
Pythia-MCS: Enabling Quarter-Clairvoyance in
I/O-Driven Mixed-Criticality Systems

Zhe Jiang∗‖, Kecheng Yang†, Nathan Fisher‡, Neil Audsley∗, Zheng Dong‡§

∗University of York, United Kingdom, †Texas State University, USA, ‡Wayne State University, USA
‖ARM Ltd, United Kingdom

Abstract—In mixed-criticality systems, mode switch is a key
strategy which dynamically provides a balance between system
performance and safety. In conventional MCS frameworks, mode
switch is triggered by the over-execution of a task; i.e., a task
overruns the less pessimistic worst-case execution time. In cyber-
physical systems, the data volume generated by I/O affects and
can even dominate task computation time. With this in mind,
we introduce a novel MCS architecture, termed Pythia-MCS,
which predicts task execution time according to I/O run-time
behaviors. With the new feature of future-prediction, the Pythia-
MCS provides more timely, but still accurate, mode switch. We
also present a new theoretical model (quarter-clairvoyance), which
guarantees the timing predictability of the design, and a new
schedulability analysis for the Pythia-MCS, which demonstrates
improved schedulability compared to conventional MCS frame-
works. The Pythia-MCS is the first MCS framework enabling the
clairvoyance functionality.

I. INTRODUCTION

Safety-critical systems have stringent assurance and ver-

ification requirements that are absolutely essential to life-

critical applications including medical, automotive, aerospace

and industrial automation [7]–[9], [16], [23], [34], [57]. In

safety-critical systems, integrating components with different

levels of criticalities, such as ASILs (Automotive Safety and

Integrity Levels) in ISO26262 [27], onto a shared hardware

platform has become increasingly important [15], [20], as a

result of the diverse functionalities required by modern safety-

critical systems (e.g., automated driving [27]) and the rapid

evolution of underlying platforms [8]. Such systems are termed

Mixed-Criticality Systems (MCS)s [50].

In a dual-criticality MCS,1 which has two criticality levels

(HI and LO), a widely studied theoretical model assumes that

the Worst-Case Execution Time (WCET) of a task is estimated

with different levels of confidence [5], [11], [23], [30], [37],

[50], [59]. The high-critical WCET (HI-WCET) is confident,

but extremely pessimistic (obtained by static timing analysis,

for example); whereas, the low-critical WCET (LO-WCET)

is much less pessimistic, but has relatively lower confidence

(obtained by measurement, for example [50]). In general,

a high-critical task (HI-task) is developed and verified with

more rigorous procedures than a low-critical task (LO-task).

Therefore, a HI-task has both HI- and LO-WECTs; whereas,

a LO-task only has LO-WCET [27], [50]. The correctness

criterion in this model specifies that if all tasks finish executing

within their LO-WCETs, then they will all finish executing

§Corresponding author, dong@wayne.edu.
1Like much of the current research on mixed-criticality scheduling, this

paper restricts attention to two criticality levels.

by their deadlines. However, if any task does not complete

execution within its LO-WCET, then the HI-tasks at least

should complete execution by their deadlines [13], [38], [50].

Therefore, only HI-tasks are guaranteed.

Mode switch [5], [50] is the key strategy used to satisfy

the above criterion. The system first executes in low-critical

mode (LO-mode), in which the scheduling policy assumes

the execution time of each task (LO-task or HI-task) does

not exceed its LO-WCET. If this assumption is violated, the

system switches into high-critical mode (HI-mode), in which

the scheduling policy assumes the execution time of HI-tasks

may exceed their LO-WCETs, but will not exceed their HI-

WCETs [17], [29], [35], [40], [49].

Within the context of the theoretical model, a number

of practical MCS frameworks have been developed. These

include, Richard et al. [52], Gadepalli et al. [22], Kim et

al. [33] and Pinto et al. [45]. In most of these frameworks,

the only way to trigger a mode switch is by executing the

system until a HI-task overruns its LO-WCET [12], [22],

[42], [52], [58]. This type of system framework is called a

“non-clairvoyant MCS” [1], [4]. Although Baruah et al. [4]

and Agrawal et al. [1] provide solid theoretical support to

show that clairvoyant and semi-clairvoyant MCSs2 usually

outperform non-clairvoyant MCSs, they also report that es-

tablishing an MCS framework with a degree of clairvoyance

is challenging. This is because most run-time situations must

be known beforehand [1], [4], and for example, it is difficult

to predict an external environmental change before it happens.

I/O-driven MCS. Inputs/Outputs (I/Os) are a vital part of any

computer/embedded architecture [26], [43] as they connect

the digital and physical worlds. The role of I/Os within an

MCS must be considered carefully, as the volume of input

data may significantly affect the execution time of a task,

which determines the necessity of a mode switch. Taking

an autonomous vehicle as an example, a sensor/lidar usually

receives an additional volume of data in an urgent situation,

e.g., a greater number of objects to be identified and tracked

compared with driving on an empty road, with no objects to

be identified and tracked [27], [39]. Therefore, a mode switch

may be triggered due to more computation time being required

by a task to process the additional received data.

With this in mind, we propose a novel MCS framework

architecture, which we term Pythia-MCS. In Pythia-MCS,

I/O behaviors are continuously monitored and analyzed, and

2Clairvoyant and semi-clairvoyant MCSs assume that whether a HI-task will
overrun its LO-WCET is known before or at its release; hence, the system
can trigger a mode switch before the HI-task overruns its LO-WCET.

a mode switch can be triggered when a large amount of

data is generated by an I/O. We term this I/O-driven mode

switch. With I/O-driven mode switch, the proposed framework

architecture enables a certain level of clairvoyance, as the

system can trigger a timely mode switch instead of waiting

until the overrun happens.

Different from the clairvoyant and semi-clairvoyant MCS

theoretical models provided in [1], [4], Pythia-MCS is a

practical framework architecture, which has been specifically

designed and implemented. Pythia-MCS also has a new the-

oretical model, which we call quarter-clairvoyance. Unlike

clairvoyant and semi-clairvoyant theoretical models, which

assume the over-execution of a task is known before or at

release, quarter-clairvoyance predicts the over-execution of a

task during its execution. Therefore, with quarter-clairvoyance,

an MCS can react to a run-time situation more accurately.

Contributions. This is the first practical MCS framework

enabling the functionality of clairvoyance. To this end, we

propose a novel system architecture, which simultaneously

supports run-time I/O monitoring and I/O-driven mode switch.

We describe the design details of the proposed system with

two optional design methods. Corresponding to the proposed

architecture, we further present a new theoretical model

(quarter-clairvoyance) and schedulability analysis, which pro-

vides the timing guarantee for the system. Moreover, the

theoretical analysis also demonstrates the improvements on

the schedulability brought by Pythia-MCS, with respect to

conventional MCS frameworks. We present experiments to

evaluate the hardware and software overheads of Pythia-MCS.

Additionally, we examine the benefits and prediction accuracy

of Pythia-MCS over a conventional MCS using a real-world

automotive use case.

The rest of this paper is organized as follows: Section II

presents the motivation and research challenges. Sections III

and IV give the system architecture and design methods of

Pythia-MCS, followed by schedulability analysis given in Sec-

tion V. Section VI evaluates the Pythia-MCS, and Section VII

concludes.

II. MOTIVATION: I/O-DRIVEN MCS

As introduced in Section I, I/O is the key to establishing

an MCS framework with clairvoyance. In this section, we

decompose the relationships between task execution time and

I/Os, then explain the concepts of an I/O-driven MCS. Lastly,

we present the research challenges.

A. I/Os and Task Execution Time

To understand the relationship between I/Os and task exe-

cution time, a task can be decomposed into:

I/O-independent computation – includes pure software cal-

culation without I/O access. Computation time usually

depends on system micro-architectures [10], such as CPU

architecture, branch-prediction, memory bandwidth, etc.

I/O-related computation – includes I/O accesses and I/O-

bounded calculation. Computation time is usually deter-

mined by the data volume generated by the I/Os [31].

If a task involves I/O-related computation, we call it an

I/O-related task, otherwise it is an I/O-independent task.

Algorithm 1: Pseudo-Code an Ethernet Control Task

1 RawPacket[i] = ∅; Buf = ∅;
2 if (System.Status() == Correct) then

3 while (IO.Status (Ethernet.ID) == Busy)3 NOP;
4 PacketSize = I/O.Check (Ethernet.ID, Recv);
5 if (PacketSize > 0) then
6 for i = 0; i < PacketSzie; i++ do
7 I/O.Read (Ethernet.ID, Buf[i]);
8 end
9 for i = 0; i < PacketSzie; i++ do

10 RawPacket[i] = AUTOSAR.E2E.Decoding (Buf,
i× PacketLen)

11 end
12 else
13 NOP;
14 end
15 else
16 Err.Ctrl();
17 end

Erroneous

I/O-Independent I/O-related

Timet1t0

I/O Accessing

Point (C
s
i)

LO-WCET HI-WCET

Fig. 1. Ethernet Control Task Timing Chart

Algorithm 1 uses pseudo-code to demonstrate an example

of an Ethernet control task (I/O-related task) from Renesas’

automotive use cases [18]. I/O-related computation is high-

lighted in blue, with the status check in line 3 and 4, the

Ethernet read in line 7 and E2E decoding in line 10. Based on

the pseudo-code, Figure 1 further illustrates the timing chart

for this task. As shown, the task releases at time point t0
with I/O-independent computation and changes to I/O-related

computation at time point t1. Additionally, Figure 1 highlights

the LO-WCET and HI-WCET estimates for the task. In this

example, the executing times of I/O-independent computation

(e.g., buffer initialization) are constant; whereas, the executing

times of the I/O-related computation (Ethernet read and E2E

decoding) vary with the volume of received Ethernet packets.

Clearly, in an I/O-intensive system, the data volume generated

by I/Os affects, and can even dominate, the task execution

time.

With this observation, we can predict the execution time

of an I/O-related HI-task at its I/O access point and then

determine the necessity of a mode switch before task overrun.

We term this I/O-driven mode switch. The MCS enabling I/O-

driven mode switch is termed an I/O-driven MCS.

B. I/O-driven Mode Switch

Achieving an I/O-driven mode switch based on a conven-

tional MCS model requires two more features for each I/O-

related HI-task, which must be acquired offline:

3The busy-waiting loop must be monitored by a timeout monitoring to
bound the worst-case scenario.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50P
ro

a
b

il
it

y
 o

f
O

ve
rr

u
n

Volume of I/O Data Input (Unit: MB)

Fig. 2. Find TH-I/O for Ethernet Control Task

I/O access point (denoted CS
i). I/O-related computation al-

ways starts with processing I/O accesses (e.g., line 7

in Algorithm 1), which obtains the I/O data packets

to be processed in the following computation. The I/O

data received before/after CS
i will be processed in the

current/next task release.

Threshold I/O data volume (TH-I/O, denoted ΥL
i). At CS

i ,

if the data volume accumulated by the task (denoted υi)
exceeds its TH-I/O (i.e., υi > ΥL

i), we can predict that

the task will exceed its LO-WCET, and therefore a mode

switch is required.

Similar to the other tuples in the system (specifically de-

scribed in Section V), the two introduced features can be

obtained using either static analysis or experimental mea-

surements. Here, we give a brief introduction to finding the

experimental measurements.

Finding experimental measurements for CS
i and ΥL

i . Firstly,

we removed the non-examined tasks and initialized the system

without any I/O data input. We then linearly increased the

volume of I/O data input and executed the system 10, 000
times under each system configuration. In each experiment,

we recorded the I/O access time-point and checked whether

the examined task overran its LO-WCET. Following the exper-

iments, the probability of task over-execution under different

volumes of I/O data input was plotted. The system designer

was then able to select an appropriate TH-I/O for the examined

task based on the experiment results. The results of the

example above measured on our experimental platform (Xilinx

VC709 [56] with the configurations introduced in Section VI)

are shown in Figure 2. We chose 20 MB as the TH-I/O for the

examined task i.e., over-execution may occur when the I/O

data volume is greater than 20 MB.

C. Research Challenges

Given the previously detailed concepts, it is possible to

drive a mode switch based on I/O run-time behaviors and

create an MCS with a certain level of clairvoyance. However,

creating an I/O-driven MCS is not straightforward as several

key challenges must be addressed:

• The data volume generated from each I/O must be mon-

itored online. An I/O is often invoked by multiple tasks;

hence, online monitoring must promptly and precisely

determine I/O data volume for each corresponding task.

• The data volume sent to each task must be timely

compared with its TH-I/O. The comparison must occur

at the corresponding I/O access point (or within a small

margin).

• New system architecture is required to support the fea-

tures described above. In practice, tasks may only con-

tain I/O-independent computation (i.e., I/O-independent

tasks); hence, the proposed system architecture must

simultaneously support both I/O-driven and conventional

MCS models.

• New schedulability analysis frameworks are needed to

theoretically evaluate the schedulability improvement

yielded by the novel I/O-driven MCS model.

Below, we introduce the new Pythia-MCS and the cor-

responding schedulability analysis, as a solution to these

research challenges.

III. Pythia-MCS ARCHITECTURE

In this section, we give an overview of the Pythia-MCS,

presenting the top-level design concepts and system architec-

ture.

A. Context

In this paper, we assume:

• The platform is an embedded Network-on-Chip (NoC);

– Pythia-MCS is agnostic to the types of bus;

– Deployment of NoC can enhance the predictability of

on-chip transactions [14], [46].

• Pythia-MCS is applicable to both single- and many-core

architectures. A fully-partitioned scheme is adopted in a

multi-/many-core Pythia-MCS.

– Tasks are statically assigned to a given processor.

– Existing task allocation heuristic [8] (e.g., first-fit) can

be applied directly for partitioning.

• A task can access one I/O at most, whereas an I/O can

be accessed by multiple tasks.

B. Design Concepts

Pythia-MCS has two main design concepts:

Design Concept 1 – online I/O monitoring. The Pythia-

MCS introduces the Pythia-coprocessor, which monitors

and analyzes run-time data generated from the I/Os.

Monitoring I/Os from the hardware layer guarantees the

accuracy and timeliness of the captured transactions.

Design Concept 2 – adaptive mode switch. The Pythia-

MCS supports both I/O-driven and conventional mode

switches. Before run-time, the TH-I/O of each I/O-related

HI-task and the LO-WCET of each I/O-independent

HI-task are preloaded to the coprocessor. During run-

time, an I/O-related HI-task exceeding the TH-I/O or

an I/O-independent HI-task exceeding the LO-WCET is

detected by the coprocessor and a mode switch triggers.

In the context of conventional non-clairvoyant MCS theory,

a number of practical frameworks have been proposed, for

example Richard et al. [52], Gadepalli et al. [22], Jiang et

al. [32], Kim et al. [33], and Xi et al. [53]. To ensure

compatibility with the state-of-the-art, the proposed system

architecture for Pythia-MCS derived from conventional MCS

User Application User Application User Application

 OS Kernel

Application Level

OS Level

Lib_Mode

_Switch

Software
HardwareIntrp.

PE Memory I/Os

Execution Monitor

Timer

Conventional MCS Architecture

Software

Hardware

PE Memory I/Os

Intrp.

Pythia-coprocessor

Pythia-MCS Architecture

: Context Switch : System Mode Switch

 OS Kernel Lib_Mode_Switch

Fig. 3. System Architectures of Conventional MCS and Pythia-MCS

frameworks. Therefore, Section III-C first reviews conven-

tional MCS architecture, Section III-D then presents the sys-

tem architecture.

C. Conventional MCS System Architecture

The generalized architecture of a conventional MCS (shown

in the upper part of Figure 3) is illustrated by considering

conventional embedded/computer architectures with an addi-

tional execution monitor, usually implemented at the Operating

System (OS) level to give more privileges than user applica-

tions. Two essential functionalities must be supported by the

execution monitor: 1) monitoring task execution time; and, 2)

triggering a mode switch when detecting the over-execution

of a HI-task. These two functionalities are achieved using co-

operation between a dedicated timer in the hardware and an

additional library in the OS kernel (named lib mode switch).

Note that the execution monitor can be implemented using

different methods. For example, Kim et al. [33] integrate the

execution monitor with the OS kernel, while Li et al. [41]

and Xi et al. [53] implement the execution monitor as an

independent hypervisor.
Run-time behaviors. At system initialization, the LO-WCETs

of the HI-tasks are preloaded to the memory. During context

switches, the OS kernel suspends the timer of the currently

executing task and then (re-)activates the timer for the next

executing task. If a HI-task runs over its LO-WCET, an inter-

rupt sent from the hardware timer will trigger the execution

of lib mode switch for the mode switch. The pseudo-code

demonstrating this procedure is shown in Algorithm 2.

D. Pythia-MCS System Architecture

The Pythia-MCS has architecture changes in both the

hardware and software layers compared to conventional MCS

system architecture (shown in the lower part of Figure 5):
Hardware layer. As introduced in the design concepts, the

run-time monitoring and the mode switch triggering in the

Algorithm 2: Context and Mode Switch in Conventional MCS

1 ⊲ OS Kernel: Context Switch

2 Intrp.disable();
3 ExeMonitor.Timer.suspend (TaskSet.Current.ID);
4 ExeMonitor.Timer.activate (TaskSet.Next.ID);
5 Scheduler.run (TaskSet.Next.ID);
6 Intrp.enable();
7 ⊲ Interrupt Handler: Mode Switch

8 Function Timeout ISR(Timer.ID):
9 Lib mode switch (HI-Mode);

10 Intrp.clear(Timer.ID);
11 End Function

Algorithm 3: Context and Mode Switch in Pythia-MCS

1 ⊲ OS Kernel: Context Switch

2 Intrp.disable();
3 Coprocessor.sync (TaskSet.Next.ID);
4 Scheduler.run (TaskSet.Next.ID);
5 Intrp.enable();
6 ⊲ Interrupt Handler: Mode Switch

7 Function Pythia ISR():
8 Lib mode switch (HI-Mode);
9 Intrp.clear();

10 End Function

proposed architecture are managed by the Pythia-coprocessor.

Hence, in the hardware layer, we replace the timer (monitoring

task execution time in the conventional MCS architecture)

with the new coprocessor. We present the design details of

the coprocessor in Section IV.

Software Layer. Like the hardware timer, we also remove

the execution monitor (which manages the hardware timer

in the conventional MCS architecture) from the OS level.

In the Pythia-MCS, the interrupt sent from the Pythia-

coprocessor, triggering a mode switch, is directly routed to

the lib mode switch in the OS kernel. The removal of the

execution monitor effectively reduces the software overhead

and system complexity compared to conventional solutions.

We analyze the improvements in Section VI-A.

Run-time behaviors. The new system architecture also brings

different run-time behaviors compared to the conventional

MCS frameworks. At system initialization, the I/O-related

HI-task LO-WCETs and the I/O-independent HI-task TH-I/Os

are preloaded to the coprocessor. During context switches,

the OS kernel synchronizes the ID of the scheduled task

with the coprocessor (see line 3 of Algorithm 3). If an

I/O-independent HI-task exceeds its LO-WCET or an I/O-

related HI-task exceeds its TH-I/O, the coprocessor generates an

interrupt to trigger mode switch by invoking lib mode switch.

The pseudo-code demonstrating this procedures is shown in

Algorithm 2.

Compatibility. Although the Pythia-MCS introduces a new

system architecture, the design minimizes modifications to the

software (shown in the comparison of Algorithms 2 and 3).

Moreover, the design maintains the original OS-application in-

terfaces presented by the traditional MCS (shown in Figure 3).

Therefore, user applications designed for a conventional MCS

can be mapped to the Pythia-MCS directly.

R R

C C

R R

Co

P C

R

IO IO

R

R

RR

M

C

M

C

D
D

R
 M

e
m

o
ry

Fig. 4. Pythia-coprocessor in a NoC System (C: Processor Core; Cop: Pythia-
coprocessor; R: Router/Arbiter; MC: Memory Controller)

Mode Switch Unit

I/O Monitor

Unit 0

Internal Bus

I/O Monitor

Unit 1

I/O Monitor

Unit n

Multi-/Many-Core System

Pythia-

coprocessor

I/O Device 0 I/O Device 1 I/O Device n

Fig. 5. Top-level Design of Pythia-coprocessor

In the new system architecture, acquiring the functionality

of clairvoyance relies on the coprocessor; we therefore present

the Pythia-coprocessor design details in the next section.

IV. Pythia-COPROCESSOR

The typical use of the Pythia-coprocessor in a NoC-based

many-core architecture is shown in Figure 4, where the co-

processor is physically connected to a router/arbiter for on-

chip communication, and different I/O devices for run-time

I/O monitoring. The design of the Pythia-coprocessor (see

Figure 5) is modularized, comprising two primary modules:

I/O Monitor Unit (IMU) – observes the run-time status of

the connected I/O, and decomposes the I/O data packets,

then reports the volume to the Mode Switch Unit (MSU).

The design of the IMU is generic, and can be directly

applied to different I/Os in the same system.

Mode Switch Unit (MSU) – checks the necessity of a mode

switch. The design of the MSU is generic, and can be

directly applied to different systems.

These two modules are introduced in the following sections.

A. I/O Monitor Unit (IMU)

The I/O monitoring methods and data decomposition, which

are the main concern of the IMU are explained first. The

design details of the IMU are then discussed.

I/O monitoring. From the perspective of embedded/computer

architecture, accessing I/Os from software tasks usually in-

volves following system components like the OS kernel, I/O

CLK

AWLEN

AWREADY

AWVALID

AWID

AWSIZE
t1 t2 t30 t4 t5 t6 t7 t8 t9 t10 Time

1 2 6

5 8 2

6

4

3

2

6

4

Data Volume

Destination

Fig. 6. Example of Write Address Channel (Waveform) in AMBA AXI

drivers, bus interconnects and I/O controllers [24], [47]. There-

fore, it is possible to monitor the behaviors of an I/O from any

system level. I/O monitoring, which is considered to guarantee

the timeliness of monitored transactions and the compatibility

of data decomposition (Design Concept 1), is placed in the

hardware layer. This is between the I/O controllers and the

bus interconnects (shown in Figure 4).

From the selected system level, we have a unified method

for I/O data decomposition, which is introduced below.

I/O data decomposition. I/O data decomposition returns the

volume and destination of each I/O packet.4 Decomposing

an I/O data packet from the selected level (i.e., between I/O

controllers and bus interconnects) requires a clear understand-

ing of the protocol specifications for on-chip communications.

Here, we explain the I/O data decomposition using the exam-

ple of AMBA AXI [3], which is the most commonly used

protocol for on-chip communications in embedded architec-

tures [3] and is also used in our experimental platform.

The AMBA AXI protocol contains five communication

channels: write/read address channels, write data channel and

write/read response channels. An on-chip transaction always

initializes from the write/read address channel, which presents

the necessary information of the transaction. Hence, the IMU

is only required to monitor these two channels. For example,

in the write address channel, a transaction initializes by setting

the AWVALID and AWREADY signals to 1. At the same time,

the control signals AWID, AWLEN and AWSIZE become

valid for representing the destination, length and size of the

transaction.5 The data volume of this transaction (denoted as

υ∗) is calculated in Equation 1.

υ
∗
= AWLEN × AWSIZE, if AWVALID & AWREADY = 1 (1)

As shown in Figure 6, the example initializes three I/O data

packets, which are sent to tasks 1, 2 and 6 with volume (5×
64÷ 8 =) 40, 32 and 16 bytes, respectively.

IMU design (Figure 7). The design of an IMU contains: a

run-time sampler, an access interface and memory banks.

4The destination of an I/O packet means the task receiving the I/O packet.
5The relation between AWID and a task ID is defined by the system

designer. In this paper, we consider these two IDs are always equal.

M

C

Memory Banks

Addr

0x00

0x04

0x08

0x0C

0x10

0x14

Volume

(Bytes)

0

40

32

0

0

0

wr_en

rd_data

wr_data

wr_addr

rd_addr

<<2

rd_en

AWREADY

AWVAILD

AWID

AWLEN

AWSIZE

In
te

rn
al B

u
s

M

C

REG0

(w)

wr_addr

rd_addr

REG1

(r)

rd_data

‘0’
wr_data

REG2

(w)

wr_en

rd_en

0x18

...

16

...

Access Interface

>>3

Run-time Sampler

Fig. 7. Design of IMU (MC: Memory Controller)

The memory banks store the volume of unprocessed data

for each task (i.e., υi). The memory address reserved for υi is

calculated as i× 0x04. During system execution, the sampler

decomposes each captured I/O packet using the previously

introduced method, returning its destination (i.e., task τd) and

volume (i.e., υ∗). The sampler then adds υ∗ to the volume

of unprocessed data for τd (i.e., υd = υd + υ∗) and stores

the calculated result back in the corresponding address in the

memory (i.e., d× 0x04).

Additionally, the access interface introduces two control

registers and a data register, accessed by the MSU via an

internal bus. Write-only Register 0 determines the operated

address of the memory bank, Register 2 controls operations

(e.g., value clear), and Register 1 (read-only) reports the

unprocessed data volume of the selected memory address

given by Register 0. For example, to acquire the task τ4
unprocessed data volume, the MSU first sets Register 0 to

0x10, then reads data from Register 1.

B. Mode Switch Unit (MSU)

The MSU is the brain of the Pythia-coprocessor. It trig-

gers mode switch during run-time. As introduced in Design

Concept 2, a mode switch is triggered by: 1) any I/O-related

HI-task exceeding its TH-I/O at the I/O access point; or, 2) any

I/O-independent HI-task exceeding its LO-WCET. To optimize

the design of the MSU, we set a virtual I/O access point and

a virtual TH-I/O for each I/O-independent HI-task, where the

virtual I/O access point was the LO-WCET and the TH-I/O

was −1. Therefore, when an I/O independent task executes

at its virtual I/O access point, the task will always exceed

the corresponding TH-I/O. This method unifies the criteria for

mode switch for both I/O-related and I/O-independent HI-

tasks.

The MSU determines the necessity of a mode switch using

three executing phases:

Phase 1 - Offline preloading: before run-time, the (virtual)

I/O access point (CS
i) and (virtual) TH-I/O (ΥL

i) of each

HI-task (τi) are grouped and stored in the MSU.

Phase 2 - Online synchronization: during run-time, the

MSU continuously synchronizes with the OS kernel,

which updates the computation time (Ci) of the currently

executing HI-task (τi), and the IMUs, which update the

currents HI-task’s unprocessed I/O data volume (υi).

Memory Bank: Task Information

PE

Communication I/F

Communication I/F

MC

Addr

0x00

0x04

0x08

0x0C

0x10

0x14

0x18

0x1C

...

Task ID

1

2

3

4

5

6

7

8

...

I/O accessing

point(C
S

i)

C
S
1

C
S

2

C
S
3

C
S

4

C
S
5

C
S
6

C
S

7

C
S
8

...

TH-I/O(ϒ
L
)

ϒ
L
1

ϒ
L
2

ϒ
L
3

ϒ
L
4

ϒ
L
5

ϒ
L
6

ϒ
L
7

ϒ
L
8

...

Offline Pre-

loading

Global Timer

(Shadow)

Internal Bus

Multi-/Many-Core System

(a) Hardware/Software Co-design

Memory

Bank: Task

Information
MC

Comparator

Sych_Task

Addrress
Data

Addrress
Data

Scheduler
En

En
Sych_IO

Comparator

Internal Bus

Multi-/Many-Core System

Global Timer

(Shadow)

Decision Maker II

Decision

Maker I

(b) Hardware-Only Design

Fig. 8. Design of MSU (MC: Memory Controller)

Phase 3 - Decision making: at CS
i of each τi, the MSU

compares the υi against ΥL
i . If υi > ΥL

i , the MSU triggers

an interrupt for mode switch. After comparison, the MSU

resets υi to 0, as the data will be now processed by τi.

To support these three executing phases, we introduce two

possible MSU design methods:

Hardware/software co-design (Figure 8(a)). The hard-

ware/software co-design propounds software executed on a

ready-built processor (e.g., MicroBlaze [55] or RISC-V [51]).

The preloaded (virtual) I/O access point and (virtual) TH-I/O

of each HI-task (Phase 1) are stored in a memory unit; the

run-time synchronization and comparison (Phases 2 and 3) is

handled by the software executed on the processor.

Hardware-only design (Figure 8(b)). Compared to the hard-

ware/software co-design, the hardware-only method retains the

memory unit, but replaces the processor with two decision-

makers. Each decision-maker contains a synchronizer and a

compactor. Decision-maker I synchronizes with the OS kernel

and then compares the synchronized result with the (virtual)

I/O access point. Decision-maker II synchronizes with the

IMU and then compares the synchronized result with the

(virtual) TH-I/O. When both decision-makers return 1, an

interrupt for mode switch is generated. Note that Decision-

maker I returns 1 when Ci = CS
i . Decision-maker II, returns

υi > ΥL
i .

In both methods we introduce a shadow register to guarantee

timing synchronization between MSU and the entire system.

Until now, we have described the system architecture and

the design methods of the Pythia-MCS. In the next section,

we study the benefits for schedulability analysis that can be

obtained from enabling clairvoyance in the Pythia-MCS.

V. QUARTER-CLAIRVOYANCE SCHEDULABILITY

ANALYSIS

Although clairvoyance in general indicates the ability to

look into the future, in MC scheduling, a few different degrees

of clairvoyance are investigated in the recent literature [1]. An

intermediate concept of semi-clairvoyance, which lies between

the two extremes of clairvoyance and non-clairvoyance, has

been introduced [1]. The terms are briefly explained below:

Clairvoyance. Whether any job will overrun its LO-WCET is

known from the beginning, i.e., at time 0. That is, whether

this system run is in LO- or HI- mode would have been

known before the system started.

Semi-Clairvoyance. Whether a job will overrun its LO-

WCET becomes known right at the release of a job. The

system is notified of a mode switch from LO to HI at the

release of the first job that will overrun its LO-WCET.

Non-Clairvoyance. Whether a job will overrun its LO-WCET

remains unknown until an overrun is observed during run-

time. The system can only be notified of a mode switch

from LO to HI when a job misses its LO-WCET, but has

not completed.

In terms of the above terminology, our system architecture

provides a certain degree of clairvoyance, as it falls between

the two extremes of clairvoyance and non-clairvoyance. How-

ever, the limitations of the clairvoyance our architecture pro-

vides does not exactly match the limitations defined by semi-

clairvoyance. In particular, our architecture enables looking-

into-the-future, but not when a job releases; the job needs

to execute for a certain amount of time first (up to LO-

WCET). Therefore, we position the degree of clairvoyance our

system architecture provides between semi-clairvoyance and

non-clairvoyance. We call this degree of clairvoyance quarter-

clairvoyance, specified in more detail below.

A. System Model

We consider the scheduling of a set of n MC tasks τ =
{τ1, τ2, . . . , τn} on a single processor to which τ is assigned.

Each MC sporadic task τi releases a (potentially infinite)

sequence of jobs with a minimum separation of Ti time units

between any two consecutive jobs of τi, where Ti is the period

of τi. The jth job of task τi is denoted τi,j . It is released at time

ai,j and has an absolute deadline at di,j = ai,j + Di where

Di is the relative deadline of task τi. We focus on implicit

deadlines, i.e., Di = Ti for all i.
We consider a dual-criticality task system, where each task

in τ is a HI-task or a LO-task. That is, τHI ∪ τLO = τ and τHI ∩
τLO = ∅ where τHI denotes the set of HI-tasks and τLO denotes

the set of LO-tasks. A HI-task τi has two WCET estimates:

one extremely pessimistic but safe one (e.g., by static timing

analysis and/or inflated by a safety-margin factor) denoted CH
i ,

− −

, , , ,

time

early releasing is allowed

Fig. 9. An illustration for dividing an HI-job into sub-jobs in LO-mode.

and a less pessimistic one (e.g., by measurement) denoted CL
i ,

where it is clear that CH
i ≥ CL

i . By contrast, the WCET of

a LO-task τk has only one (less-pessimistic) estimate denoted

CL

k. Please note, a HI-task (LO-task) job is also called a HI-job

(LO-job, respectively) in the paper.

Each HI-task τi has LO-utilizations (uL
i = CL

i /Ti) and HI-

utilizations (uH
i = CH

i /Ti), while LO-tasks τk have only a

LO-utilization (uL

k = CL

k/Tk). We also denote:

U L

HI =
∑

τi∈τHI

uL

i , U
H

HI =
∑

τi∈τHI

uH

i , and U L

LO =
∑

τi∈τLO

uL

i .

Schedulability criteria. The MC sporadic task system τ is

deemed MC-schedulable if and only if it is guaranteed that:

• all (HI- and LO-) jobs meet their deadlines if every job

τi,j completes within CL
i time units of execution; and,

• all HI-jobs meet their deadlines if every HI-job τi,j
completes within CH

i time units of execution.

Any HI-job τi,j having executed CH
i , or any LO-job having

executed CL
i , but not completing is terminated immediately,

or the system is considered erroneous.

Quarter-clairvoyance. So far, the above task model matches

the traditional MC sporadic task model introduced in [5]. In

light of the predicting coprocessor architecture presented in

this paper, we introduce one more parameter, CS
i (see Sec-

tion II-B for the measurement), for each HI-task τi to model

the certain clairvoyance our architecture brings.6 Specifically,

it is not necessary to wait until observing the behavior of

a HI-job τi,j overrunning CL
i to switch the system to HI-

mode; once a HI-job τi,j has completed CS
i ≤ CL

i time

units execution, our proposed architecture can predict7 whether

τi,j is able to complete within CL
i time-unit accumulative

execution or may need up to CH
i time-unit accumulative

execution to finish. That is, the scheduler may foresee a

future HI-job overrun and make the mode switch earlier to

obtain better schedulability. In addition, please note that in

the special case where CS
i = CL

i for every HI-task τi (e.g.,

an I/O-independent task), quarter-clairvoyance MC scheduling

reduces to traditional non-clairvoyance MC scheduling.

B. Algorithm EDF-VDSD

For the traditional scheduling of implicit-deadline sporadic

tasks, EDF-VD [5] has been widely studied. Under EDF-VD,

each HI-job is assigned a virtual deadline, which is earlier

than its actual deadline. In LO-mode, both HI- and LO-tasks

6The “S” in CS
i

stands for triggering mode switch.
7We would also like to note that given the definition of CS

i
, the specific

time instant at which a prediction can be made also depends on the specific
scheduling algorithm that is applied. In contrast, in the semi-clairvoyance
model [1], such prediction is always made at a job’s release regardless of
which scheduling algorithm is applied.

are scheduled by EDF according to the virtual deadlines of

HI-jobs and actual deadlines of LO-jobs. On a mode switch to

HI-mode, LO-tasks are dropped and HI-jobs are then scheduled

by EDF according to their actual deadlines.
With quarter-clairvoyance MC tasks, we propose a new

scheduling algorithm, called EDF-VDSD,8 to improve schedu-

lability by leveraging the clairvoyance obtained from the

coprocessor.
Pre-runtime processing. Similar to EDF-VD, EDF-VDSD

also calculates a relative virtual deadline for each HI-task τi
using DV

i = x · Ti, where x =
UL

HI

1−UL
LO

. Furthermore, a relative

switching deadline, DS
i , for each HI-task is calculated using

DS

i =
CS

i

CL
i

·DV

i =⇒
CS

i

DS
i

=
CL

i

DV
i

=
uL
i

x
(2)

That is, each HI-job τi,j has a virtual deadline at dV
i,j = ai,j +

DV
i and a switching deadline at dS

i,j = ai,j +DS
i .

Run-time scheduling. During run-time, a deadline-based

scheduling scheme is applied. In LO-mode, every LO-job is

scheduled using its actual deadline as the priority, and every

HI-job is considered as split into two sub-jobs. In particular, for

every HI-job τi,j , its first CS
i time units execution is considered

as the first sub-job and scheduled by the switching deadline

dS
i,j as the priority; any execution beyond CS

i time units up to

CL
i is considered as the second sub-job with a pseudo-release

time at dS
i,j and a maximum execution of CL

i −CS
i time units.

The second sub-job is scheduled by the virtual deadline dV
i,j

as the priority. Figure 9 illustrates sub-job splitting. Please

note that during run-time, the second sub-job may be executed

even before its pseudo-release, dS
i,j without jeopardizing any

schedulability result, because early released sub-jobs have

no impact on schedulability analysis under preemptive EDF

scheduling, as long as their deadlines (and therefore, priorities)

are not altered [2], [28].
A mode switch from LO-mode to HI-mode may happen at

the moment when a HI-job τi,j has completed CS
i time units

of execution, i.e., at the time instant when its first sub-job

has completed. At that moment, it would be revealed to the

scheduler whether τi,j needs to execute for more than CL
i time

units to complete, and therefore the scheduler decides whether

a mode switch should be triggered. On a mode switch to HI-

mode during run-time, all LO-jobs are immediately discarded,

and all (pending and to-be-released) HI-jobs are henceforth

scheduled by EDF according to their actual deadlines. That

is, all switching and virtual deadlines are disregarded and do

not have an effect in HI-mode.

C. Schedulability Test

We now analyze schedulability under EDF-VDSD and pro-

pose a schedulability test running in polynomial time.

Lemma 1. Under EDF-VDSD, in LO-mode, all LO-jobs meet

their actual deadlines, all first sub-jobs of HI-jobs meet their

switching deadlines, and all second sub-jobs meet their virtual

deadlines, if

x ≥
U L

HI

1− U L
LO

. (3)

8EDF-VDSD stands for “earliest-deadline-first with virtual deadlines and
switching deadlines.”

Proof Sketch. First, we consider a fluid schedule, where each

LO-task τi is continuously assigned an execution rate of uL
i and

each HI-task τk is continuously assigned an execution rate of

uL

k/x. It is clear that in this fluid schedule all LO-jobs meet

their actual deadlines, all first sub-jobs of HI-jobs meet their

switching deadlines, and all second sub-jobs meet their virtual

deadlines. By viewing these LO-jobs, first sub-jobs, and second

sub-jobs as just a set of “jobs” with each “job” having its

“deadline” at their corresponding actual, switching, and virtual

deadline in the three cases, all “jobs” meet their “deadlines.”

Furthermore, the total assigned rates are

∑

τi∈τHI

uL
i

x
+

∑

τi∈τLO

uL

i =
U L

HI

x
+ U L

LO

{by (3)}

≤ 1.

Therefore, this fluid schedule is feasible.

On the other hand, under EDF-VDSD, the “job set” of

these LO-jobs, first sub-jobs, and second sub-jobs is scheduled

exactly, following EDF, where their “deadline” is defined by

their corresponding actual, switching, and virtual deadlines, re-

spectively. Due to the optimality of EDF in preemptive unipro-

cessor scheduling, the existence of a feasible fluid schedule

implies that EDF-VDSD also guarantees that all “deadlines”

of the “jobs” are met. The lemma is as follows:

Lemma 2. Given that x ≥
UL

HI

1−UL
LO

, under EDF-VDSD, in the

HI-mode, all HI-jobs meet their actual deadlines, if

∑

τi∈τHI

max

uH
i

1−
CS

i

CL
i

· x
,
uL
i −

CS
i

Ti

1− x

≤ 1. (4)

Proof Sketch. Given that x ≥
UL

HI

1−UL
LO

, by Lemma 1, the

switching deadline is the latest time instant for each HI-job

to trigger a mode switch.

We consider the density (i.e., the ratio of the remaining

workload to the remaining time units until its deadline) of

each carry-over (i.e., released before t∗ but has not completed

by t∗) HI-job at the mode switch time instant t∗. Then, an

arbitrary carry-over HI-job τi,j must be in one of the following

two cases: (i) t∗ ≤ dS
i,j and (ii) dS

i,j < t∗ ≤ dV
i,j . Note that it

cannot be the case that t∗ > dV
i,j , because in that case, either

the mode switch would have been triggered by τi,j at dS
i,j

earlier than t∗ (τi,j executes for more than CL
i) or τi,j would

have been completed by dV
i,j < t∗ (τi,j executes for at most

CL
i).

In case (i), the density of τi,j is at most

CH
i

di,j − t∗
≤

CH
i

di,j − dS
i,j

=
CH

i

Ti −DS
i

=
uH
i

1−
DS

i

Ti

=
uH
i

1−
CS

i

CL
i

· x
,

where the last equality is because of (2).

In case (ii), τi,j’s total execution time is at most CL
i ;

otherwise, it would have triggered the mode switch earlier.

In addition, it must have executed CS
i time units by t∗ which

is after dS
i,j . Therefore, the density of τi,j is at most

CL
i − CS

i

di,j − t∗
≤

CL
i − CS

i

di,j − dV
i,j

=
CL

i − CS
i

Ti −DV
i

=
uL
i −

CS
i

Ti

1− x
.

Thus, in a fluid schedule in HI-mode, if each HI-task τi is

assigned a constant execution rate

fi = max

uH
i

1−
CS

i

CL
i

· x
,
uL
i −

CS
i

Ti

1− x

,

then all deadlines in HI-mode must be met. Please note that

all non-carry-over HI-jobs in HI-mode will also meet their

deadlines due to

uH

i ≤
uH
i

1−
CS

i

CL
i

· x
≤ fi.

That is, if
∑

τi∈τHI
fi ≤ 1, then the fluid schedule (starting

from t∗) is feasible. Due to the optimality of EDF in preemp-

tive uniprocessor scheduling, the existence of a feasible fluid

schedule implies that EDF scheduling (by actual deadlines) the

HI-tasks starting from t∗, which is exactly what EDF-VDSD

does, also guarantees that all deadlines (of HI-tasks) are met

in HI-mode. Thus, the lemma follows.

Theorem 1. The task system is MC-schedulable if

∑

τi∈τHI

max

uH
i

1−
CS

i

CL
i

·
UL

HI

1−UL
LO

,
uL
i −

CS
i

Ti

1−
UL

HI

1−UL
LO

≤ 1. (5)

Proof. Setting x =
UL

HI

1−UL
LO

and by the above two lemmas, the

theorem follows. It directly implies a sufficient schedulability

test running in O(n) time, where n is the number of tasks.

D. Discussions

We next discuss the benefits EDF-VDSD brings from an

analytical perspective. Empirical studies and evaluation are

presented in Section VI.

Comparison with non-clairvoyance EDF-VD. It it clear

that the special case where ∀i ∈ τHI, C
S
i = CL

i reduces

quarter-clairvoyance to the conventional non-clairvoyance MC

scheduling model. By investigating this special case, we find

our schedulability test dominates the first EDF-VD analysis

in [6], which is also dominated by a later improved EDF-VD

analysis in [5].

Unfortunately, our schedulability test does not have a

strict dominance over the improved EDF-VD analysis in [5].

Nonetheless, the quarter-clairvoyance MC scheduling model

and EDF-VDSD bring certain advantages over EDF-VD, even

with the improved analysis in [5]. The following example

is not deemed schedulable under EDF-VD, even with the

analysis in [5], while it is deemed schedulable under EDF-

VDSD by our analysis.

Example 1. Consider a system with only two tasks τ1 and τ2,

where τ1 is a HI-task and τ2 is a LO-task. For the HI-task τ1,

T1 = 10, CH
1
= 8, CL

1
= 3, and CS

1
= 1; for the LO-task τ2,

T2 = 10, CL
2
= 5. That is, in this system, U H

HI = 0.8, U L
HI = 0.3,

U L
LO = 0.5, x = (0.3)/(1− 0.5) = 0.6, and CS

1
/CL

1
= 1/3.

Under non-clairvoyant EDF-VD,

U L
HI

1− U L
LO

=
0.3

1− 0.5
= 0.6 > 0.4 =

1− 0.8

0.5
=

1− U H
HI

U L
LO

,

which means that even the improved EDF-VD schedulability

test in [5] fails.

By contrast, under EDF-VDSD,

uH
1

1−
CS

1

CL
1

·
UL

HI

1−UL
LO

=
0.8

1− 1

3
× 0.6

= 1,

and
uL
1
− CS

1

T1

1−
UL

HI

1−UL
LO

=
0.3− 0.1

1− 0.6
= 0.5.

Thus, by Theorem 1, this system is schedulable by EDF-VDSD.

An integrated algorithm EDF-VDSD+. Because schedula-

bility can be determined offline by system parameters that are

known prior to run-time, we can integrate algorithms EDF,

EDF-VD, and EDF-VDSD to achieve even better schedulabil-

ity. The resulting integrated algorithm, called EDF-VDSD+, is

presented in Algorithm 4. Intuitively, by exploring the respec-

tive schedulability tests, EDF-VDSD+ will select the simplest

of the three algorithms which can guarantee schedulability.

Algorithm 4: Pseudo-Code for EDF-VDSD+

1 if U L
LO + UH

HI ≤ 1 then
2 Apply ordinary EDF from the beginning (i.e., no MC

and no mode switch at all), and declare SUCCESS;
3 else

4 if
U

L
HI

1−UL
LO

≤
1−U

H
HI

UL
LO

then

5 Apply EDF-VD, and declare SUCCESS;
6 else

7 if
∑

τi∈τHI

max

u
H
i

1−
CS
i

CL
i

·
UL

HI
1−UL

LO

,
u

L
i
−

C
S
i

Ti

1−
UL

HI
1−UL

LO

≤ 1 then

8 Apply EDF-VDSD, and declare SUCCESS;
9 else

10 Declare FAILURE.
11 end
12 end
13 end

VI. EXPERIMENTAL EVALUATION

We now conduct extensive experiments to evaluate the

Pythia-MCS.

Experimental Platform. We built the Pythia-MCS on a Xilinx

VC709 evaluation board. Specifically, the Pythia-coprocessor

was implemented using BlueSpec System Verilog [54] and

connected to a 5 × 5 mesh type open-source NoC [46]. As

well as the Pythia-coprocessor, the NoC also contained 16

MicroBlaze processors [55], memory and I/O peripherals. The

software executing on the MicroBlaze processors (OS kernels

and user applications) was compiled using a Xilinx MicroB-

laze GNU tool-chain [55]. We selected FreeRTOS (v.9.0.0)

as the OS kernel for all processors, with the modifications

introduced in Section III-D. Note that the Pythia-coprocessor

was implemented using the two methods described in Sec-

tion IV-B, hardware/software co-design (denoted PY|hs) and

hardware-only design (denoted PY|hw). To enable comparison,

we also built a conventional MCS framework (reviewed in

79

0

108

31

85

18.3

85

0
0

20

40

60

80

100

120

Kernel Monitor Kernel Monitor Kernel CoP Kernel CoP

M
e

m
o

ry
 F

o
o

tp
ri

n
t

(K
B

) .bss .data .text

Legacy MC|Conv PY/hs PY/hw

Fig. 10. Run-time Software Overhead (CoP: Pythia-coprocessor). The soft-
ware overhead is evaluated via memory footprint (unit: KB), containing
segments of BSS, data and text.

TABLE I
HARDWARE OVERHEAD (IMPLEMENTED ON FPGA)

LUTs Registers DSP BRAM (KB) Power (mW)
MB-B 854 529 0 16 127
MB-F 4908 4385 6 128 258
CAN 711 604 0 0 5
SPI 632 427 0 0 4

PY|hw 587 396 0 16 109
PY|hs 973 583 0 16 133

Section III-C) on a similar hardware architecture (denoted

MC|conv), without the Pythia-coprocessor. The MC|conv sys-

tem architecture is illustrated in the upper part of Figure 3.

All architectures ran at 100 MHz.

A. Software Overhead

In this section, we compare the software overheads of the

legacy system,9 with MC|conv, PY|hs and PY|hw.

Experimental Setup. The software overhead was evaluated

using the run-time memory footprint [48], with specific con-

sideration of the OS kernel and execution monitor (memory

size tool: Xilinx MicroBlaze GNU tool-chain [55]). The legacy

OS kernel was fully-featured with essential I/O drivers [21].

Obs.1. An additional software overhead was sustained by the

conventional MCS framework compared to the legacy system.

This is effectively reduced in Pythia-MCSs.

This observation is shown in Figure 10. In MC|conv, the

introduction of an execution monitor and the modifications

to the OS kernel bring an additional 60 KB (75.9%) mem-

ory footprint compared to the legacy system. By contrast,

in both PY|hs and PY|hw, run-time monitoring and mode

switch triggers rely on the Pythia-coprocessor. Hence, the

implementation of the execution monitor was not required. The

removal of the execution monitor significantly reduced the run-

time memory footprint to 85 KB, which is slightly higher than

the memory footprint in the legacy system (7.6% extra). Please

note, PY|hs requires an 18.3 KB memory footprint for the

software execution on the coprocessor, which is not counted

in the software overheads of the main CPU(s).

B. Hardware Overhead

Pythia-MCS requires additional hardware implementation

for the coprocessor. Hence, in this section, we evaluate the

hardware overhead of the Pythia-coprocessor.

Experimental Setup. We first configured the Pythia-

coprocessor to monitor two I/Os (with two IMUs) and then

9A naive system, which does not support any MCS features.

evaluated the coprocessor and both the basic and full-featured

MicroBlaze processors (MB-B and MB-F), as well as two

mainstream I/O controllers (SPI and CAN). All components

were synthesized and implemented by Vivado (v2019.2) [56]

and compared using Look Up Tables (LUTs), registers, DSPs,

Block RAMs (BRAMs) and power consumption [44].

Obs.2. The design of the Pythia-coprocessor was resource-

efficient compared to the generic CPUs. Its hardware con-

sumption was similar to commonly used I/O controllers.

As shown in Table I, PY|hw required significantly less

hardware than either MB-F (12.0% LUTs, 9.0% registers,

42.2% power consumption) or MB-B (68.7% LUTs, 74.9%

registers, 85.8% power consumption). Due to the integration

of a mature processor, PY|hs consumed slightly more hard-

ware than PY|hw (165.8% LUTs, 147.2% registers, 122.0%

power consumption). When compared to the CAN and SPI

controllers, both PY|hs and PY|hw had similar consumption of

both LUTs and registers, but additional memory consumption.

The memory consumed additional power for refresh [25];

hence, both PY|hs and PY|hw consumed more than 20 times

the power of the I/O controllers.

C. Automotive Case Study

We now use an automotive case study to examine the ben-

efits of the Pythia-MCS over a conventional MCS framework.

Systems Configuration. To analyze the benefits brought

by the Pythia-MCS, MC|conv and PY|hs were examined.

We configured PY|hs as PY|hs-40/70/100, which enabled

40%/70%/100% of I/O-related tasks using I/O-driven mode

switch. In other words, PY|hs-x indicated the system was x%

of Pythia-MCS.

Task sets. We introduced two sets of I/O-related tasks:

• 20 HI-tasks, selected from Renesas functional safety au-

tomotive use case database [18], (e.g., CRC and RSA32).

• 20 LO-tasks, selected from the EEMBC automotive

benchmark [19], (e.g., Fast Fourier Transform (FFT) and

road speed calculation).

The HI-tasks had been certified as ASIL-D tasks [27], with

analyzed WCETs (CHI
i). Additionally, we employed a hybrid-

measurement approach [36] to obtain measured WCETs for all

tasks (CLO
i). The raw data for processing by the 40 tasks was

randomly generated off-chip and sent to the evaluated systems

via two Ethernet controllers (10 Gbps) at run-time. The HI-

tasks experimental measurements (CS
i and ΥL

i) were obtained

using the method described in Section II. The MC|conv also

contained a simulated HI-task for the execution monitor (de-

scribed in Section III-B), which was not required by PY|hs.

Each task had a defined period, with overall system utilization

in both LO- and HI-mode approximately 50%. Following

Section V, we adopted implicit deadlines for all tasks.

Synthetic workloads. We also introduced synthetic workloads

(in the LO-task category), which can be optionally added into

the system to control overall utilization in the experiments.

Like other LO-tasks, the synthetic workloads were also se-

lected from the EMBC automotive benchmark [19], but only

contained I/O-independent tasks, without data input. Notably,

in practice, the execution time of a task is affected by diverse

0

20

40

60

80

100

0.5 0.6 0.7 0.8 0.9 1S
u

cc
e

ss
 R

a
ti

o
 (

%
)

MC|Conv CL|hs-40 CL|hs-70 CL|hs-100

(a) 4-core Architecture

0

20

40

60

80

100

0.5 0.6 0.7 0.8 0.9 1S
u

cc
e

ss
 R

a
ti

o
 (

%
)

MC|Conv CL|hs-40 CL|hs-70 CL|hs-100

(b) 8-core Architecture

0

20

40

60

80

100

0.5 0.6 0.7 0.8 0.9 1S
u

cc
e

ss
 R

a
ti

o
 (

%
)

MC|Conv CL|hs-40 CL|hs-70 CL|hs-100

(c) 16-core Architecture

Fig. 11. Success Ratios of the Conventional MCS and Pythia-MCS in Automotive Case Study. (The x-axis denotes the target utilization)

factors (e.g., cache miss rate); hence, adding synthetic work-

loads to a system only gives the system a target utilization,

which may be different from the actual system utilization.

Experimental Setup. We introduced three groups of exper-

imental setups, which activate 4/8/16 processors to execute

the experimental task sets and synthetic workloads. In each

experimental group, we executed the examined systems 500

times under varying target utilization from 50% to 100% (at

intervals of 5% increases). Each execution lasted 100 seconds,

which guaranteed all tasks could execute at least 250 times.

For fair comparison, we also ensured the data input to the

examined systems was identical in each execution.

We evaluated the examined systems using success ratio,

which records the percentage of an examined trial executed

successfully (i.e., without deadline miss of any HI-task), under

a specified target utilization. Note that, we ignored the deadline

miss of LO-tasks after mode switch. Figure 11 shows the

experiment results. According to the results, we extend the

following observations:

Obs.3. Introducing I/O-driven mode switch is beneficial.

This observation is supported by the results in Fig-

ures 11(a), 11(b) and 11(c). As shown, with the same config-

uration, the Pythia-MCSs always outperform the conventional

MCS. Moreover, we also obverse that a full Pythia-MCS

(PY|hs-100) consistently outperformed the partial Pythia-

MCSs (PY|hs-70 and PY|hs-40). This means that having a

higher percentage of the system involving I/O-driven mode

switch introduces more benefits.

Obs.4. Increasing the number of processors significantly re-

duced the success ratio of the conventional MCS framework.

This observation is shown in the comparison between Fig-

ures 11(a) and 11(c). In a 4-core MC|conv, a significant drop in

the success ratio occurred at 75% of target utilization, whereas

this drop moved to 55% of target utilization in a 16-core

MC|conv. This observation mainly results from the additional

on-chip interfaces and resource contention generated by the

introduced processors and tasks.

Obs.5. The Pythia-MCS, maintains high success ratios when

the number of processors increases, effectively eliminating the

issues in Obs.4.

In the Pythia-MCS, run-time monitoring is placed close

to I/O devices; hence, the Pythia-coprocessor can detect ab-

normal behaviors due to large amounts of data generation

promptly, and trigger a mode switch. In a 16-core system (Fig-

ure 11(c)), when target utilization approaches 100%, PY|hs-

100 maintains a success ratio which is still close to 100%.

Fig. 12. Prediction Accuracy of Pythia-MCS.

This observation demonstrates the benefits and applicability of

introducing the Pythia-MCS in multi-many-core architectures.

D. Accuracy of Prediction

Although Section VI-C demonstrates the benefits brought

by I/O-driven mode switch in the Pythia-MCS, we acknowl-

edge that the accuracy of the prediction mechanism finally

determines the feasibility of the proposed design. We now

examine the accuracy of the prediction mechanism considering

two scenarios:

Scenario I. The Pythia-MCS misses a required mode switch.

This scenario causes safety hazards, since the LO-tasks

cannot be terminated in time.

Scenario II. The Pythia-MCS triggers a mode switch when

it is not necessary. This scenario leads to system perfor-

mance loss, since LO-tasks are terminated unexpectedly.

Experimental Setup. We adopted the same experimen-

tal setup and methods introduced in Section VI-C with

MC|conv and PY|hs (PY|hs-100) being executed. Prediction

accuracy was calculated using two measures. Firstly, for all

executing cases where MC|conv triggers mode switch, accu-

racy of switch prediction calculates the percentage of executing

cases where PY|hs also triggers the switch. Secondly, for all

executing cases where PY|hs triggers mode switch, accuracy

of overrun prediction calculates the percentage of executing

cases where MC|conv also triggers the switch. From the results

(Figure 12), we observe:

Obs.6. The prediction mechanism does not introduce addi-

tional safety concerns in Pythia-MCS, as the system never

missed a required mode switch.

As shown in Figure 12, the accuracy of switch prediction

was constant at 100% without experimental variance. This

means that in all cases where MC|conv triggered a mode

switch, PY|hs also triggered the mode switch. Therefore,

Pythia-MCS successfully avoids Scenario I. This observation

benefited from the conservative selection of TH-I/O for each

HI-task introduced in Section II-B.

Obs.7. The prediction mechanism leads to a certain level of

system performance loss, as the Pythia-MCS may pessimisti-

cally trigger a mode switch when it is not required.

As shown in Figure 12, in a 4-core PY|hs, the accuracy

of overrun prediction averaged around 85%, which means

the Pythia-MCS has about 15% probability of triggering an

unrequired mode switch. Therefore, Pythia-MCS does not

completely avoid Scenario II.

Fortunately, with an increasing number of processors, this

weakness can be effectively alleviated. As shown, PY|hs raises

the accuracy of overrun prediction to around 91% for the 8-

core system and 94% for the 16-core.

An explanation for this observation may be that although

the Pythia-MCS cannot provide 100% accuracy of overrun

prediction for every single task, the increasing number of tasks

from the introduced processors raises the likelihood that more

than one task triggers a mode switch simultaneously (and at

least one actually overruns CL
i execution), which effectively

mitigates the prediction gap from the perspective of the entire

system. With this observation, we conjecture that the accuracy

of overrun prediction in Pythia-MCS would approximate to

100% with an increasing number of processors.

VII. CONCLUSION

In this paper, a novel MCS framework (Pythia-MCS),

which simultaneously supports run-time I/O monitoring and

I/O-driven mode switch, is proposed. With the introduced

features, the Pythia-MCS achieves future-prediction, being

able to foresee the over-execution of a task and triggering a

timely mode switch. The Pythia-MCS system architecture and

two options of design methods are detailed. A new theoretical

model (quarter-clairvoyance) and schedulability analysis are

also presented to provide a timing guarantee for the Pythia-

MCS and demonstrate improved schedulability compared to

conventional MCS frameworks. As shown in the evaluation,

the Pythia-MCS outperforms state-of-the-art MCS frameworks

with varying hardware architectures. In addition, the Pythia-

MCS is resource-efficient.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their constructive and helpful feedback. This work is sup-

ported by the U.S. National Science Foundation under Grant

Nos. CNS-1618185 and IIS-1724227, start-up and REP grants

from Texas State University and a start-up grant from Wayne

State University. The authors would also like to thank Dr.

Xiaotian Dai, Prof. Ian Gray and Prof. Qingling Zhao, for their

consultancy and discussion during the system development.

REFERENCES

[1] K. Agrawal, S. Baruah, and A. Burns. Semi-clairvoyance in mixed-
criticality scheduling. In 40th IEEE Real-Time Systems Symposium
(RTSS 2019). York, 2019.

[2] J. H. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling of
asynchronous periodic tasks. Journal of Computer and System Sciences,
68(1):157–204, 2004.

[3] ARM. Amba axi and ace protocol specification, 2012.
[4] S. Baruah, V. Bonifaci, G. d’Angelo, H. Li, A. Marchetti-Spaccamela,

N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs.
IEEE Transactions on Computers, 61(8):1140–1152, 2011.

[5] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In 2012
24th Euromicro Conference on Real-Time Systems, pages 145–154.
IEEE, 2012.

[6] S. K. Baruah, V. Bonifaci, G. d’Angelo, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie. Mixed-criticality scheduling of sporadic
task systems. In European Symposium on Algorithms, pages 555–566.
Springer, 2011.

[7] A. Bhuiyan, S. Sruti, Z. Guo, and K. Yang. Precise scheduling of mixed-
criticality tasks by varying processor speed. In Proceedings of the 27th
International Conference on Real-Time Networks and Systems, pages
123–132, 2019.

[8] A. Burns and R. Davis. Mixed criticality systems-a review. Department
of Computer Science, University of York, Tech. Rep, pages 1–69, 2013.

[9] A. Burns and A. J. Wellings. Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. Pearson
Education, 2001.

[10] A. Burns and A. J. Wellings. Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. Pearson
Education, 2001.

[11] J. Caplan, Z. Al-Bayati, H. Zeng, and B. H. Meyer. Mapping and
scheduling mixed-criticality systems with on-demand redundancy. IEEE
Transactions on Computers, 67(4):582–588, 2017.

[12] J.-J. Chen, W.-H. Huang, Z. Dong, and C. Liu. Fixed-priority scheduling
of mixed soft and hare real-time tasks on multiprocessors. In 2017 IEEE
23rd International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 1–10. IEEE, 2017.

[13] D. De Niz, B. Andersson, M. Klein, J. Lehoczky, A. Vasudevan, H. Kim,
and G. Moreno. Mixed-trust computing for real-time systems. In
2019 IEEE 25th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 1–11. IEEE, 2019.

[14] P. Dong, A. Burns, Z. Jiang, and X. Liao. Tzdks: A new trustzone-
based dual-criticality system with balanced performance. In 2018 IEEE
24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 59–64. IEEE, 2018.

[15] P. Dong, Z. Jiang, A. Burns, Y. Ding, and J. Ma. Build real-
time communication for hybrid dual-os system. Journal of Systems
Architecture, page 101774, 2020.

[16] Z. Dong and C. Liu. An efficient utilization-based test for scheduling
hard real-time sporadic dag task systems on multiprocessors. In 2019
IEEE Real-Time Systems Symposium (RTSS), pages 181–193. IEEE,
2019.

[17] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic
tasks on one processor. In 2013 IEEE 34th Real-Time Systems Sympo-
sium, pages 78–87. IEEE, 2013.

[18] R. Electronics. Renesas: Automotive Use Cases. https://www.renesas.
com/eu/en/solutions/automotive/technology/safety.html. Accessed May
5, 2020.

[19] EMBC. EMBC benchmark. https://www.eembc.org/autobench/.
[20] R. Ernst and M. Di Natale. Mixed criticality systems—a history of

misconceptions? IEEE Design & Test, 33(5):65–74, 2016.
[21] FreeRTOS. Freertos official website. http://www.freertos.org/. Accessed

September 27, 2017.
[22] P. K. Gadepalli, G. Peach, G. Parmer, J. Espy, and Z. Day. Chaos: a

system for criticality-aware, multi-core coordination. In RTAS, 2019.
[23] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient

scheduling of certifiable mixed-criticality sporadic task systems. In 2011
IEEE 32nd Real-Time Systems Symposium, pages 13–23. IEEE, 2011.

[24] M. Hassan and H. Patel. Criticality-and requirement-aware bus arbitra-
tion for multi-core mixed criticality systems. In 2016 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
1–11. IEEE, 2016.

[25] J. L. Hennessy and D. A. Patterson. Computer architecture: a quanti-
tative approach. Elsevier, 2011.

[26] K. Hwang and A. Faye. Computer architecture and parallel processing.
1984.

[27] I. ISO. 26262: Road vehicles-functional safety. International Standard
ISO/FDIS, 26262, 2018.

[28] K. Jeffay and S. Goddard. A theory of rate-based execution. In Proceed-
ings 20th IEEE Real-Time Systems Symposium (Cat. No. 99CB37054),
pages 304–314. IEEE, 1999.

[29] Z. Jiang, N. Audsley, and P. Dong. Blueio: A scalable real-time
hardware i/o virtualization system for many-core embedded systems.
ACM Transactions on Embedded Computing Systems (TECS), 18(3):1–
25, 2019.

[30] Z. Jiang, N. Audsley, P. Dong, N. Guan, X. Dai, and L. Wei. Mcs-iov:
Real-time i/o virtualization for mixed-criticality systems. In 2019 IEEE
Real-Time Systems Symposium (RTSS), pages 326–338. IEEE, 2019.

[31] Z. Jiang and N. C. Audsley. Gpiocp: Timing-accurate general purpose
i/o controller for many-core real-time systems. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017, pages 806–811.
IEEE, 2017.

[32] Z. Jiang, N. C. Audsley, and P. Dong. Bluevisor: A scalable real-time
hardware hypervisor for many-core embedded systems. In 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 75–84. IEEE, 2018.

[33] N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D. Smith, and D. E.
Porter. Supporting i/o and ipc via fine-grained os isolation for mixed-
criticality real-time tasks. In RTNS, 2019.

[34] A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange. Run-
time control to increase task parallelism in mixed-critical systems. In
2014 26th Euromicro Conference on Real-Time Systems, pages 119–128.
IEEE, 2014.

[35] A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy, S. Girbal,
and D. G. Pérez. Distributed run-time wcet controller for concurrent
critical tasks in mixed-critical systems. In Proceedings of the 22nd
International Conference on Real-Time Networks and Systems, pages
139–148, 2014.

[36] S. Law, M. Bennett, S. Hutchesson, I. Ellis, G. Bernat, A. Colin, and
A. Coombes. Effective worst-case execution time analysis of do178c
level a software. Ada User Journal, 36(3), 2015.

[37] J. Lee, H. S. Chwa, L. T. Phan, I. Shin, and I. Lee. Mc-adapt: Adaptive
task dropping in mixed-criticality scheduling. ACM Transactions on
Embedded Computing Systems (TECS), 16(5s):1–21, 2017.

[38] B. Lesage, I. Puaut, and A. Seznec. Preti: Partitioned real-time shared
cache for mixed-criticality real-time systems. In Proceedings of the
20th International Conference on Real-Time and Network Systems, pages
171–180, 2012.

[39] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt, et al. Towards fully autonomous
driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles
Symposium (IV), pages 163–168. IEEE, 2011.

[40] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-
criticality federated scheduling for parallel real-time tasks. Real-time
systems, 53(5):760–811, 2017.

[41] Y. Li, M. Danish, and R. West. Quest-v: A virtualized multikernel for
high-confidence systems. arXiv preprint arXiv:1112.5136, 2011.

[42] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi.
Edf-vd scheduling of mixed-criticality systems with degraded quality
guarantees. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages
35–46. IEEE, 2016.

[43] M. M. Mano. Computer system architecture. Prentice-Hall of India,
2003.

[44] E. Monmasson and M. N. Cirstea. Fpga design methodology for
industrial control systems—a review. IEEE transactions on industrial
electronics, 54(4):1824–1842, 2007.

[45] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares. Virtualiza-
tion on trustzone-enabled microcontrollers? voilà! In 2019 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 293–304. IEEE, 2019.

[46] G. Plumbridge, J. Whitham, and N. Audsley. Blueshell: a platform
for rapid prototyping of multiprocessor nocs and accelerators. ACM
SIGARCH Computer Architecture News, 41(5):107–117, 2014.

[47] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo. Is
your bus arbiter really fair? restoring fairness in axi interconnects for
fpga socs. ACM Transactions on Embedded Computing Systems (TECS),
18(5s):1–22, 2019.

[48] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating system
principles. John Wiley & Sons, 2006.

[49] J. Singh, L. Santinelli, F. Reghenzani, K. Bletsas, and Z. Guo. Non-
preemptive scheduling of periodic mixed-criticality real-time systems.
In 10th European Congress on Embedded Real-Time Systems, 2020.

[50] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS, 2007.

[51] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, and V. I. U. level Isa.
The risc-v instruction set manual. Volume I: User-Level ISA’, version,
2, 2014.

[52] R. West, Y. Li, E. Missimer, and M. Danish. A virtualized separation
kernel for mixed-criticality systems. ACM Transactions on Computer
Systems (TOCS), 34(3):1–41, 2016.

[53] S. Xi, J. Wilson, C. Lu, and C. Gill. Rt-xen: Towards real-time
hypervisor scheduling in xen. In 2011 Proceedings of the Ninth ACM
International Conference on Embedded Software (EMSOFT), pages 39–
48. IEEE, 2011.

[54] Xilinx. Bluespec System Verilog. https://bluespec.com.
[55] Xilinx. Microblaze. https://www.xilinx.com/products/design-

tools/microblaze.
[56] Xilinx. Xilinx official website. https://www.Xilinx.com.
[57] D. Yang, X. Li, X. Dai, R. Zhang, L. Qi, W. Zhang, and Z. Jiang.

All in one network for driver attention monitoring. In ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2258–2262. IEEE, 2020.

[58] K. Yang and Z. Dong. Mixed-criticality scheduling with varying
processor supply in compositional real-time systems. In Proceedings
of the 7th International Workshop on Mixed Criticality Systems (WMC),
2019.

[59] Y. Zhao and H. Zeng. An efficient schedulability analysis for optimizing
systems with adaptive mixed-criticality scheduling. Real-Time Systems,
53(4):467–525, 2017.

