PHYSICAL REVIEW LETTERS 126, 090505 (2021)

Quantum Computational Advantage with String Order Parameters of One-Dimensional
Symmetry-Protected Topological Order

Austin K. Daniel®" and Akimasa MiyalkeT
Department of Physics and Astronomy, Center for Quantum Information and Control, University of New Mexico,
Albugquerque, New Mexico 87131, USA

® (Received 17 August 2020; accepted 22 January 2021; published 5 March 2021)

Nonlocal games with advantageous quantum strategies give arguably the most fundamental demon-
stration of the power of quantum resources over their classical counterparts. Recently, certain multiplayer
generalizations of nonlocal games have been used to prove unconditional separations between limited
computational complexity classes of shallow-depth circuits. Here, we show advantageous strategies for
these nonlocal games for generic ground states of one-dimensional symmetry-protected topological orders
(SPTOs), when a discrete invariant of a SPTO known as a twist phase is nontrivial and —1. Our construction
demonstrates that sufficiently large string order parameters of such SPTOs are indicative of globally
constrained correlations useful for the unconditional computational separation.
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Introduction.—Entanglement underlies nonclassical fea-
tures of quantum mechanics. On one hand, local hidden
variable models cannot produce nonlocal quantum corre-
lations [1,2]. This idea is elegantly illustrated with nonlocal
games [3,4], whereby players who implement strategies
utilizing entangled resources can accomplish a distributed
computational task without classical communication.
Moreover, in Ref. [5], it was shown that local hidden
variable models assisted by even a limited amount of
classical communication fail to mimic Pauli-measurement
outcomes on graph states [6]. On the other hand, con-
textuality [7-11], the degree to which locally incompatible
measurements evade global explanation, is another non-
classical feature related to the hardness of computation and
quantum advantage [12-19]. Combining these features,
seminal works by Bravyi et al. [20] and others [21-25]
compared certain many-body generalizations of nonlocal
games assisted by limited classical communication to
classical computation with bounded fan-in gates. This
perspective is successful in proving unconditional
exponential separations between limited computational
complexity classes, demonstrating the power of shallow
quantum circuits over their classical counterparts.

Advantageous quantum strategies for these multiplayer
games possess two key properties: contextuality of the
measurements performed and long-range entanglement
accessible by arbitrarily distant players. Motivated by this
key observation, we establish a general connection between
the shared quantum resource and many-body entanglement
ubiquitously present in ground states of quantum phases
of matter called symmetry-protected topological order
(SPTO) [26-29]. Namely, we show that local measure-
ments that collectively resolve global measurements of
symmetries and so-called twist phases [30] (an invariant of
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ID SPTO phases with an Abelian symmetry group)
give a desired state-dependent contextuality property.
Furthermore, the string order parameter [31,32], a nonlocal
order parameter of 1D SPTO related to the long-ranged
order [33-37], gives the desired entanglement structure,
which is known to be useful for measurement-based
quantum computation (MBQC) [38-48].

Our Letter indicates that the aforementioned computa-
tional separation between shallow-depth classical and
quantum circuits carries over to generic 1D SPTO ground
states. This will be illustrated using various states in the 1D
Z, x Z, SPTO phase, such as the cluster state [49,50] and
the Affleck-Kennedy-Tasaki-Lieb (AKLT) state [51]. It is
intriguing to see how the stringlike correlations of 1D
SPTO states have similar utility as the two-point correla-
tions of the Greenberger-Horne-Zeilinger (GHZ) state, as
the so-called GHZ paradox [52] has been a canonical
example in nonlocal games and nonadaptive MBQC
[12,53-56]. Our result assists to tighten an inherent con-
nection between MBQC, contextuality, and group coho-
mology pursued in Refs. [57-62]. In comparison, however,
our obstruction to a noncontextual description of the
triangle game below arises directly from a cohomological
signature of 1D SPTOs. Our results also complement
studies of nonlocality in many-body systems [63-66].
Last but not least, as quantum simulation of various 1D
SPTO states is of broad interest in experimental realizations
[67—69], our construction may pave a way toward obser-
vation of quantum computational advantage using 1D
SPTO and its string order parameter.

The triangle game.—We begin with a motivating exam-
ple adapted from Refs. [5,20], as seen in Fig. 1. Consider a
game where three players, indexed by j € {0, 1,2}, each
receive a random input bit x; € {0, 1}. Each fills a three-bit
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FIG. 1. Triangle game. (a) Players fill in the row or column of their table with a binary string if their input is O or 1, respectively. (b) The

win conditions. Apart from the global even parity of the output, the dark and light shaded boxes denote that each entry in the row jointly
have even parity. The Penrose triangle represents the condition that the top, bottom, and left entries of any clockwise ordering of the
three players have odd parity. (c) Quantum strategy for the triangle game. For each pair of Pauli observables in the table, the left one
corresponds to the qubit located at the corresponding corner of the triangle. Perfection of the strategy is ensured by five cluster state
stabilizers, whose eigenvalues are £1 as shown. (d) Multiplayer triangle game (see [70]). Three arbitrary players, depicted at the corners
of the triangle, measure the same Pauli observables as before on the 2n-qubit cluster state and otherwise measure along the row. They
still win the original game perfectly (up to inconsequential additional outputs by the other n — 3 players). (e) Perfect quantum strategy on
1D SPTO fixed-point states is ensured when players measure on-site symmetry and boundary operators. The Penrose-triangle
constraints in (c) manifest as a collective measurement of twisted string order parameters whose expectation value is an invariant of

SPTOs, called a twist phase Q(g, ), equal to —1.

string y; € {0, 1}3 in the row or column of the table of
Fig. 1(a) if x; = O or 1, respectively. Suppose the players do
not communicate and produce outputs dependent only on
their given input, i.e., y; = y;(x;). The values recorded in
the row or column of each table can be written y;(0) =
(aj,bj,c;) and y;(1) = (d;. bj, e;). The players win the
game whenever the full output string (yo,y;,y») € {0, 1}’
has even parity and

ag+ a; +a, =0, (1a)
b0+b1 +b2 :O, (lb)

di+ej +a,=1 VYV je{0,1,2}. (1c)
Notice that while Eq. (1b) must hold for all inputs, Egs. (1a)
and (1c) are input-dependent constraints. However, because
summing Egs. (la)-(1c) gives ijzo(dj +bj+e;) =1,
the total output string for the input x = (1, 1,1) cannot
have even parity. This implies that the classical winning
probability is bounded above by %, by failing on at least one
of eight inputs.

On the contrary, there is a perfect quantum strategy for
this game. A quantum strategy for a nonlocal game is a
tuple (p,C,) consisting of a shared quantum state p and
“contexts,” sets of pairwise commuting local observables
C, = {Ax(x)} to be measured, for each x € {0, 1}. Let X,
Y, and Z be the Pauli matrices and 1 be the identity matrix.

Each player j holds qubits 2j and 2j + 1 from the 6-qubit
ID cluster state, |yipc) = [[3_o CZris1|+)®°, where
[+) = (0) +1))/v2 and CZ=10){0] ® T +[1){1| ®
Z is the 2-qubit controlled-Z gate. |y ipc) is a stabilizer
state, the joint 41 eigenstate of a commuting set of Pauli
observables generated by Z,X;,,Z,,, for k=0,...,5.
Each player measures the 2-qubit Pauli observables from
the horizontal or vertical contexts shown in Fig. 1(c) and
records the outcomes in the table. The observables in each
row and column multiply to the identity, constraining the
measurement outcomes to form a string of even parity.
Certain observables in each player’s table collectively form
stabilizers up to a sign, shown in Fig. I(c), implying
Eqgs. (la)—(lc) are satisfied. These stabilizers form an
identity product [74], giving state-dependent contextuality.

Moreover, as described in Refs. [5,20], this game has a
multiplayer generalization (see [70] for details). In each
round of the game, three arbitrary players, labeled «, f#, and
v, are given a bit from the input x € {0, 1}3 and each player
outputs a three-bit string. The new win conditions are
equivalent to Egs. (1a)—(1c) up to the parity of a “correction
string” given by the outputs of the other players. The
corresponding quantum strategy utilizes a 2n-qubit 1D
cluster state and measurements in the same contexts, as
depicted in Fig. 1(d). In this generalized n-player setting,
quantum players can outperform even locally communicat-
ing classical players. For large enough n, a constant number
of rounds of classical communication between players that
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are nearby with respect to the cycle cannot create the same
global correlations attained in the quantum setting since
distant players cannot communicate. These nonclassical,
long-ranged correlations that persist for the quantum
strategy in the large-n (i.e., thermodynamic) limit are
naturally indicative of 1D symmetry-protected topological
order.

Symmetry-protected topological order.—A 1D SPTO
phase is topologically ordered in the presence of symmetry
G, in that each ground state cannot be connected smoothly
to a product state via symmetry-respecting perturbations. In
the following, we focus on a global symmetry G that forms
a finite group. The topological nature gives ground-state
degeneracy dependent on boundary conditions. At the open
boundary, there appear effective degrees of freedom that
transform under a projective representation of G.

Algebraically, a projective representation of G is a
collection of unitary matrices {V(g)},; that obey the
group multiplication law up to a G-dependent phase, i.e.,

V(9)V(h) = w(g, h)V(gh), (2)

where w(g, h) € U(1) is called a 2-cocycle. Inequivalent
projective representations, and thus 1D SPTO phases, are
classified by a multiplicative group H?(G, U(1)) called the
second group cohomology [75], whose elements are
equivalence classes of 2-cocycles, called cohomology
classes, denoted [w] € H*(G, U(1)).

Symmetry twists.—The cohomological properties can be
probed, even under periodic boundary conditions, by
introducing artificial boundaries called symmetry twists
[30,76]. Consider a system of # sites with global symmetry
G carrying on-site representation U(g) = u(g)®". Denote
as Upjy(g) =®)71 u(g) a truncated symmetry operator
acting only between sites j and k. Symmetry twists are
low energy excitations that appear about sites j and k when
Uy« (g) acts on the 1D SPTO ground state [y). In general,
there are local operators V% (g) and V§(g), called “boun-
dary operators,” supported in the vicinity of sites j and k
that annihilate the symmetry twists. Mathematically, this is
realized by the trivial action of

Sin(g) = [Vi(g) ® Vi(9)lUjx(9) (3)

on the state, i.e., S}; 4(9)|y) = |w). The expectation value
of S}k (g) gives a string order parameter that characterizes
the long-range order in the 1D SPTO phase [31,32]. For
translationally invariant systems, one may drop the site
dependence on V%(g) and V{(g).

We remark that the boundary operators are not universal
(i.e., they vary for different states in the phase). Thus we
focus on fixed-point boundary operators, which are defined
with respect to the fixed-point state of the 1D SPTO phase
obtained under renormalization group flow [29,77,78].
Hereafter, we redefine VX(g) and VZ(g) to be the

fixed-point boundary operators, which have local support
of size m, typically two. In [70], we construct VZ(g) and
VR(g) explicitly from matrix-product state (MPS) repre-
sentations of the fixed-point state. In the [w]-class 1D
SPTO phase, operators {V*(g)} c; and {VX(g)} e form
projective representations of G residing in cohomology
class [@w] and [w*], respectively. At the same site, they
satisfy

VE(g)VE(h) = w(g. h)VE(gh). (4)
VE(g)VE(h) = (g, h)*VE(gh). (5)
VE(g)VE(h) = VE(R)VE(g). (6)
VE(g)VE(g) = u(g)®™. (7)

We prove Egs. (4)—(7) in [70].

Twist phase and twisted string order parameter.—1D
SPTO phases possess an invariant called a twist phase
Q(g,h) € U(1) [30] defined as

Q(g.h) = : (8)

For Abelian G, this object depends only on the cohomology
class [w]. Conveniently, this phase is simply the
overall phase accumulated upon commuting the projective
representations of ¢ and h through each other, i.e.,
V(g)V(h) = Q(g. W)V (R)V(g).

In comparison to Eq. (3), it is convenient to define the
“twisted” string order parameter as the expectation value of
an operator

h
T — VR UVE@Un(e). ()
By Eqgs. (3)—(7), its expectation value on the fixed-point
state is the twist phase

WIT " ) = Q(g.h). (10)

See [70] for a proof of Eq. (10).

SPTO triangle game strategy from symmetry twists.—
Now we present the main result of this Letter. We show that
the measurement of twist phases for a particular class of 1D
SPTO phases can be repurposed as a quantum strategy for
the multiplayer triangle game. As on-site symmetries will
always be measured over m sites, henceforth we redefine
u(g) to denote u(g)®™ for ease of the notation.

Lemma [.—Consider a 1D SPTO ground state with a
finite Abelian symmetry group G containing elements
g,h € G such that the twist phase Q(g,h) = —1. There
are two overlapping contexts of local observables by which
the twisted string order parameter TE;’:]) of Eq. (9) is
composable.
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Proof.—The operators appearing in Tfjglﬁ) can be organ-
ized in the following:
u(h)V*(g)
uh) | ule) | ugn) | (11)
V7 (g)u(h)

Since G is Abelian, all on-site symmetry operators
in the row commute. By Eqgs. (6) and (7), u(g)
commutes with u(h)VE(g) and VZ(g)u(h). Finally,
by Egs. (46), [u(h)VE(g)][VF(g)u(h)]=Q(g.h)*
[VR(g)u(h)][u(h)VE(g)]. Thus the operators in the column
commute if and only if Q(g, h) = +1. L]

Theorem 1.—Consider a 1D SPTO phase with a sym-
metry group G as described in Lemma 1. Any fixed-point
ground state in the phase allows a perfect quantum strategy
for the multiplayer triangle game.

Proof.—Suppose each player holds a block of m con-
stituent particles from the 1D SPTO fixed point |y). Each
player measures their block in the horizontal or vertical
context of Eq. (11) if they are given input O or 1,
respectively. By Eq. (7), the product of all operators in
either context of Eq. (11) is u(g*h?), so collectively the
players measure global symmetry U(g>h?) and the product
of all outcomes is +1. Regardless of the input, each player
measures u(g) and thus they collectively measure global
symmetry U(g), implying Eq. (1b) is satisfied. For the input
(0, 0, 0), each player measures u(h), so collectively they
measure global symmetry U(h), implying Eq. (la) is
satisfied. Finally, for the input (1, 1, 0), player O measures
u(h)VE(g), player 1 measures VE(g)u(h), and player 2
measures u(h). Collectively they measure the three-site
twisted string order parameter T g:]}l) and the joint outcome
is Q(g, h) = —1, by Eq. (10). Permutations of this argu-
ment show that Eq. (Ic) is satisfied. The strategy for the
multiplayer version follows accordingly. [

Examples in the Z, x Z, SPTO phase.—The simplest
SPTO phase in which Theorem 1 holds is the nontrivial
Z, x Z, 1D SPTO phase. The complete set of twist
phases, given by Q((a,b),(c,d)) = (=1)4+bc for
(a,b),(c,d) € Z, x Z,, is identical to the Pauli algebra.
We show how Theorem 1 encompasses the quantum
strategy for the triangle game discussed above, and then
extend Theorem 1 to generic states outside the fixed point.
We illustrate these results using the 1D cluster and AKLT
states, respectively. Both are known to be useful as 1D
quantum logical wires in MBQC [50,79-82].

The 1D cluster state [49,50] is the fixed point of this
phase. The on-site symmetry and boundary operators are

ul(a.b)] = X* ® X, (12a)

VR((a,b)] = Z°X* @ 7°, (12b

~~

VL (a,b)] = 72" @ 7¢X?, (12¢)
for (a,b) € Z, x Z,. Taking g = (0,1) and & = (1,0) in
Eq. (11) gives the strategy presented in Fig. 1(c).

To study generic states beyond the fixed point, we will
refer to the set of measurements to be performed as the
protocol. The protocol corresponding to the contexts of
Eq. (11) constructed with the fixed-point boundary oper-
ators will be referred to as the “fixed-point protocol.” The
quantum strategy formed by the fixed-point protocol
implemented on arbitrary states in the phase no longer
wins with unit probability, but extends Theorem 1 as
follows.

Theorem 2.—Consider an arbitrary 1D Z, x Z, SPTO
ground state |¢) and let (S) = mingeq{(#[S;q(9)|¢)} be
the minimal value of any string order parameter constructed
from the fixed-point boundary operators. The fixed-point
protocol of Theorem 1 implemented on the state |¢) yields
an advantageous quantum strategy [i.e., pr(win) > 7/8]
whenever 1/3 < (S) < 1.

Proof.—In the Z, x Z, SPTO phase S|;4(g9)* =1 and
each ground state |¢) is symmetric. Denote by pr,(+1|0)
the probability that the joint measurement outcome
of a dichotomic observable O on |¢p) has parity +1.
By  definition,  pr,(£1|0) = (1 £ (¢|0|¢))/2, so

pry[+1|U(g)]¥g. Because T(%)=Q(g.h)U(h)S(;4(g) by

B (7, pry(=1T{5) =pry[+11S(9)] 2 (14(S5))/2
when Q(g,h) = —1. Averaging over the eight possible
inputs for the triangle game, we find pr(win)=
Sprs[+1|U ()] +3pry (—1|T{4)) > (13+3(S))/16. Thus,
pr(win) > 7/8 whenever 1/3 < (S) < 1. "

Theorem 2 extends the quantum advantage to more
realistic states that are neither fixed-point states nor Pauli
stabilizer states. The AKLT state [51] is a spin-1 anti-
ferromagnetic state that is the Z, x Z, SPTO ground state
of a two-body interacting Hamiltonian (as opposed to the
three-body interactions of the 1D cluster state). Over two
spin 1’s, we introduce |&) as the singlet and {|%), |[), |Z) } as
a Cartesian basis of the triplet (see [70] for mathematical
definitions). Using u € {z,x,y} to denote group elements
{(0,1),(1,0),(1,1)}, respectively, the on-site symmetry
and fixed-point boundary operators are

u(u) = exp (izS*)%?, (13a)

VR(u) = [e) (5 + ) (e[ +i Y eu,lB)(Fl.  (13b)
vye{xy.z}

VE(u) = &)@l + el =i Y eu,D)F. (13¢)
vye{xy.z}

The string order parameter formed by these operators [as
per Eq. (3)] consists of dichotomic operators, in contrast to
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the conventional one based on spin-1 operators [31].
Note, however, that Egs. (13a)-(13c) are equivalent
to Egs. (12a)—(12c) under a local isometry |&)(+ + | + |Z)
(= + |+ |%)(+—=|+i[y)(— — |, as the fixed point is the
1D cluster state. For ¢ =z and h = x, an exact MPS

2
calculation gives (S) Zg(\/%+%) ~0978 and by

Theorem 2, pr(win) > £+ (\@ + %)2 ~0.996 (see
[70] for details). Thus quantum advantage persists at the
AKLT point.

Quantum computational advantage.—In Ref. [20], an
exponential quantum speed-up was shown for a problem
equivalent to a 2D multiplayer generalization of our
triangle problem where players are situated on an N x N
grid (elaborated in [70]). In this 2D setting, quantum
players outperform nonlocally communicating classical
players. Indeed, a constant number of rounds of classical
communication between a constant number of arbitrarily
distant players on the grid still leaves at least one cycle of
locally communicating players in the large-N limit. This
advantage can be rephrased in the language of circuit
complexity. Classical Boolean circuits consisting of non-
local gates with bounded fan-in require at least logarithmic
depth (i.e., logarithmically many rounds of communica-
tion) to ensure a solution to the problem with arbitrarily
high probability. On the other hand, it is possible to prepare
generic SPTO ground states in constant depth when the
symmetry G is disregarded [83,84]. Theorems 1 and 2
present a substantial extension regarding the required
capability of a quantum device.

Corollary.—Consider a relation problem whereby play-
ers situated on an N x N 2D grid are tasked to play the
multiplayer triangle game on an arbitrary cycle in the grid.
A quantum device that can prepare a 1D SPTO ground state
in constant time with string order parameters greater than
1/3 on the arbitrary cycles and perform the fixed-point
protocol of Theorem 2 solves the problem with probability
greater than 7/8 on all inputs, which any classical circuit
with gates of fan-in at most K and depth less than logg (N)
cannot do.A precise statement and proof of Corollary 1 is
given in [70].

Conclusion and outlook.—We have shown how to har-
ness contextuality and the string order parameter of generic
1D SPTO ground states to construct advantageous quantum
strategies for a nonlocal game that thwarts all classical
strategies (even with assistance of limited long-range
communication). Our approach, to be supplemented with
a follow-up paper [85], contributes to unify recent insight
about unconditional quantum advantage. For example, the
magic-square game in [23] also admits general 1D SPTO
strategies, and similar complexity-theoretic results using
the GHZ state [24] can be understood using Kennedy-
Tasaki duality maps [86,87]. Our relation of the string order
parameter to robustness of the advantage may be applicable
to robust self-testing [88-92] for fixed-point SPTO states.

The use of SPTO is welcome in scalable and robust
experimental demonstrations, as these ground states can
be realized as the unique ground states of two-body
Hamiltonians in contrast to the GHZ state. Broadly, our
Letter is timely to promote the value of quantum simulation
to prepare and detect 1D SPTOs for potential quantum
advantage.
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