S) = Z + δ ·mi.

On the other hand, in the PS schedule, all jobs of τi prior
to job τi,j must have completed by time ri,j and then τi,j is
executed at the rate of ui, starting from ri,j . Therefore,

A(τi, 0, t,PS) = Z + (t− ri,j) · ui.

As a result, we have

lag(τi, t,S) = A(τi, 0, t,PS)− A(τi, 0, t,S)

= (t− ri,j) · ui − δ ·mi (13)

We then discuss two cases by di,j , which is the absolute
deadline of job τi,j .

Case 1: di,j ≥ t. In this case, by Eq. (13)

lag(τi, t,S) = (t− ri,j) · ui − δ ·mi

≤ {because δ ≥ 0 and mi ≥ 1}

(t− ri,j) · ui

≤ {because in Case 1, di,j ≥ t}

(di,j − ri,j) · ui

= {by Eq. (1)}

pi · ui

= {by Eq. (2)}

mi · ei (14)

Case 2: di,j < t. Because τk,ℓ is the job with the earliest
deadline that breaks the tardiness bounds and di,j < t ≤ td
in this case, the job τi,j must be able to complete by di,j +
x + ei. On the other hand, recall that δ ∈ [0, ei) denote the
number of time units that τi,j has completed by time t, τi,j is
only able to complete at or after t+ei−δ, when τi,j executes
for its worst-case execution time. Therefore, we have

t+ ei − δ ≤ di,j + x+ ei,



8

which implies
t ≤ di,j + x+ δ. (15)

Thus, by Eq. (13)

lag(τi, t,S) = (t− ri,j) · ui − δ ·mi

≤ {by Eq. (15)}

(di,j + x+ δ − ri,j) · ui − δ ·mi

= {by Eq. (1)}

(pi + x+ δ) · ui − δ ·mi

= {rearrange}

(pi + x) · ui + δ · (ui −mi)

≤ {because δ ≥ 0 and ui ≤ mi}

(pi + x) · ui

= {by Eq. (2) and Eq. (4)}

mi · ei + x · λi ·mi

= {rearrange}

mi(λi · x+ ei) (16)

Thus, combining Cases 1 and 2 and by Eq. (14) and Eq. (16),
the lemma follows.

Lemma 2. If task τi has no pending job at time t,

lag(τi, t,S) ≤ 0. (17)

Proof. Let Z denote the accumulated actual execution require-
ment by the jobs of task τi that have been released at or
before time t. Because task τi has no pending job at time t,
we have

A(τi, 0, t,S) = Z (18)

trivially. On the other hand, by definition, only jobs that
have been released may be executed in the PS schedule,
therefore we have

A(τi, 0, t,PS) ≤ Z. (19)

Thus, combining Eq. (18) and Eq. (19) together, according
to Eq. (6), lag(τi, t,S) = A(τi, 0, t,PS) − A(τi, 0, t,S) ≤ 0.
The lemma follows.

We then derive an upper bound on LAG(τ, t,S) such
that t < td and t is gang-idle, by the supposition that τk,ℓ
denote the job with highest priority that breaks the tardiness
bounds.

Lemma 3. For all t ≤ td, if time instant t is gang-idle, then

LAG(τ, t,S) ≤ (M −∆max − 1) · (λmax · x+ emax). (20)

Proof. Letting γ denote the set of tasks that have pending
jobs at time t, time instant t being gang-idle implies that

∑

τi∈γ

mi ≤ M −∆max − 1. (21)

Also, all tasks in γ must be scheduled for executing at time
t, and all tasks in τ \ γ must have no pending job at time t.
Otherwise, the fact that ∆max + 1 processing units are idle

at time t would contradict the definition of ∆max. Thus,

LAG(τ, t,S) =
∑

τi∈τ

lag(τi, t,S)

= {rearrange}
∑

τi∈γ

lag(τi, t,S) +
∑

τi∈τ\γ

lag(τi, t,S)

≤ {by Lemma 1 and Lemma 2, respectively}
∑

τi∈γ

mi(λi · x+ ei) +
∑

τi∈τ\γ

0

≤ {because λi ≤ λmax and ei ≤ emax for all i}
∑

τi∈γ

mi(λmax · x+ emax)

≤ {by Eq. (21)}

(M −∆max − 1) · (λmax · x+ emax).

The lemma follows.

Next, we prove the following lemma to show that the
system-wide LAG cannot increase through a gang-busy time
interval.

Lemma 4. For any t1 < t2 such that time interval
[t1, t2) is gang-busy, if Eq. (10) holds, then LAG(τ, t1,S) ≥
LAG(τ, t2,S).

Proof. Because in the PS schedule each task τi is executed at
a constant rate of ui if it has pending job(s),

A(τi, t1, t2,PS) ≤ ui · (t2 − t1).

Therefore,
∑

τi∈τ

A(τi, t1, t2,PS) ≤
∑

τi∈τ

ui · (t2 − t1) = Usum · (t2 − t1).

(22)
On the other hand, because time interval [t1, t2) is gang-
busy, we have

∑

τi∈τ

A(τi, t1, t2,S) ≥ (M −∆max) · (t2 − t1). (23)

Thus,

LAG(τ, t2,S)

= LAG(τ, t1,S) +
∑

τi∈τ

A(τi, t1, t2,PS)−
∑

τi∈τ

A(τi, t1, t2,S)

≤ {by Eq. (22) and Eq. (23)}

LAG(τ, t1,S) + Usum · (t2 − t1)− (M −∆max) · (t2 − t1)

= {rearrange}

LAG(τ, t1,S)− (M −∆max − Usum) · (t2 − t1)

≤ {by Eq. (10)}

LAG(τ, t1,S).

The lemma follows.

We finally have an upper bound on W (td) by proving
the following lemma.

Lemma 5. If Eq. (10) holds, then

W (td) ≤ (M −∆max − 1) · (λmax · x+ emax). (24)

Proof. Recall that, in this section we only consider jobs with
deadlines at or before td, i.e., jobs in Υ, and all other
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jobs are viewed as removed. By the definition of the PS
schedule, all jobs in Υ must complete by their deadlines
and therefore must complete by td. As a result, the total
amount of workload that could contribute to W (td) is
∑

τi∈τ A(τi, 0, td,PS). On the other hand, such workload
that has been completed in schedule S by time td, by
definition, is

∑

τi∈τ A(τi, 0, td,S). Therefore,

W (td) =
∑

τi∈τ

A(τi, 0, td,PS)−
∑

τi∈τ

A(τi, 0, td,S)

= LAG(τ, td,S). (25)

We let t0 denote the latest gang-idle time instant at or
before td, or t0 = 0 if no such time instant exists (i.e., [0, td)
is a gang-busy time interval). If t0 > 0, by Lemma 3, we
have

LAG(τ, t0,S) ≤ (M −∆max − 1) · (λmax · x+ emax), (26)

and if t0 = 0, Eq. (26) above is trivially true as
LAG(τ, 0,S) = 0.

Meanwhile, because [t0, td) is a gang-busy time interval
in either case and Eq. (10) holds, by Lemma 4, we have

LAG(τ, t0,S) ≥ LAG(τ, td,S) (27)

Thus, by Eq. (25), Eq. (26), and Eq. (27), the lemma follows.

6.2 A lower bound on W (td)

On the other hand, we next will derive a lower bound on
W (td) such that job τk.ℓ could still have incomplete work at
time dk,ℓ + x+ ek.

Lemma 6. Once the system becomes gang-idle at or after time
td, it remains gang-idle and all tasks with pending job(s) must be
scheduled to be executed and must be continuously executed until
all of its jobs (in Υ) have completed.

Proof. Because at least ∆max + 1 processing units are idle at
a gang-idle time instant, all tasks with pending jobs must
be scheduled to be executed at such time instant. Also, it
is impossible to release any new job in Υ at or after time
td. Therefore, once the system becomes gang-idle at or after
time td, it will remains gang-idle then. The lemma follows.

Lemma 7. If τk,ℓ has not completed by td +x+ ek, it must hold
that

W (td) > (M −∆max) · x+ ek. (28)

Proof. We prove by contrapositive. That is, supposing
W (td) ≤ (M − ∆max) · x + ek, we show that τk,ℓ must
complete by time td+x+ ek. By Lemma 6, from time td, the
system must be gang-busy within time interval [td, td + y)
and then be gang-idle within time interval [td + y,+∞) for
some y ≥ 0.

If mk ≥ M − ∆max, the system keeps gang-busy after
td as long as τk,ℓ has not completed, because either task
τk being executing or the ready job of τk being prevented
from executing due to the lack of available processing units
implies the system is gang-busy. That is, τk,ℓ must complete
by td + y. Also, W (td) ≤ (M −∆max) · x+ ek implies that
y ≤ x + ek

M−∆max

≤ x + ek. Therefore, τk,ℓ must complete
by td + x+ ek.

In the rest of this proof, we focus on the other case of mk

that
mk < M −∆max, (29)

and we discuss the following two cases of such y.
Case 1: y ≤ x. Because [td + y,+∞) is gang-idle and
td + x ∈ [td + y,+∞) in this case, task τk must have been
continuously executing since time td+x if it is not completed
by this time. In this case, only the predecessor jobs of the
same task may prevent job τk,ℓ from continuously execution
from time td+x. However, the predecessor jobs of the same
task may prevent job τk,ℓ must have a deadline at or before
td−pk and tardiness at most x+ek. Therefore, any such pre-
decessor job must have completed by td−pk+x+ek ≤ td+x
due to ek ≤ pk. Thus, job τk,ℓ must have been continuously
executing since time td+x and consequently must complete
by time td + x+ ek.
Case 2: y > x. Because [td + y,+∞) is gang-idle, task τk
must have been continuously executing since time td + y.
Letting z denote the number of time units for which task τk
has been continuously executing since td + y, i.e. τk,ℓ must
complete by time td + y + z, the total workload completed
during [td,+∞) is at least

(M −∆max) · y +mk · z,

which cannot exceed the total pending workload at td, i.e.,
W (td). On the other hand, the contrapositive of this lemma
supposed that W (td) ≤ (M −∆max) · x+ ek. Therefore,

(M −∆max) · y +mk · z ≤ (M −∆max) · x+ ek.

That is,

z ≤
(M −∆max) · (x− y) + ek

mk

(30)

Thus,

y + z ≤ y +
(M −∆max) · (x− y) + ek

mk

=
(M −∆max) · (x− y) +mk · y + ek

mk

=
(M −∆max −mk) · (x− y) +mk · x+ ek

mk

=
(M −∆max −mk) · (x− y)

mk

+ x+
ek
mk

≤ {by Eq. (29) and y > x in Case 2}

x+
ek
mk

≤ {because mk ≥ 1}

x+ ek.

Since τk,ℓ must complete by time td + y + z, it must
complete by time td + x+ ek as well.

Combining Case 1 and Case 2, the lemma follows.

6.3 Finishing up

In the above two subsections, we have shown given the
supposition that a tardiness bound of x + ei for each task
τi does not hold, such a job τk,ℓ that does not complete by
td+x+ek must exist and then both Lemma 5 and Lemma 7
must hold. As shown in the following theorem, this in
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(a) Case 1: ∆∗ ≥ M∗
−1

2
. (b) Case 2: ∆∗ < M∗

−1
2

.

Fig. 6: For any M and ∆max, there exists an SRT-infeasible system with total utilization greater than but arbitrarily close to
(M −∆max).

fact leads to a contradiction, and therefore the supposition
cannot be true. Thus, each task τi has a tardiness bound of
x+ ei.

Theorem 1. If Eq. (10) holds, any task τi cannot have tardiness
greater than x+ ei, where x is defined by Eq. (11).

Proof. Suppose some tasks do have tardiness exceeding the
claimed bound above. Recall that we let τk,ℓ denote the job
with the earliest deadline that has tardiness greater than
x + ek and let td denote the absolute deadline of τk,ℓ. By
Lemma 5, we have

W (td) ≤ (M −∆max − 1) · (λmax · x+ emax),

and by Lemma 7, we have

W (td) > (M −∆max) · x+ ek.

Therefore, they imply that

(M −∆max) · x+ ek < (M −∆max − 1) · (λmax · x+ emax),

which implies that

x <
(M −∆max − 1)emax − ek

(M −∆max)(1− λmax) + λmax

. (31)

Because it is clear that ek ≥ emin by definition, Eq. (31)
implies that

x <
(M −∆max − 1)emax − emin

(M −∆max)(1− λmax) + λmax

. (32)

On the other hand, x is defined by Eq. (11), which implies
that

x ≥
(M −∆max − 1)emax − emin

(M −∆max)(1− λmax) + λmax

. (33)

It is clear that Eq. (32) and Eq. (33) are a contradiction.
Thus, the supposition at the beginning of this proof cannot
be true, and the theorem follows.

7 DISCUSSIONS

As indicated by Eq. (10), a total utilization bound of
(M − ∆max) is required for guaranteeing the tardiness
bounds provided in the prior section. This implies a po-
tential utilization loss of ∆max in the system with respect to
the total computing capacity provided by the M processing
units.

In this section, we discuss such utilization loss from two
aspects. First, we show that such utilization loss is because
of parallelism-induced idleness. Second, we show that for
any M and ∆max, there exists a system with total utilization
greater than but arbitrarily close to M − ∆max that is not
SRT-schedulable under any algorithm, i.e., it is not SRT-
feasible.

As claimed in Claim 1 in Sec. 5, existence of parallelism-
induced idleness is the cause of the utilization loss. On the
other hand, non-existence of parallelism-induced idleness in
fact implies ∀i,∆i = 0, i.e., ∆max = 0 for sporadic gang task
sets. This is because if ∆i > 0 for some i, then the scenario
where ∆i was obtained must be possible to appear given the
flexibility of sporadic releases, and schedulability analysis
for sporadic gang tasks must cover all valid sporadic release
patterns.

Therefore, the following corollary backs up the previous
Claim 1 in Sec. 5, where “no parallelism-induced idleness” is
interpreted more precisely by ∆max = 0 as explained above.

Corollary 1. For any task set such that ∆max = 0, if Usum ≤
M , then each task τi must have tardiness at most x+ ei where

x = max

{

(M − 1)emax − emin

M · (1− λmax) + λmax

, 0

}

.

Proof. This corollary directly follows by Theorem 1, taking
∆max = 0 in both Eq. (10) and Eq. (11).

Meanwhile, we establish the following claim, which
indicates that Eq. (10) as a utilization bound about M and
Umax for any task set is tight while it might not be an exact
SRT-schedulability test for a specific task set.

Claim 2. For any M and ∆max, there exists a system that
is SRT-infeasible and its total utilization is greater than but
arbitrarily close to (M −∆max).

To show the above claim, we demonstrate that:

For any given integer values M∗ > ∆∗ > 0, we
can construct a system such that

1) There are exact M∗ processing units in this sys-
tem;

2) This system is SRT-infeasible, i.e., tardiness
of some task increasing without bound is in-
evitable;

3) In this system, ∆max = ∆∗, where ∆max =
maxi{∆i} and each ∆i is as defined in Def. 4;
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Fig. 7: Schedulability results. In all graphs, the x-axis denotes the task set average utilization (Usum

M
) cap and the y-axis denotes

the schedulability which is the fraction of generated task sets that were schedulable. In the first (respectively, second and third)
column of graphs, small (respectively, moderate and large) per-task parallelism is assumed. Each graph gives three curves for the

cases of light, medium, and heavy per-core utilization (e/p), respectively. As seen at the top of the figure, the label
“16-Gang-l(m/h)” indicates the approach of our utilization-based test assuming light (medium/heavy) per-task utilization and

M = 16. Similarly, “32-Gang” labels are used to denote M = 32 under three scenarios.

4) The total utilization of this system is greater than
but arbitrarily close to M∗ −∆∗.

Such task system construction is given by the following
Example 8. Please note that, it is more intuitive to develop a
construction as the one in Case 1 below, which satisfies the
requirements 1, 2, and 4 above in all cases; however, when
∆∗ < M∗−1

2
, this construction does not satisfy the require-

ment 3, because ∆max would be (M∗−∆∗−1) instead of ∆∗

in this case. Therefore, for the case of ∆∗ < M∗−1

2
, we have

to develop a different construction as presented in Case 2.

Example 8. For any given value of M∗, we consider the schedul-
ing of two sporadic gang tasks, namely τ1 and τ2, on exact M∗

processing units. For any given value of ∆∗, we construct τ1 and
τ2 by the following two cases. Fig. 6 provides a visual illustration
for the task system in the two respective cases, while the actual
schedule may vary as we are discussing feasibility which means
for any scheduling algorithm.

Case 1: ∆∗ ≥ M∗−1

2
. In this case, we consider the two tasks:

τ1 = (ε,∆∗ + 1, 10) and τ2 = (10,M∗ −∆∗, 10). Since m1 +
m2 = (∆∗ + 1) + (M∗ − ∆∗) = M∗ + 1 > M∗, the two
tasks can never execute in parallel with each other. Also, both
tasks have a period of 10 but may have a combined execution time
of 10 + ε > 10 in every period. Thus, the tardiness of at least
one of the two tasks will increase without bound in the worst
case, no matter what scheduling algorithm is applied. At the same
time, please note that ∆1 = ∆∗ (when τ1 is pending and τ2 is
scheduled) and ∆2 = M∗−∆∗−1 (when τ2 is pending and τ1 is
scheduled). Because ∆∗ ≥ M−1

2
in this case, it follows that ∆∗ ≥

M∗ −∆∗ − 1. Thus, it is true that ∆max = ∆∗ in this system.
Also, the total utilization of this system is (∆

∗

+1

10
·ε+M∗−∆∗),

which is greater than but arbitrarily close to (M∗ − ∆∗) when
ε → 0+.

Case 2: ∆∗ < M∗−1

2
. In this case, we consider the two tasks:

τ1 = (ε,M∗ −∆∗, 10) and τ2 = (10,M∗ −∆∗, 10). Because
∆∗ < M∗−1

2
, which implies 2∆∗ < M∗−1, in Case 2, it follows

that m1 +m2 = 2M∗ − 2∆∗ > M∗ + 1 > M∗. Therefore, the
two tasks can never execute in parallel with each other. For the

same reason as that in Case 1 above, the tardiness of at least one
of the two tasks will increase without bound in the worst case, no
matter what scheduling algorithm is applied. At the same time, it
is clear that ∆1 = ∆2 = ∆∗. Thus, it is true that ∆max = ∆∗.
The total utilization of this system is (M

∗−∆
∗

10
· ε+M∗ −∆∗),

which is greater than but arbitrarily close to (M∗ − ∆∗) when
ε → 0+.

A key observation from Example 8 is that there always
exists at least one task system that exceeds the utilization
constraint stated in Eq. 10 by an arbitrarily small positive
real number, having unbounded tardiness. This observation
implies that our derived schedulability test is unlikely to
be improved without incorporating further information and
investigation beyond M and ∆max.

8 EVALUATION

In this section, we describe experiments conducted to eval-
uate the applicability of the schedulability tests proposed
in this work. Our goal is to examine how restrictive the
derived schedulability tests’ utilization caps are. Specifically,
we evaluated our derived utilization-based test given by
Eq. 10.
Experimental setup. In our experiments, parameters of the
gang tasks are generated as follows: task periods were uni-
formly distributed over [20ms, 200ms]; per-core utilization
(i.e., ei

pi
) for different task sets was distributed differently

for each experiment using three uniform distributions. The
ranges for the uniform distributions were [0.005, 0.1] (light),
[0.1, 0.3] (medium), and [0.3, 0.8] (heavy). Parallelism of
tasks were also distributed using three uniform distribu-
tions: [1, M

4
] (parallelism is small), [M

4
, 5M

8
] (parallelism is

moderate), and [ 5M
8
, 7M

8
] (parallelism is high), where M

denotes the number of processors. Task execution costs
were calculated from periods, utilization, and parallelism.
The average total system utilization Usum

M
are varied within

{0.1, 0.2, . . . , 1}. For each combination of per-core utiliza-
tion, parallelism, and total utilization, 10,000 task sets were
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generated for multicore platforms with M = 16 and M =
32 processors. Each such task set was generated by creating
tasks until total utilization exceeds the corresponding uti-
lization cap, and by then reducing the last task’s utilization
so that the total utilization equalled the utilization cap.
For each generated system, SRT schedulability was checked
for the proposed test. Note that similar task set generation
methods have been used in some previous works [17], [3],
[5].
Schedulability results. The obtained schedulability results
are shown in Fig. 7 (the organization of which is explained
in the figure’s caption). Each curve plots the fraction of
the generated task sets successfully scheduled by the corre-
sponding approach, as a function of tasks’ total utilization.
As seen in Fig. 7, our proposed test is able to yield rea-
sonably good performance in almost all cases, particularly
when the parallelism is small. For instance, in Figure 7a,
when tasks’ parallelism is small and per-core utilization
is light, more than 90% of the generated task sets are
schedulable under both 32-Gang and 16-Gang. Another
interesting observation is, in all tested scenarios, 32-Gang
outperforms 16-Gang by a notable margin. For example, as
seen in Fig. 7b, when tasks’ parallelism is moderate and
per-core utilization is medium, 32-Gang can achieve 100%
schedulability when average Usum equals 0.7875 while 16-
Gang can only guarantee 100% schedulability when average
Usum is not greater than 0.7125. The intuition behind this
observation is that as more processors are involved in the
system, the parallelism of the multiprocessor platform can
be better explored by the gang tasks. We also observe that
both of the two cases perform best under small parallelism
and light per-core utilization. This is because when paral-
lelism is small and per-core utilization is light, ∆max become
small, which clearly helps both two cases achieve higher
schedulability. Another interesting observation is that, in
each scenario, for both M = 16 and M = 32, the schedu-
lability of gang tasks decreases when the per-core utiliza-
tion increases. This is because when per-core utilization is
large, the number of gang tasks generated for each task
set becomes small under the corresponding utilization cap.
According to the algorithm given in the appendix of [5], ∆i

is calculated based on the parallelisms of gang tasks from a
selected subset of the gang task system. When the number of
gang tasks becomes small, the possible combinations of the
tasks from the subset becomes small, which yields a large
∆max. According to our proposed schedulability test, with
a large ∆max, the utilization loss of the multicore platform
is large.

9 CONCLUSION

In this paper, we have shown that gang tasks’ non-malleable
parallelism introduces a significant challenge to the deriva-
tion soft real-time schedulability analysis. We found that
the multicore platform cannot be fully utilized by the gang
tasks due to parallelism-induced idleness. Based on this
key observation, we established and proved the first tar-
diness bounds for gang-scheduled sporadic task systems
under preemptive GEDF scheduling in two steps: (i) upper
bound the parallelism-induced idleness on the schedule
using a dynamic programming method; (ii) apply the classic

lag-based reasoning to calculate the gang tasks’ tardiness
bounds. Our derived schedulability test is unlikely to be
improved without incorporating further information and
investigation beyond the platform capacity and maximum
parallelism-induced idleness. In future work, we plan to
consider deriving tardiness bounds for a broader class of
schedulers and for schedulers that must function in settings
where processors are federated [15]. We also plan to inves-
tigate whether tighter tardiness bounds can be obtained by
investigating more task parameters in the analysis.
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