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ABSTRACT

For the pulping process in a pulp & paper plant that uses woodchips as raw material, the moisture
content (MC) of the woodchips is a major process disturbance that affects product quality and con-
sumption of energy, water and chemicals. Existing woodchip MC sensing technologies have not been
widely adopted by the industry due to unreliable performance and/or high maintenance requirements
that can hardly be met in a manufacturing environment. To address these limitations, we propose a
non-destructive, economic, and robust woodchip MC sensing approach utilizing channel state information
(CSI) from industrial Internet-of-Things (IloT) based Wi-Fi. While these IloT devices are small, low-cost,
and rugged to stand for harsh environment, they do have their limitations such as the raw CSI data are
often very noisy and sensitive to woodchip packing. To address this, statistics pattern analysis (SPA) is
utilized to extract physically and/or statistically meaningful features from the raw CSI data, which are
sensitive to woodchip MC but not to packing. The SPA features are then used for developing multiclass
classification models using various linear and nonlinear machine learning techniques to provide poten-
tial solutions to woodchip MC estimation for the pulp and paper industry. This work also demonstrates
that classification accuracy alone is not a good performance metric for industrial applications, and the

practical implications of misclassification must also be considered.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The US is one of the largest producers of pulp products as well
as one of the largest producers of paper and paperboard products.
The US pulp and paper industry ranks the third in terms of en-
ergy consumption among US industries and spends over $7 billion
annually on purchased fuels and electricity (Kramer et al., 2011).
The pulping process, which converts woodchips into pulp by dis-
placing lignin from cellulose fibers, is one of the most energy in-
tensive processes and has been identified by the ENERGY STAR®
and the Department of Energy (DOE) reports as a major opportu-
nity to improve energy productivity and efficiency of the industry
(Brueske et al., 2015; Kramer et al., 2011; Martin et al., 2000). Cur-
rently, vast majority of the US pulp is produced by chemical pulp-
ing processes and most of them utilize continuous Kamyr digesters.
A Kamyr digester is a complex vertical plug flow reactor where
the woodchips react with an aqueous solution of sodium hydrox-
ide and sodium sulfide, also known as white liquor, at elevated
temperatures to remove lignin. For Kamyr digesters, the incoming
woodchip moisture content (MC) is a major source of disturbance
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that affects the cooking performance, as it dilutes the white liquor
concentration therefore reducing the delignification reaction rate.
In this work, wet basis MC is used, which is defined as the follow-
ing:

my

MC:T:I—W « 100% = « 100% 1)

T my + Mmp
where my, mp, and my represent the mass of water, dry wood,
and total mass, respectively. Currently, the woodchip MC is not
measured in real-time due to the lack of affordable, reliable, and
easy-to-maintain sensors (Rahman et al., 2020). Instead, woodchip
MC is commonly measured only four times per year correspond-
ing to the four seasons and used to determine the operation pa-
rameters such as chemical usage and cooking temperature. Be-
cause this significant process disturbance is unmeasured, the per-
formance of existing control solutions is often unsatisfactory and
process engineers often overcook the woodchips to ensure pulp
quality, which results in significant loss of pulp yield, overuse of
heat/energy and chemicals. Chemical overuse also adds burdens
to the downstream processes, such as washing and evaporation,
and results in increased energy and chemical usages for down-
stream processes as well (Z. Jiang at the Alabama Center for Pa-
per and Bioresource Engineering, personal communication, 2020).
It is worth noting that there have been significant efforts and ad-
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vancements in the modeling and control of chemical pulping over
the past decade (Rahman et al., 2020). In particular, progress has
been made on multiscale modeling of Kraft pulping processes to
capture the evolution of fiber morphology such as fiber length,
porosity, and cell wall thickness (CWT) of cooked pulp (Choi and
Kwon, 2019a; Choi and Kwon, 2019b). A recent study integrates
macroscopic and microscopic models of the Kraft pulping process
to develop an inferential model predictive control (MPC) for bet-
ter handling of pulp grade transitions (Choi et al., 2021). These ef-
forts have not explicitly considered the woodchip MC variability in
a production environment, and this information, if made available,
can be directly incorporated into these models for improved model
accuracy in practical applications.

The oven-drying method is a direct and precise method based
on the weight loss after a drying process, with standard de-
fined by American Society for Testing and Materials (ASTM)
(ASTM, 2016; Reeb and Milota, 1999). However, it is an of-
fline test that takes 24 hours, and is mainly used for validat-
ing other indirect methods. A variety of indirect sensing methods
have been examined for measuring woodchip MC online, includ-
ing technologies that are based on microwave (Daassi-Gnaba et al.,
2018), radio-frequency (RF) (Daassi-Gnaba et al., 2017), capacitance
(Fridh et al., 2018; Pan et al., 2017, 2016), Resonant half-wave an-
tenna (Merlan et al., 2019), near-infrared (NIR) (Amaral et al., 2020;
Liang et al, 2019) and X-ray (Couceiro et al., 2019; Hultnds and
Fernandez-Cano, 2012). However, these methods have not been
widely adopted by the industry due to poor performance and/or
high maintenance requirements that can hardly be met in a man-
ufacturing environment.

To address the robustness and performance limitations of the
existing methods, we propose a non-destructive, economic, and
robust approach based on 5 GHz IloT short-range Wi-Fi and use
channel state information (CSI) to predict MC in woodchips. CSI
data have been used for moisture and mildew detections in wheat
(Hu et al., 2019a; Yang et al., 2018a,b). However, woodchip MC clas-
sification is a much more challenging task due to the much bigger
size and significantly more heterogeneous in both size and shape
of the woodchips than those of wheat. Because of that, the wood-
chip packing or arrangement in the container is expected to have
a significant impact on the CSI data, i.e., woodchip packing is a
strong confounding factor to MC level. There are generally three
ways to address confounding variables: elimination, measuring,
and randomization. Since woodchip packing cannot be eliminated
nor measured, randomization is the approach taken in this work
to address it. In addition, our recent studies have shown that IloT
sensors have their own shortcomings, including significant noise,
missing values, and/or irregular sampling intervals, which result
in messy big data and lead to low performing models when di-
rectly fed to machine learning algorithms (Shah et al., 2019a, 2017).
Because of these challenges, the normalized or principal compo-
nent analysis (PCA) transformed raw CSI data, which were used
for wheat MC classification, are no longer sufficient for woodchip
MC classification. To address it, the statistics pattern analysis (SPA)
framework that we developed previously (He and Wang, 2018a,b;
Suthar et al., 2019; Wang and He, 2010) is used to extract robust
and predictive features from the raw noisy CSI data. These features
are shown to be sensitive to the MC levels but insensitive to the
packing of the woodchips. It is worth noting that SPA features are
physically and/or statistically meaningful while other algorithmi-
cally generated features (e.g., square, square root, exponential, etc.)
or kernel-type features are often unintuitive. SPA also eliminates
the data preprocessing steps (e.g., outlier detection and handling,
environmental noise removal) that were required in previous stud-
ies (Hu et al., 2019b; Yang et al., 2018a,b). These two strategies uti-
lized for addressing a confounding variable and for extracting pre-
dictive and meaningful features from raw CSI data are two of the
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main contributions of this work. Another contribution of this work
is the systematic study of different state-of-the-art linear and non-
linear classification techniques, as well as individual vs. ensemble
classification, for woodchip MC classification using CSI data. Finally,
classification accuracy has been commonly used in previous stud-
ies for evaluating classifier performance. We show that the classi-
fication accuracy alone is not a good performance metric, and the
practical implications (e.g., cost) of misclassification must also be
considered.

The remainder of the paper is organized as follows. A brief
background on CSI and feasibility study for using CSI in woodchip
MC detection are presented in Section 2. Section 3 outlines the ex-
perimental setup and data collection procedure. In Section 4, we
discuss the challenge of classification using raw data and the need
of feature engineering, followed by the proposed approach based
on statistics pattern analysis (SPA) for feature extraction. The clas-
sification approaches studies in this work are introduced in Sec-
tion 5, along with the hyperparameter optimization approach used
in this work. In Section 6, the results from different classification
techniques are discussed in terms of both classification accuracy
and robustness. The practical implications of these results are also
discussed. Finally, conclusion and future work are discussed in Sec-
tion 7.

2. Channel state information and feasibility for woodchip MC
classification

2.1. Channel state information (CSI)

Using Wi-Fi cards such as Intel Wi-Fi link 5300 network in-
terface card (IWL5300 NIC), it is convenient to collect CSI mea-
surements that record the channel variation during propagation
of wireless signals. In this work, CSI is extracted by modifying
the open source device drivers for IWL5300 based on CSITool
(Halperin et al., 2011). Similar tools are available based on Atheros
chipsets as well (Xie et al., 2018). CSI amplitude and phase data are
collected in this work using IWL5300 NIC by configuring the trans-
mitter and receiver in injection and monitor modes, respectively.
We use Lenovo ThinkPad systems equipped with Linux based OS
14.02 and kernel version 4.2 due to the version-specific CSI tool.
Both systems are equipped with IWL5300 NIC with a modified
driver and firmware for data collection. Orthogonal frequency-
division multiplexing (OFDM) is often utilized to deal with impair-
ments in wireless propagation such as frequency selective fading.
In OFDM signal modulation, a single data stream is split into mul-
tiple orthogonal subcarriers at different frequencies to avoid inter-
ference and crosstalk. The IWL5300 NIC used in this work imple-
ments an OFDM system with 56 subcarriers, out of which 30 sub-
carriers can be read using the CSltool, which is built on IWL5300
NIC using a custom modified firmware and open source Linux
wireless drivers (Halperin et al., 2011). Each channel matrix entry
is a complex number, with signed 8-bit resolution each for the real
and imaginary parts. It specifies the gain and phase of the signal
path between a single transmit-receive antenna pair. For example,
the channel response of the it subcarrier can be represented as:

CSI; = |CSI;| exp { £CS} (2)

where |CSI;| is the amplitude response of the it" subcarrier and
/CSI; is the phase response.

CSI can reflect indoor channel characteristics such as multipath
effect, shadowing, fading, and delay (Ahamed and Vijay, 2017). Our
hypothesis is that the water content in the woodchips has a de-
tectable impact on the strength and/or the phase of the signals
that are received on the receiver side. In other words, woodchips
at different MC levels would lead to different characteristics of
CSI signal in terms of amplitude and/or phase responses. There-



K. Suthar and Q.P. He

Antenna 1 - 15th subcarrier
T T T
1

8

Amplitude(db)}
»

>

52.34% 20.4%

Packet index

Antenna 2 - 15th subcarrier
T v T

11.93% [ 5500 3000

Amplitude(db)
CRO® N

500 1000 1500 2000 2500 3000
Packetindex

Antenna 3 - 15th subcarrier
T v T

=

Amplitude(db)
2 >

500 1000 1500 2000 2500 3000
Packet index

(a)

Computers and Chemical Engineering 154 (2021) 107445

Phase Difference : Pair 1: Antenna A- Antenna B

o
a
2.
]
£
o 52.34% 20.4% 11.93%
0 500 1000 1500 2000 2500 3000
Packet index
Pair 2: Antenna B- Antenna C
- T T T
817 1 i Voapiny i
1 4
E 16
a1s 4
500 1000 1500 2000 2500 3000
Packet index
Pair 3: Antenna C- Antenna A
e T T T
506 1
3-07 ]
2
208 . e s e )
500 1000 1500 2000 2500 3000
Packet index

(b)

Fig. 1. CSI signals collected on the three receiving antennas at three different MC levels: (a) amplitude; (b) phase difference. Only signals from subcarrier 15 are shown.

fore, machine learning algorithms can be utilized to correlate these
characteristics to woodchip MC levels.

In this work, two laptops equipped with IWL5300 NIC and
modified drivers with specific Linux kernels are used to collect CSI
data. One is set in injection mode while the other is set in moni-
tor mode to collect 5 GHz CSI amplitude and phase data. One an-
tenna is used on the transmitter side, while three antennas are
used on the receiver side to take the advantage of the multiple-
input multiple-output (MIMO) systems for improving diversity of
signals (Ahamed and Vijay, 2017; Halperin et al., 2012). This diver-
sity is exploited in this work to improve the multiclass classifica-
tion performance. Also, it is desirable to focus the RF energy in one
direction as the woodchips are placed in an airtight box between
the transmitter and receiver. Therefore, unidirectional antennas are
selected over omnidirectional antennas. As the gain of the direc-
tional antennas increase, the coverage distance also increases in
that direction. Also, directional antennas for point-to-point connec-
tion reduce interferences from other sources. In this work, panel
antennas ALFA (ALFA Network, Taiwan) with 66° horizontal beam-
width and 16° vertical beam-width are used.

2.2. Feasibility test

To test the technical feasibility of CSI to classify woodchips
based on MC levels, we collect CSI for woodchips at three distinc-
tively different MC levels (ie., 52.34%, 20.40% and 11.93%). Fig. 1
shows the CSI amplitude and phase difference for the 15t subcar-
rier. As shown in Fig. 1, there are distinctive differences in ampli-
tude and phase difference of different MC levels from all three an-
tennas. This preliminary feasibility test indicates that it is possible
to develop a data-driven model to correlate CSI data with wood-
chip MC level. Note that the confounding factor of woodchip pack-
ing is not considered here.

3. Experimental setup and data collection
3.1. Experimental setup

With the results from the feasibility test in Section II, we de-
sign an experimental setup with antenna positions fixed on an
acrylic sheet. The experimental setup is shown in Fig. 2, where
two Lenovo T400s systems equipped with IWL5300 NIC are set 3
m apart. The woodchips at different MC levels are placed at the
center (ie, 1.5 m from transmitting and receiving antennas) in an

Fig. 2. Experimental setup for CSI data collection.

acrylic container with an air-tight lid to avoid any changes in MC
while the data are being collected.

3.2. Data collection

In previous studies a maximum of 5 MC levels have been stud-
ied with minimum difference of 0.7% in MC (Yang et al.,, 2018a).
However, this is not nearly sufficient for woodchip MC levels be-
cause woodchips are usually stored outdoors, which introduces
significant MC variations due to daily weather conditions, and
seasonal temperature and humidity changes. In this work, data
are collected for 20 different MC classes or levels ranging from
53.39 % to 11.81% on the wet basis (see Eq. (1)). Total mass (mr)
is measured during each experiment and oven drying method
(ASTM, 2016; Reeb and Milota, 1999) was performed after all ex-
periments were conducted to determine the oven dry weight (mp).
mr and mp are then used to determine the mass of water (my)
and MC according to Eq. (1). The 20 different MC levels are plotted
in Fig. 3. There are two gaps in the tested MC levels, one around
45% and the other around 25%. This is due to the overnight expo-
sure of the woodchips to air in the lab, which should be avoided if
a model to be developed for accurate estimation of any MC level in
the entire range. Nevertheless, this does not affect our methodol-
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Fig. 3. 20 different MC classes/levels for experimental data collected.

ogy development, nor the conclusions drawn based on the results
obtained. This is because there are three regions where MC levels
are reasonably separated as shown in Fig. 3. In addition, MC levels
are narrowly separated at the high MC region and even more so at
the low MC region. The minimum difference between MC levels is
0.05%. If a model can correctly classify MC levels with such narrow
difference, we expect it to work if more MC levels were included
in the middle range with wider difference such as 1%, which is
sufficient for pulping process optimization and control.

As discussed previously, the woodchip packing or arrangement
in the container is expected to have significant impact on CSI data.
Based on the principle of randomization for addressing this con-
founding factor, the woodchips within the air-tight box are shuf-
fled 10 times for each MC level. In other words, for each MC level,
10 datasets (i.e., samples) are collected corresponding to 10 shuf-
fles. Therefore, the experiments generate totally 200 samples for
all 20 MC levels. For each sample, 10,000 packets were sent from
the transmitter (setup in injection mode) to the three receiver an-
tennas (setup in monitoring mode). Data are collected only for the
line of sight (LOS) scenario, i.e., the woodchip container is placed
in the middle of the center line between the transmitter and the
receivers.

4. Feature engineering and selection

For wheat MC classification, normalized raw data were used in
long short-term memory (LSTM) recurrent neural network (RNN)
(Yang et al., 2018a) and RFB-NN (Hu et al., 2019a), while principal
component scores from normalized raw data were used in support
vector machines (SVM) (Yang et al., 2018b). In the next section,
we show that raw data are poor features for woodchip MC clas-
sification due to the challenges discussed previously in Sec. 1. In
addition, the Wi-Fi packets are independent from each other (i.e.,
serially uncorrelated) as evidenced by the close-to-zero autocorre-
lation coefficients beyond lag 0. Therefore, there is no reason to
use an RNN such as LSTM to account for the serial dependency or
dynamics of packets.

4.1. The challenges of using raw CSI data as features

As discussed in the previous section, for each MC level we shuf-
fle the woodchips 10 times and collect CSI data for each shuffle to
address the confounding factor of woodchip arrangement or pack-
ing. Fig. 4 shows the raw CSI data of amplitude and phase differ-
ence for woodchips at five distinctively different MC levels with 10
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shuffles at each MC level. The five MC levels are: 53.29%, 41.24 %,
32.57 %, 20.47 % and 11.81 %, in that order where they are plotted
in Fig. 4. For the sake of better visualization and easier interpreta-
tion, only 100 packets from the 10t subcarrier for each shuffle are
plotted.

From Fig. 4, the impact of shuffling can be seen in both am-
plitude and phase difference, although it is more obvious in the
phase difference. The observation confirms our earlier suspicion
that packing or woodchip arrangement is a significant confound-
ing factor to MC level. In addition to packing, another challenge is
the significant noises presented in both amplitude and phase dif-
ference. Finally, Fig. 4 shows no clear trend or pattern in amplitude
or phase difference that correlates with MC levels. All these fac-
tors present significant challenges to model MC level with raw CSI
data. As an illustrative example, we use linear discriminant analysis
(LDA) to perform classification using the raw CSI data, with either
amplitude, or phase difference, or both. For training, 9 samples are
randomly selected from 10 shuffled samples at each of the 20 MC
levels, which results in 180 training samples. The remaining one
shuffled sample from each MC level is used for testing after the
classification model is trained. This process is repeated 100 times,
resulting in 100 Monte Carlo runs and the classification results are
shown in Fig. 5. For performance evaluation, the classification ac-
curacy of class i is defined as

__ b

Accuracy; = o (3)

1
The overall accuracy of all classes is defined as

Yiabi Y b
=17

Accuracy =
iz N N

(4)

where C denotes total number of classes, n; true/known number
C
of samples in class i, N= ) n; total number of samples, and p;

i=1

number of correctly predicted samples in class ... Fig. 5 (a) com-
pares the overall classification accuracy of all classes when differ-
ent components of the CSI data were used. The comparison indi-
cates that LDA classifier using both amplitude and phase difference
performs the best with 86.15% classification accuracy, followed by
LDA classifier using phase difference with 83.85% classification ac-
curacy, while the LDA classifier using amplitude alone results in
the lowest classification accuracy of 76.10%. Fig. Fig. 5 (b) plots
the confusion matrix for the best LDA classifier of using CSI am-
plitude and phase difference, which allows us to dig deeper into
the classification results. As can be seen from Fig. 5 (b), classifica-
tion accuracy of individual classes ranges from 15% to 100%. It can
also be seen that classification accuracy alone is not a good perfor-
mance indicator. For example, classification accuracy alone would
not be able to distinguish the following two scenarios: (1) the ac-
tual scenario of misclassifying ten 53.38% MC level samples (class 0
in Fig. 5 (b)) to 16.52 % MC level (class 12); (2) a hypothetical sce-
nario of misclassifying ten 53.38% MC level (class 0) to 51.59 % MC
level (class 1). Both scenarios have a classification accuracy of 90%,
but with drastically different implications in this application. For
example, if MC level is used to control the chemical usage, the for-
mer would let to significantly worse outcome than the latter. With
this point in mind, we see from Fig. 5 (b) that the classification
results using raw CSI data are poor as there are samples misclas-
sified far off their actual classes. In this work, when the predicted
class of a sample is off its true class by more than one level, we
term it “far-off misclassification”, to distinguish it from the sce-
nario of “nearest-neighbor misclassification”, where the predicted
class is off true class by one level (either above or below). Based
on this definition, there are totally 478 misclassified samples, of
which 30 are far-off misclassifications (highlighted by red circles
in Fig. 5 (b)).
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Fig. 5. (a) Overall classification accuracy using different raw CSI data with LDA classifier based on 100 Monte Carlo runs. (b) Classification confusion matrix of 100 Monte
Carlo runs when both amplitude and phase difference are used. Since there are 100 samples in each class (true labels), the numbers on diagonal represent the percentage
of classification accuracy of individual classes, which range from 15% to 100%. The far-off misclassifications (i.e., the predicted class differs from the true class by more than

one MC level) are highlited by red circles.

4.2. Feature engineering with statistics pattern analysis (SPA)

To address the shortcoming of raw CSI features that lead to
not only low classification accuracy but also far-off misclassifica-
tions, in this work, statistics pattern analysis (SPA) is utilized to
generate more robust and predictive features. SPA was proposed to
supplement the traditional multivariate modeling approaches that
directly utilize process variables (e.g., temperature, pressure, etc.)
for monitoring, control and inference purposes. In SPA, the statis-
tics of the process variables, instead of process variables them-
selves, are used for modeling. The statistics capture the character-
istics of each individual variable (e.g., mean and variance), the in-
teractions among different variables (e.g., covariance), the dynam-
ics (e.g., auto-, cross-correlations), as well as process nonlinear-
ity and process data non-Gaussianity (e.g., skewness, kurtosis, and
other higher order statistics or HOS). SPA is based on hypothesis
that these statistics are sufficient and even better in capturing pro-
cess characteristics (e.g., static properties and dynamic behaviors)
than original process variables. This hypothesis has been supported

in various applications, including fault detection (He et al., 2019;
He and Wang, 2018a, 2011; Wang and He, 2010), fault diagnosis
(He et al., 2012; He and Wang, 2018a), and virtual metrology or
soft sensor (Shah et al., 2020, 2019b; Suthar et al., 2019, 2018). Due
to the fact that statistics are computed using a set of observatons,
they are less affected by noises. In addition, there are robust statis-
tics that are insensitive to outliers. Finally, due to central limit the-
orem (CLT), these statistics are asymptotically normally distributed.
For these reasons, SPA is selected in this work to extract robust and
predictive features from raw CSI data. It is worth noting that SPA
does not require preprocessing of the CSI data (i.e., outlier detec-
tion and handling, noise removal/reduction) that has been required
in previous studies (Hu et al., 2019b; Yang et al., 2018b,a). The
schematic diagram of SPA based classification is shown in Fig. 6.
In the first step, various statistics are extracted from the CSI am-
plitude and phase data.

P:X—>F (5)
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Table 1
Statistics considered as features in this work.
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Statistics Definition Statistics per sample
K
Mean nx) = % > x;, where x is a CSI amplitude or phase difference 150
i=1
variable
Median Med(x) = 1 (Xk41)/2 + Xk 1),2) Where x denotes sorted x in 150
ascending order; |-| and [-] denote the floor and ceiling
functions respectively
Maximum Max(x) = x¢ 150
Minimum Min(x) = x; 150
Interquartile range IQR(x) = Q3(x) — Q; (x), where Q3(x) and Q; (x) are the upper and 150
lower quartiles of x
Standard Deviation sX) =5 Z ¥ — 1(x))? 150
%
Mean absolute deviation Dimean(X) = % Y- 1% — (x| 150
i=1
K
Median absolute deviation Dineq (X) = % Z% |x; — Med (x)| 150
iz
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29x3+4+29%x2=145

Extracting

Statistics Classification

_ﬁ-

Sub-carriers -

Moisture levels- Dataset
Moisture levels- Dataset

Statistics

Fig. 6. Schematic of SPA-based feature extraction for classification.

where P denotes the operator that maps the 3D CSI data array
X € RNRxK containing N samples, R amplitudes and phase dif-
ferences of all subcarriers from K packets into a feature matrix
F € RN*S containing N samples with each sample now charac-
terized by S statistics, such as mean, standard deviation, skew-
ness and kurtosis of amplitude of each subcarrier calculated over
K packets. Note that K does not have to be the same across dif-
ferent samples, as long as it is sufficiently large to obtain reli-
able statistics. This is convenient if different number of packets
were received for different samples. For between-variable statistics,
between-subcarrier differences are considered, but between-packet
statistics are not considered as packets are independent from each
other. In Fig. 6, Y € RN*! denotes the MC levels for N samples. In
the second step, a classification model is developed to capture the
relationships between the sample features (i.e., statistics) and the
response (ie., MC levels). The SPA framework is a flexible method
as different statistics can be added or removed based on how well
they capture the relationships between the predictors and the re-
sponse variables or classes.

Based on the SPA framework, we extracted 13 statistics (listed
in Table 1) of 90 amplitude variables (i.e., 3 antennas, each with
30 subcarriers) and 60 phase difference variables (i.e., 2 indepen-
dent antenna pairs, each with 30 subcarriers). All statistics are
computed over 40,000 observations for each of the 200 samples
(i.e., 10 samples/shuffles for each of the 20 MC levels). Autocorrela-

tions are not considered because the packets are independent from
each other as evidenced in Fig. 7 (a) where the sample autocorre-
lation coefficient of the CSI amplitude from one subcarrier of one
antenna is shown, which resembles the pattern of a typical ran-
dom signal. For cross-correlations, only cross-correlations between
subcarriers of the same antenna with lag 0 is considered due to
the absence of serial correlation between lags. Fig. 7 (b) shows
the cross-correlation coefficient of CSI amplitude among subcar-
riers of a same antenna. It can be seen that CSI amplitude (and
phase difference, not shown) from different subcarriers are highly
correlated, especially the neighboring subcarriers. Because of this
observation, we also considered mean difference between consec-
utive subcarriers. The idea is to capture the relationships between
consecutive subcarriers in a more quantitatively way than cross-
correlation coefficient between them. In this way, the overall shape
of the CSI amplitude or phase difference across subcarriers can be
captured.

Table 1 shows that there are 3,970 feature candidates for each
sample, which is a rather large feature pool considering that we
only have 200 samples. Therefore, a feature selection is desired be-
fore modeling to avoid over-fitting. There are many feature selec-
tion methods available. In this work we employ principal compo-
nent analysis (PCA) for its simplicity and easy visualization, which
is detailed in the next section.

4.3. Feature selection with principal component analysis (PCA)

The goal of feature selection is to find features that maximize
between-class variance (i.e., distinct difference for samples of dif-
ferent MC levels) while minimizing within-class variance (i.e., high
similarity for samples of the same MC level). For simplicity and
robustness of features, we compare features by types listed in
Table 1. This is conducted via unsupervised learning of PCA on
each feature type and project them onto low-dimensional prin-
cipal component subspace (PCS). Each feature was normalized to
zero mean unit variance across all 200 samples prior to PCA. The
results are illustrated in Fig. 8 where the 87 CSI amplitude mean
difference of consecutive subcarriers (MDCSs) of 70 samples were
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Fig. 7. (a) Auto-correlation coefficients of CSI amplitude of one antenna subcarrier over 40,000 packets show no significant serial correlation among packets; (b) Cross-
correlation coefficients of CSI amplitude between subcarriers of one antenna show high correlations, especially between consecutive subcarriers.
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Fig. 8. (a)~(c): PCA score plots of CSI amplitude means of 70 samples at 7 different MC levels (i.e., 10 samples at each MC level); (d)~(f): PCA score plots of CSI amplitude
mean difference of consecutive subcarriers (MDCS) of the same 70 samples. MDCSs show much better quality as features in both maximizing between-class variance and

minimizing within-class variance.

projected onto the first three principal component directions to
obtain the three “score” plots (Fig. 8 (d)~(f)). For comparison, the
score plots of 150 CSI amplitude means of the same 70 samples
were also generated (Fig. 8 (a)~(c)). As can be seen from Fig. 8,
MDCSs show not only significant between-class differences (i.e.,
samples from different MC levels are far apart in one or multiple
score plots), but also significant within-class similarities (i.e., sam-
ples from the same MC level but different shuffles form a com-
pact cluster). In contrast, the mean of CSI amplitude is much more
sensitive to woodchip packing, indicated by the wide scattering of
samples from the same MC level but different shuffles. In addi-
tion, compared to CSI amplitude MDCS, the CSI amplitude mean
is less sensitive to MC levels, indicated by the less separation of
samples from different MC levels. As mean directly resembles raw

data behavior, this is an indication of potentially poor performance
for classification using raw data, which was verified in the previ-
ous section. Through this comparison of all feature types listed in
Table 1, it was found that the MDCSs of CSI amplitude are the best
feature candidates and therefore were selected as the final fea-
tures for developing classification models. In this way, we reduce
the feature space from 3,970 to 87. It is worth noting that further
feature selection can be conducted to use MDCSs of selected sub-
carriers instead of all 30 subcarriers. It is also worth noting that
classification performance is expected to improve if more a sys-
tematic feature selection is conducted, such as combining features
from different types. These will be our future work to further im-
prove the technology. However, in this work, we try to strike a bal-
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Fig. 9. Overall process flow diagram of woodchip MC level classification using CSI
data.

ance that leans more towards simplicity and robustness than nu-
merical performance.

5. Model building

Once the 87 CSI amplitude MDCSs are selected as the fea-
tures, the next step is to develop classification models. In this work
we compare various state-of-the-art machine learning classification
techniques in classifying woodchip MC levels using these features.
The procedure is outlined in Fig. 9. For each classification model,
9 samples are randomly selected from 10 shuffled samples at the
same MC level for each of the 20 MC levels, which results in 180
training samples. The remaining one shuffled sample from each
MC level is used for independent testing, which results in a to-
tal of 20 testing samples. Due to the limited number of samples, a
Monte Carlo validation and testing (MCVT) procedure (Shah et al.,
2019b) is followed to repeat the random sample selection, and
model training and testing procedure 100 times. In addition to the
mean and standard deviation of the overall classification accuracy
(Eg. (4)) of 100 such MCVTs, the confusion matrix resulted from
the same MCVTs is also used to evaluate the performance of dif-
ferent classification models.

The machine learning classification techniques studied in this
work include linear discriminant analysis (LDA), support vector
machine (SVM), artificial neural network (ANN), as well as ensem-
ble modeling of bagging with LDA, and ensemble boosting method
XGBoost. These methods are briefly reviewed in the following sec-
tions.

5.1. Linear discriminant analysis (LDA)

LDA is a robust supervised learning technique for multiclass
classification. It is a generalization of Fisher’s linear discriminant
which find a linear combination of features to separate multi-
ples classes in the dimensional space. Scikit-learn Python library
(Pedregosa et al., 2011) is used to implement LDA in this work,
which fits a Gaussian density to each class and estimates the class
conditional distribution of data for each class k using Bayes’ theo-
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rem:

P(xly=kP(y=k)  PXly=kPy=k)
P@) Y1 {P@ly = HP(y = 1))

(6)
where x € R? is a sample feature vector of dimension d, y is the
class label of that sample, C is the total number of classes. LDA
makes predictions by estimating the probability of a new sample
belonging to each class. Based on the class with the highest prob-
ability, the new sample is assigned to that class. More information
on multiclass LDA can be found in (Friedman et al., 2001).

P(y = k|x) =

5.2. Support vector machine (SVM)

Support vector machine (SVM) is a supervised machine learning
technique. In linear SVM classification of two classes, classification
is performed by finding a hyperplane that maximizes the separa-
tion or margin between the two classes. If the two classes are not
linearly separable, the input vectors can be nonlinearly mapped to
a high-dimensional feature space through a kernel function that
presumably makes the separation easier in the kernel space. In
this application, it was found that linear SVM performs better than
nonlinear kernel (e.g., radial basis function (RBF) and sigmoid ker-
nels) based SVMs. This is consistent with the preliminary finding
in the previous section where a subset of 7 classes were shown to
be linearly separable (Fig. 8 (d)~(f)). More information on SVM can
found in (Bishop, 2006; Burges, 1998; Cortes and Vapnik, 1995). In
this work, multiclass classification is carried out using scikit-learn
(Pedregosa et al., 2011) with the “one-versus-one” approach where
190 (i.e.,(20 x 19)/2) classifiers are constructed.

5.3. Artificial neural network (ANN)

Artificial neural network (ANN), or simply neural network (NN),
was developed with the idea of mimicking human brains, which
now form the foundation of many deep learning techniques. A
neural network consists of several layers, including an input layer
that takes input data, one or more hidden layers depending on the
complexity of the problem and the representations to be learned,
and an output layer that outputs either discrete or continuous val-
ues depending on the type of problem, i.e., classification or regres-
sion. The constructed ANN represents interconnected input and out
units or nodes (called neurons), in which each connection (called
an edge) has an associated weight. The training of an ANN for clas-
sification is to adjust these weights to optimize the prediction of
correct classes for the training data (e.g., through minimizing a
cost function such as classification error). Once trained, the ANN
takes a new set of similar data and make class predictions based
on the trained model. Keras is used for ANN implementation in
this work. Because of the likely linear separability of this particular
application, one hidden layer is used in this work. Other hyperpa-
rameters, including number of neurons in the hidden layer, opti-
mizer, activation function in the hidden layer, initialization, epochs
and batch size, are optimized using random search followed by
Bayesian optimization. More information on ANN can be found in
(Aggarwal, 2018; Nielsen, 2016; Ripley, 1996; Theodoridis, 2015).

5.4. Bagging

Bagging is a bootstrap ensemble method that creates individ-
ual models for its ensemble by training each classifier on a ran-
dom distribution of the training data. Each classifier’s training set
is generated by random sampling, with or without replacement
from all the samples available for training. Individual predictions of
each classifier are aggregated based on a voting scheme (hard vot-
ing or soft voting) to form a final prediction. A simple schematic
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Fig. 10. Schematic of bagging-based classifier.

of a bagging classifier is shown in Fig. 10. Each base classifier can
be trained in parallel with the sub samples generated with ran-
dom sampling. Bagging is known to reduce overfitting or high vari-
ance by voting. Different base estimators can be used within bag-
ging. In this work, LDA classifier is used due to the linear sepa-
rability of the classes. Scikit-learn is used to implement bagging.
The hyperparameters, including number of base classifiers, boot-
strapping samples and/or features, and the sample/feature size, are
optimized using random search followed by Bayesian optimiza-
tion. More information on bagging can be found in (Breiman, 1999,
1996; Ho, 1998; Louppe and Geurts, 2012).

5.5. XGBoost

Another ensemble method that constructs multiple regression
trees is boosting. In comparison to bagging, boosting approaches
combine weak learners into a strong learner iteratively by optimiz-
ing a cost function along the negative gradient direction. XGBoost
is one of the most successful boosting approaches under the gra-
dient boosting framework. The XGBoost algorithm objective com-
bines training loss and regularization terms for a trade-off on bias
and variance. Python library xgboost is used for implementation.
The hyperparameters, include number of base learners (i.e., regres-
sion trees), learning rate, updater, feature selector, and regulariza-
tion parameters, are optimized using random search followed by
Bayesian optimization. More information on XGBoost can be found
in (Chen and Guestrin, 2016).

5.6. Hyperparameter optimization

Hyperparameter optimization is very important in training ma-
chine learning models as the model architecture directly affects
the model performance. There are three major approaches for hy-
perparameter optimization, including grid search, random search
(Bergstra and Bengio, 2012; Bergstra et al., 2011) and Bayesian op-
timization (Bergstra et al., 2013; Komer et al., 2014). Grid search
can be quite effective when dealing with a small hyperparameter
space. In general, however, random search and Bayesian optimiza-
tion are more efficient than grid search. For complex models with
large parameter spaces, such as XGBoost and ANN, the time re-
quired for grid search could be prohibitive. In these cases, random
search or Bayesian optimization is preferred. Random search sam-
ples random parameter combinations based on certain statistical
distributions. The idea is that, provided enough iteration, random
search can find an optimum or close to optimum in lesser time
than grid search, although random search does not guarantee a
global optimum. Both grid search and random search find optimal
hyperparameters in an isolated way without considering past eval-
uations. In contrast, Bayesian optimization considers past hyperpa-
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Table 2
Overall classification accuracy of LDA when features from
single or all antennas are used.

Data used Classification accuracy
Antenna 1 93.05 + 5.17
Antenna 2 92.6 £ 5.97
Antenna 3 96.35 + 3.40
All 97.55 + 2.89
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Fig. 11. Comparison of classification accuracy of LDA when features from different
antennas are used.

rameter values that minimize the cost function by building a surro-
gate model based on past evaluation results. The surrogate model
is presumably computationally cheaper to optimize than the origi-
nal objective function, so the next input values are selected by ap-
plying criteria, such as expected improvement (EI), to the surrogate
model. In this work, random search is utilized to explore the hy-
perparameter space. The final hyperparameters are determined by
Bayesian optimization with Tree Parzen estimator using EI as the
criterion. The Scikit-learn library is used for random search while
hyperopt (Bergstra et al., 2013) is used for Bayesian optimization.

6. Results and discussion

In this section, we discuss our findings of woodchip MC level
classification using the 87 features extracted following the SPA
framework. The classification results from the five different clas-
sification methods discussed in the previous section are compared.
As discussed previously, due to the limited number of samples, 100
MCVT simulations are conducted. For every classification technique
in each MCVT simulation, hyperparameters are optimized using
stratified 10-fold cross validation. The trained model is used for
evaluation on the set-aside testing set. The average and standard
deviation of classification accuracy of 100 such runs (100 different
test sets) are used to evaluate the performance of each classifica-
tion method. In addition, the overall classification confusion matrix
from 100 MCVTs is used to visualize and detect the far-off misclas-
sifications where the predicted class is off its true class by more
than one MC level.

We first investigate effect of antennas using LDA. The mean and
standard deviation of overall classification accuracy are shown in
Table 2 and Fig. 11. It can be seen that, when a single antenna (i.e.,
with 29 out of 87 features) is used, the antenna 3 provides the best
information for classification. The best results, in both mean and
standard deviation of classification accuracy, are obtained when all
three antennas (i.e., with all 87 features) are used.

Another advantage of using all three antennas is observed when
comparing the confusion matrix of different scenarios. Fig. 12 com-
pares the confusion matrices of using only antenna 3 with that of
using all three antennas. It can be seen that there are 29 far-off
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Fig. 12. Comparison of classification confusion matrices when only features from antenna 3 are used (a) vs. when all features from all three antennas are used (b). The red

circles/ellipse highlight the far-off misclassifications.
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Fig. 13. Comparison of overall classification accuracy when different classification
techniques are used.

Table 3
Overall classification accuracy when differ-
ent classification techniques are used.

Method Classification accuracy
SVM 95.50 + 3.79
ANN 95.85 + 4.15
XGBoost 96.40 + 3.70
LDA 97.55 + 2.89
Bagging (LDA)  98.75 + 2.29

misclassifications when only antenna 3 is used. When all three an-
tennas are used, there is no far-off misclassification occur. There-
fore, for the remaining of this work, all 87 features from all three
antennas are used.

Next, using all 87 features from all three antennas, we com-
pare performance of different classification methods. The results
are shown in Fig. 13 and Table 3, which indicate that all methods
perform well and all achieve greater than 95% overall classification
accuracy. SVM performs the worst among all methods in terms
of mean classification accuracy. ANN performs slightly better than
SVM in mean classification accuracy but with slightly higher stan-
dard deviation, indicating lower consistency when different train-
ing and testing samples are used. However, an analysis into the
confusion matrices shows that SVM results in seven far-off mis-
classifications while all other methods result in zero far-off mis-
classification (Fig. 14). XGBoost performs slightly better than

10

ANN and SVM, but not as good as LDA. This result is somewhat
surprising as XGBoost has outperformed other techniques in many
Kaggle competitions on real world datasets and a variety of ap-
plications. However, as shown earlier in Fig. 8, this application is
more of a linearly separable case with the features selected, which
explains the good performance from LDA. The results also demon-
strate the robustness of LDA when dealing with linearly separable
cases. Nevertheless, bagging can still improve a base classifier such
as LDA in this work. As shown in Table 3, bagging of LDA provides
the best performance with the highest average overall classification
accuracy of 98.75% and the smallest standard deviation of 2.29%
from 100 MCVT’s. The confusion matrices of all methods, shown in
Fig. 12 (b) for LDA and Fig. 14 for the other four methods, indicate
that only SVM results in far-off misclassifications while all other
methods only result in nearest-neighbor misclassification. The spe-
cific number of the two types of misclassifications are compared
in Fig. 15, where the LDA on raw CSI amplitude data is used as
the reference. Fig. 15 shows that feature engineering and selection
plays a key role in this application, and all methods based on the
87 CSI amplitude MDCS features easily outperform LDA with raw
CSI amplitude data as features.

We also compared the following two scenarios of hyperparam-
eter tuning:

(A) A set of hyperparameters are optimized for each MCVT run
using the selected training samples, and that set of hyperpa-
rameters are used for evaluation on the corresponding test
set. Therefore, different MCVT runs could potentially have
different hyperparameter values.

(B) The optimal hyperparameters from 100 MCVT'’s of Scenario
A are stored and the mode of each hyperparameter (i.e.,
the value appears most frequently) is selected to construct a
universal set of hyperparameters. The universal hyperparam-
eter set is used for model training and testing of the same
100 sets of training and testing samples as in Scenario A.

One potential issue with Scenario B is that a test sample in one
MCVT is potentially used as a training sample in other MCVT's.
When the hyperparameters from all MCVT's are pooled together
to determine the mode, essentially all samples have been used as
training samples for hyperparameter tuning and there are no inde-
pendent samples left for testing. This is confirmed by the compari-
son of the classification accuracy of the two scenarios. As shown in
Table 4, except LDA, all other methods tuned following Scenario B
slightly outperform their counterparts tuned following Scenario A.
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Table 4
Comparison of classification accuracy under two hy-
perparameter tuning scenarios.

Method Scenario A Scenario B

SVM 95.50 £ 3.79  96.40 + 3.63
ANN 95.85 + 4.15  96.35 + 3.61
XGBoost 96.40 + 3.70  96.40 + 3.34
LDA 97.55 £2.89  97.55 £ 2.89
Bagging (LDA)  98.75 +2.29  99.35 + 1.69

Therefore, the results reported previously in this work are all based
on Scenario A for fair evaluation of all methods with independent
test samples.

7. Conclusion

For the pulp and paper industry in the U.S., the pulping pro-
cess has been identified as a major opportunity for improving en-
ergy efficiency and productivity. However, the implementation of
model-based optimization, control and other advanced manufac-
turing technologies has been hindered by the lack of real-time
sensing of woodchip MC under the harsh manufacturing environ-
ment. To overcome this bottleneck, we investigate the potential of
an IloT short-range Wi-Fi based woodchip MC sensing technology.
The proposed technology takes the advantages of IloT devices (e.g.,
toughness, connectivity, low-cost, small-size, etc.), while overcom-
ing their shortcomings (e.g., the machine learning challenges of
messy big data) by SPA-based feature engineering. Specifically, this
work demonstrates that woodchip packing is a strong confound-
ing factor to woodchip MC level, evidenced by its significant im-
pact on both amplitude and phase of the collected CSI data. Al-
though randomization is a good strategy to mitigate this confound-
ing factor, it is not sufficient by itself. As a validation, we demon-
strated that classification using raw CSI data results in not only
low classification accuracy, but also many far-off misclassifications
where the predicted MC class is off its true class by more than one
level. The result also illustrates that classification accuracy alone
is not a good performance metric, and the practical implications
(e.g., cost) of misclassification must also be considered. We show
that SPA-based feature engineering framework is a systematic ap-
proach for generating physically and statistically meaningful fea-
tures compared to other kernel-type or algorithmically generated
(e.g., square, square root, exponential, etc.) features that are of-
ten unintuitive. Through simple feature selection such as PCA, the
mean difference of consecutive subcarriers (MDCSs) of CSI ampli-
tude were found to be robust features that are not only highly sen-
sitive to MC levels but also highly insensitive to woodchip packing.
Using MDCSs as features, we demonstrated the superior classifica-
tion performance of using CSI data collected off all three antennas
compared to that of using any single antenna. Finally, using MDCSs
from all three antennas, we investigate the representative state-
of-the-art classification techniques, including LDA, SVM, ANN and
ensemble learning methods including bagging with LDA and gra-
dient boosting with XGBoost. The results showed that LDA and its
bagging extension perform the best among all methods, achieving
overall classification accuracy of 98~99%. In addition, when MDCSs
are used as features, only SVM results in far-off misclassifications,
while all other methods only result in nearest-neighbor misclas-
sifications, which is a significant improvement compared to when
raw CSI data were used as features.

It is worth noting that although woodchip packing has signifi-
cant impact to the collected CSI data (both amplitude and phase
responses), its impact to MC classification is completely elimi-
nated after we selected SPA features that are totally insensitive
to packing. Although the randomization is done by shaking the
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same woodchips within a given volume - which means the vol-
ume density of the sample is about the same, the linear den-
sity (i.e., linear void/packing fraction) actually varies significantly.
If we assume linear paths of the Wi-Fi signal propagation, shuf-
fling even the same woodchips can introduce significant variations
to the linear void (or packing) fraction along the straight lines be-
tween the injector and the three receivers, as evidenced by the
significant changes in the amplitude and phase responses of the
CSI data. However, our results show that the selected SPA features
(i.e., mean difference of consecutive subcarriers of CSI amplitude)
are insensitive to the shuffling, as evidenced by the high classifica-
tion accuracy of independent (i.e., differently shuffled) testing sam-
ples. Therefore, we can conclude that the selected SPA features are
insensitive to the void fraction (or packing density) of the wood-
chips. This is particularly convincing when we consider the excel-
lent performance of the technology at the low MC range where
there is only 0.05% change in MC level but significant change in
linear void fraction along the Wi-Fi propagation paths due to shuf-
fling. Nevertheless, it is desirable to test woodchips with different
sizes to further validate the technology. We envision that, when
implemented to real industrial applications, some form of random
sampling can be implemented to obtain multiple MC estimations,
and some form of aggregation (e.g., average) of different measure-
ments can be used to obtain a reliable estimation of the MC level
for a large quantity of woodchips.

It is also worth noting that this work only establishes the feasi-
bility of this technology in the lab using a box. Whether the tech-
nology can be applied in more flexible settings, such as woodchips
not in a box but in a pile on a fixed or moving surface (e.g., a con-
veyor belt), requires further investigation. There is no doubt that
the problem will be more challenging than what has been stud-
ied in this work, which is under a much better controlled envi-
ronment in a lab. In addition, we only demonstrate the success of
classification-based woodchip MC estimation in this work, while
our preliminary results have shown that the regression based MC
estimation is much more challenging for this application. This is
due to the fact that, although MDCSs of CSI amplitude enables lin-
ear separation of different MC levels, the functional relationship
between CSI data and woodchip MC values is actually much more
complicated and research in this area is ongoing.
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