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Abstract— For the pulping process in a pulp & paper plant
that uses wood as a raw material, it is important to have real-
time knowledge about the moisture content of the woodchips so
that the process can be optimized and/or controlled
correspondingly to achieve satisfactory product quality while
minimizing the consumption of energy and chemicals. Both
destructive and non-destructive methods have been developed
for estimating moisture content in woodchips, but these methods
are often lab-based that cannot be implemented online, or too
fragile to stand the harsh manufacturing environment. To
address these limitations, we propose a non-destructive and
economic approach based on 5 GHz Wi-Fi and use channel state
information (CSI) to estimate the moisture content in woodchips.
In addition, we propose to use statistics pattern analysis (SPA)
to extract features from raw CSI data of amplitude and phase
difference. The extracted features are then used for classification
model building using linear discriminant analysis (LDA) and
subspace discriminant (SD) classification. The woodchip
moisture classification results are validated using the oven
drying method.

I. INTRODUCTION

The pulp and paper industry is the third largest consumer of
energy in the US industrial sector, so it has tremendous
opportunities to improve its energy efficiency and
productivity. The pulping process, which converts woodchips
into pulp by displacing lignin from cellulose fibers, is one of
the most important operations in a pulp and paper mill.
Because the pulping process uses wood as a raw material, it is
important to have real-time knowledge about the moisture
content in the woodchips so that the process can be optimized
and/or controlled correspondingly to achieve satisfactory
product quality while minimizing the consumption of energy
and chemicals. Currently, vast majority of the US pulp is
produced by chemical pulping processes and most of them
utilize continuous Kamyr digesters. A Kamyr digester is a
complex vertical plug flow reactor where the woodchips react
with an aqueous solution of sodium hydroxide and sodium
sulfide, also known as white liquor, at elevated temperatures
to remove lignin. For Kamyr digesters, the incoming
woodchip moisture content is a major source of disturbance
that affects the cooking performance, as it dilutes the white
liquor concentration therefore reducing the delignification
reaction rate. Currently, the woodchip moisture content is not
measured in real-time due to the lack of affordable, reliable

and easy-to-maintain sensors; instead, woodchip moisture
content is commonly measured only four time per year
corresponding to the four seasons, and used to determine the
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operation parameters such as chemical usage. Because this
significant process disturbance is unmeasured, the
performance of existing control solutions is often
unsatisfactory and process engineers often overcook the
woodchips to ensure pulp quality, which results in significant
loss of pulp yield, overuse of heat/energy and chemicals.
Chemical overuse also adds burdens to the downstream
processes, such as washing and evaporation, and results in
increased energy and chemical usages for downstream
processes as well.

To address the above-mentioned challenges, we propose a
non-destructive and economic approach based on 5 GHz Wi-
Fi and use channel state information (CSI) to predict the
moisture content in woodchips. We extract CSI by modifying
the open source device drivers for Intel Wi-Fi link 5300
network interface card (IWL5300 NIC) based on CSITool [1].
CSI contains information about the channel in the form of
individual data subcarriers capturing indoor channel features
such as the effect of scattering, fading and power decay with
distance. Modern Wi-Fi systems are equipped with orthogonal
frequency division multiplexing (OFDM), dividing the data
into multiple orthogonal subcarrier groups which solves the
issue of selective frequency fading [2]. CSI has been used for
indoor localization, device-free sensing including fall
detection, activity recognition, and heart rate monitoring [3].
In addition, CSI and phase difference data have been
successfully used for moisture detection in wheat [3].

In this work, we collect CSI and phase difference data
using IWL5300 NIC by configuring the transmitter and
receiver in injection and monitor mode respectively. We use
Lenovo ThinkPad systems equipped with Linux based OS
14.02 and kernel version 4.2 due to the version-specific
selectivity of CSI tool. Both systems are equipped with
IWL5300 NIC with a modified driver and firmware for data
collection. Our work includes CSI data collection,
preprocessing, outlier detection, offline training, and online
testing. We collect CSI amplitude and phase difference for 20
different moisture levels ranging from 11% to 53%. We
experimentally validate the feasibility of using CSI amplitude
and phase difference data to estimate moisture in woodchips.
Compared to wheat moisture detection [3], woodchip moisture
estimation is much more challenging due to the much big and
more heterogeneous size of the woodchips. Because of that,
the woodchip arrangement in the container is expected to have
significant impact on CSI data. This effect must be excluded
or filtered out from the model so that consistent moisture
estimation can be obtained. The main contribution of this work
is to develop a robust model that is insensitive to the shuffling
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of the woodchips. To achieve this goal, the statistics pattern
analysis (SPA) framework that we developed previously [4]—
[6] is adopted in this work to build a multivariate statistical
model based on different classification approaches for multi-
class moisture detection in woodchips.

The remainder of the paper is organized as follows. A brief
background on CSI and feasibility study are presented in
Section II. Section III outlines the experimental setup and data
collection. The classification model development is discussed
in Section I'V. The results are discussed in Section V followed
by conclusions in Section VI.

II. CHANNEL STATE INFORMATION AND FEASIBILITY STUDY

A. Channel State Information (CSI)

Using Wi-Fi cards such as IWL5300, it is convenient to
collect CSI measurements that record the channel variation
during propagation of wireless signals. After being
transmitted from a source, the wireless signal is expected to
experience impairments caused by obstacles before the signal
reaches the receiver. CSI can reflect indoor channel
characteristics such as multipath effect [7], shadowing,
fading, and delay. In comparison to the received signal
strength (RSS), CSI amplitude and phase difference data are
relatively stable. Orthogonal frequency-division multiplexing
(OFDM) is a method of digital signal modulation where a
single data stream is split into multiple orthogonal subcarrier
at different frequencies to avoid interference and crosstalk.
IWL5300 NIC implements an OFDM system with 56
subcarriers. We are able to read information for 30 out of the
56 subcarriers using the CSItool, which is built on IWL5300
NIC using a custom modified firmware and open source
Linux wireless drivers [1]. IWL5300 NIC provides 802.11n
CSI for 30 out of the 56 subcarriers, which is about one group
for every 2 subcarriers at 20 MHz or one in 4 at 40 MHz. Each
channel matrix entry is a complex number, with signed 8-bit
resolution each for the real and imaginary parts. It specifies
the gain and phase of the signal path between a single
transmit-receive antenna pair. The Channel response of the i
subcarrier can be given as:

CSI; = |CSI;|exp{4CSI;} (1

where |CSI;| is the amplitude response of the i" subcarrier,

2CS]I; the phase response and exp the exponential function.
The three antennas of the IWL5300 NIC have different CSI
features, which can be exploited to improve the diversity of
training and test samples as show in Fig. 1.

B. Feasibility Test

With the help of CSItool, CSI data for 30 out of 56
subcarriers from IWL5300 NIC can be obtained for each
packet. Two laptops equipped with ITWL5300 NIC and
modified drivers with specific Linux kernels are used to collect
CSI data. One of the devices is set in injection mode while the
other is set in monitor mode to collect 5 GHz CSI amplitude,
phase and phase difference. One antenna is used on the
transmitter side, while three antennas are used on the

transmitter side to take the advantage of the (multiple-input
multiple-output) MIMO systems for improving the diversity
of the training and test samples [8]. In this work, it is ideal to
focus the RF energy in one direction as the woodchips are
placed in an airtight box between the transmitter and receiver.
Therefore, unidirectional antennas are selected over
omnidirectional antennas. As the gain of the directional
antennas increase, the coverage distance also increases in that
direction. Also, directional antennas are great for point-to-
point connection which would also mean that unwanted
interferences from other sources are expected to be minimized.
We use panel antennas ALFA (ALFA Network, Taiwan) with
66° horizontal beam-width and 16° vertical beam-width.
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Figure 1 CSI amplitude for all the three antennas of IWL5300 NIC over 30

subcarriers

To establish the experimental feasibility of CSI being able
to separate woodchips based on moisture levels, we collect
CSI for 3 different moisture levels, i.e., 52.34%, 20.40% and
11.93%. Fig. 2 shows the CSI amplitude and phase differences
for all three different moisture levels for the 15™ subcarrier. As
shown in Fig. 2, there are distinctive differences in both
amplitude and phase difference of different moisture levels
from all three antennas.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

A. Experimental setup

With the results from the feasibility test in Section I, we
design an experimental setup with antennas positions fixed on
an acrylic sheet. We use commodity laptops and Wi-Fi to
implement the proposed system architecture. Two Lenovo
T400s systems are equipped with IWL5300 NIC along with
their modified device driver for CSI data accessibility. We set
one of the systems in transmitter mode while the other in
receiver mode and inject packets from the transmitter using
one antenna. We use three antennas on the receiver side to
explore the variability of signals received at all the three
receiving antennas and collect CSI data for each received
packet. The laptops run 32-bit Ubuntu Linux 14.04 with kernel
version 4.2.027, as CSltool is compatible with kernel version
3.2-4.2. The transmitter and receiver are separated at a distance
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Figure 2 CSI amplitude (a) and phase difference (b) from the three antennas

at three different moisture levels

Figure 3 Experimental setup for CSI data collection

of 3m to explore the multipath effect [7]. The experimental
setup is shown in Fig. 3. The woodchips at different moisture
levels are placed in an acrylic container with an air-tight lid to
avoid any changes in moisture while the data is being
collected. Oven drying method [9][10] is used for measuring
the actual moisture content of the woodchips.

B. Data collection

Data are collected for 20 different moisture levels ranging
from 53.38 % to 11.81% on the wet basis. Oven drying was
performed in the end to determine the oven dry weight, which
is used to determine the actual moisture contents. As discussed
previously, the woodchip arrangement in the container is
expected to have significant impact on CSI data. To fully
excite the system on the effect of shuffling, the woodchips
within the airtight box are shuffled 10 times for each moisture
level. In other words, for each moisture level, 10 datasets (i.e.,
samples) are collected corresponding to 10 shuffles.
Therefore, there are totally 200 samples. For each sample,
1,000 packets were sent from the transmitter setup in injection
mode to the three receiver antennas on the receiver side setup
in monitoring mode. Ultimately, an efficient model should be
able to estimate the correct moisture level of all the 10 shuffled
samples that are at the same moisture level. The frequency
during data-collection over a period of 8 days is the same and
set at channel 64, i.e., 5.32 GHz to avoid any discrepancies in
the data. The data collected includes moisture levels very
closely separated both at a higher moisture level and at a lower
moisture level to test out the efficiency of models. The 20
different moisture levels are plotted in Fig. 4. Data are
collected only for the line of sight (LOS) scenario, i.e., the
woodchip container is placed in the middle of the center line
between the transmitter and the receivers. Non-LOS (NLOS)
will be investigated as a part of future work.
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Figure 4 20 different moisture levels of woodchips

IV. MODEL BUILDING AND CLASSIFICATION

In this work, statistics pattern analysis (SPA) is utilized for
feature generation. Instead of building relationships between
the CSI amplitude/phase difference and moisture content,
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relationships are extracted between the statistics of the CSI
amplitude/phase difference and woodchip moisture content.

A. Statistics pattern analysis-based moisture classification

In statistics pattern analysis (SPA), various statistics are
used to quantify process characteristics, and instead of process
variables themselves, statistics are used for modelling. SPA
has been applied for fault detection [4][5], fault diagnosis [11],
and virtual metrology or soft sensor [12]-[14].

The schematic diagram of SPA is shown in Fig. 5. In the
first step, various statistics are extracted from the process
variables, i.e., CSI data in our case.

P.-X2>F 2

where [P denotes the operator that maps the 3D process data
array X € RN*S*K containing N samples, S amplitudes and
phase differences of all subcarriers from K packets into a
feature matrix F € RN*S containing N samples with each
sample now characterized by S statistics, such as mean,
standard deviation, skewness and kurtosis of amplitude of each
subcarrier calculated over K packets. Other between-variable
statistics, such as cross-correlations, are calculated similarly.
In Fig. 5, Y € R¥*! denotes the moisture levels for N
samples. In the second step, a regression or classification
method can be used to extract relationships between the
features and the response, i.e. moisture levels. SPA framework
is a flexible method as different statistics can be added or
removed based on how well they capture the relationships
between the predictors and the response variables or classes.
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Figure 5 Schematic of SPA for classification

B. Model building

CSI data from woodchips are collected at 20 different
moisture levels with 10 shuffles at each level, which results in
N=200 samples. For each sample, 1,000 packets are sent from
the transmitter to the receivers. The complex value CSI matrix
is decomposed into its respective amplitude A and phase P.
Phase difference from each antenna pair is calculated. The
main reason for using phase difference instead of the phase
itself is that the phase difference is relatively more stable in
comparison to the phase itself [15].

a1 a1jl

A= 3)

Qi1 Qij

P =

P11 D1j
: Lo l (4)

(251 DPij
where a;; and p;; denote the CSI amplitude and phase of signal
from subcarrier j of packet i, respectively. If the raw CSI data
to be used, the amplitude and phase difference matrices are to
be vectorized, which results in K = 180,000 variables if both
amplitude and phase differences from all three antennas and
30 subcarriers are used. Clearly, there are significantly more
variables than samples. To reduce the dimension of variables,
SPA is applied to extract statistics following the procedure
outlined in the previous section, which results in S = 360
features when mean and standard deviations of both amplitude
and phase difference from all three antennas and 30 subcarriers
are used. In this work, data from all the 30 subcarriers are used
and no subcarrier or variable selection is performed. However,
subcarrier or variable selection is one of the future extensions
of this work. For training, 8 samples are randomly selected
from 10 shuffled samples at the same moisture level for each
of the 20 different moisture levels, which results in 160
training samples containing half of the data covering all
moisture levels. The rest 40 samples are used for testing after
the classification model is trained to evaluate the performance
of the trained model.

Next, classification is applied to build a relationship
between the SPA features and moisture levels. As a part of
preliminary analysis, two classification methods are compared
in this work: linear discriminant analysis (LDA) and subspace
discriminant (SD) classification based on random subspace
algorithm [16]. For both methods, 20% of the data is held out
for testing.

The Monte Carlo validation and testing (MCVT) procedure
[14] is followed to repeat the random training/testing sample
selection and model building/testing procedure and the
average of 100 such MC runs are considered to evaluate the
performance of the models. The accuracy of the models is
evaluated based on how many moisture levels/classes are
correctly classified on the test samples.

V. RESULTS

In this work, we compare prediction accuracies for three
different CSI scenarios where the models are built using 1)
amplitude for all three antennas, 2) phase difference among
all three antenna pairs and 3) amplitude and phase difference
of all the three antennas. In this work, only mean and standard
deviation of each variable are considered as these statistics
capture the general behavior of the predictors. More statistics,
especially higher order statistics (HOS) and statistics that
capture between-variable relations such as cross-correlation,
will be studied in our future work. In addition, as mentioned
before, CSI data for 20 different moisture levels have been
collected. In this work, we compare two different moisture
scenarios: 1) model built using 10 different moisture levels,
i.e., every other moisture level out of 20 moisture levels; and
2) A model built using all 20 moisture levels. Fig. 6 shows the
comparison of the two classification methods for models built
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Figure 6 Classification accuracy using10 moisture levels

using data for 10 different moisture levels. Three different
modelling scenarios compared are: Model A-123, where the
amplitudes of all the three antennas are used; Model P-123,
where the phase differences of all three antenna pairs are used;
and finally Model AP-123 where both amplitudes and phase
differences for all the three antennas are used. It can be seen
that for 10 different moisture levels, both methods have a
classification accuracy as high as 99%. Using only phase
difference, accuracy is relatively lower, but still, the
classification accuracy based on SD is 95.9%.

Fig. 7 shows the comparison similar to Fig. 6 when the
model is trained and tested using all the moisture levels. The
results show that as more moisture levels are included in the
model, the classification accuracy decreases, which is
expected. Nevertheless, the classification accuracy of SD
using amplitudes from all three antennas is still high: 97.7%.
It is worth noting that when a moisture level is misclassified,
it is always misclassified as a moisture level not far from its
true level. Fig. 8 shows the confusion matrix from one MC
run of SD using 20 moisture levels. As can be seen from the
figure, the misclassified samples are incorrectly classified as
their respective neighboring classes. This is important for real
applications as it means that even when the misclassification
occurs, we can still obtain a reasonably good estimate of the
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moisture level. In addition, both Fig. 6 and 7 indicate that the
features based on phase differences do not help with moisture
classification, either used alone, or combined with features
based on amplitudes. This result is different from [3] where
phase difference was found to be more effective for wheat
moisture classification. This difference may be due to the
difference in feature extraction and/or the fact that woodchips
have bigger size and are more heterogenous in both size and
shape, which lead to greater variability in phase differences
than that in amplitudes. Finally, SD classification performs
similarly to LDA in the case with 10 moisture levels. But SD
performs noticeably better than LDA in the case of 20
moisture levels. This is probably due to the fact that LDA
often suffers from the small sample size with high
dimensional features, while SD can address this problem by
random sampling on features [16].
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Figure 8 Confusion matrix of one MC run of SD on 20 moisture levels

Fig. 9 shows the comparison between 10 moisture levels
and 20 moisture levels for SD. We can see that classification
for 10 moisture levels yields better results than 20 moisture
levels. This is expected as more moisture levels are
introduced, the classification becomes more challenging.

Fig. 10 shows the importance of using data from all three
antennas instead of just one antenna for 20 different moisture
levels. The classification accuracy improves when features
based on amplitudes from all three antennas are used. Similar
behavior is observed for phase difference as well.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose to use a non-destructive and
economic approach based on 5 GHz Wi-Fi and to use
collected channel state information (CSI) to estimate the
moisture content in woodchips. Experiments were conducted
to collect 200 samples of CSI data with 20 moisture levels. In
addition, we propose to use statistics pattern analysis (SPA)
to extract features from raw CSI data of amplitude and phase

Model A-123 Model AP-123 Model P-123 difference. The extracted features are then used for
Figure 7 Classification accuracy using 20 moisture levels classification model building. In this work, we compare two
classification methods using SPA features: linear
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discriminant analysis (LDA) and subspace discriminant (SD)
classification. In general, SD classification performs better
than LDA. The classification accuracy of SD for 10 moisture
levels is as high as 98.8% and the accuracy for 20 moisture
levels is as high as 97.7%. In both cases, the best performance
is achieved when features based on amplitudes from all three
antennas are used. Features based on phase differences do not
help with moisture classification, either used alone, or
combined with features based on amplitudes. This result is
different from literature where phase difference was found to
be more effective for wheat moisture classification. This
difference may be due to the difference in feature extraction
and/or the fact that woodchips have bigger size and are more
heterogenous in both size and shape, which lead to greater
variability in phase differences than that in amplitudes.

For future work, more statistics, especially higher order
statistics (HOS) and statistics that capture between-variable
relations such as cross-correlation, will be investigated.
Feature selection will also be investigated to reduce the
feature space dimension and to improve classification
performance. Other classification techniques such as support
vector machines (SVM) and artificial neural networks (ANN)
will also be investigated.
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