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Abstract

The functional complexity of native and replacement aortic heart valves (AVs)

is well known, incorporating such physical phenomenons as time-varying

non-linear anisotropic soft tissue mechanical behavior, geometric non-linear-

ity, complex multi-surface time varying contact, and fluid–structure interac-

tions to name a few. It is thus clear that computational simulations are critical

in understanding AV function and for the rational basis for design of their

replacements. However, such approaches continued to be limited by ad-hoc

approaches for incorporating tissue fibrous structure, high-fidelity material

models, and valve geometry. To this end, we developed an integrated tri-leaflet

valve pipeline built upon an isogeometric analysis framework. A high-order

structural tensor (HOST)-based method was developed for efficient storage

and mapping the two-dimensional fiber structural data onto the valvular 3D

geometry. We then developed a neural network (NN) material model that

learned the responses of a detailed meso-structural model for exogenously

cross-linked planar soft tissues. The NN material model not only reproduced

the full anisotropic mechanical responses but also demonstrated a considerable

efficiency improvement, as it was trained over a range of realizable fibrous

structures. Results of parametric simulations were then performed, as well as

population-based bicuspid AV fiber structure, that demonstrated the efficiency

and robustness of the present approach. In summary, the present approach

that integrates HOST and NN material model provides an efficient computa-

tional analysis framework with increased physical and functional realism for

the simulation of native and replacement tri-leaflet heart valves.
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1 | INTRODUCTION

1.1 | The native and replacement aortic heart valve

Functionally, the aortic heart valve (AV) is a tri-leaflet structure that ensures unidirectional blood flow between the left
ventricle and aorta. Along with the pulmonary heart valve, it is often termed a ‘semi-lunar’ valve due to the characteristic
shape of the leaflets. The AV is primarily a passive soft tissue structure in that it responds to local hemodynamic forces and
changes in aortic root diameter over the cardiac cycle. However, this apparently simple purpose does not adequately
describe the complexity of its physiological function. The AVs underlying mechanical function is multi-modal, multi-scale,
and repeated every second of life to a total of approximately three billion times in the course of a typical lifetime. In spite of
this staggering level of durability, almost 300,000 heart valve surgeries are performed annually world-wide.1 Of these, a
majority of the replacements are for the treatment of calcific aortic valve disease, which is an active multi-factorial degener-
ative process.2-4 In addition to the general population, approximately 2% of the US population have the bicuspid aortic valve
(BAV) congenital anomaly. In this pathology, a pair of AV leaflets are fused to varying degrees, while the remaining leaflet
can be distorted. In reality, the BAV pathology is a continuous range of malformations that range from a single leaflet to
four (quadcusp). Irrespective of the exact anatomy, just the presence of BAV is an important risk factor for aortic stenosis.

Regardless of the underlying causes, the primary treatment for AV disease remains replacement with an artificial valve,
with current clinical approaches using a bioprosthetic heart valve (BHV).5,6 BHV are a tri-leaflet design with leaflets fabricated
from xenograft pericardial biomaterials. Use of BHV continues to increase worldwide,7-9 largely due to the development of
percutaneous BHV designs that are emerging as an alternative to standard surgical designs.6,10 In general, it is expected that
this new technology will rapidly develop, especially in the elderly population, which has a higher operative risk. However,
BHV durability continues to remain limited to the range of 10–15 years; often achieved only in patient ages 57 years or older.

1.2 | Tri-leaflet valve simulation-based studies

Overall, rigorous simulation with the objective of complementing exploratory experimentation and technological inven-
tion will be crucial to the development of BHV designs. This is a daunting challenge; both the native and replacement AV
are functionally complex, incorporating such physical phenomenons as non-linear anisotropic soft tissue mechanical
behavior, geometric non-linearity, complex contact, and fluid–structure interactions. It is thus no surprise that that com-
putational simulations are critical in understanding their function and for the rational basis for the development of
improved replacement valves. Indeed, computational simulations, either alone or in conjunction with clinical studies,
have been used to define how evolving biomechanical properties drive native heart valve disease as well as replacement
valve function and performance.11 Many groups have approached heart valve simulations, with a focus such important
aspects as high-fidelity time-evolving material modeling, patient-specific geometries, and fluid–structure interactions.11-15

Yet, despite these substantial advancements in simulation technology and its implementation, critical issues remain
in the simulation of native and replacement heart valves. This is due to the fact that, ironically, while heart valves are
essentially fluidic components, the mechanisms of their pathologies and degeneration lie mainly in the behaviors of the
constituent cells and tissues. Thus, while organ level simulations can assist in understanding how the valve dynamically
responds over the cardiac cycle, leaflet tissue remodeling, degeneration, and ultimately failure are a direct result of our
poor understanding of the underlying processes. In the long term, these processes need to be understood, quantified,
modeled mathematically, and ultimately incorporated into organ and system level simulations.16,17 Moreover, means to
systematically integrate organ-level geometric features with finer structures (e.g., local fiber architecture) are still typi-
cally performed in an ad-hoc manner with varying degrees of fidelity.

1.3 | Key simulation advancements needed for more realistic and robust AV
simulations

1.3.1 | AV leaflet fiber architecture representations

Both native and bioprosthetic AV leaflets are composed of layered soft tissues mainly composed of collagen fibers. The
fibrous architecture thus dictates the direction and degree of mechanical anisotropy, as well as the overall elastic
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responses.18,19 This is especially the case in diseased states. As an example, we have quantified the structure of human nor-
mal and bicuspid AV leaflets in the early disease stage.20 The regularity in the observed of the fibrous structure in the mea-
sured population was a surprising finding. It suggested that consistent population-based tissue structural metrics for the
human BAV population exist and could potentially be used for patient-specific simulations. However, such information is
generally experimentally obtained as a two dimensional (2D) field of excised valve tissues using pointwise probability orien-
tation distribution functions (ODFs). To be useful in a simulation context, such information must be mapped from the 2D
in-vitro measurement state to the in-vivo 3D leaflet geometry. The ODF mapping methods should be efficient and
completely generalized; allowing for rotations, translations, and affine deformation-based transformations. Moreover, newer
measurement methods such as polarized spatial frequency domain imaging, have pixel-level resolution and can generate
gigabytes of structural information for a single leaflet alone.21,22 There is thus a need to develop efficient storage and rapid
mapping techniques to transfer of high resolution in-vitro derived collagen fiber ODFs to the 3D leaflet surface geometry.

1.3.2 | Use of machine learning in high-fidelity material modeling in finite element
analyses

An often overlooked, critical limitation we address herein for AV simulations is their substantial computational cost.
This is particularly important in practical applications where patient-specific pipelines that involve complex multiple
surgical outcome scenarios need to be explored in clinically relevant time-frames. The same is true in earlier design
stages to explore various, including patient-specific, valve designs rapidly. This situation becomes particularly acute
when the modeled material responses go beyond basic elastic responses to simulate more complex time-dependent phe-
nomena, such as tissue remodeling or leaflet biomaterial fatigue. As an example, we have recently developed a detailed,
microstructurally based mechanism underlying the BHV fatigue process.23 To model the permanent set effect, we
assume that the exogenously crosslinked matrix undergoes changes in its reference configurations over time. The
changes in the collagen fiber architecture due to dimensional changes allowed us to predict subsequent changes in
mechanical response. However, the mathematical formulation contains double and quadruple integrals, making it com-
putationally intractable as-is. We developed an effective constitutive model which can fully reproduce the response of a
wide range of planar soft tissues.24 While this approach performed well in a variety of heart valve simulations, its
response time was still too long to be usable in rapid calculations. This is in part due to the fact that the effective model
parameters needed to be refit for each change in the microstructural model at each successive time point. Thus, while
effective constitutive modeling approaches and related model reduction methods can significantly improve the compu-
tational efficiency and numerical robustness of multi-scale and meso-scale models, these approaches remain too com-
putationally expensive for extensive parametric studies or high speed clinical usage.

One approach to address these issues is the use of machine learning model representations of the material models
themselves. The most popular approach has been the use of neural networks (NNs). This approach has a long and rich
history, including such application areas as elastomeric foams,25 fiber reinforced polymeric composites,26 and fatigue
modeling. In most of these approaches, the analytical model is replaced with an NN representation,27,28 and an
autoprogressive method is then used for training NNs to learn complex stress–strain behavior of materials using load-
deflection response measured in experimental structural tests.29 NNs represent an exciting branch of computational
science as they have shown an ability to reproduce the behaviors of many complex systems efficiently, often with sub-
stantial performance enhancements over other established methods. Yet, while able to reproduce experimental find-
ings, current NN approaches are dependent on an extensive and appropriate experimental database, which is not always
available or even practically obtainable. The underlying physical mechanisms are also lost, as well as mathematical
issues such as convexity are not necessarily guaranteed. Clearly, while NNs offer great potential for advanced material
modeling, they need to be incorporated into simulation pipelines in way that preserves and extends our physical under-
standing of the underlying mechanisms, along with the appropriate mathematical constraints.

1.3.3 | Attribute-rich non-uniform rational B-splines-based methods for geometric
description and finite element (FE) analyses

Interest in parametric studies of native and replacement heart valve leaflet geometry dates back to at least Thubrikar30

and later Reul.31 More contemporary approaches based on non-uniform rational B-splines (NURBS)32 offers greater

ZHANG ET AL. 3 of 28



flexibility to perform both parametric and patient-specific parametric studies. Further, the use of NURBS has allowed
for direct integration into FE solvers using isogeometric analysis (IGA).33-35 The use of IGA is of particular importance
as shell elements are typically used to represent the leaflets, and IGA provides a very smooth representation ideal for
leaflet accurate contact simulations. NURBS-based approaches also have a largely untapped capability to store and spa-
tially map scalar, vector, and tensor fields as attributes directly onto the AV geometry. For example, material model
parameters (which can vary pointwise) and the fibrous architectures from individual36 or more recently population-
based data20 are just a few of the examples. The recent availability of population-based data is of particular interest for
mapping, as one can typically obtain high resolution patient-specific geometry but not other detailed attributes. Thus,
the ability to spatially map population-derived attributes to patient-specific geometries remains a largely unmet need.

1.4 | Study organization

As a step toward addressing the above issues, we have developed an integrated tri-leaflet valve simulation pipeline built
upon an IGA framework, which allowed for a unified description of geometry that readily integrated application-
specific attributes. In brief, a high-order structural tensor (HOST)-based method was developed for efficient storage and
mapping the fiber structure onto the valvular geometry. We then developed a NN material model that learned the
responses of a detailed meso-structural model for exogenously cross-linked heart valve leaflet tissues, which is more
complex than the responses of native tissues that also relies on the fiber dispersion (splay) and can be learned using the
same approach. We opted for use of this tissue model as opposed to our native tissue, with no loss of generality, as we
were also interested replacement heart valve applications which utilize cross-linked pericardial tissues. We then dem-
onstrated the efficacy of this using detailed parametric studies, along with in vivo derived bicuspid AV fiber structure.
We organized the manuscript as follows. Given the necessary length of the developmental aspects of this work, we pre-
sent methods and intermediate results for each major step first, followed by a formal Results section of the key paramet-
ric studies of the fully development model. A detailed discussion is then presented, along with necessary appendices.

2 | METHODS

2.1 | Study overview

In the present study we have developed a comprehensive pipeline that addresses the above issues (Figure 1) that
includes the following major components:

1. Development of a HOST method to represent fiber ODFs. This approach allows for efficient storage and representa-
tion, as well as tensor coordinate transformation methods to facilitate mapping to the NURBS-based geometric rep-
resentations of heart valve leaflet geometry.

2. Development of a FE implementation of an NN representation of structural constitutive model for native and cross-
linked tissues.23 This approach allows for direct simulation of the full range of fiber architecture that can predict the
resultant tissue stress–strain responses, without the need for evaluation of multiple integrals or parameter refitting
for different structures at run-time.

3. Integration of the HOST mapping and NN-based material model into an integrated AV IGA-based model, all built
in the Unified Form Language (UFL) of the FEniCS open source package.37

4. Demonstration of the efficacy of the approach in parametric studies, as well as using human derived, population-
based normal and BAV leaflet data.20

Details are presented in the following sections.

2.2 | The structural constitutive model for native and xenograft heart valve tissues

Material modeling of soft tissues has a long rich history, and includes a wide variety of biomedical applications.38 As in
many applications, heart valve tissues phenomenological approaches can mathematically relate stress and strain states
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with good accuracy.39 Yet, there is a more critical aspect of tissue modeling which involves the underlying mechanisms
of growth, remodeling, and degeneration in both native and BHV tissues. For example, there is evidence that vavlular
tissues undergo plastic deformation. An important finding is that the underlying collagen fiber architecture has a limit-
ing effect on the maximum changes in geometry that the permanent set effect can induce. Thus, our group's approach
has been to take a structural approach to elucidate and simulate the underlying mechanisms.18

We start by reviewing the formulation of a recently developed structural constitutive model for native and xenograft
heart valve tissues, as described in detail in References 23,24,40, which forms the rationale for the development of the
methods developed herein. In brief, the constitutive model assumes that the total tissue strain energy Ψ is the summed
contributions from the collagen fibers Ψ col, fiber-fiber interactions Ψ int, and the non-fibrous matrix Ψmat. Assuming
incompressiblity due to the high water content, this yields

Ψ =ϕmatΨmat +ϕcolΨ col +ϕcolΨ int−p J−1ð Þ, ð1Þ

where ϕmat is the mass fraction of matrix, ϕcol is the mass fraction of the collagen fibers, the scalar p is the indetermi-
nate Lagrange multiplier, and J = det(F), where F is the deformation gradient tensor. Note that for non-crosslinked
(native) tissues no fiber–fiber interactions are assumed to occur, so that Ψ int = 0. The specific form of Ψ i for each model
component i (i = mat, col, int) are given as follows. For the matrix contribution Ψmat a modified Yeoh model is used

Ψmat =
ηmat

2
1
a

I1−3ð Þa + r
b
I1−3ð Þb

� �
, with 1< a< b,ab<2,r≥0: ð2Þ

Here, ηmat is the modulus parameter, I1 is the first invariant of the right Cauchy-Green deformation tensor C = FTF,
a, b are the shape parameters, and r is the weight between the two terms. For the collagen fibers Ψ col is an ensemble
average over the fiber ODF Γ, and the recruitment distribution function, Γs, that is,

Ψ col = ηcol

ð
θ
Γ θð Þ

ðλθ
1
Γs λsð Þ

λθ
λs

−1

� �2

dλsdθ: ð3Þ

where, ηC is the modulus of the collagen fibers, λθ =
ffiffiffiffiffiffiffiffiffiffiffi
θ�C�θ
p

is the stretch in θ direction, λs is the slack stretch, and λθ/λs
is the true stretch after collagen fibers are straightened. In a similar fashion, the interaction term, Ψ int, is an ensemble
level term integrated over all possible pairs ensembles

Ψ int =
ηint
2

ð
α

ð
β
Γ αð ÞΓ βð Þ

ðλα
1

ðλβ
1
Γs xαð ÞΓs xβ

� � λαλβ
xαxβ

−1

� �2

dxαdxβdαdβ: ð4Þ

FIGURE 1 A schematic of the computational pipeline for integrated IGA-based model utilizing the NN material model and tensor-

mapped fiber structure
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We assumed that the tissue incompressibility is determined solely by the matrix phase. To determine the expression
for the second Piola-Kirchhoff stress tensor S, we utilized S=2 ∂Ψ Cð Þ

∂C −pC−1 . The resulting complete expression for
2 ∂Ψ Cð Þ

∂C is given by

2
∂Ψ Cð Þ
∂C

= ϕmatηmat I1−3ð Þa−1 + r I1−3ð Þb−1
� �

I−C33C−1
� �

+ϕcolηc

ð
θ
Γ θð Þ

ðλθ
1

Γs xð Þ
x

1
x
−

1
λθ

� �
dx

� �
nθ�nθð Þdθ

+ϕcolηint

ð
α

ð
β
Γ αð ÞΓ βð Þ

X
i∈ α,βf g

ni�ni

λi

ðλα
1

ðλβ
1

2λβΓs xαð ÞΓs xβ
� �

xαxβ

λαλβ
xαxβ

−1

� �2

dxαd

0
@ xβ

+
X

i, j∈ α,βf g, i≠j

ni�ni

λi

ðλj
1
Γs xj
� � λj

xj
−1

� �2

dxj

1
Adαdβ,

ð5Þ

while the Lagrange multiplier p for the incompressibility constraint can be determined by the plane stress condition. It
should be noted that the coupling term in Equation (5) is a relatively new addition to this class of models and has been
shown to be required by chemically cross-linked tissues such as the pericardial xenograft tissues used in BHV, as well
as more structurally complex tissues such as myocardium.41 More importantly, while both accurate and predictive,
Equation (5) as presented remains impractical for high speed computational simulations.

2.3 | HOST: High-order structural tensors to represent in planar fiber orientation
distributions

Introduction. As underscored in the preceding section, fibrous structures play an important role in the function and
mechanical behavior of soft biological tissues.38 Moreover, imaging technologies have now progressed to the point
where very high density information (e.g., at the pixel level) can be acquired in near real-time on soft tissue fibrous
structure.21,22,42 This represents an unprecedented opportunity to further develop computational modeling approaches
for soft tissue structures that incorporate such high-fidelity structural information in the underlying constitutive
models. This is especially the case where disease or damage has occurred, where the local structural can be quite com-
plex (e.g., References 20,43).

However, such information is typically acquired as 2D maps of excised, flattened tissues, and thus cannot be directly
used in 3D geometries. Mathematically, the planar fiber ODF is represented as Γ(X, n), which describes the probability
of the relative number of fibers at a position X having an orientation described by the unit vector n, with X, n � ℝ2

(knk2 = 1). In general, Γ(X, n) will need to be translated and rotated from the 2D measurement to the 3D surface. In
addition to these rigid body transformations, mapping will also need to include incorporation in-surface stretch and
compression to account for the in-vivo pre-strains known to exist in native valve tissues,44,45 which are released when
the tissue is excised prior to 2D mapping measurements. Moreover, we seek to develop a method for efficient storage,
as newer imaging methods for structural analysis can produce gigabytes of data for a single leaflet.22

To summarize, we seek to develop an efficient means to represent and transform high-fidelity structural information
for FE model development, which includes the following major goals:

1. A means for efficient storage and representation.
2. A means to facilitate translation, rotation, and in-surface deformations associated from the 2D data to the 3D leaflet

surfaces. This should include both geometries used for data acquisition (e.g., the unloaded state) and remapped
(e.g., when the data were acquired in a loaded configuration but needs to be mapped back to the reference state, as
in Reference 46). Note that the affine transformation has been shown to be valid in native heart valve tissues47).

3. Integrate as an attribute attached to NURBS-based geometric representations.

We present our methodology in the following.

6 of 28 ZHANG ET AL.



Basic characteristics of Γ. We start by establishing the basic characteristics of Γ. It should be noted that the following
can also be utilized for single and multiple layered tissue models, such as the that developed for the mitral valve.19 Due
to the inherent symmetries in any fiber ODF, Γ will be a symmetric function of n so that

Γ nð Þ=Γ −nð Þ: ð6Þ

Taking advantage of this relation, we further define n = n(θ) with θ � Ω = [−π/2, π/2]. The normalization require-
ment of an ODF thus requires

ð
Ω
Γ n θð Þ½ �dθ=1: ð7Þ

From Γ, several key fiber orientation characteristics can be derived. The preferred fiber direction, θp, is determined
using

θp =
ð
Ω
Γ n θð Þ½ �θdθ: ð8Þ

HOST representations. Structural tensors have a long history in the analysis of texture in materials, with general
frameworks formulated for a wide range materials for 3D distributions based on spherical harmonics48 and planar dis-
tributions using Fourier series.48,49 In the present work, we specialize these approaches for planar soft tissue representa-
tions, with an emphasis on efficient representation and tensor coordinate transformation to facilitate the mapping
process. Lower rank (n = 4) structural tensors have been used for several micro-mechanical applications
(e.g., References 49). While a fourth rank approach will work for mildly aligned fibrous tissues, they perform poorly for
much more aligned fibrous architectures. To develop the method for higher rank representations of Γ, we start with the
following truncated Fourier series representation

Γ n θð Þ½ �= 1
2π

1+
X7
j=1

a2jcos 2jθð Þ+ b2jsin 2jθð Þ
" #

, ð9Þ

where ai and bi are constants determined using standard methods. We note that an upper harmonic limit of j = 7 was
found to be more than sufficient to capture highly aligned soft tissue fiber orientation distribution behaviors (Figure 2).

Next, we introduce an mth rank deviator tensor Di1,i2,…,im , which is a fabric tensor of the third kind.49 Di1,i2,…,im has a
number of favorable mathematical properties, such as

Di,j =Dj,i

Di,j,k,l =Dj,i,k,l =Dk,i,j,l =Dl,i,j,k =Dk,l,i,j,…
Di,i =1

Di,j =Di,j,k,k,

ð10Þ

with the summation convention enabled. It can be shown for any order m that certain components of Di1,i2,…,im are
directly related to Fourier coefficients ai and bi in Equation (9) using

Di1,i2,…,im =
−1ð Þk=2am k : even

−1ð Þ k−1ð Þ=2bm k : odd

 
ð11Þ

where k is the number of value “2” indices. All other remaining coefficients can be determined by symmetry using
Equation (10). For example, the fourth rank Di1,i2,i3,i4 has only five independent components determined directly from
the Fourier coefficients. (Table 1). Similar expressions can be obtained for Di1,i2,…,im for any rank m.
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Once the components of Di1,i2,…,im are established, Γ can then be easily recovered, with D0 = 1 to satisfy the normali-
zation requirement in Equation (7), using

Γ nð Þ= 1
2π

1+Di1,i2ni1ni2 +Di1,i2,i3,i4ni1ni2ni3ni4 +…+Di1,i2…imni1ni2…nimð Þ: ð12Þ

where Einstein summation convention is used for contractions over indices i1, …, im and ni1 ,…,nim are the
corresponding components of n. When applied to the highly aligned mitral valve leaflet tissue, this approach worked
very well (Figure 2). Once Γ is so obtained, it is commonly required to determine the axes of symmetry of Γ as required
by the symmetry property (Equation (6)). This is easily done using the eigenvalues of the second rank deviator tensor
Di1,i2 , which acts essentially as a low-pass filter. The resulting eigenvectors of Di1,i2 , which indicates the axes of symme-
try for Γ, can be physically interpreted as the preferred ePD and cross-preferred eXD fiber (unit vector) directions
(Figure 2). When Equation (12) is truncated to 14th rank structural tensor, only 14 Fourier series coefficients need to be
stored for mapping Γ(n) in comparison to the 360 values in the experimental data obtained at each measurement point.

HOST-based generalized coordinate transformations of Γ. One major benefit of the HOST approach is that it facili-
tates generalized coordinate system mapping of Γ. To do this, we represent a coordinate mapping from each point in
the reference configuration X0 to the new mapped configuration X by the deformation gradient tensor F(X0), where
dX = F(X0) � dX0 locally under the assumption of affine transformation. This adopted form is a fully generalized map-
ping approach for planar fibrous structures. To develop the method, Γ is transformed using the following two steps.
First, we separate the deformation and rigid body rotation components using the polar decomposition F = R � U, where
R i the orthogonal rotation and U the stretch tensors, respectively. We first account for the effects the local stretch U,
under the assumption of affine transformation, on Γ in the deformed (but not rotated) state using.50

Γ0 nð Þ=Γ nð Þn�Cn
J2D

ð13Þ

where J2D = det(U) and C = U2. Once Γ
0
has been determined, the associated transformed Fourier series constants and

deviator tensors Di1,i2,…,im are then determined (see Section 2.3). Next, to account for the rigid body rotation R, the all
deviator tensors are transformed using standard tensor coordinate transformation rules. For example, the fourth rank
fabric tensor expressed in the mapped coordinate system D0i1,i2,i3,i4 can be determined using

FIGURE 2 Example of the 14th rank structural tensor fit to Γ

from the anterior leaflet of the mitral valve, showing an excellent fit.

Also shown are the axes of symmetry as determined by eigenvectors

of second rank structural tensor Di1,i2 . The blue and black lines

represent angular locations of the first and second eigenvectors,

respectively, of the second rank deviator tensor Di1,i2 . These

eigenvectors define the local preferred ePD and cross-preferred eXD
fiber (unit vector) directions, respectively

TABLE 1 An example showing the

five independent component values for

a fourth rank fabric tensor Di1,i2,i3,i4 in

terms of the associated Fourier series

coefficients

Di1 ,i2 ,i3 ,i4 k Independent component

D1111 0 a4

D1112 1 b4

D1122 2 −a4
D1222 3 −b4
D2222 4 a4
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D0i1,i2,i3,i4 =Ri1,j1Ri2,j2Ri3,j3Ri4,j4D j1,j2,j3,j4 ð14Þ

and the HOST form in Equation (12), which is a function of these Fourier coefficients, is used to rotate/distort the Γ(n)
when performing the mapping operations to obtain Γ

0
(n). This is required to map the 2D experimentally acquired Γ(n)

data to Γ
0
(n) on 3D surfaces, such as the 3D heart valve leaflet. Further, distortion is important when trying to account

for the effects of tissue contraction after removal from the in-vivo environment. This approach thus produces high-
fidelity representations of generalized forms of Γ(n) with only 14 parameters at each data point, as well as facilitating
straightforward generalized geometric mapping using only conventional tensor coordinate transformations, which are
both easy to use and computationally efficient.

2.4 | A machine learning model of native and cross-linked heart valve tissue
mechanical behaviors

Background. To numerically implement the structural model (Equation (5)) using Gaussian quadrature, the quadruple
integral of the interaction term alone requires up to 104 quadrature points. This gives rise to the need of a dramatically
more computationally efficient approach that can replicate the response of high fidelity structural models. We have
explored the use of simplified analytical model forms to avoid the computational demands of the necessary integra-
tions.24 However, such approaches can reproduce only one state at a time, so that their parameters have to be
re-determined for each state change (e.g., change in initial or current fiber orientation). While the high fidelity and
physically accurate aspects of the structural approaches remain attractive to make the necessary mechanistic connec-
tions, new approaches must thus be developed to address these computational demands.

Our goal herein is thus to develop machine-learning-based computational representation of heart valve tissue
mechanical behaviors. Our goal was thus not to develop alternative NN-based material models but rather efficient com-
putational representations using NN methods. In doing so we avoid constructing NN models directly from raw experi-
mental data. This approach, while popular, often requires a large quantities of data that is typically not available.
“Data” is also not necessarily a homogeneous body of information; it is typically dependent on many specific conditions
and methods unique to a particular study. Collected data thus may or may not be appropriate for the modeling tasks at
hand. There are also mathematical restrictions on the strain energy equivalent of the NN model, such as ellipticity and
convexity, that need to be enforced. Moreover, the mechanistic, highly predictive, mature nature of available structural
models are an attractive alternative source of material behaviors to be represented.

We thus focus our approach instead on a NN representations of our high fidelity physics-based material model
(Equation (5)) for the purpose of computational speed and to facilitate rapid parametric studies. This approach allowed
accurate computational representation of the material models that also closely obey various necessary mathematical
properties, such as convexity and symmetry (since they are trained on physics models that have these properties). Once
the NN model is thus trained, it can replace the original physics-based model in the FE model under consideration to
dramatically speed up subsequent simulations. We detail our approach in the following.

Formulation of a NN model for Ψ fsm. For each material point, the mapped Γ was incorporated as follows. ePD was
taken as the local x1 in the undeformed configuration, eXD as x2 to form a Cartesian coordinate system. While the com-
plete Γ is available at each material point using the methods laid out in Section 2.3, we seek to demonstrate the efficacy
of this approach in the present work. Thus, to simplify NN architecture and training, we assumed that the mapped Γ
can be represented as a truncated normal distribution NT θjμ,σð Þ, wherein μ = θp so that ePD = np and is aligned to the
local x1 direction, and σ is the standard deviation of Γ. Thus, the local x1 direction now represents the local dominant
(i.e., stiffer) material axial direction. This reduces the Γ mapping to a single local scalar variable σ, which is dispersion
of the fiber splay about the local x1 direction. This allowed use to utilize only a single scalar variable to describe the
local Γ.

In the present work, we use the components of the Green-Lagrange strain tensor E referred to the material axes.23

These are defined using

EPD = ePD�E�ePD, EXD = eXD�E�eXD, Eϕ = ePD�E�eXD: ð15Þ
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Since the preferred direction ePD is aligned with the local coordinate x1, the NN model only needs to have EPD, EXD,
Eϕ, and σ as the inputs, and outputs second Piola-Kirchhoff stress tensor predicted components with respect to the same
bases, that is,

SPD = ePD�S�ePD, SXD = eXD�S�eXD, Sϕ = ePD�S�eXD: ð16Þ

Thus, the complete forward model of the NN model is denoted as

SPD,SXD,Sϕ
� �

= f NN EPD,EXD,Eϕ,σ
� �

, ð17Þ

which serves as a simulacrum to the structural model (Equation (5)) over the physiological range of σ while other struc-
tural parameters are fixed. In both NN model training and parametric studies, by simply varying the local σ, the NN
model can predict the range of responses from high anisotropy to nearly isotropy.

To take the advantage of the expressive power of a fully connected NNs were used to approximate the response of
the full structural model. Given the fact that the full structural model is differentiable and unbounded, the softplus
function h : ℝ 7! ℝ, h(x) = log(1 + ex) is chosen as the activation function in the NN. The softplus function is a
smoothed version of the rectified linear unit. In the overall design of the NN, the neurons on the lth layer xl �ℝdl

(l = 1, …, nl), can be obtained by a composition of an affine transformation A of the neurons on the previous layer,
xl−1 �ℝdl−1 and the nonlinear activation function h, using

xl = h ∘A xl−1ð Þ= h Wl�xl−1 + blð Þ ð18Þ

The affine transformation A :ℝdl−1 7!ℝdl is defined by its weights Wl �ℝdl × dl−1 and bias bl �ℝdl , and the activation
function h is applied in an elementwise fashion. The dimension of the output layer dnl =3. The loss function defined
later for training the NN is an aggregated quantity which means the NN is driven to minimize the error on average not
any particular local misfits. Numerically, the trained NN without such enforcement will output a small but nonzero Sϕ
when Eϕ = 0, therefore, the third output of the output layer is post-multiplied by the shear strain Eϕ to enforce the con-
straint that Sϕ = 0 when Eϕ = 0. Steps involved in the computation of (17) are described in Algorithm 1.

Training NN models for Ψ fsm and the final NN model form. The training data were generated by the full structural
model Equation (5) using ηmat = 100 kPa, ηcol = 302039.9656 kPa, ηint = 2785.73 kPa, a = 1, b = 1, r = 0. The recruit-
ment distribution Γs(λs) was kept constant, and was considered independent of θ, in keeping with our other work.41 To
model Γs(λs), we utilized the following Beta Distribution.41 First, we map λs to the [0, 1] domain

y=
λs−λlb
λub−λlb

,

where λlb and λub represent the lower and upper bounds, respectively, with values λlb = 1.0 and λub = 1.2130. Next,
Γs(y) is determined using

Algorithm 1

The forward model of the NN model with nl − 1 hidden layers

1: Initialize x0 (EPD, EXD, Eϕ, σ)
2: for l = 1 : nl do
3: xl = h(Wi � xl − 1 + bi)
4: SPD,SXD,Sϕ
� �

 xnl,1,xnl,2,xnl,3 ×Eϕ

� �
5: return (SPD, SXD, Sϕ)
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Γs yð Þ=
yα−1 1−yð Þβ−1

B α,βð Þ λub−λlbð Þ

where α = 8.0525, β = 1.1378, and B(α, β) is a normalization constant that depends on α and β. The training dataset Dtr

defined as

Dtr = E ið Þ
PD,E

ið Þ
XD,E

ið Þ
ϕ ,σ ið Þ,S jð Þ

PD,S
jð Þ

XD,S
jð Þ

ϕ

� �n ontr

i=1
, ð19Þ

are evenly spaced data points in prescribed bounded ranges, such that E ið Þ
PD,E

ið Þ
XD,E

ið Þ
ϕ ,σ ið Þ

� �
∈

Elb
PD,E

ub
PD

	 

� Elb

XD,E
ub
XD

	 

� Elb

ϕ ,E
ub
ϕ

h i
� σlb,σub
	 


for all i = 1, …, ntr, where ntr is the number of training points. The range of
the training dataset covers the physiologic range in which the deformation of heart valve tissues most likely to occur.
We generated ntr = 114 training data points with the full structural model, using extant parameters for crosslinked
bovine pericardium (see Section 2.2) that were evenly spaced within the bounds Elb

PD =Elb
XD =0, Eub

PD =0:17, Eub
XD =0:23,

Eub
ϕ = −0:15 , Eub

ϕ =0:15 , σlb = 10�, and σub = 50� (Figure 5). Note that the data points with stress components with
higher than 1500 kPa are removed since they were considered beyond the physiological range. While we can retain the
data points outside the physiological range for training the NN, it will undermine the fitting quality of the NN within
the physiological range due to the fact that larger stress values have larger contribution to the relative mean squared
error (MSE), and can thus skew the trained model.

Training for the NN commenced using randomly uniform distributions to initialize NN parameters. The relative
MSE between the predicted stresses of the NN model and those generated by the full structural model, which is defined
using

e=

Pn
j=1 f NN E jð Þ

PD,E
jð Þ

XD,E
jð Þ

ϕ ,σ jð Þ
� �

− S jð Þ
PD,S

jð Þ
XD,S

jð Þ
ϕ

� ���� ���2
2Pn

j=1 S jð Þ
PD,S

jð Þ
XD,S

jð Þ
ϕ

� ���� ���2
2

: ð20Þ

was chosen as the loss function for training the NN model. The training was accomplished strictly offline, thus all train-
ing data are generated before parameter optimization. For a faster and stable convergence, the parameters are updated
by the limited memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. Backpropagation was used to compute
the gradient of the loss function with respect to the NN parameters (Wl, bl for l = 1, …, nl). The validation data are gen-
erated in the same fashion as sampling the training data but do not contain any training data. The relative MSE in
Equation (20) is also used to quantify the fitting quality on validation dataset.

Development of the final form of the NN model. The observed predictive power of the NN was directly related to the
specified complexity of the NN. We thus first trained a number of NNs with different number of hidden layers and neu-
rons on the same training data (Figure 3). The 1-layer NNs were not able to describe the behavior of the full structural
model with given error threshold, while 2-layer or 3-layer NNs had sufficient complexity to replicate the full structural
model. In our particular application, there is a trade-off between complexity and efficiency for 2/3-layer NNs. Based on
these results, we choose a 2-layer NN model with 10 neurons in each layer, as it was computationally less-expensive
than a 3-layer one and yet has similar performance.

Good convergence characteristics were found for the optimizer for training the NN with 2 × 10 neurons (Figure 4
(A)). Validation error tests of this model against the full structural model were conducted. We obtained the validation
error eval, given by Equation (20), on validation datasets with different numbers of samples. Evidently, the relative vali-
dation error is around 6e − 3 (Figure 4(B)). To visualize the validation results, a random σ is selected and then we plot
the three stress components on three strain planes (Figure 5), which shows that the NN model fitted the full structural
model quite well.

Convexity and related considerations. A concern when simulating an elastic constitutive model is the convexity of
the strain energy function, as well as the positive definiteness and symmetry of the associated elasticity tensor C = ∂S/
∂E. In general, while NN's have the property of being universal approximations of continuous functions, underlying
symmetries are not guaranteed to be reproduced exactly. This can be enforced on the DNN by first transforming the

ZHANG ET AL. 11 of 28



inputs to a set of symmetric functions, as for reproducing the symmetry of a strain energy function based on the sym-
metry group of the material.51

In the present application, we note that the structural model is intrinsically convex, and the symmetry of the C is
merely a consequence of the double derivative of the continuously differentiable strain energy function.52 Equivalent
convexity constraints can be enforced into parameter estimation of alternative conventional models (e.g., Reference 24)
when the mathematical form of the model is simple. Since the present NN model is nonlinear in the parameters, the
number of convexity constraints would be as large as the training dataset, and is thus impractical. Thus, in the present
NN model the convexity constraint is not explicitly enforced.

To verify that this approach did not appreciably affect simulation accuracy, we calculated the eigenvalues of C in
the training dataset. This test demonstrated that 97.7% of the data points have the positive definite stiffness matrix. In
the validation dataset, the eigenvalues of C were all real numbers. The C that have negative eigenvalues were located
on the boundary of the fitting range, where there are less data points that can regulate the response of the NN model.
In all cases the convexity is retained in the interior of the fitting range or physiological range. Additionally, at most only
one out of three eigenvalues of each elasticity tensor was negative, and it is significantly smaller than the positive ones.
The C of the present NN model is generally not perfectly symmetric.28 Since the NN is fitted to the stress response, C is
expected to have lower order of accuracy than the stress. The resulting effective “numerical” symmetry of C can be
measured by the ratio of the squared norm of the symmetric part to the squared norm of the matrices using Equa-
tion (21) using all data points in the test dataset Dtest . In the present study, we found that the resulting ratio was
97.89%, which meant the symmetric part of C was very dominant. Finally, we note that the NN model (Figure 6) the
third output was post-multiplied with the shear strain Eϕ, which gives the shear stress Sϕ, resulting in that zero shear
strain gives zero shear stress.

FIGURE 3 The training error of NNs with different numbers of

layers and neurons

FIGURE 4 The training history and validation errors of the final NN model with 2 × 10 neurons
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r=

P
i �Dtest

symm C E ið Þ� �� ��� ��2P
i �Dtest

C E ið Þ� ��� ��2 , ð21Þ

2.5 | NURBS-based tri-leaflet geometric representation

The methods for the formulation of the NURBS-based representation of a tri-leaflet heart valve used in this study has
been previously presented.53 Briefly, starting from the NURBS surface representation of the geometry used in Reference
55, valve leaflets were parametrically designed by picking nine “key points” located on the ends of commissure lines
and the bottom of the sinuses. This method was used to parametrically change the free edge and belly curve, and there-
fore change the valve design to match the shape of the valve taken from Reference 54. This procedure was implemented
in an interactive geometry modeling and parametric design platform based on Rhinoceros 3D and Grasshopper. A
NURBS mesh with 20 × 26 control points is generated for each heart valve leaflet. The NURBS mesh has open uniform
knots so that the Dirichlet boundary conditions can be directly imposed by setting the values of corresponding control
points. The NURBS mesh is degree 2 in order to give C1 continuous basis functions for Kirchhoff–Love shell analysis.

FIGURE 5 Graphical depiction of the strain ranges used to train the NN model. Also shown are the validation results for the final NN

model for σ = 25.48�
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We first describe the mid-surface of each leaflet in the reference (undeformed) configuration X(ξ1, ξ2) : ℝ2 7! ℝ3

and current (deformed) configuration x(ξ1, ξ2) : ℝ2 7! ℝ3 are parameterized by ξ1 and ξ2. The covariant basis vectors,
and the unit surface normal vector are

aα = x,α =
∂x ξ1,ξ2
� �
∂ξα

, a3 =
a1^a2
a1^a2k k2

, ð22Þ

Aα =X,α =
∂X ξ1,ξ2
� �
∂ξα

, A3 =
A1^A2

A1^A2k k2
, ð23Þ

where α = 1, 2. To map the 2D fiber coordinate system information defined on 2D excised leaflet X0 � ℝ2 (Figure 7(B))
onto the 3D leaflet X � ℝ3 (Figure 7(C)), the point correspondence X(X0) : ℝ

2 7! ℝ3 between them is first established
by fitting the NURBS patch to the 2D leaflet triangular mesh (Figure 7(A)) where the raw fiber data are stored.20 The B-
Spline mesh (Figure 7(C)) has two degenerate points at the left the right corners. For simulation purposes, the NURBS
mesh (Figure 7(C)) is cropped at the corner of the commissures and annulus to improve the mesh quality with struc-
tured quadrilateral elements (Figure 7(D)). The leaflet geometry is minimally modified after cropping the corner, and
the element quality and the convergence of the simulation are improved. This small change will have limited effect on
the simulation results since the geometry is changed minimally. The corresponding pushforward F = ∂X/∂X0 can be
obtained. Given F, the deformed ODFs (Equation (13)) and transformed structural tensor can be obtained. Thus, the
preferred direction on the 3D leaflet can be transformed by ePD =Re2DPD. For simulation purposes, we only need to store
its components on the covariant basis of the reference configuration, ePD = λ1A1 + λ2A2, kePDk2 = 1 (Figure 8). The
cross direction eXD (keXDk2 = 1) in the tangent space is assumed to be orthogonal to ePD. Using F = RU, we can via
Equation (14) and recover its corresponding pointwise Γ on the 3D leaflet surface. Note that, in general, R is not
enough to transform Γ since the mapping also involves in-surface stretches. As an example, we demonstrate this
method using the mapped σ for the normal and bicuspid valves taken from Reference 20 (Figure 9).

2.6 | FEniCS isogeometric formulation and implementation

The heart valve FE implementation was based on related previous studies.53,55 Briefly, we model heart valve leaflets as
thin shells based on the K-L theory. With IGA basis functions, for example, B-spline, NURBS, the C1 continuity require-
ment for the K-L element is easily satisfied. The simulations were implemented with tIGAr,56 which is a Python library
for IGA using FEniCS,37 an FE open source software.

FEniCS implementation. The current and reference configuration x(ξ1, ξ2) and X(ξ1, ξ2) of the mid-surface of a leaf-
let are discretized by IGA basis functions defined on the mesh described in Section 2.5. The IGA basis functions can be
represented by FE basis functions using a global variant of Bézier extraction.56 This makes it possible to use FEniCS to
implement IGA. To illustrate how this is implemented in tIGAr, we consider the homogeneous IGA scalar basis func-
tion N IGA,hom

A ξ1,ξ2
� �

which can be obtained by a linear transformation MBA of FE basis functions NFE
A ξ1,ξ2
� �

such as
Lagrange basis functions,

FIGURE 6 A schematic of the final fully connected NN model

for planar mechanical behavior of native and replacement heart

valve leaflet soft tissues. The input nodes consist of the strain tensor

components and the Γ standard deviation. The output is the three

stress tensor components. Note that the shear stress term is post-

multiplied with the shear strain, resulting in that zero shear strain

gives zero shear stress as fitting constraint (see text for details)
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N IGA,hom
A ξ1,ξ2

� �
=
X
B

MBAN
FE
B ξ1,ξ2
� �

: ð24Þ

The rational IGA basis functions can be obtained with

N IGA
A ξ1,ξ2
� �

=
wIGA
A N IGA,hom

A ξ1,ξ2
� �

P
Bw

IGA
B N IGA,hom

B ξ1,ξ2
� � : ð25Þ

Thus, the current configuration defined by an IGA function x=
P

Ap
IGA
A N IGA

A can be expressed in homogeneous rep-
resentation, as can the reference configuration X=

P
Aq

IGA
A N IGA

A . The covariant basis aα and Aα can be obtained by
Equations (22) and (23), respectively.

FIGURE 7 The 2D triangular mesh (A) is first fit by a 2D NURBS mesh (B) to interpolate fiber ODFs on the NURBS mesh. Then the

fiber ODFs at a point X0 on the 2D NURBS mesh can be mapped to the corresponding point X on the 3D leaflet geometry (C). The NURBS

mesh (D) for simulations consists of three identical 3D leaflet geometries with cropped corner to improve the mesh quality

FIGURE 8 The preferred direction and cross direction defined

on the tangent space
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By the assumption of negligible trough-thickness shear deformations in K-L shells, the covariant basis vectors in the
current and reference configuration of the 3D medium of the shell are gα = aα + ξ3a3,α and Gα = Aα + ξ3A3,α. By the
second fundamental form of the surface, we have bαβ = g3 � gα,β and Bαβ = G3 � Gα,β where

g3 =
g1^g2
g1^g2
�� ��

2

, G3 =
G1^G2

G1^G2k k2
: ð26Þ

Then, the metric tensors are g = a − 2ξ3b and G = A − 2ξ3B, and the strain is defined as Eαβ = 1
2 gαβ−Gαβ

� �
in the

local in-plane curvilinear system. Given the fiber structure mapping, we can transform Eαβ into Eij on a local Cartesian
system consistent with the material axis ePD and an orthogonal in-plane direction eXD. The in plane stresses can be
obtained by the NN model with σ, that is, S = fNN(E, σ)− pC−1. In the variational problem, the internal virtual work is
defined as

δW int =
ð
Ω0

ð + hth=2

−hth=2
δEijSijdξ3dX: ð27Þ

The Lagrange multiplier p for the incompressible constraint of the matrix material is determined by
p = 2C33∂Ψmat/∂C33.

2.7 | Verification of the full model

We first verified the implementation of the NN material model in planar biaxial test simulations under multiple loading
protocols against the mathematical expression of the NN model. The NN model is implemented in FEniCS using UFL
(Appendix A). A unit square domain is discretized by a 10 × 10 bi-linear quadrilateral mesh. The preferred and cross
directions are aligned with the edges of the square. The Dirichlet boundary conditions were uniformly imposed on each

FIGURE 9 The σ distribution of normal AV (A) and bicuspid AV (B) on the 2D geometries are mapped to (C) and (D) on the 3D

NURBS leaflet surfaces, respectively
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edge of the square. The prescribed displacement is imposed according to three different protocols: EPD : EXD = 1 : 1,
0.17 : 0.23, and 1 : 3. Since the strains are uniform on the domain, the stress of the IGA simulation is uniform as well.
We then verified the stress–strain relationship in FE with that obtained from the NN model in Figure 10.

The full structural model is very accurate and quite predictive in terms of the observed mechanical behavior. How-
ever, the model involves double and quadruple integrals, which is intractable for simulation. The effective model, as
developed by us24 can fully reproduce the responses of the full structural model when fit to it, and is also quite efficient
for simulations. For validation purpose, the effective model first fit to the full structural model, then used in place of
the full structural model in the actual simulations to compare the simulation results with the NN material model. The
porcine aortic valve properties, which is softer than bovine pericardium, is used in the simulations. The relative error of
the trained NN model against the effective model is 5.1 × 10−5. Two material models gives visually indistinguishable
Maximum in-plane Green-Lagrange strain (MIPE) distributions (Figure 11) with the same geometry and boundary con-
ditions. For one iteration of the FE simulation, the elapsed time for assembly and solution is 3.1200 s for the NN model
and 1.8745 s for the effective model. While the effective model is a phenomenological model that can reproduce the
responses of the full structural model with fixed combination of parameters. With a moderate increase of the computa-
tional expense, a trained NN material model can represent the responses from highly anisotropic behaviors to nearly
isotropic behaviors by varying the standard deviation of the fiber orientation, σ. While a single effective model can only
represent the responses for a fixed σ. When σ is changed, the effective model needs to be refitted. This gives additional
expense if the effective model is used for simulations with spatially varying fiber structure.

2.8 | Numerical simulations conducted

The impact of the fiber structures to the strain distribution are further studied in a sequence of parametric simulations.
Given different values of σ or different fiber directions (horizontal fiber and circumferentially aligned fibers [Figure 12]),
the strain distributions in the deformed state are obtained to demonstrate the impact of the fiber structures to the
responses. Given the architectural trends in the normal and BAVs,20 we also exam the impacts of such population-
based fiber structure to provide insights into mechanical factors affecting valvular function. A summary of fiber struc-
tures considered in the simulations is listed in Table 2. In all tri-leaflet simulations, the leaflet density and thickness are
set to 1.0 g/cm3 and 0.0386 cm, respectively. The leaflet materials are crosslinked linked bovine pericardium. The tri-
leaflet valves are loaded with an uniform pressure field of 80 mmHg to model the physiologic quasi-static transvalvular
pressure at the closing stage. The penetration through the symmetric planes between the valve leaflets is penalized by a
quadratic function of the penetration to simulate the contact between leaflets. The quasi-static solutions are approxi-
mated by dynamics simulations with mass damping to achieve steady states.

FIGURE 10 Verification of the FE implementation with the NN model for three planar biaxial test protocols: EPD :

EXD = 1 : 1,0.17 : 0.23,1 : 3
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3 | RESULTS

Effects of overall fiber directions. The strain distributions with circumferentially and horizontally aligned fibers are
shown in Figure 13. The MIPE with horizontal fibers (Figure 13(A)) is higher than the one with circumferentially
aligned fibers (Figure 13(B)). The maximum MIPE is slightly higher than 0.2. The fiber orientation on the heart valve
significantly affects the strain fields. The overall MIPE distributions for both fiber directions have similar pattern. As
shown in Figure 13(B),(D), the MIPE for the circumferentially aligned fibers is close to the EPD for most part except the
region near the annulus. While the EPD and EXD for the horizontal fibers is very different especially on the belly and
annulus. The effect of the fiber orientation to the strain is due to the high anisotropy of the material. The more aniso-
tropic the material is, the more the effect of the fiber orientation.

Effects of overall σs. To demonstrate the effects of the dispersion of fiber splay σ we vary σ uniformly in the quasi-
static simulations. The fibers are all circumferentially aligned. As σ increasing, the magnitude of EPD is slowly increas-
ing (Figure 14) since less fibers are aligned circumferentially. This induces increasing fibers dispersion so that more
fibers are close to the cross directions. Thus, the magnitudes of EXD on the belly region are significantly reducing

FIGURE 11 Verification of the simulation of tri-leaflet valves with the native porcine aortic valves properties using the NN model

against an effective material model

FIGURE 12 Two tri-leaflet heart valve models with different fiber directions (red lines)
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(Figure 15) as σ decreasing. Overall, the MIPE (Figure 16) is gradually smoothed and achieves minimum average for
σ = 30� among the four different σs due to the contribution of both EPD and EXD. This highlights the importance of the
fiber structure mapping, showing how structural information impacts the overall deformation.

Native AV and BAV fiber structures. The NN model is integrated with the σ(ξ1, ξ2) distribution for both BAV and
TAV (Figure 9) mapped on to each 3D valve leaflet. The NN model can predict the stresses at each material point with
given local strains and σ(ξ1, ξ2), and fiber directions using S(ξ1, ξ2) = fNN(E(ξ

1, ξ2), σ(ξ1, ξ2)) − pC(ξ1, ξ2)−1. The strain
distributions with σ mapping (Figure 17) demonstrate significant differences from those with homogeneous distribution
of σ especially for the strains in the preferred and cross directions (Figures 14 and 15). Due to the heterogeneity of the
mapped fiber structures, fine-grained details emerge, which emphasizes the importance of the ability of NN models to
predict the responses for a range of fiber structures. All three BAV strain fields (MIPE, EPD, and EXD) are overall higher
and more heterogeneous than the TAV ones. The corresponding stress concentration may more likely leads to low heart
valve durability.

4 | DISCUSSION

Overview. In the present study, we developed an integrated tri-leaflet valve simulation pipeline built upon an IGA
framework. A HOST-based method was developed for efficient storage and mapping the fiber structure onto the valvu-
lar geometry. We then developed an artificial NN material model that learned the responses of a detailed meso-
structural model for both native and exogenously cross-linked heart valve leaflet tissues.

HOST representations of collagen fiber architectures. Since the fiber orientation PDFs dictates the high anisotropy of
the soft tissue mechanical responses, the AV simulations cannot give faithful clinical evaluation without mapped fiber
structures. We have shown that with only 14 independent parameters the HOST representation can recover the ODFs
of valvular tissues with negligible errors. The capability of the HOST method to facilitate the fiber structure mapping is
further explored. A two-step procedure is established given the polar decomposition of the deformation tensor that rep-
resents the push forward from the excised flattened valvular tissue to the 3D in-vivo geometry. First, the stretched ODFs
are obtained by the affine transformation of ODFs and the stretch tensor. Second, the HOST representations of
stretched ODFs on the 3D surface are easily obtained by the standard tensor coordinate transformation using the rota-
tion matrix. Finally, the deformed ODFs are recovered from the HOST representation. Thus, the HOST method is an
efficient and robust representation of the ODFs that bridge that gap between the 2D fiber information obtained from
the excised tissues and the 3D simulation models.

NN representations of material models. The soft tissue material model needs to be not only informed by the fiber
structure to give predictive capabilities but also efficient enough for trileaflet heart valve simulations performed in clini-
cally relevant time-frames. The high-fidelity structural models and its extension for modeling long-term fatigue pro-
cess23 are based on the microstructural mechanism, however, it is in nature an ensemble model that involves double
and quadruple integrals for native and crosslinked soft tissues. Even though the use of phenomenological models, such
as the effective model we developed24 can improve the computational efficiency significantly, it is not straight forward
to extend such models to incorporate the structural parameters.

The NN material models were introduced to represent the stress–strain responses by training directly on the experi-
mental data,25,27,29 which limits their predictability to prescribed protocols and specimens. While the present NN

TABLE 2 Fiber structures for the

numerical simulations conducted in the

parametric studies

θ σ(ξ1, ξ2)

Circumferential 32.66� everywhere

Horizontal 32.66� everywhere

Circumferential Mapped σ using BAV data

Circumferential Mapped σ using TAV data

Circumferential 10� everywhere

Circumferential 20� everywhere

Circumferential 30� everywhere

Circumferential 50� everywhere
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material models are trained on the responses generated by high-fidelity structural material models, which makes it pre-
dictable for the full range of physiological strains and structural parameters such as σ. Training on the responses gener-
ated by well-defined material models is also implicitly regulating the behavior of the NNs. As we examined in
Section 2.4, even though symmetry and convexity constraints are not imposed in the training process, the violation of
those constraints are not considerable.

Given the expressive power of the NNs, the use of NN material models presents a direct way to include the struc-
tural parameters that dictate the soft tissue responses. In this work, we trained a NN material model for crosslinked val-
vular material with a range of σ which dictates the anisotropy of the mechanical responses. The lower σ is, the more
anisotropic the responses are. The trained NN material model is able to replicate the responses of the structural model

FIGURE 13 Strain distributions (MIPE, EPD on the fiber direction, EXD on the crossed in-plane direction) of the intact tri-leaflet valves

with different fiber directions
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for a range of σ, which demonstrates its expressive power for such applications. It not only fits the responses within the
training range of strains with satisfactory relative errors but also captures trends of the responses two times more than
the upper limit of the training stresses. This may be attributed to the unboundedness of softplus functions used as acti-
vation functions in the NN. The ability of capturing the response trends beyond the fitting range is useful for AV simu-
lations when the resultant maximum strain is not known a prior. The use of the continuously differentiable softplus
function also enables the NN material models to have continuous tangential stiffness matrices. This property is very
important for the stability and convergence of AV simulations.

IGA implementation. The NURBS geometry model for the fiber information storage and IGA simulations provides a
modeling and analysis pipeline. The NURBS geometry can further streamline the iterating process of design and analy-
sis. In this work, we explore the possibilities using NURBS to build an attributed-rich AV simulation model. It is
enhanced with the population-based fiber structures for normal and bicuspid leaflets. The tIGAr library along with the
FEniCS framework provides a unified framework for the IGA simulation with the NN material model. The analytical

FIGURE 14 EPD distribution of the intact tri-leaflet valves with σ = 10 � , 20 � , 30 � , 50�
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functions of the NN models represent are written in almost mathematical expressions in the UFL. The automatic differ-
entiation of the FEniCS framework eliminates the need to manually derive the elasticity tensor and its implementation.
With minimal modification of the present implementation, the NN material model is extensible to incorporate other
structural parameters. The IGA formulation of K-L shell analysis provides C1 solutions and smooth contact results.
Although the AV models are equipped with NN material models, we show that it does not affect the computational
speed significantly in comparison with the effective model. The simulation results with different σ distributions and
fiber directions demonstrate the need to equip the AV simulation with realistic fiber information. The simulation
results with the population-based fiber structures for normal and bicuspid leaflets show that the bicuspid leaflet have a
more heterogeneous strain distribution and higher strains on the belly, which may ultimately reduce the durability of
the leaflet in the long term.

Limitations. For practical considerations, while the full Γ form was available, we only considered a simplified
normal distribution, setup with the local coordinate system so that only one structural parameter σ was required.

FIGURE 15 EXD distribution of the intact tri-leaflet valves with σ = 10 � , 20 � , 30 � , 50�
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This allowed us to only require one structural parameter in the NN material model. It was clearly sufficient for demon-
stration of how a NN model trained complex structural model can produce highly flexible and accurate in-silico simula-
tion results. That said, when greater fidelity of the Γ is required, the present NN model can be extended to include
increasing numbers of the Fourier series components (up to 14). Most likely, for practical applications simplified forms
(e.g., Gaussian Mixture models) can be developed to capture the level of mapped structural detail as needed. In any
case, having a high fidelity local mapped structure will remain useful. The current UFL implementation of the NN
models relied on the automatic differentiation to calculate the tangential stiffness matrix, which can be replaced by
direct computation to reduce the computational overhead. This will also be needed for efficient implementation of IGA
in FEniCS, wherein the UFL compilation adds to total compute time. Finally, we note too that there are alternative
approaches for ODF mapping. For example, diffusion tensor imaging characterizes the diffusivity profile of tissue
in vivo by a single oriented 3D Gaussian probability distribution function. Methods to map ODFs include spherical har-
monics and constructing a Riemannian space of the generalized ODFs, similar to that of traditional ODFs.57 The

FIGURE 16 MIPE distribution of the intact tri-leaflet valves with σ = 10 � , 20 � , 30 � , 50�
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present method retains advantages of both efficient storage and ease of mapping using tensor methods. That said, con-
tinued development of novel tissue imaging technologies will likely necessitate development of new mapping methods.

Future directions. Regardless of the details of the design or delivery method all BHV exhibit limitations in durability,
which continues to be in the range of 10–15 years. Moreover, these levels are often achieved only in patient ages
57 years or older.7 BHV leaflet tissue failure results from leaflet structural deterioration mediated by fatigue and/or tis-
sue mineralization.58,59 These and other findings clearly demonstrate the need for an understanding the mechanisms of
valve design/function and tissue degeneration to improve long-term durability.

FIGURE 17 Strain distributions of the intact tri-leaflet valves using native bovine pericardium properties with σ mapping from BAV

and TAV
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To address these issues, the methods presented herein can assist in developing the next generation of replacement
heart valves. Specifically while retaining the benefits of a high fidelity of the structural model, the present NN material
models drastically reduced the computational cost. In comparison to the phenomenological models, regardless of spe-
cific form, the NN material model does not increase the computational cost for AV simulations. NN material models, as
universal approximators, can be extended to represent more complex soft tissue mechanical behaviors, such as plastic-
ity, fatigue, and related time-dependent behaviors.23 Finally, with the advance of the in-vivo imaging techniques, the
present AV model can be easily adapted to patient-specific geometry and fiber structures when such data are available.
In such circumstances, the predictability of the AV simulation will be significantly improved from a patient specific
point of view.
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APPENDIX A.

Implementation of the NN material model in FEniCS
The NN model can be easily embedded in the simulation with the help of the fiber structure mapping. The forward pass
of NN model which gives the stress has an analytic and differentiable expression, fNN(E, σ). The weight matrix Wl and
bias vector bl (l = 0, …, nl) for the nl-layer NN can be defined as constant matrix and vector. The elementwise softplus
function can be defined as elementwise operator in the UFL, which is part of the FEniCS project. A Python code snip-
pet using UFL is shown in Listing 1. The FEniCS-based library can facilitate the resulting nonlinear variational problem
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solving by using the automatic differentiation capability. Thus, the overall simulation with NN models and fiber struc-
ture mapping can be conducted in the FEniCS framework.

LISTING 1: The Python code snippet for the NN material model

def E2S(E_PD, E_XD, E_phi, sigma, W0, b0, W1, b1, W2, b2):
“““Compute the stress components using the NN material model.
Wi and bi (i = 0,1,2) are the weights and biases of the NN model.
”””
# An element–wise softplus function
def softplus(x, beta = 1., threshold = 20.):

def _elem_softplus(x, beta = beta, threshold = threshold):
return 1./beta*ln(exp(beta*x) + 1)

y = elem_op(_elem_softplus, x)
return y

# The NN model prediction
inputs = as_vector([E_PD, E_XD, E_phi, sigma])
y1 = softplus(dot[W0, inputs] + b0)
y2 = softplus(dot[W1, y1] + b1)
outputs = dot(W2, y2) + b2
# Impose zero shear stresses for zero shear strains
multiplier = as_vector([1., 1., E[2]])
S = elem_mult(multiplier, outputs)
return S
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