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Abstract: Driven by the expanding applications of spectroscopic technologies, many advancements have
been reported for soft sensor modeling, which infers a sample’s properties from its spectroscopic readings.
Because the number of wavelengths contained in a sample spectrum is usually much larger than the number
of samples, “curse-of-dimensionality” is a common challenge that would affect the predictive power of the
soft sensor. This challenge could be alleviated through variable selection. However, there is no guarantee
that the truly relevant variables would be selected, and the selected variables are often (very) sensitive to
the choice of training and validation data. To help address this challenge, we have developed a feature-
based soft sensing approach by adapting the statistics pattern analysis (SPA) framework. In the SPA
feature-based soft sensing, the features extracted from different segments of the complete spectrum were
utilized to build the model. In this way, the information contained in the whole spectrum is used to build
the model, while the number of the variables is significantly reduced. In this work, by integrating a variable
selection approach we developed recently with SPA, we not only further improve the soft sensor’s
prediction performance, but also identify the key underlying chemical information from spectroscopic data.
The performance of the improved feature-based soft sensing approach, termed SPA-CEEVS, is

demonstrated using two NIR datasets, and compared with several existing soft sensing approaches.
Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)
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1.INTRODUCTION

Soft sensors, which correlate the spectroscopic reading of a
sample to its properties, offer a non-invasive, fast and
inexpensive way to estimate the sample properties of interest.
Due to these advantages, spectroscopic-based soft sensors
have been successfully applied to many different fields,
including agriculture, pharmaceutical, oil and gas industries.
Among many different modeling approaches, partial least
squares (PLS) is the most commonly used multivariate
statistical method, due to its simplicity, robustness and
inherent capability in handling collinearity among regressors
(Geladi & Kowalski, 1986).

For spectroscopic measurements, each sample spectrum
contains hundreds or thousands of wavelengths (variables),
and readings from adjacent wavelengths are usually highly
correlated. However, most spectroscopic datasets contain
rather limited number of samples, usually less than 100. It is
well recognized that PLS works well when the number of
samples is 20 time more than the number of variables. Clearly,
this is not the case for the spectroscopic datasets. Variable
selection could offer a potential solution to the problem, as
readings from adjacent wavelengths are often (highly)
correlated and not all spectrum segments are informative. As a
result, variable selection has drawn significant research
interest for soft sensor development, particularly for
spectroscopic-based soft sensors (Balabin & Smirnov, 2011;
Z. Wang, He, & Wang, 2015).

Variable selection has enjoyed many successful applications

to improve soft sensor prediction, but it does have limitations.
Specifically, the selected variables, hence the resulted soft
sensor model, can be highly sensitive to the choice of training
and validation data. Such sensitivity has been illustrated by the
inconsistent variable selection results obtained from different
Monte Carlo (MC) runs that randomly partitioning the data set
into training and validation subsets, including the ones shown
in this work. Due to the unknown disturbances and noises
contained in the training and validation data, the soft sensor
model may be “tilted” to overfit or to capture the unknown
disturbance or noise contained in the training and validation
set, and its performance could deteriorate significantly when
applied to new samples.

To address this challenge, we have developed a feature-based
soft sensor approach by adapting the basic idea of statistics
pattern analysis (SPA) based process monitoring framework
(Q. P. He & Wang, 2011; J. Wang & He, 2010). In the SPA-
based soft sensor approach, instead of selecting certain
wavelengths or wavelength segments, we make use of the
whole sample spectrum. Specifically, the whole spectrum is
divided into segments, and the selected features over each
spectrum segment are used to build the soft sensor model
(Shah, Wang, & He, 2019). In this way, the information
contained in the whole spectrum is utilized but the number of
variables used for model building is significantly reduced. As
demonstrated in multiple case studies, SPA feature-based soft
sensor in general outperforms the full PLS model that includes
the whole spectrum, as well as PLS with variable selection,
such as Lasso and SiPLS (Shah et al., 2019).
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However, it has been well-recognized that not all wavelengths
(or wavelength segments) contribute equally to the sample
property at interest. Because the sample property at interest is
usually determined by certain chemical bonds or functional
groups of the sample, only those absorption peak/valley
corresponding to the chemical bonds or functional groups are
the truly relevant inputs. Therefore, if the truly relevant
spectrum segments could be selected for model building,
variable selection would be highly desirable. To this end, we
have developed a new variable selection method based on
Darwin’s evolution theory, i.e., “survival of the fittest”. The
new variable selection method is termed consistency enhanced
evolution for variable selection (CEEVS), which focus on
improving the consistency of variable selection results from
different training datasets. We hypothesize that improved
variable selection consistency would result in improved
prediction performance. This is because the truly relevant
input variables stay the same regardless of the choice of the
training dataset. If a variable selection method can consistently
select a subset of variables, it is likely that the selected ones
are the truly relevant ones. Indeed, several case studies
confirmed our hypothesis, and the wavelengths selected by
CEEVS cluster around spectrum peaks and valleys which are
associated with different chemical bonds and functional
groups contained in the sample.

Compared to other variable selection methods that are based
on Darwin’s evolution theory, CEEVS shows better selection
consistency, better model prediction performance. CEEVS
usually has more variables being selected because CEEVS
select the segments of the wavelengths clustered around peaks
and valleys. In (Lee, Flores-Cerrillo, Wang, & He, 2020) we
have verified that the wavelength segments selected by
CEEVS indeed reveal underlying chemical information, as
they correspond to different chemical bonds or functional
groups. Although the wavelengths around peaks/valleys are
highly correlated, all of them being consistently selected
suggested that the shape (or area) of the peak, in additional to
the height of the peak, are important to predict the sample
properties. If this is the case, then the features extracted from
the wavelength segments could provide the same information
as all the wavelength together, which could provide same or
even better prediction performance, while significantly reduce
the number of the variables. Therefore, we apply CEEVS to
select relevant features used in the SPA feature-based soft
sensor, and examine its performance by comparing with
existing methods.

The rest of the paper is organized as the follows. Sections 2
and 3 briefly introduce the SPA featured-based soft sensor
framework and CEEVS, respectively; Section 4 presents the
proposed SPA-CEEVS and Section 5 uses two case studies to
demonstrate its performance, which is compared with SPA,
CEEVS, as well as three representative variable selection
methods that are based on the “survival of the fittest” principle;
Section 6 draws conclusion.

2.SPA FEATURE-BASED SOFT SENSOR

Statistics pattern analysis (SPA) is a process monitoring
framework that the authors developed previously (Q. P. P. He
& Wang, 2018; Q. P. He & Wang, 2011; J. Wang & He, 2010),
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in which the statistics of process variables, instead of the
process variables themselves, are monitored to determine the
process operation status. Its effectiveness and performance in
process monitoring have been demonstrated in multiple case
studies (Q. P. P. He & Wang, 2018; Q. P. He & Wang, 2011;
J. Wang & He, 2010). In the original SPA based process
monitoring approach, the statistics are calculated along the
time dimension and principal component analysis (PCA) is
performed on the statistics for fault detection and diagnosis. In
the SPA feature-based soft sensor, the statistics are calculated
along the variable (i.e., wavelength) dimension and the
statistics are correlated to response variable(s) (i.e., sample
properties) through PLS. The schematic diagram of the SPA
feature-based soft sensor approach is shown in Figure 1, where
we first divide the whole sample spectrum into s non-
overlapping segments; then f different features are extracted
from each spectrum segment. The extracted features, such as
the mean, standard deviation, skewness, kurtosis, are used as
the regressors (totally s X f features for each sample) to build
the soft sensor model. With n samples, the dimension of X
would be n X (s X f) and the dimension of Y would be n x 1
for a single property, or n X m for m properties. In this way,
information from the whole spectrum will be utilized for
model building, but with significantly reduced number of
variables.
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Fig. 1. Schematic of SPA feature-based soft sensor

More details about SPA feature-based soft sensor, as well as
its performance when compared to other methods on multiple
case studies, can be found in (Shah et al., 2019).

3.CONSISTENCY ENHANCED EVOLUTION FOR
VARIABLE SELECTION (CEEVS)

It is clear that the truly relevant input variables would stay the
same regardless of the choice of the training data set.
Therefore, in CEEVS, we focus on improving the consistency
of variable selection results from different training datasets.
We hypothesize that better variable selection consistency
would result in better soft sensor prediction performance,
because if a variable is selected consistently across different
training sets, it is more like a truly relevantly regressor.

The CEEVS method is also based on the “survival of the
fittest” principle, and follows the same terminologies as
genetic algorithm (GA). A gene refers to an individual
variable, and a chromosome (cpx1) refers to a set of selected
variables. For example, the i-th element ( ¢; ) of the
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chromosome, either “1” or “0”, indicates whether the i-th
wavelength is included in the chromosome or not,
respectively. In CEEVS, we rely on random MC sampling of
the sample space to assess the stability of each variable, which
is determined based on how consistently the variable
contributes to the soft sensor model derived from different
training samples. This stability is then converted into
“probability for selection”, based on which the initial
“chromosome” population will be generated.

As shown in Fig. 2, CEEVS consists of two main sections. In
Section 1, starting with the complete variable set, the initial
chromosome population is generated based on each variable’s
probability for selection. In this way, the evolution process will
start with a better initial population, as more important
variables will more likely be selected for the initial population.
Then each chromosome is evaluated for its fitness value. The
selected variables (i.e., the variables that have “1” in the
chromosome) are used to build a PLS model, and
chromosome’s fitness value is defined as the model’s
normalized root mean square error from cross-validation
(NRMSE(y). The optimal chromosome, i.e., the one with the
minimal NRMSE, within the initial populations, is used as a
parent to generate offspring for the evolution process.

The objective of the evolution process is to further eliminate
the uninformative variables in the parent chromosome before
it is stored into the library. During the evolution process,
instead of cross-over and mutation, the variables selected by
the parent chromosome are used as the new full variable set,
and repeat the whole process to generate the next best
chromosome which is denoted as an offspring. For each
additional run of evolution, the offspring from the previous run
is used as the parent chromosome to generate new offspring.
In this way, all the offspring are guaranteed to contain fewer
variables than the parent and have a better fitness value. This
evolution process is repeated until the fitness of the offspring
is worse than that of the parent, then the parent of the final
evolution run, i.e., the best chromosome generated from the
whole evolution process, is stored into the library. This
evolution process will be repeated N times, and each time
starting with the complete set of variables. At the end of N
iterations, the library will contain N optimally evolved
chromosomes, i.e., subsets of selected variables that deliver
the lowest NRMSE -, during each evolution process.

In Section 2, starting with the library that contains N best
chromosomes, we first rank all the variables based on their
frequency of presence in the library. Next, we build a series of
PLS models with increasing number of variables based on their
selection frequency. In other words, the first PLS model is
built with the most frequently selected variables in the library
and the second model adds the next frequently selected
variable. This process is repeated until the number of variables
included in the model reaches a pre-defined upper limit, which
can be adjusted to reduce the risk of overfitting. In this work,
we set the upper limit as 300. Finally, all models are evaluated
for their fitness (NRMSEy ), and the variable subset that
produce the lowest NRMSE, value is considered the final
result of the selected variables.

More details about CEEVS can be found in (Lee et al., 2020),
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where CEEVS was tested with 5 different case studies. In
addition, CEEVS was compared with 3 representative variable
selectin methods that are also based on the “survival of the
fittest” principle: genetic algorithm (GA) (Leardi, 2000;
Leardi & Lupianez Gonzalez, 1998), competitive adaptive
reweighted sampling (CARS) (Li, Liang, Xu, & Cao, 2009)
and stability and variable permutation (SVP) (Chen, Yang,
Zhu, Li, & Gui, 2018). We confirmed that through enhancing
variable selecting consistency, CEEVS delivers the best
prediction performance. More importantly, we demonstrated
that CEEVS is able to identify the underlying chemical
information contained in the spectrum, i.e., the key chemical
bonds or functional groups that determine the sample property
of interest.

| Extract statistics/features from spectrum segments |

Set the hyper-parameters
(number of iteration (N) and population size (P))
I

Iterate N times L) - -
| Ancestor chromosome having all the variables |
|
v
| | Compute the stability and probability |
g
2 Generate the population and evaluate
= | each chromosome based on the fitness (i.e., NRMSEq,)
Section 1 :
| Select the chromosome with the lowest NRMSE -, |

NRMSEgy of fspring
< NEMSEpy pap

| Library of N chromosomes I
¥
Rank variables based on their frequency of
bemng selected

Evaluate models with increasing the number of
variables based on their selection frequency
¥

2. The selected chromosome in previous evolution to be parent chromosome.
The selected chromosome in current evolution to be offspring chromosome.
3. The offspring to be parent chromosome.

Fig. 2 Flow diagram of SPA-CEEVS algorithm

4.SPA FEATURE-BAED SOFT SENSING INTEGRATED
WITH CEEVS (SPA-CEEVS)

In (Lee et al., 2020), we also found that CEEVS usually select
the largest number of wavelengths, and the selected
wavelengths consistently cluster around spectrum peak or
valleys, which is how the underlying chemical information is
identified. This makes sense, because the general features of
molecular spectra are of continuous bands, and the shape of
the peak or valley, in addition to peak height, could contain
important information about the underlying molecular
structure. As the shape of the peak cannot be captured by a
single wavelength, this is why a segment of wavelengths
around a peak or valley were consistently selected by CEEVS.
However, the wavelengths within the peak/valley segment are
highly correlated and do contain many redundant information.
If such information could be captured by different features, we
don’t have to include the whole segment of the wavelengths,
therefore reducing the number of regressors without scarifying
prediction performance. In this work, we propose to integrate
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SPA feature-based soft sensor with CEEVS for feature
selection to simplify the soft sensor model.

In SPA-CEEVS, rooted in SPA feature-based soft sensing, we
apply CEEVS to select relevant features, which are then used
to build the soft sensor model. In this way, we could obtain a
significantly simplified model while maintaining sensor
performance, as we will use a few features to capture the key
information contained in a spectrum segment; in addition, we
could further enhance the prediction performance, as irrelevant
features are removed through feature selection. Finally, the
key chemical information could be identified through feature
selection, similar to CEEVS.

5.CASE STUDIES

In this work, we use two published NIR datasets to illustrate
the performance of the SPA-CEEVS method and compare its
performance with that of SPA and CEEVS. In addition, the full
PLS model that uses all the wavelengths as the regressors is
provided as baseline, plus two representative variable selection
methods, i.e., GA, CARS, for comparison. In all methods, the
soft sensor is constructed using PLS, either with all variables
(full PLS model), or with selected variables (GA, CARS and
CEEVYS), or with full features based on full spectrum (SPA),
or with selected features based on full spectrum (SPA-
CEEVS).

Table 1 summarizes the two datasets, including the number
of samples and variables, the partition of the dataset into
training and testing subsets, as well as relevant references.

Table 1. Summary of the five NIR datasets

# of calibration # of test # of

Property of interest Reference

samples samples  variables
48 12 Extract (Nergaard
Beer (80%) ooy %6 concentration et al., 2000)
Active
Pharma (;‘ 302) (31 3(3) 650 pharmaceutical ((Ij’;zr:;
o o ingredients (API)

To eliminate the potential bias caused by a specific
partition of the whole dataset into calibration and testing
subsets, we conduct 100 MC runs and use the results from all
MC runs to evaluate the performance of each variable selection
method. For each MC run, the calibration and testing subsets
are randomly selected according to the percentage listed in
Table 1. The normalized root mean square error in prediction
(NRMSE}p) as defined below is used to evaluate the soft sensor
prediction performance.

s (yi-9)2
NRMSE, = Y¥I =" " x 100% )

Ymax—Ymin)

where Ny is the number of test samples in each MC run. The
normalization in NRMSEp facilitates the comparison of
different methods across different datasets. The mean and the
standard deviation of NRMSEp obtained from the 100 MC
runs are used as the two metrics to evaluate the prediction
performance of the soft sensor models. The mean (NRMSEp)
can be used to evaluate the accuracy of each method while the
standard deviation (Oygymsg,) can be used to assess the
robustness of the method. To directly measure the consistency
of the variable selection among 100 MC runs, we use the
following consistency index (/) (Lee et al., 2020).
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_ I, prob(x)
m

I, (10)

where m is the number of variables being selected at least once
among all MC runs; prob(x;) is the probability of i*" variable
being selected, which is defined as the ratio of selection
frequency of i" variable among all MC runs to number of MC
runs. A higher I, represents a better consistency, which
indicates the informative variables are being more consistently
selected regardless of calibration datasets.

To fairly compare different variable selection methods, each
method is optimized based on 10-fold cross-validation. An
exhaustive search is used to determine the optimal tuning
parameters for each method.

5.1 Performance comparison

The results from all the methods are summarized in Tables 2
and 3. The best performance for each metric is represented in
boldface. The improvement rate (%) indicates the
improvement of NRMSEp, compared to the full PLS model;
npc is the number of principal components in the model; ny ;-
is the number of selected variables in the final model.

Table 2. Performance comparison for the beer dataset

Method NRMSE, Oyguse, Ic In}%,)/l:))v' Npc Nyar
Full PLS 6.57 6.46 - - 9+3 926
GA 2.37 1.85 0.142 63.91 8+3 94 + 58
CARS 3.24 276  0.192 50.64 9+3 87 £ 38
CEEVS 2.36 145 0.182 64.11 8+3 130+ 86
SPA 3.22 2.40 - 50.98 8+3 104
SPA-CEEVS 1.77 1.21 0.249 73.07 8+3 14+7

Table 3. Performance comparison for the pharmaceutical dataset

Method NRMSEy Ongmse, Ic I“}E/Z;’ Ve e
Full PLS 505 076 - - 14£3 650
GA 446 090 0.138 1169 113 69+44
CARS 472 084 0064 650 153  30+15
CEEVS 445 089 0231 1186 13£2 92+56
SPA 453 088 - 1028 103 128
SPA-CEEVS 443 089 0338 1215 1343 2749

As shown in the tables, for both case studies, SPA-CEEVS
offers the best prediction performance and the best selection
consistency, as well as the simplest model with the smallest
number of variables included. For the pharmaceutical dataset,
although the full PLS model has the smallest standard
deviation of NRMSE, the mean of the NRMSE is significantly
larger than that of the other methods.

Fig. 4 provides the detailed comparison of the prediction
performance from selected methods (Full PLS, GA, CARS and
SPA-CEEVS) for 100 MC runs. As shown in Fig. 4, the
predicted values by SPA-CEEVS clustered the closest to the
diagonal line given different training data, demonstrating
superior prediction accuracy and robustness than other
methods.
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5.2 Discussion

From Tables 2 and 3, it is interesting to notice that although
the number of selected input variables varies significantly for
different soft sensor models, the number of PCs selected by
each soft sensor are very close to each other. The consistent
number of PCs from different soft sensor models for each
dataset suggests that the interdependence between the
absorption spectrum and the sample properties is relatively
simple and likely nonlinear, which is why large number of
wavelengths were selected by different variable selection
methods to achieve their corresponding optimal prediction
performance. Because SPA use features that could directly
capture nonlinear characteristics as input variables to build the
model, the selected number of features is much smaller than
that of absorbance-based soft sensors.

The superior prediction performance, both accuracy and
robustness, by SPA-CEEVS can be contributed to two factors:
first is that features, especially the nonlinear ones, could be
more effective in capturing the underlying nonlinear
relationship between sample spectrum and property of interest.
Because PLS only captures linear relationship between input
and output variables, such nonlinear relationship can only be
linearly approximated by including larger number of
absorbances at different wavelengths to balance out their
nonlinear effects. Second, when a segment of wavelengths are
used to compute different features, there is a built-in effect of
noise filtering. For example, when the mean or standard
deviation is computed, it is obtained as an average over the
wavelength segment, therefore reduces the effect of potential
noise contained in the absorbance spectrum. Finally, if only
truly relevant variables are included, it is expected to deliver
more accurate and robust prediction performance.

One major advantage of CEEVS is that it could reveal the
underlying chemical bonds or functional groups by selecting
relevant variables consistently. To examine whether this

Jangwon Lee et al. / IFAC PapersOnLine 53-2 (2020) 11338—11343

property is conserved for SPA-CEEVS, we plotted the variable
selection frequency from different methods among 100 MC
simulations (Fig. 5 and Fig. 6). For the beer dataset, the
wavelength segment consistently selected by SPA-CEEVS
agree with that selected by CEEVS, and it did not select any
features corresponding to the initial noisy segment (400 —
800nm). For the pharmaceutical dataset, SPA-CEEVS covers
wider wavelength segments than CEEVS, with more features
selected for the segments selected by CEEVS. This suggests
that SPA-CEEVS could also identify the key underlying
chemical information in the sample spectrum.
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Fig. 5. Plot of spectra and selected variables over 100 MC runs for the Beer
dataset. (a) GA; (b) CARS; (c) CEEVS; (d) SPA-CEEVS. In the SPA-CEEVS,
the bars with different colors correspond to different statistics (brown: u,
green: o, blue: y, bright blue: x, pink: AFD, yellow: ASD, black: SLL, purple:
SSL). The dotted line denotes each segment.

When we compare the performances between SPA and SPA-
CEEVS, we see that SPA-CEEVS can provide further
improvement. This is because not all features of all wavelength
segments contribute equally to the sample properties. With
CEEVS to remove irrelevant features, SPA-CEEVS could
further improve the prediction performance, while potentially
identify the chemical bonds or functional groups that
determine the sample property.
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Fig. 6. Plot of spectra and selected variables over 100 MC runs for the
Pharmaceutical tablet dataset. (a) GA; (b) CARS; (c) CEEVS; (d) SPA-
CEEVS. In the SPA-CEEVS, the bars with different colors correspond to
different statistics same as in Fig. 5. The dotted line denotes each segment.

6. CONCLUSION

Variable selection for soft sensor development has drawn
significant research interest recently, driven by the application
of spectroscopic soft sensors in different industries. However,
one unsolved challenge is that the selected variables can be
highly sensitive to the choice of training data, and may not be
truly relevant variables. To address this challenge, we have
previously developed a SPA feature-based soft sensing
framework that use extracted features from sample spectrum
to build the model, and a consistency enhanced evolution for
variable selection (CEEVS) that have been shown to be able to
identify underlying chemical information directly related to
the sample property. In this work, we integrate CEEVS with
SPA feature-based soft sensor, and demonstrate that the
integrated approach, SPA-CEEVS, not only results in
significantly simplified model and further improved prediction
performance, but also could identify key underlying chemical
information.
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