
An Exact Auxiliary Variable Gibbs Sampler for
a Class of Diffusions

Qi Wang
Department of Statistics, Purdue University

and
Vinayak Rao

Department of Statistics, Purdue University
and

Yee Whye Teh
Department of Statistics, University of Oxford

August 24, 2020

Abstract

Stochastic differential equations (SDEs) or diffusions are continuous-valued continuous-
time stochastic processes widely used in the applied and mathematical sciences. Simulating
paths from these processes is usually an intractable problem, and typically involves time-
discretization approximations. We propose an exact Markov chain Monte Carlo sampling
algorithm that involves no such time-discretization error. Our sampler is applicable to the
problem of prior simulation from an SDE, posterior simulation conditioned on noisy ob-
servations, as well as parameter inference given noisy observations. Our work recasts an
existing rejection sampling algorithm for a class of diffusions as a latent variable model,
and then derives an auxiliary variable Gibbs sampling algorithm that targets the associated
joint distribution. At a high level, the resulting algorithm involves two steps: simulating a
random grid of times from an inhomogeneous Poisson process, and updating the SDE trajec-
tory conditioned on this grid. Our work allows the vast literature of Monte Carlo sampling
algorithms from the Gaussian process literature to be brought to bear to applications involv-
ing diffusions. We study our method on synthetic and real datasets, where we demonstrate
superior performance over competing methods.

Keywords: Brownian motion, Markov chain Monte Carlo, Poisson process, stochastic differential
equations

1

1 Introduction

Diffusion processes are a class of stochastic processes that have been deeply studied and widely
applied across a variety of theoretical and applied domains. A diffusion evolves through time
according to a stochastic differential equation (SDE) (Øksendal, 2003), and is a continuous-time
Markov process whose realizations are continuous paths. The most well-known example is Brow-
nian motion, corresponding to a random walk through some finite-dimensional Euclidean space.
Brownian motion is characterized by two fixed parameters: a drift coefficient α, and a diffusion co-
efficient σ. SDEs generalize this, allowing the drift and diffusion to depend on the current state of
the process. A simple example is the Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Ornstein,
1930), where the drift equals the negative of the difference between the current state and some con-
stant µ, resulting in mean-reverting dynamics. Closely related is the Brownian bridge (Øksendal,
2003), where the drift at any time t is this negative difference divided by T − t, the time remaining
till the end of an interval [0, T]. This results in the process taking value µ at time T with probabil-
ity one. The OU process and the Brownian bridge are still simple Gauss-Markov processes, with
the distribution over the process value at some future time following an easy-to-compute normal
distribution. More general drift and diffusion dependencies allow SDEs to model rich, mechanistic,
nonlinear and nonstationary phenomena from a variety of applied disciplines. Examples include
astronomy (Schuecker et al., 2001), biology (Ricciardi, 2013), psychology (Tuerlinckx et al., 2001),
ecology (Holmes, 2004), economics (Bergstrom, 1990), genetics (Lange, 2003), finance (Black and
Scholes, 1973), physics (Keller et al., 1995), and political and social sciences (Cobb, 1981).

The flexibility that SDEs offer comes at a severe computational cost, especially in data-driven
applications. With a few exceptions, the nonlinear, continuous-time dynamics of SDEs result in
distributions over future values that are not just non-Gaussian, but also unavailable in closed
form. If an SDE forms a prior distribution over paths, then even simulating from this distribu-
tion forms an intractable problem. Given noisy measurements via some measurement process,
posterior simulation is even more challenging. As a consequence, both prior and posterior sim-
ulation are typically carried out approximately by discretizing time, common approaches being
Euler-Maruyama or Millstein approximations (Kloeden et al., 2012). While this allows ideas from
the discrete-time literature to be used, time-discretization introduces errors into inferences, and
controlling these requires fine discretization grids and expensive computation.

2

Our main contribution in this paper is an auxiliary variable Markov chain Monte Carlo
(MCMC) algorithm that targets the posterior distribution over paths exactly without any such
approximations. Our scheme builds on a rejection sampling algorithm that allows exact simulation
from a class of SDEs, outlined in the papers Beskos and Roberts (2005); Beskos et al. (2006a,b).
Our work recasts this rejection sampling algorithm as a latent variable model, and then derives a
Gibbs sampling algorithm that at a high level involves two simulation steps: 1) simulate a random
grid of times from an inhomogeneous Poisson process conditioned on a set of diffusion values, and
2) update the diffusion values on this Poisson grid. Our algorithm allows us to easily use standard
tools from the vast Gaussian process literature (Titsias et al., 2008), and also allows conditional
simulation given noisy observations. Our focus is mostly on one-dimensional diffusions, although
our ideas also apply to some multivariate diffusions which can be transformed to have a constant
diffusion function σ(·). A more serious restriction is that like Beskos and Roberts (2005), our al-
gorithm applies to diffusions whose Radon-Nikodym derivative with respect to a biased Brownian
bridge is bounded (see section 2.2): we call these SDEs of class EA1. It is conceptually easy to
see how our basic idea extends to larger classes of diffusions (called EA2 and EA3), though these
generalizations can be quite involved. We leave this for future work.

We organize our paper as follows. Section 2 briefly introduces stochastic differential equations
and describes the exact EA1 algorithm of Beskos and Roberts (2005). Section 3 sets up the general
Bayesian model for which we wish to carry out posterior inference, and describes our proposed
MCMC algorithm in this broader setting. Section 4 shows how to extend our MCMC algorithm
to incorporate parameter sampling. We discuss related work in section 5, while in section 6 and 7,
we evaluate our, and three other sampling algorithms, on synthetic and real datasets.

2 Stochastic differential equations (SDEs)
A diffusion Xt is a continuous-valued continuous-time Markov process that solves the SDE

dXt = αθ(Xt)dt+ σθ(Xt)dBt. (1)

The process is driven by Brownian motion whose value at time t is Bt. The functions αθ(·) and
σθ(·) are the drift and diffusion terms respectively, while θ represents parameters governing the
system dynamics. For clarity, we drop dependencies on θ until section 4 on parameter sampling.

Informally, equation (1) implies that dXt, the infinitesimal change in the value of the diffusion

3

at time t, is comprised of two parts, a deterministic and a stochastic component. The former is
determined by the current value Xt of the diffusion transformed by α(·), while the latter is an
increment of Brownian motion dBt scaled by σ(Xt). In general Xt and Bt can be d-dimensional
vectors, with α(Xt) ∈ Rd and σ(Xt) ∈ Rd×d. For one-dimensional diffusions, all these are scalars.

In this paper, as in Beskos and Roberts (2005) and follow-up papers, we will assume that the
diffusion coefficient σ(·) = 1. Thus, we will be dealing with diffusions solving the equation

dXt = α(Xt)dt+ dBt. (2)

For one-dimensional diffusions, this is a mild assumption, since a general SDE can be transformed
to have a diffusion coefficient of one via the Lamperti transform (Møller and Madsen, 2010). This
involves scaling the diffusion by the function η(x) =

∫ x

−∞
1

σ(u)
du. Now, the process X ′

t = η(Xt) is a
diffusion with diffusion coefficient equal to 1 (Møller and Madsen, 2010). In higher-dimensions, the
restriction to constant diffusion is more significant, since the Lamperti transform typically does
not exist, and since there needs to exist a function A(u) satisfying α(u) = ∇A(u) (Fearnhead
et al., 2010). In what follows, we assume such a transformation has been applied to produce our
SDE of interest.

2.1 Simulation via the Euler-Maruyama Method

The Euler-Maruyama method (Iacus, 2009; Kloeden et al., 2012) forms the simplest approach to
simulating general diffusions over an interval [0, T]. This simplicity comes at the price of approx-
imation error. Under the Euler-Maruyama scheme, one chooses a time-discretization granularity
∆t, with the change in the diffusion value ∆Xt := Xt+∆t −Xt approximated as

∆Xt ≈ α(Xt)∆t+ σ(Xt)∆Bt, (3)

where ∆Bt ∼ N(0,∆t). Effectively, the change ∆Xt follows a conditionally Gaussian distribution:

∆Xt ∼ N(α(Xt)∆t, σ(Xt)∆t). (4)

The discretization error from the Euler-Maruyama method can be reduced by using a finer dis-
cretization grid. Alternately, more sophisticated approaches like the Millstein algorithm (Kloeden
et al., 2012) can provide more accurate approximations for a fixed time resolution.

4

2.2 An exact simulation algorithm (EA1) for diffusion processes

Algorithms like the Euler-Maruyama method allow easy path simulation from general SDEs at the
price of discretization error. The algorithm of Beskos and Roberts (2005) on the other hand allows
exact simulation from a subclass of SDEs with diffusion coefficient 1. In follow-up work (Beskos
et al., 2006a), this was extended to a broader class of such SDEs, though we focus on the original
algorithm, called the Exact algorithm 1 or EA1. We refer to the associated family of SDEs as
class EA1, which we characterize below. At a high level, EA1 is a rejection sampling scheme,
where proposals are made from a simple stochastic process (Brownian motion), and are accepted
or rejected with appropriate probability. The ingenuity of the algorithm lies in a retrospective
sampling scheme that only requires evaluating the paths on a finite set of times.

Assume that at time 0 the diffusion has initial value X0 = x; later we will place a probability
π over X0. Since the diffusion coefficient equals 1, the resulting stochastic process differs from
standard Brownian motion only through the drift function α(·). Informally, this results in paths
from the SDE having the same ‘roughness’ as the Brownian motion paths. A consequence is
that the probability measure over paths specified by the diffusion process is absolutely continuous
with respect to the probability measure corresponding to Brownian motion. This is formalized
by Girsanov’s theorem (Øksendal, 2003), that characterizes the diffusion process via a Radon-
Nikodym derivative with respect to Brownian motion.

Write C for the space of continuous functions on [0, T]. We will refer to generic elements of this
space as ω, with ωt representing its value at time t. For paths ω with initial value x, write Wx and
Qx for path probability measures corresponding to Brownian motion and the SDE respectively.
Then, under standard assumptions (we refer to Øksendal (2003) for more details), we have

Theorem 2.1 (Girsanov’s theorem). The Radon-Nikodym derivative dQx

dWx
satisfies

dQx

dWx

(ω) = exp

{∫ T

0

α(ωt)dωt −
1

2

∫ T

0

α2(ωt)dt

}
. (5)

Let A(u) =
∫ u

0
α(t)dt, and recall the definition of a Brownian bridge: this is just a Brownian

motion conditioned on its end points. For a density hx(u) ∝ h̃x(u) := exp(A(u) − (u − x)2/2T),
define an hx-biased Brownian bridge as a stochastic process starting at x, ending with a value
XT drawn from hx, with the two points linked by a Brownian bridge. Write Zx for the law of

5

this process. Note that for this to be well defined, h̃x must be normalizable, so that the integral
∫
h̃x(u)du =

∫
exp(A(u)− (u− x)2/2T)du is finite. Then we have (Beskos and Roberts, 2005):

Proposition 2.2. Let the drift function α satisfy the conditions of Girsanov’s theorem and be
continuously differentiable. Then

dQx

dZx

(ω) ∝ exp

{
−1

2

∫ T

0

(
α2(ωt) + α′(ωt)

)
dt

}
. (6)

Proof. Write At = A(ωt). By Itô’s lemma (Øksendal, 2003),

dAt =
∂At

∂t
dt+

∂At

∂ωt

dωt +
1

2

∂2At

∂ω2
t

dt = 0 + α(ωt)dωt +
1

2
α′(ωt)dt. (7)

Solving for
∫ T

0
α(ωt)dωt and substituting in equation (5), we get

dQx

dWx

(ω) = exp

{
A(ωT)− A(ω0)−

1

2

∫ T

0

(
α2(ωt) + α′(ωt)

)
dt

}
. (8)

By definition, the measure Zx is a reweighting of Wx by hx(ωT). Thus,

dQx

dZx

(ω) ∝ exp

{
−A(ω0)−

1

2

∫ T

0

(
α2(ωt) + α′(ωt)

)
dt

}
. (9)

Since we are fixing ω0 = x,A(ω0) is a constant, and the result follows.

We now come to the key assumption of the EA1 algorithm of Beskos and Roberts (2005):

Definition 1. An SDE belongs to class EA1 if it satisfies the assumptions of Proposition 2.2, and
its drift function α satisfies 1

2
(α2(·) + α′(·)) ∈ [L,L+M] for finite L and M .

We focus on SDEs of class EA1. Adding and subtracting L from the exponent in equation (9),

dQx

dZx

(ω) ∝ exp

{
−1

2

∫ T

0

(
α2(ωt) + α′(ωt)− 2L

)
dt

}
:= exp

{
−
∫ T

0

ϕ(ωt)dt

}
:= ρ(ω). (10)

For class EA1, the function ϕ(·) = 1
2
(α2(·)+α′(·)−2L) is positive, and exponentiating its negative

integral gives a number ρ(ω) between 0 and 1. This suggests a rejection sampling scheme (Robert
and Casella, 2005) to simulate from Qx: propose a path from the stochastic process Zx, and
accept it with probability ρ(ω). Naively, this requires 1) simulating the entire path ω, and 2)
transforming and integrating ω to calculate ρ(ω), both being impossible steps. The EA1 algorithm
bypasses this by recognizing that exp

{
−
∫ T

0
ϕ(ωt)dt

}
gives the probability that a Poisson process

6

with intensity {ϕ(ωt), t ∈ [0, T]} produces 0 events on the interval [0, T]. It takes the approach of
partially ‘uncovering’ the path ω, simulating it on a finite set of times, until the number of Poisson
events is determined. To do this, the EA1 algorithm exploits the bound ϕ(·) ≤ M to simulate
a rate-ϕ(ω) Poisson process via the thinning theorem (Lewis and Shedler, 1979). It does this in
three steps: simulate a Poisson process Ψ with intensity M on the interval [0, T], instantiate an
h-biased Brownian bridge ωt on Ψ, and keep each point ti ∈ Ψ with probability ϕ(ωti)/M . The
surviving points then form an exact realization from a rate-ϕ(ωt) Poisson process. The probability
this Poisson process has 0 events is given by equation (10).

Now, the EA1 algorithm involves repeatedly simulating from the rate-ϕ(ωt) Poisson process
this way until a realization with no events is produced. We write the corresponding path as X,
this forms an exact realization of the SDE of interest. Note that at this stage, we only have X0, XT

and XΨ, the last being the values of the diffusion uncovered on the times in the Poisson set Ψ. We
will refer to the pair (0 ∪Ψ ∪ T,X0 ∪XΨ ∪XT) as the diffusion ‘skeleton’, this forms a sufficient
statistic that allows the diffusion at any other set of times to be easily and exactly simulated.
For this, we recognize that the accepted path was a proposal from a biased Brownian bridge, but
which only was evaluated at times in 0 ∪ Ψ ∪ T . It can retrospectively be uncovered at a set of
times by conditionally simulating from a Brownian bridge. Consider a set of times G between
two successive elements ti and ti+1 of Ψ. We simulate XG, the diffusion evaluated on G, from a
Brownian bridge with endpoints Xti and Xtt+1 . We write this as XG ∼ BBG(ti, Xti , ti+1, Xti+1

) (see
the appendix for more details). Algorithm 1 describes all steps involved with the EA1 algorithm.

3 Posterior simulation for SDEs
The EA1 algorithm, while exact, can suffer from high rejection rates. This happens when dealing
with long time intervals, or when the drift α(·) causes Qx to differ significantly from the pro-
posal Zx. Further, the EA1 algorithm is primarily designed to simulate from an SDE prior or an
end-point conditioned SDE. As we describe below, extending it to simulating SDE paths from con-
ditional distributions given noisy observations can be challenging. Our proposed sampler aims to
address both these problems, and brings sampling algorithms from the Gaussian process literature
to applications with SDEs. Before describing our algorithm, we set up the general problem.

7

Algorithm 1 Simulate an SDE of class EA1 with drift term α(·) over an interval [0, T]

Input: An initial distribution over the diffusion state π(·), a finite grid of times G ⊂ [0, T].
Output: A diffusion skeleton (0 ∪Ψ ∪ T,X0 ∪XΨ ∪XT).

The diffusion values XG evaluated on the grid G.

1: Calculate A(·), ϕ(·), and the constants L and M from α(·), and set accept to false.
2: while accept = false do ▷ Rejection sampling
3: Simulate a rate-M Poisson process Ψ = {t1, t2, · · · , t|Ψ|} on [0, T].
4: At the start time 0, simulate the initial value X0 of the diffusion from π.
5: At the end point T , simulate XT from hX0(XT) ∝ exp(A(XT)− (XT −X0)

2/2T).
6: Simulate a Brownian bridge connecting (0, X0) and (T,XT) on the times Ψ:

XΨ ∼ BBΨ(0, X0, T,XT) (see appendix for details). (11)

7: For i ∈ {1, . . . , |Ψ|}, simulate ui ∼ Uniform(0, 1). If all ui > ϕ(Xti)

M
, set accept = true.

8: end while
9: for i in {0, . . . , |Ψ|} do ▷ Impute diffusion on G

10: Define t0 = 0, t|Ψ|+1 = T and Gi = G ∩ (ti, ti+1). Simulate XGi
∼ BBGi

(ti, Xti , ti+1, Xti+1
).

11: end for

3.1 Bayesian model
Consider a latent trajectory X = {Xt : t ∈ [0, T]} on the interval [0, T]. We model this as a
realization of an SDE of class EA1, with drift α(·), and distribution π on the initial value X0.
Following our previous notation, our prior distribution on the process X0 × {Xt : t ∈ (0, T]}
equals the product measure π × QX0 . Write this as Qπ. We are given noisy measurements
of the latent trajectory, with likelihood ℓ(X). We will assume this depends only on XO, the
trajectory values at a finite set of times O = {o1, . . . , o|O|}, so that ℓ(X) = ℓ(XO). Without loss
of generality, we let O include 0 and T . A simple example is when we have i.i.d. additive-noise
measurements YO = {y1, · · · , y|O|} at the times O, so that ℓ(X) =

∏
o∈O ℓo(Xo) and for example,

ℓo(Xo) = N(yo|Xo, σ
2
Y). We can also consider more complex likelihoods, where this condition holds

after augmenting the observations with additional variables. Examples of such likelihoods include
point processes (Adams et al., 2009; Rao and Teh, 2011), jump processes (Rao and Teh, 2013), or
even other diffusions modulated by the latent SDE trajectory. In this case, our MCMC sampler

8

will include such data-augmentation as an inner step. Obviously, our setup includes the problem
of prior simulation, where there are no observations.

Our goal is to simulate from the conditional distribution over paths under a prior Qπ, given
the observations with likelihood ℓ(·). Write this as Qπ,ℓ, which forms the posterior distribution
over paths under our Bayesian model. Observe that this satisfies

dQπ,ℓ

dQπ

(ω) ∝ ℓ(ω). (12)

The EA1 algorithm, as outlined in section 2.2, can only simulate trajectories from the prior
distribution Qπ. In Beskos et al. (2006a, Section 6.2), the authors adapt the EA1 rejection-
sampling algorithm to conditional simulation where the diffusion is exactly observed at a finite set
of times. One can adapt this when the diffusion is noisily observed, repeating two steps: 1) given
XO, the diffusion imputed on the observation times O, use the rejection-sampling algorithm to
simulate an SDE skeleton within each sub-interval (oi, oi+1), and 2) conditioned on the skeleton,
update the diffusion values at the observation times O. The first step exploits the Markov property
of the SDE, and runs the conditional EA1 algorithm independently for each interval [oi, oi+1]. The
second step involves simulating each Xo, o ∈ O from the conditional distribution resulting from a
Brownian bridge prior on Xo (algorithm 1, line 10) and the likelihood ℓo(Xo).

Such an approach, while useful, can scale badly with high observation-rates, as is common
in fields like high-frequency finance. Even with low to moderate observation rates, it can be
necessary to partition the observation interval into small sub-intervals to maintain low rejection
rates (Beskos et al., 2006a, Section 4). This slows down MCMC mixing, since 1) we are instanti-
ating more of the diffusion path, and 2) rather than updating the entire path in a single step, we
conditionally update part of the trajectory given the rest. The finer the sub-intervals, the stronger
the coupling, and thus, the poorer the mixing. Our proposed algorithm eliminates the rejection
sampling step altogether, instead allowing practitioners to use standard MCMC algorithms in a
fairly straightforward fashion.

3.2 Our proposed auxiliary variable Gibbs sampler for SDEs

We describe a novel MCMC sampling algorithm that targets the posterior distribution over tra-
jectories Qπ,ℓ from our Bayesian model of the previous section. Note that this equals the prior Qπ

when the likelihood ℓ(·) is a constant function. To keep our notation simple, we will write Qπ,ℓ as

9

Q. Recall that Zx is an h-biased Brownian bridge starting at x. In a similar manner to Qx, use
Zx to define Zπ and Zπ,ℓ. Thus, Zπ is the distribution over Brownian bridge paths, with endpoints
X0 distributed as π, and then XT |X0 distributed as hX0 . Treating this as a prior over paths, Zπ,ℓ

is the posterior distribution corresponding to observations with likelihood ℓ(·). Again, we write Z

for Zπ,ℓ. It follows directly from equations (10) and (12) that for a path ω ∈ C,

dQ

dZ
(ω) ∝ exp

{
−
∫ T

0

ϕ(ωt)dt

}
. (13)

Write M for the space of finite point process realizations on the interval [0, T]. Let M be the
probability measure onM corresponding to a rate-1 Poisson process. Define the product measure
Z+ = Z×M. For Ψ ∈ M, and recalling that M is the supremum of ϕ(·), define the measure Q+

via the following Radon-Nikodym derivative with respect to Z+:

dQ+

dZ+
(ω,Ψ) = exp(−MT)

∏

t∈Ψ
(M − ϕ(ωt)) . (14)

Proposition 3.1. Q+ has Q as its marginal distribution:
∫
M dQ+(ω,Ψ) = dQ(ω).

Proof. From equation (14), we have
∫

M
dQ+(ω,Ψ) =

∫

M
dZ+(ω,Ψ) exp(−MT)

∏

t∈Ψ
(M − ϕ(ωt)) = exp(−MT)dZ(ω)EM

[
∏

t∈Ψ
(M − ϕ(ωt))

]
,

where EM is the expectation with respect to the Poisson measure M. By Campbell’s theo-
rem (Kingman, 1992), we have EM

[∏
t∈Ψ (M − ϕ(ωt))

]
= EM

[
exp

{∑
t∈Ψ log (M − ϕ(ωt))

}]
=

exp
{∫ T

0
(M − ϕ(ωt))dt

}
. The result follows directly from this and equation (13).

While our goal is to produce samples from Q, our MCMC sampler is an auxiliary variable
sampler that targets the joint distribution Q+. Its state-space is the SDE trajectory X as well as
the random set of Poisson times Ψ. Proposition 3.1 tells us that discarding the Poisson times Ψ

produces trajectories X from the desired conditional distribution Q. Our algorithm takes a Gibbs
sampling approach, and targets the distribution Q+ by repeating two steps: simulate Poisson
times Ψ given the path X, and update the path given the Poisson times. Equation (14) allows us
to derive two simple corollaries that underpin our Gibbs sampler.

Corollary 3.2. Conditioned on the trajectory X, the point events Ψ follow an inhomogeneous
Poisson process with rate (M − ϕ(X)).

10

Proof. For ω fixed to X, from equation (14), Ψ is a point process whose density with respect to M is
proportional to exp(−MT)

∏
t∈Ψ (M − ϕ(Xt)). Write this as MX . For any nonnegative function g,

the Laplace functional EMX
[exp

{
−∑t∈Ψ g(t)

]
∝ EM

[
exp

{
−MT −∑t∈Ψ g(t)

}∏
t∈Ψ (M − ϕ(Xt))

]
.

From Campbell’s theorem, this equals exp
{
−MT +

∫
((M − ϕ(Xt))e

−g(t)dt
}

, which is propor-
tional to the Laplace functional of a rate-(M − ϕ(X)) Poisson process (Kingman, 1992).

An important point to note is that conditioned on X, the distribution over Ψ does not depend
on the likelihood ℓ(X), since the observations depend only on the path values X. Instead, they
enter when we update X. Our second corollary concerns updating X given the Poisson times Ψ.

Corollary 3.3. Conditioned on the Poisson times Ψ, the trajectory X has density with respect to
Zπ given by hX0(XT)ℓ(XO)

∏
t∈Ψ

(
1− ϕ(Xt)

M

)
.

Proof. Conditioned on the times Ψ, from equation (14), we see that X has density with respect
to Z proportional to

∏
t∈Ψ

(
1− ϕ(Xt)

M

)
. The result follows from the definition of Z = Zπ,ℓ.

The above result shows us that conditioned on the Poisson skeleton Ψ, the probability density
of the SDE path evaluated Ψ and O (write this as XΨ∪O) is given by

p(XΨ∪O) ∝ π(X0)hX0(XT)BB(XO∪Ψ|0, X0, T,XT)ℓ(XO)
∏

g∈Ψ

(
1− ϕ(Xg)

M

)
. (15)

This corresponds to a fairly typical posterior distribution in applications involving Gaussian pro-
cesses (Williams and Rasmussen, 2006). Here our prior over trajectories is the h-baised Brownian
bridge Zπ, and our likelihood is ℓ(XO)

∏
g∈Ψ

(
1− ϕ(Xg)

M

)
. Consequently, after conditioning on the

Poisson grid Ψ, we do not need to calculate intractable SDE transition probabilities to calculate
prior probabilities over the trajectory X. The SDE posterior is amenable to standard Gaussian
process MCMC techniques. For a survey of such methods, see for example Titsias et al. (2008),
we will use Hamiltonian Monte Carlo (Neal, 2011).

3.3 Gibbs sampler details

Corollaries 3.2 and 3.3 provide the basis of our Gibbs sampling algorithm. Each iteration of this
algorithm starts with a pair (XΨ∪O,Ψ), and repeats two steps: simulate a new Poisson grid Ψ∗

given (XΨ∪O,Ψ), and then simulate a new set of diffusion values X∗
Ψ∗∪O given Ψ∗. Recall that the

set O includes the start and end times, 0 and T . There are a few issues that must be resolved to

11

translate these into a practical algorithm. We detail these below.
Simulating a new Poisson grid Ψ∗ conditioned on XΨ∪O: Corollary 3.2 shows that con-
ditioned on the entire trajectory X, Ψ is a Poisson process with rate {M − ϕ(Xt), t ∈ [0, T]}.
In practice, our sampler will only evaluate X on the current set of Poisson times Ψ and on the
observation times O. To simulate the new times Ψ∗, we exploit two facts: i) that the SDE skeleton
summarizes the entire trajectory, whose values at other times can be retrospectively simulated
from a Brownian bridge (steps 9 and 10 in algorithm 1), and ii) that M − ϕ(·) ≤ M . We will
use these along with the thinning theorem to simulate from the rate M − ϕ(X) inhomogeneous
Poisson process. We first simulate a random set of times Γ from a rate-M Poisson process, and
uncover XΓ, the trajectory on this set of times. This second step just involves simulating from
Brownian bridges over intervals defined by successive elements of Ψ∪O (algorithm 1, steps 9 and
10). Having imputed X on Γ, we keep each element g ∈ Γ with probability 1 − ϕ(Xg)/M , else
we discard it. The set of surviving elements of Γ is a realization from a rate M − ϕ(X) Poisson
process, and forms the new times Ψ∗. Along the way, we have evaluated XΨ∗ , the trajectory on
this set of times. Finally, we discard the path evaluations on the old skeleton, since, under the
new skeleton, these can easily be resampled (again, from a Brownian bridge). The first five panels
in figure 1 shows these steps, where for simplicity we have ignored observations.
Updating X conditioned on Ψ: Corollary 3.3 shows that conditioned on the Poisson grid Ψ∗,
XΨ∗∪O has density given by equation (15). This distribution, while intractable, can be evaluated
up to a normalization constant, and is thus amenable to standard MCMC techniques that update
XΨ∗∪O using a Markov kernel with equation (15) as stationary distribution. We carry out this
update using Hamiltonian Monte Carlo (Neal, 2011). We can exploit the Markov structure of
Brownian motion to calculate the log-likelihood and its gradient in linear time (see the experi-
ments and appendix for details). HMC exploits this gradient information to efficiently explore
the conditional distribution. At the end of this step, we have a new set of path values (X∗

Ψ∗ , X∗
O).

This is shown in the last panel of figure 1. Again, we can impute the SDE path X∗ at any other
set of times from a Brownian bridge. Algorithm 2 outlines one iteration of our Gibbs sampler.

For completeness, we include the following theorem which states that our sampler targets the
joint measure Z+. Its proof is immediate (see Meyn and Tweedie (2009)): the sampler has Z+ as
its stationary distribution since the two Gibbs steps update the conditionals of Z+. The sampler

12

Algorithm 2 One iteration of the proposed auxiliary variable Gibbs sampler for EA1 diffusions

Input: A distribution π(·) over X0, the initial value of the SDE
The drift term α(·), and the associated quantities A(·), ϕ(·) and M

The Poisson times Ψ and the corresponding path values XΨ

The SDE path values XO on the observation times O (recall O includes 0 and T).
Output: A new SDE skeleton (Ψ∗, X∗

Ψ∗), and new path values on O, X∗
O.

1: Simulate Γ from a rate-M Poisson process on [0, T].
2: Define G = Ψ ∪O. Write its ith element as gi, with g1 = 0 and g|G| = T .
3: for i in 1 to |G| − 1 do
4: Define Γi = Γ ∩ (Gi, Gi+1). Impute X on Γi from a Brownian bridge:
5: XΓi

∼ BBΓi
(ti, Xti , ti+1, Xti+1

).

6: end for
7: Discard each point g ∈ Γ with probability ϕ(Xg)

M
. Write (Ψ∗, XΨ∗) for the set of surviving times

and the associated path values.
8: Discard everything other than Ψ∗, XΨ∗ and XO.
9: Update (XΨ∗ , XO) ≡ XΨ∗∪O on Ψ∗ ∪O with a Markov kernel having stationary distribution

p(XΨ∗ , XO) ∝ π(X0)hX0(XT)BB(XO∪Ψ∗ |X0, XT)ℓ(XO)
∏

g∈Ψ∗

(
1− ϕ(Xg)

M

)
(see eq. (15)).

We use Hamiltonian Monte Carlo. Write the new values as (X∗
Ψ∗ , X∗

O). Return (Ψ∗, X∗
Ψ∗ , X∗

O).

is irreducible under mild conditions on the Markov kernel used to update XΨ∗∪O given Ψ∗.

Theorem 3.4. The Gibbs sampler described above results in a Markov chain on the state space
(Ψ, X) with stationary distribution Z+(Ψ, X).

Proof. This follows immediately from the fact that the two steps of the Gibbs sampler target the
conditional distributions of Z+(Ψ, X).

4 Parameter inference

Following Beskos et al. (2006b, Section 9), we extend our methodology to include posterior infer-
ence over the parameter θ in equation (1). Our scheme absorbs the earlier trajectory update into a

14

larger Gibbs sampler that also updates θ given the trajectory. Assume for the moment that there
are no observations present over the interval [0, T]. We start with equation 8, making explicit the
dependence of terms on θ. Recall Qx and Wx are measures over paths starting at x under the SDE
and Brownian motion. Let Wx,y correspond to the Brownian bridge joining X0 = x to XT = y.
Integrating out the path between 0 and T in equation (8) gives the transition density

p(XT = y|X0 = x,θ) = N(y|x, T)EWx,y

[
exp

{
Aθ(y)− Aθ(x)−

1

2

∫ T

0

(
α2
θ(Xt) + α′

θ(Xt)
)
dt

}]

= N(y|x, T) exp {Aθ(y)− Aθ(x)− LθT}EWx,y

[
exp

{
−
∫ T

0

ϕθ(Xt)dt

}]
. (16)

On the other hand, from equation (14), conditioned on its endpoints and again assuming no
observations, the trajectory and Poisson events have density with respect to Wx,y ×M given by

p(X,Ψ|X0 = x,XT = y, θ) ∝ exp(−MθT)
∏

g∈Ψ
(Mθ − ϕθ(Xg)) (17)

From Campbell’s theorem, the normalization constant above, obtained by integrating out X and
Ψ is just the term in square brackets in equation (16). Then, multiplying equations (16) and (17),

p(X,Ψ|X0 = x, θ) = N(XT |x, T) exp {Aθ(XT)− Aθ(X0)− (Mθ + Lθ)T}
∏

g∈Ψ
(Mθ − ϕθ(Xg)) . (18)

Given observations at times O in an interval [0, T], we break the interval into segments [oi−1, oi],
calculating the transition density across each segment as above. The total density is the product
of these terms. With a prior p(θ) over θ, and dropping terms that do not depend on θ, we have
the following expression for the posterior over θ (see also Theorem 3 in Beskos et al. (2006b)):

p(θ|ψ,X) ∝ p(θ)ℓθ(XO) exp {Aθ(XT)− Aθ(X0)− (Mθ + Lθ)T}

π(X0)

|O|∏

i=2

N(Xoi |Xoi−1
, (oi − oi−1))

∏

g∈Ψ
(Mθ − ϕθ(Xg)) (19)

Above, we allow the likelihood ℓ(·) to also depend on θ. Simulating from this distribution given
the skeleton (Ψ, XΨ) and XO is straightforward, and we do this using a Metropolis-Hastings
step. Our overall Gibbs sampler then alternates the two steps of algorithm 2 with a step to
update θ. We point out that following ideas from Beskos et al. (2006b), we can use non-centered
reparametrizations (Papaspiliopoulos et al., 2007) that reduce coupling between diffusion paths
and the parameter θ. This is especially important when θ also affects the diffusion term σ: this
situation requires some care, and we refer the reader to Beskos et al. (2006b) for more details.

15

5 Related work
Traditional approaches to simulating from an SDE involve time-discretization methods like the
Euler-Maruyama method or Millstein’s method. Time-discretization also simplifies posterior sim-
ulation, opening up the vast literature on MCMC sampling for discrete-time time-series models.
Example methods include particle MCMC (Andrieu et al., 2010), the embedded HMM (Neal et al.,
2004), Hamiltonian Monte Carlo (Neal, 2011) among many others. Discrete-time approximations
however introduce bias into the simulations, and characterizing their effect in hierarchical models
is not easy. This makes it necessary to work with fine grids, resulting in long time-series and
expensive computation. Further, controlling bias in this manner uncovers more of the diffusion,
increasing coupling and degrading MCMC mixing (Liu, 1994; Roberts and Stramer, 2001).

There are a few approaches towards exact or unbiased estimation for diffusions to eliminate
discretization error. As described in subsection 2.2, our approach builds on a line of work starting
from Beskos and Roberts (2005), who proposed a rejection sampling algorithm allowing exact
simulation from the EA1 class of SDEs. Section 3.1 shows how this prior simulation method
can be extended to posterior simulation given noisy observations. Like our method, this involves
instantiating the diffusion skeleton (the Poisson times and associated diffusion values), as well as
the diffusion values on observation times. However, as we described, this algorithm alternately
updates the diffusion skeleton given the values at observation times, and vice versa. By contrast,
our algorithm updates the entire set of path values given the Poisson times, and then Poisson times
given path values, reducing the coupling between the Gibbs steps. Furthermore, this extension
still involves the EA1 rejection sampling algorithm, and can have high rejection rates. Controlling
this requires instantiating more of the diffusion on additional grid points (Beskos et al., 2006a),
which will slow down mixing. Our MCMC algorithm does not face this problem.

In Fearnhead et al. (2008), the authors propose another unbiased discretization-free algorithm,
a random-weight particle filter to approximate the posterior distribution. This is a sequential
Monte Carlo algorithm that targets the augmented distribution in equation (18). This algorithm
is consistent as the number of particles tends to infinity, and for a finite number of particles,
can be incorporated into a particle MCMC scheme, giving an MCMC algorithm that targets the
posterior without any error. There have been a number of follow-up papers improving Fearnhead
et al. (2008), whether by devising better proposal distributions or by developing particle smoothing

16

algorithms that improve effective sample sizes and allow parameter inference (Olsson and Ströjby,
2011; Gloaguen et al., 2017). Another line of work for unbiased estimation with SDEs (Rhee and
Glynn, 2015) builds on multi-level Monte Carlo (MLMC) methods (Giles, 2008). These methods
involve picking a random time-discretization granularity, so that the interval [0, T] is uniformly
split into 2g subintervals for a random g. With some care, the resulting algorithms allow unbiased
estimation of path functionals of the SDE, and can be used for posterior estimation (Jasra et al.,
2020). These methods, along with some of the earlier particle methods, have the advantage of
being applicable to a wider class of SDEs than we considered here, in particular they do not require
the availability of a Lamperti transformation, and thus apply to more general multi-dimensional
diffusions. Our HMC based-approach is quite different from these, and an interesting line of work
is to use ideas from each to improve the other.

6 Experiments
In the following, we evaluate our sampler and a number of baselines on synthetic and real datasets.
Our first baseline is the EA1 rejection sampling algorithm of Beskos and Roberts (2005), we use this
in settings where we want to simulate from an SDE prior, allowing us to study trade-offs between
producing cheap but dependent samples from our MCMC algorithm, and producing independent
samples at the possible cost of high rejection rates. Our second baseline is an approximate Markov
chain Monte Carlo sampling algorithm, and uses Euler–Maruyama discretization to construct a
particle Markov chain Monte Carlo (pMCMC) sampler. pMCMC (Andrieu et al., 2010) is a
standard and relatively off-the-shelf tool to simulate from nonlinear hidden state-space models.
It makes proposals from a particle filtering algorithm, which are then accepted or rejected with
appropriate probability. Algorithm 4 in the appendix outlines the details of the algorithm, we
considered time-discretization levels of 0.1 and 0.01. Our last baseline is the unbiased random-
weight particle filter of Fearnhead et al. (2010). We considered both this particle filter, as well as
an exact pMCMC algorithm based on it. For both pMCMC algorithms, we considered a variety
of settings for the number of particles, reporting results with 50 particles: this usually gave best
performance, with run-time becoming unmanageably long with more than 200 particles. We will
refer to the time-discretizated pMCMC algorithm as EulpMCMC, the random-weight particle filter
as FearnPF, and the exact pMCMC algorithm as FearnpMCMC. All experiments were carried out
on a desktop with an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz and 16GB RAM.

17

6.1 Example 1: The hyperbolic bridge

Consider the hyperbolic bridge, a special case of the hyperbolic diffusion (Barndorff-Nielsen, 1978):

dXt = −
θXt√
1 +X2

t

dt+ σdBt, θ > 0. (20)

As stated in Section 2, we fix the diffusion parameter σ to 1. When we are not updating θ, we fix
it to 1. It is easy to verify that the drift α(x) = − θx√

1+x2 satisfies the assumptions of Girsanov’s
theorem. We can calculate A(x) =

∫ x

0
α(u)du = θ − θ

√
1 + x2 and α′(x) = − θ

(1+x2)3/2
, showing

that 1
2
(α2(x) + α′(x)) = 1

2
(θ2x2

1+x2 − θ
(1+x2)3/2

) lies in [− θ
2
, θ

2

2
]. We set

ϕ(x) :=
1

2
(α2(x) + α′(x)) +

θ

2
=

1

2

(
θ2x2

1 + x2
− θ

(1 + x2)3/2

)
+
θ

2
. (21)

This lies in the interval [0, θ2
2
+ θ

2
]. Accordingly, the EA1 Poisson process intensity M equals θ2

2
+ θ

2
,

and the associated h-biased Brownian bridge has hx(ωT) ∝ exp
(
−θ
√
1 + ω2

T + θ
√
1 + x2 − (ωT−x)2

2T

)
.

Tuning the HMC sampler: A key step of our Gibbs sampler involves conditionally updating
the SDE trajectory X given the Poisson grid Ψ, following equation (15). We implement a Markov
kernel that targets this conditional distribution using Hamiltonian Monte Carlo (HMC) (Neal,
2011), a widely used MCMC algorithm. We provide more details of this in the appendix, at
a high-level this requires computing the gradient of the log of the joint probability specified in
equation (15). HMC requires tuning three parameters M,N and ϵ, corresponding respectively to
a mass matrix, the number of leapfrog steps and the leapfrog stepsize. The latter two govern the
leapfrog symplectic approximation to the Hamiltonian dynamics that HMC uses to update X.
We obtained best performance for M between 10 to 100 times the identity matrix and chose the
latter (see Neal (1996); Beskos et al. (2011) for more sophisticated approaches to setting M). We
tried a range of values for both the size ϵ and number N of leapfrog steps ({0.1, 0.2, 0.5, 1, 2} and
{1, 2, 5, 10} respectively). We evaluate these for three problems, corresponding to simulating the
hyperbolic SDE on intervals with length T equal to 10, 20 and 50. For each combination of ϵ,N
and T , we produced 10000 samples from our sampler.

To evaluate sampler performance, we calculate the effective sample size (ESS) of XT/2, the
diffusion evaluated at T/2, the midpoint of the simulation interval. ESS estimates the number of
independent samples that the MCMC output is equivalent to, and we calculated this using the
R package rcoda (Plummer et al., 2006). To account for the different settings having different

18

●

●

●

●

●

●

●

●

●

●

0

1000

2000

3000

4000

10 20 30 40 50

Interval Length

E
ff
e
c
ti
ve

 S
a
m

p
le

 S
iz

e
 p

e
r

S
e
c
o
n
d

Figure 3: ESS/s against simulation interval T for
the hyperbolic bridge prior. ▲ represents our Gibbs
sampler, • and ◦ represents Euler–Maruyama method
when stepsize equals 0.01 and 0.1 respectively, and ■

represents EA1. Due to low acceptance rates, we did
not run EA1 for interval lengths longer than 20.

allowing much fewer evaluations of the SDE trajectory. Additionally, the gap between our sampler
and the 0.1-grid Euler-Maruyama sampler reduces with T through a combination of faster run-
times and reduced dependency between MCMC samples. All algorithms were significantly more
efficient that the exact EA1 algorithm, and for interval lengths greater than 20, the acceptance
rates (which decay exponentially with interval length) became too small to produce samples in a
reasonable amount of time. As mentioned in Section 3.1, it is possible to reduce rejection rates
by breaking the interval into smaller segments. However, noting the poor performance of the
algorithm even for smaller intervals, we did not investigate this further.
Posterior simulation: Our main interest is in settings where we wish to simulate from the
diffusion conditioned on noisy measurements. We consider the following setting: additive Gaussian
noise with mean 0 and standard deviation 0.2, at regularly spaced times on [0, T]. We compare with
the two particle Markov Chain Monte Carlo algorithms, EulpMCMC and FearnpMCMC, running these
with 50 particles and EulpMCMC with a discretization level of 0.01. We considered two settings,
first where we varied the length of the time interval T , keeping the number of observations fixed at
20 (figure 4, left panel), and second, where we varied the number of observations keeping T = 20

(figure 4, middle panel). All samplers were run for 10000 iterations, and each setting was repeated
10 times to produce error bars. For both setups, we see that our method is more than an order
of magnitude more efficient than both pMCMC algorithms. This performance gain increases as
T increases, where the increasingly long time-series both increase the run-time of the pMCMC
algorithms, as well as reduce acceptance probabilities. As we note in section 5, it is possible to
improve pMCMC performance with more careful choice of proposal distribution, though a more

20

results, converging quickly to reasonable estimates that improve with more samples. Although
the random-weight particle filtering algorithm is consistent, it involves a significant amount of
variance. Producing comparable errors to MCMC after many iterations will requires a large num-
ber of particles, raising issues with memory. We emphasize that particle filtering can also be
improved in other ways, for example by choosing better proposal distributions, though we did not
investigate this. We note though that our filtering task was designed to favor particle filtering,
and a more general smoothing task would require further extensions of the basic particle filter.

●

●

●

● ●

1

10

100

10 20 30 40 50

Number of observations

E
ff
e
c
ti
ve

 s
a
m

p
le

 s
iz

e
 p

e
r

s
e
c
o
n
d

●

●

●

●
●

1

10

100

10 20 30 40 50

Interval length

E
ff
e
c
ti
ve

 s
a
m

p
le

 s
iz

e
 p

e
r

s
e
c
o
n
d Figure 5: ESS/s for posterior

samples of θ for our sampler
and a PIMH EulpMCMC sam-
pler, as we increase number of
observations N with interval-
length T fixed at 20 (left), and
as T increases with N = 20.

In our final experiment, we place an exponential prior on the parameter θ, and look at sam-
pling from its posterior distribution. We compare our MCMC sampler from section 6.1 with
EulpMCMC extended to include parameter inference. This is a particle-independent Metropolis-
Hastings (PIMH) sampler that proposes a new parameter θ∗, and uses EulpMCMC to calculate the
MH acceptance probability (see appendix). Figure 5 shows the results using the prior over θ as the
MH proposal distribution for both algorithms. Again our sampler is significantly more efficient
than EulpMCMC. We expect performance to further improve if we exploit ideas from Beskos et al.
(2006b) to reduce coupling between path and parameter, or jointly update path and parameter in
the HMC step. The PIMH sampler on the other hand does not suffer from such coupling, and its
relative performance will improve when this is a significant factor.

6.2 Example 2: Periodic Drift
Our second example considers the sine-diffusion, an SDE with periodic drift α(x) = sin(x− θ):

dXt = sin(Xt − θ)dt+ dBt. (22)

Now A(x) =
∫ x

0
α(u)du = cos(θ) − cos(x − θ), and hx(u) ∝ exp(A(u) − A(x) − (u − x)2/2T) =

exp(− cos(u − θ) + cos(x − θ) − (u − x)2/2T). Now, sin2(x) + cos(x) lies in [−1, 5/4] and we set

22

ϕ(x) = sin2(x− θ)/2 + cos(x− θ)/2 + 1/2. This lies in [0, 9/8], so that this SDE is of class EA1.
The periodic drift term α(·) in this SDE presents a potential challenge to our MCMC method-

ology due to the bimodality around zero when θ = 0. For positive values of Xt in the interval
(0, π), the drift term is also positive, and the SDE experiences a repulsive push away from 0. A
similar effect, but in the opposite direction, occurs when Xt lies in (−π, 0). The symmetry of the
problem means that Xt and −Xt are equally likely, however the repulsion away from 0 can make
it difficult for an MCMC algorithm to cross from one to the other. We can overcome this with a
simple additional MCMC step: at the end of each iteration, flip the sign of the entire trajectory
with probability 0.5. This approach that exploits the problem’s symmetry works well if we want
prior samples from the sine-diffusion, producing similar results to figure 3 (see the appendix).

For posterior simulation given fairly informative observations, our experiments show that this
bimodality in the prior presents less of a problem. In settings where it might be a problem, the
simple approach of flipping the path signs will require an MH correction step. The efficacy of
this will depend on the degree of asymmetry introduced by the likelihood. In the appendix, we
introduce a more general and flexible tempering scheme (Swendsen and Wang, 1986; Neal, 1996)
to explore the trajectory space more effectively, but do not discuss it in the main document.

Figure 6 fixes θ = 0, and plots effective sample sizes per second of posterior samples of XT/2.
Again, the samplers are given equally spaced noisy observations of the diffusion trajectory, having
mean equal to the trajectory value, and standard deviation equal to 0.2. In the left panel, we
keep the number of observations fixed at 20 as we vary the interval length T , while in the middle
panel, we vary the number of observations with T = 20. Once again, our sampler significantly
outperforms the two 50-particle pMCMC baselines, FearnpMCMC and EulpMCMC (with a discretiza-
tion level of 0.01). In all our experiments, we verified our samplers were exploring the posterior
distribution by running a Kolmogorov-Smirnov two-sample test on outputs from different MCMC
algorithms, and in all cases, the test failed to reject the null that the samples come from the same
distribution. This indicates that our sampler is not stuck in a mode of the posterior because of the
bimodal drift function. The rightmost panel in the figure compares our sampler with the particle
filter FearnPF on a filtering task, and we get results similar to the earlier experiment: for the same
computational cost, our MCMC sampler is more accurate with less variance.

23

observations, the first 146 of which we used as the training set, and the last 33 as the test set.
We plot the data in the left panel of Figure 8. As is typical, we preprocess the data, removing
the linear trend, and then taking the logarithm of the detrended stock price. We also rescale
time between 0 and 10. Write St for the transformed measurement at time t. For n trading days
O = {o1, o2, . . . , on}, our observations are S = {so1 , so2 , . . . , son}. The right panel in Figure 8 plots
this transformed data.

400

600

800

1000

1200

2014 2015 2016 2017 2018

Date

D
a
ily

 C
lo

s
in

g
 P

ri
c
e

−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0

Time

D
a
ily

 c
lo

s
in

g
 p

ri
c
e

Figure 8: Weekly stock
prices for Alphabet Inc,
from April 2013 to April
2018. The left panel shows
the raw data, and the right
one shows the transformed
data which we model.

While stock prices have classically been modeled by geometric Brownian motion (Black and
Scholes, 1973), limitations of such models, such as their inability to capture empirically observed
heavy tails, have been well documented. Bibby and Sørensen (1996) used a hyperbolic distribution
to model the increments of the process, and we use the hyperbolic diffusion of equation (20). We
treat this as a latent process underlying the observed stock prices S. The observations themselves
are modeled as additive Gaussian perturbations of the underlying diffusion. The overall model is

X0 ∼ π, dXt = −
θXt√
1 +X2

t

dt+ dBt, st ∼ N (Xt, σ
2), t ∈ {o1, . . . , on}. (23)

For simplicity, we fix the standard deviation of the measurement noise to 0.2, though we could
easily place a conjugate prior on this. We consider two settings, one with θ fixed to 1, and the
second with a rate-1 exponential prior over θ. We apply our MCMC algorithm to the data in both
settings. Figure 9 shows the MCMC traceplot and autocorrelation function of the trajectory value
at XT/2, the midpoint of the interval, for the sampler that updates θ. The results with θ fixed are
similar: our sampler mixes well, with no significant autocorrelation at lags larger than 5.

The left and middle panels in figure 10 plot the posterior distribution over diffusion paths,
showing the median and a 90% posterior credible interval. The left is with θ fixed to 1 and

25

the middle is when we update θ. We see that the posterior spread includes most observations,
suggesting that our model, viz. the hyperbolic diffusion with Gaussian noise produces a good fit
for this dataset. We note that we only fit the models on training data (until about time 8), the
remaining datapoints are held-out test data that the models never see. This explains the increase in
uncertainty towards the end of the interval, though both models cover the observations. Updating
θ provides a tighter fit by virtue of inferring stronger zero-reverting dynamics. This is reflected in
the posterior over θ (the rightmost panel) which concentrates on values larger than 1.

Our algorithm is significantly faster than the two pMCMC baselines EulpMCMC and FearnpMCMC,
and we do not include speed-accuracy comparisons with these. We note though that poste-
rior approximations produced by all 3 MCMC algorithms agreed with each other, with 2-sample
Kolmogorov-Smirnov tests failing to reject the null that they come from the same distribution.
Instead, we compare our algorithm with the random-weight particle filtering algorithm FearnPF.
We set θ to 1 for both algorithms, and ran them on the training dataset. We then imputed
path values on the test times, and calculated the absolute difference of the posterior predictive
means at test times from the observed test values. We repeated this 10 times for each algorithm
for different random seeds, plotting the errors for increasing computational budgets. As before,
increasing the computational budget of our method involved running for more MCMC iterations,
while for particle filtering, this involved rerunning the algorithm with more particles. The left
panel in figure 11 shows the average absolute error across all 33 test datapoints: the ribbons are
90% quantiles across multiple initializations, and the thick line is the median. Our algorithm
(solid ribbons) outperformed FearnPF (dashed ribbons), producing more accurate results for com-
parable runtimes. The right limit of the x-axis (at 45 seconds) corresponds to our method run for
about 20000 samples, and FearnPF run with 5000 particles. The right panel disaggregates these
results, showing the absolute error for the first 4 test datapoints. These are typical of the results
we observed: our algorithm outperformed FearnPF on most test data points.

8 Discussion
In this paper, we proposed a computationally efficient auxiliary variable Gibbs sampling algo-
rithm that allows simulation from the EA1 class of SDEs without any discretization error. Our
sampler builds on the EA1 rejection sampling algorithm for diffusions, described in Beskos and
Roberts (2005) and follow-up work. Our method allows prior simulation from the SDE, conditional

27

simulation given noisy observations as well as parameter inference.
There are a number of avenues for future research. In follow-up work, Beskos and collaborators

developed exact rejection sampling algorithms for larger classes of SDEs. Recall that the EA1 class
is limited to SDEs where ϕ(·) = α2(·)+α′(·) ∈ [L,M+L] where L and M are finite. In Beskos et al.
(2006a,b), the authors also consider two broader classes, EA2 where ϕ(·) is bounded only from one
side, and EA3, where it is not bounded at all. Extending our MCMC scheme to such situations is
conceptually straightforward, though much more involved: we need to augment our MCMC state-
space to include the maximum and/or minimum of the trajectory. Conditioned on these, imputing
the SDE trajectory will involve simulating from Bessel processes instead of Brownian bridges. We
are currently exploring efficient ways to do this. Work in Giesecke and Smelov (2013); Pollock
et al. (2016) has extended ideas from Beskos and Roberts (2005) to other stochastic processes,
such as jump-diffusions processes, and similar ideas to this paper can be applied in that context,
and to other diffusions not absolutely continuous with respect to Brownian motion. Finally, it is
interesting to better understand theoretically the convergence properties of our proposed MCMC
algorithm.

9 Supplementary material

Appendix This file includes details of the particle MCMC and Hamiltonian Monte Carlo algo-
rithms, the tempering scheme to improve mixing, as well as experimental results not included
in the main text. [Appendix_WangRaoTeh.pdf].

R code This includes code implementing the proposed algorithm. README.txt includes instruc-
tions. The github repository https://github.com/varao/WangRaoTeh_JCGS_code also
contains the code. [Code_WangRaoTeh.tar.gz].

10 Acknowledgements

We thank the anonymous reviewers whose suggestions helped to significantly improve this manuscript.
VR acknowledges the National Science Foundation for funding under grants RI/1816499 and
DMS/1812197.

28

References

Adams, R. P., Murray, I., and MacKay, D. J. C. (2009). Tractable nonparametric Bayesian
inference in Poisson processes with Gaussian process intensities. In Proceedings of the 26th
International Conference on Machine Learning (ICML).

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342.

Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyperbolae. Scandi-
navian Journal of statistics, pages 151–157.

Bergstrom, A. R. (1990). Continuous time econometric modelling. Oxford University Press.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., et al. (2006a). Retrospective exact simulation
of diffusion sample paths with applications. Bernoulli, 12(6):1077–1098.

Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006b). Exact and compu-
tationally efficient likelihood-based estimation for discretely observed diffusion processes (with
discussion). Journal of the Royal Statistical Society: Series B, 68(3):333–382.

Beskos, A., Pinski, F. J., Sanz-Serna, J. M., and Stuart, A. M. (2011). Hybrid Monte Carlo on
Hilbert spaces. Stochastic Processes and their Applications, 121(10):2201–2230.

Beskos, A. and Roberts, G. O. (2005). Exact simulation of diffusions. The Annals of Applied
Probability, 15(4):2422–2444.

Bibby, B. M. and Sørensen, M. (1996). A hyperbolic diffusion model for stock prices. Finance and
Stochastics, 1(1):25–41.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
political economy, 81(3):637–654.

Cobb, L. (1981). Stochastic differential equations for the social sciences. Mathematical frontiers
of the social and policy sciences, pages 37–68.

29

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo. Physics
letters B, 195(2):216–222.

Fearnhead, P., Papaspiliopoulos, O., and Roberts, G. O. (2008). Particle filters for partially
observed diffusions. Journal of the Royal Statistical Society: Series B, 70(4):755–777.

Fearnhead, P., Papaspiliopoulos, O., Roberts, G. O., and Stuart, A. (2010). Random-weight
particle filtering of continuous time processes. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 72(4):497–512.

Giesecke, K. and Smelov, D. (2013). Exact sampling of jump diffusions. Operations Research,
61(4):894–907.

Giles, M. B. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56(3):607–617.

Gloaguen, P., Etienne, M.-P., and Corff, S. L. (2017). Online sequential monte carlo smoother for
partially observed stochastic differential equations. arXiv preprint arXiv:1703.01776.

Holmes, E. E. (2004). Beyond theory to application and evaluation: diffusion approximations for
population viability analysis. Ecological Applications, 14(4):1272–1293.

Iacus, S. M. (2009). Simulation and inference for stochastic differential equations: with R examples.
Springer Science & Business Media.

Jasra, A., Law, K. J. H., and Yu, F. (2020). Unbiased filtering of a class of partially observed
diffusions. ArXiv, abs/2002.03747.

Keller, J., McLaughlin, D., and Papanicolaou, G. (1995). Diffusion in random media. In Surveys
in applied mathematics vol. I. Plenum Press, New York.

Kingman, J. F. C. (1992). Poisson processes, volume 3. Clarendon Press.

Kloeden, P. E., Platen, E., and Schurz, H. (2012). Numerical solution of SDE through computer
experiments. Springer Science & Business Media.

Lange, K. (2003). Mathematical and statistical methods for genetic analysis. Springer Science &
Business Media.

30

Lewis, P. A. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes with
degree-two exponential polynomial rate function. Operations Research, 27(5):1026–1040.

Liu, J. S. (1994). The fraction of missing information and convergence rate for data augmentation.
Computing Science and Statistics, pages 490–490.

Meyn, S. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability. Cambridge University
Press, New York, NY, USA, 2nd edition.

Møller, J. K. and Madsen, H. (2010). From state dependent diffusion to constant diffusion in
stochastic differential equations by the Lamperti transform. DTU Informatics.

Neal, R. M. (1996). Sampling from multimodal distributions using tempered transitions. Statistics
and computing, 6(4):353–366.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2:113–162.

Neal, R. M., Beal, M. J., and Roweis, S. T. (2004). Inferring state sequences for non-linear systems
with embedded hidden Markov models. In Adv. in Neural Information Processing Systems, pages
401–408.

Øksendal, B. (2003). Stochastic differential equations: An introduction with applications. Springer,
Berlin.

Olsson, J. and Ströjby, J. (2011). Particle-based likelihood inference in partially observed diffusion
processes using generalised Poisson estimators. Electronic Journal of Statistics, 5:1090–1122.

Papaspiliopoulos, O., Roberts, G. O., and Sköld, M. (2007). A general framework for the
parametrization of hierarchical models. Statistical Science, pages 59–73.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: convergence diagnosis and
output analysis for MCMC. R news, 6(1):7–11.

Pollock, M., Johansen, A. M., and Roberts, G. O. (2016). On the exact and ε-strong simulation
of jump diffusions. Bernoulli, 22(2):794–856.

31

Rao, V. and Teh, Y. W. (2011). Gaussian process modulated renewal processes. In Advances in
Neural Information Processing Systems 23.

Rao, V. and Teh, Y. W. (2013). Fast MCMC sampling for Markov jump processes and extensions.
Journal of Machine Learning Research.

Rhee, C.-h. and Glynn, P. W. (2015). Unbiased estimation with square root convergence for SDE
models. Operations Research, 63(5):1026–1043.

Ricciardi, L. M. (2013). Diffusion processes and related topics in biology, volume 14. Springer
Science & Business Media.

Robert, C. P. and Casella, G. (2005). Monte Carlo Statistical Methods (Springer Texts in Statis-
tics). Springer-Verlag, Berlin, Heidelberg.

Roberts, G. O. and Stramer, O. (2001). On inference for partially observed nonlinear diffusion
models using the Metropolis–Hastings algorithm. Biometrika, 88(3):603–621.

Schuecker, P., Böhringer, H., Arzner, K., and Reiprich, T. (2001). Cosmic mass functions from
Gaussian stochastic diffusion processes. Astronomy & Astrophysics, 370(3):715–728.

Swendsen, R. H. and Wang, J.-S. (1986). Replica Monte Carlo simulation of spin-glasses. Physical
review letters, 57(21):2607.

Titsias, M. K., Lawrence, N., and Rattray, M. (2008). Markov chain Monte Carlo algorithms for
Gaussian processes. Inference and Estimation in Probabilistic Time-Series Models, 9.

Tuerlinckx, F., Maris, E., Ratcliff, R., and De Boeck, P. (2001). A comparison of four methods
for simulating the diffusion process. Behavior Research Methods, Instruments, & Computers,
33(4):443–456.

Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of the Brownian motion. Physical
review, 36(5):823.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning, volume 2.
MIT Press Cambridge, MA.

32

11 Appendix

Algorithm 3 Euler-Maruyama algorithm (Kloeden et al., 2012) to simulate a diffusion process

Input: A regular grid G = {0, t1, t2, · · · , tn−1, T} on a time interval [0, T].
An initial distribution over states π, a drift term α(·) and a diffusion term β(·).

Output: A diffusion trajectory {X0, Xt1 , Xt2 , · · · , XT} evaluated on G.
1: Simulate X0 ∼ π

2: for i in 1 to N do
3: Simulate yi from the standard normal distribution.
4: Set Xti+1

← Xti + α(Xti)(ti+1 − ti) + β(Xti)
√
ti+1 − tiyi

5: end for

11.1 A particle MCMC algorithm for path inference

We first describe a particle filtering algorithm to propose a new path X∗

Algorithm 4 Particle filtering algorithm to simulate a diffusion process

Input: A regular grid G = {0, t1, t2, · · · , T} on a time interval [0, T],
An initial distribution over states π, a drift term α(·),
Observations at times O = {o1, . . . , o|O|}, with observation i having likelihood ℓi(Xoi)

Output: A new trajectory X∗
G from the SDE conditioned on the observations.

1: Sample initial states for N particles Xk(0) from π, k = 1, ..., N .
2: for i in 1 to |O| do
3: For k = 1, 2, ..., N , update particle k from [0, oi−1] to [0, oi] by forward simulating via the

Euler-Maruyama algorithm on the grid.
4: Calculate the weights wk

i = ℓi(X
k
oi
) and normalize W k

i =
wk

i∑N
k=1 w

k
i

, k = 1, 2, ..., N.

5: Sample Jk
i ∼ Multi(·|(W 1

i , . . . ,W
N
i)) ,k = 1, 2, ..., N .

6: Set Xk
[0,oi]

:= X
Jk
i

[0,oi]
, k = 1, 2, ..., N..

7: end for

Assume no observations at the end-time T . Then uniformly pick one of the N particles, call
this X∗. We have an estimate of Pℓ(X

∗), the conditional probability of X∗ given the observations:

33

Pℓ(X
∗) =

∏n
i=1

[∑N
k=1

1
N
wk

i

]
.

11.1.1 Particle MCMC algorithm for diffusions

Algorithm 5 The particle MCMC algorithm for SDE trajectories

Input: A regular grid G = {0, t1, t2, · · · , T} on a time interval [0, T],
An initial distribution over states π, a drift term α(·),
Observations at times O = {o1, . . . , o|O|}, with observation i having likelihood ℓi(Xoi)

Current trajectory XG, parameter θ, and current estimate of probability P (XG|O).
Output: A new trajectory X∗

G from the SDE, new parameter θ∗ and new estimate P (X∗
G|O).

1: Propose a parameter θ∗ from some distribution q(θ∗|θ)
2: Run the particle filtering algorithm to generate a sample X∗

G along with the estimate Pℓ(X
∗
G).

3: Accept (θ∗, X∗
G) with probability acc = 1 ∧ Pℓ(X

∗

G)p(θ∗)q(θ|θ∗)
Pℓ(XG)p(θ)q(θ∗|θ) .

11.2 Details of Hamiltonian Monte Carlo updates

The Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 2011) sampling algorithm defines a
Hamiltonian function, using the target distribution as the potential energy term, and introducing
a kinetic energy term parameterized by a set of auxiliary momentum variables. The algorithm
proceeds by updating the variables of interest (‘position’) as well as the momentum variables
according to the Hamiltonian dynamics, keeping the Hamiltonian approximately constant. In
particular, if we want to sample from a distribution L(q), first, define U(q) = − log(L(q)) to be
the potential energy of position q. Then introduce an auxiliary variable called p of the same
dimension as p and define K(p) = 1

2
pTM−1p to be the kinetic energy. Here M is a symmetric,

positive-definite mass matrix, which is typically diagonal, and is often a scalar multiple of the
identity matrix. The Hamiltonian is then defined as H(q, p) = U(q) +K(p) In our settings, the
variables of interest are the SDE path evaluated on the Poisson grid Ψ, as well as the observation
times O: q ≡ XΨ∪O. The distribution of interest is given in equation (15), and we repeat it below:

L(q) ≡ p(XΨ∪O) ∝ π(X0)hX0(XT)BB(XO∪Ψ|0, X0, T,XT)ℓ(XO)
∏

g∈Ψ

(
1− ϕ(Xg)

M

)
. (24)

Recall that π(X0) is the distribution over the initial value of the diffusion, hX0(XT) is the bias term
in the h-biased Brownian bridge, while ℓ(·) is the likelihood term. The term BB(XO∪Ψ|0, X0, T,XT)

34

●

●

●

●

●

●

●

●

●

●

0

1000

2000

3000

4000

10 20 30 40 50

Interval Length

E
ff
e

c
ti
ve

 S
a

m
p

le
 S

iz
e

 p
e

r
S

e
c
o

n
d

Figure 12: ESS/s for different samplers against inter-
val length T for the SDE with a periodic drift func-
tion. ▲ represents our method, • and ◦ represents
Euler-Maruyama method with stepsize 0.01 and 0.1

respectively and ■ represents EA1. Because of low ac-
ceptance rates, we did not run EA1 for interval lengths
longer than 20.

gives the probability of imputing values XO∪Ψ on O ∪Ψ under a Brownian Bridge with values X0

and XT at times 0 and T . Writing O ∪Ψ ≡ {t1, . . . , tS}, we have

BB({Xt1 , . . . , XtS}|0, X0, T,XT) = P (XtS |X0, XT)× P (XtS−1
|X0, XtS)× · · · × P (Xt1 |X0, Xt2),

where P (Xti |X0, Xtj) ∼ N

(
(tj − ti)X0 + tiXtj

tj
,
(tj − ti)ti

tj

)
for any tj > ti > 0. (25)

The potential energy is the logarithm of equation (24), and factors into a summation of straight-
forward terms. The Brownian bridge term in particular decomposes into a sum of quadratic terms.
The gradient of equation (24) with respect to XO∪Ψ is thus also straightforward to calculate, al-
lowing an easy implementation of the HMC algorithm. We refer the reader to Neal (2011) for
more details, which are now completely standard.

11.3 Improved mixing via tempering

Figure 12 compares of our sampler with these settings with EA1 and the Euler-Maruyama ap-
proximation. The results are similar to the previous experiment: EA1 does not scale to large T ,
while our asymptotically exact sampler performs between the crude and fine discretizations.

We introduce a more general and flexible tempering scheme (Swendsen and Wang, 1986; Neal,
1996) to explore the trajectory space more effectively. For concreteness, consider the periodic
diffusion in equation (22). We introduce an ‘inverse temperature’ parameter c, and define a family
of SDEs indexed by c:

dXt = c sin(Xt)dt+ dBt, c ∈ [0, 1]. (26)

Observe that c = 0 sets the drift term to 0, and reduces the SDE to Brownian motion, while c = 1

recovers the SDE of interest. Intermediate values of c interpolate between these two processes,

35

with smaller values of c having smaller repulsion away from 0, and thus being easier for MCMC
exploration. It is easy to derive the EA1 sampling functions associated with an arbitrary c:

Ac(u) = c− c cos(u), ϕc(x) =
c2 sin2(x)

2
+
c cos(x)

2
+
c

2
, Mc = max(ϕc(x)) =

c2 + c

2
+

1

8
. (27)

Our parallel tempering scheme picks a set of values for c, spanning the interval [0, 1] and including
1. We focus here on using six values, {0, .2, .4, .6, .8, 1}. Our approach is then to develop an MCMC
sampler which targets a joint distribution over six independent trajectories, each marginally dis-
tributed according to equation (26) for one of the settings of c. The target distribution is thus
a product distribution over the individual SDEs for each c. A simple MCMC step that targets
this uses our Gibbs sampler to update each of the paths independently. Equation (27) includes
the terms needed for this. This by itself does not solve the problem of poor mixing. However as
mentioned earlier, we expect samplers corresponding to small c’s to explore the trajectory space
better. We exploit this to improve mixing for larger c’s, and thus for our SDE of interest, with
c = 1. In particular, we intersperse the previous trajectory-wise update steps with a swap pro-
posal that uniformly picks two neighboring c’s, and proposes to exchange their associated MCMC
states. In other words, for a chosen pair i and j, with inverse-temperatures, c(i) and c(j), we
propose swapping the associated skeletons (Ψ(i), X

(i)

Ψ(i)) and (Ψ(j), X
(j)

Ψ(j)).
Write Pc(Ψ, XΨ) for the probability of the skeleton (Ψ, XΨ) under the measure cQ

+ correspond-
ing to inverse temperature c. This is just the product of equation (14) with the probability of Ψ
under a rate Mc Poisson process, with all terms given in equation (27). Then the swap proposal
is accepted with Metropolis-Hastings probability given by

acc = min

(
1,
Pci(Ψ

(j), X
(j)

Ψ(j)) · Pcj(Ψ
(i), X

(i)

Ψ(i))

Pci(Ψ
(i), X

(i)

Ψ(i)) · Pcj(Ψ
(j), X

(j)

Ψ(j))

)
. (28)

Having a larger number of c’s will mean that the SDEs corresponding to two adjacent c’s will
be similar, increasing the probability of acceptance. Of course, this comes at the price of more
computation. Our choice of 6 values (and thus 5 auxiliary tempered chains) was made without
too much care, and it is possible to be more systematic doing this.

36

11.4 Miscellaneous results

●

●

●

● ●

1

10

100

1000

0.0 0.3 0.6 0.9

Std. dev. of measurement noise

E
ff
e
c
ti
ve

 s
a
m

p
le

 s
iz

e
 p

e
r

s
e
c
o
n
d

●
●

●

● ●

1

10

100

1000

0.0 0.3 0.6 0.9

Std. dev. of measurement noise

E
ff
e
c
ti
ve

 s
a
m

p
le

 s
iz

e
 p

e
r

s
e
c
o
n
d

Figure 13: ESS/s of our Gibbs sampler ▲ and 50-particle pMCMC samplers FearnpMCMC • and
EulpMCMC ♦ for T = 20 and N = 20 as the standard deviation of the measurement noise increases.
(Left) is for the hyperbolic diffusion, and (right) is for the periodic diffusion.

37

