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a b s t r a c t 

For the pulping process in a pulp & paper plant that uses woodchips as raw material, the moisture 

content (MC) of the woodchips is a major process disturbance that affects product quality and con- 

sumption of energy, water and chemicals. Existing woodchip MC sensing technologies have not been 

widely adopted by the industry due to unreliable performance and/or high maintenance requirements 

that can hardly be met in a manufacturing environment. To address these limitations, we propose a 

non-destructive, economic, and robust woodchip MC sensing approach utilizing channel state information 

(CSI) from industrial Internet-of-Things (IIoT) based Wi-Fi. While these IIoT devices are small, low-cost, 

and rugged to stand for harsh environment, they do have their limitations such as the raw CSI data are 

often very noisy and sensitive to woodchip packing. To address this, statistics pattern analysis (SPA) is 

utilized to extract physically and/or statistically meaningful features from the raw CSI data, which are 

sensitive to woodchip MC but not to packing. The SPA features are then used for developing multiclass 

classification models using various linear and nonlinear machine learning techniques to provide poten- 

tial solutions to woodchip MC estimation for the pulp and paper industry. This work also demonstrates 

that classification accuracy alone is not a good performance metric for industrial applications, and the 

practical implications of misclassification must also be considered. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The US is one of the largest producers of pulp products as well 

s one of the largest producers of paper and paperboard products. 

he US pulp and paper industry ranks the third in terms of en- 

rgy consumption among US industries and spends over $7 billion 

nnually on purchased fuels and electricity ( Kramer et al., 2011 ). 

he pulping process, which converts woodchips into pulp by dis- 

lacing lignin from cellulose fibers, is one of the most energy in- 

ensive processes and has been identified by the ENERGY STAR®

nd the Department of Energy (DOE) reports as a major opportu- 

ity to improve energy productivity and efficiency of the industry 

 Brueske et al., 2015 ; Kramer et al., 2011 ; Martin et al., 20 0 0 ). Cur-

ently, vast majority of the US pulp is produced by chemical pulp- 

ng processes and most of them utilize continuous Kamyr digesters. 

 Kamyr digester is a complex vertical plug flow reactor where 

he woodchips react with an aqueous solution of sodium hydrox- 

de and sodium sulfide, also known as white liquor, at elevated 

emperatures to remove lignin. For Kamyr digesters, the incoming 

oodchip moisture content (MC) is a major source of disturbance 
∗ Corresponding author. 
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hat affects the cooking performance, as it dilutes the white liquor 

oncentration therefore reducing the delignification reaction rate. 

n this work, wet basis MC is used, which is defined as the follow- 

ng: 

C = 

m W 

m T 

× 100% = 

m W 

m W + m D 

× 100% (1) 

here m W 
, m D , and m T represent the mass of water, dry wood, 

nd total mass, respectively. Currently, the woodchip MC is not 

easured in real-time due to the lack of affordable, reliable, and 

asy-to-maintain sensors ( Rahman et al., 2020 ). Instead, woodchip 

C is commonly measured only four times per year correspond- 

ng to the four seasons and used to determine the operation pa- 

ameters such as chemical usage and cooking temperature. Be- 

ause this significant process disturbance is unmeasured, the per- 

ormance of existing control solutions is often unsatisfactory and 

rocess engineers often overcook the woodchips to ensure pulp 

uality, which results in significant loss of pulp yield, overuse of 

eat/energy and chemicals. Chemical overuse also adds burdens 

o the downstream processes, such as washing and evaporation, 

nd results in increased energy and chemical usages for down- 

tream processes as well (Z. Jiang at the Alabama Center for Pa- 

er and Bioresource Engineering, personal communication, 2020). 

t is worth noting that there have been significant effort s and ad- 

https://doi.org/10.1016/j.compchemeng.2021.107445
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
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ancements in the modeling and control of chemical pulping over 

he past decade ( Rahman et al., 2020 ). In particular, progress has 

een made on multiscale modeling of Kraft pulping processes to 

apture the evolution of fiber morphology such as fiber length, 

orosity, and cell wall thickness (CWT) of cooked pulp ( Choi and 

won, 2019a ; Choi and Kwon, 2019b ). A recent study integrates 

acroscopic and microscopic models of the Kraft pulping process 

o develop an inferential model predictive control (MPC) for bet- 

er handling of pulp grade transitions ( Choi et al., 2021 ). These ef-

orts have not explicitly considered the woodchip MC variability in 

 production environment, and this information, if made available, 

an be directly incorporated into these models for improved model 

ccuracy in practical applications. 

The oven-drying method is a direct and precise method based 

n the weight loss after a drying process, with standard de- 

ned by American Society for Testing and Materials (ASTM) 

 ASTM, 2016 ; Reeb and Milota, 1999 ). However, it is an of-

ine test that takes 24 hours, and is mainly used for validat- 

ng other indirect methods. A variety of indirect sensing methods 

ave been examined for measuring woodchip MC online, includ- 

ng technologies that are based on microwave ( Daassi-Gnaba et al., 

018 ), radio-frequency (RF) ( Daassi-Gnaba et al., 2017 ), capacitance 

 Fridh et al., 2018 ; Pan et al., 2017 , 2016 ), Resonant half-wave an-

enna ( Merlan et al., 2019 ), near-infrared (NIR) ( Amaral et al., 2020 ;

iang et al., 2019 ) and X-ray ( Couceiro et al., 2019 ; Hultnäs and

ernandez-Cano, 2012 ). However, these methods have not been 

idely adopted by the industry due to poor performance and/or 

igh maintenance requirements that can hardly be met in a man- 

facturing environment. 

To address the robustness and performance limitations of the 

xisting methods, we propose a non-destructive, economic, and 

obust approach based on 5 GHz IIoT short-range Wi-Fi and use 

hannel state information (CSI) to predict MC in woodchips. CSI 

ata have been used for moisture and mildew detections in wheat 

 Hu et al., 2019a ; Yang et al., 2018a , b ). However, woodchip MC clas-

ification is a much more challenging task due to the much bigger 

ize and significantly more heterogeneous in both size and shape 

f the woodchips than those of wheat. Because of that, the wood- 

hip packing or arrangement in the container is expected to have 

 significant impact on the CSI data, i.e. , woodchip packing is a 

trong confounding factor to MC level. There are generally three 

ays to address confounding variables: elimination, measuring, 

nd randomization. Since woodchip packing cannot be eliminated 

or measured, randomization is the approach taken in this work 

o address it. In addition, our recent studies have shown that IIoT 

ensors have their own shortcomings, including significant noise, 

issing values, and/or irregular sampling intervals, which result 

n messy big data and lead to low performing models when di- 

ectly fed to machine learning algorithms ( Shah et al., 2019a , 2017 ).

ecause of these challenges, the normalized or principal compo- 

ent analysis (PCA) transformed raw CSI data, which were used 

or wheat MC classification, are no longer sufficient for woodchip 

C classification. To address it, the statistics pattern analysis (SPA) 

ramework that we developed previously ( He and Wang, 2018a , b ;

uthar et al., 2019 ; Wang and He, 2010 ) is used to extract robust

nd predictive features from the raw noisy CSI data. These features 

re shown to be sensitive to the MC levels but insensitive to the 

acking of the woodchips. It is worth noting that SPA features are 

hysically and/or statistically meaningful while other algorithmi- 

ally generated features ( e.g. , square, square root, exponential, etc.) 

r kernel-type features are often unintuitive. SPA also eliminates 

he data preprocessing steps ( e.g. , outlier detection and handling, 

nvironmental noise removal) that were required in previous stud- 

es ( Hu et al., 2019b ; Yang et al., 2018a , b ). These two strategies uti-

ized for addressing a confounding variable and for extracting pre- 

ictive and meaningful features from raw CSI data are two of the 
2 
ain contributions of this work. Another contribution of this work 

s the systematic study of different state-of-the-art linear and non- 

inear classification techniques, as well as individual vs. ensemble 

lassification, for woodchip MC classification using CSI data. Finally, 

lassification accuracy has been commonly used in previous stud- 

es for evaluating classifier performance. We show that the classi- 

cation accuracy alone is not a good performance metric, and the 

ractical implications ( e.g. , cost) of misclassification must also be 

onsidered. 

The remainder of the paper is organized as follows. A brief 

ackground on CSI and feasibility study for using CSI in woodchip 

C detection are presented in Section 2. Section 3 outlines the ex- 

erimental setup and data collection procedure. In Section 4, we 

iscuss the challenge of classification using raw data and the need 

f feature engineering, followed by the proposed approach based 

n statistics pattern analysis (SPA) for feature extraction. The clas- 

ification approaches studies in this work are introduced in Sec- 

ion 5, along with the hyperparameter optimization approach used 

n this work. In Section 6, the results from different classification 

echniques are discussed in terms of both classification accuracy 

nd robustness. The practical implications of these results are also 

iscussed. Finally, conclusion and future work are discussed in Sec- 

ion 7. 

. Channel state information and feasibility for woodchip MC 

lassification 

.1. Channel state information (CSI) 

Using Wi-Fi cards such as Intel Wi-Fi link 5300 network in- 

erface card (IWL5300 NIC), it is convenient to collect CSI mea- 

urements that record the channel variation during propagation 

f wireless signals. In this work, CSI is extracted by modifying 

he open source device drivers for IWL5300 based on CSITool 

 Halperin et al., 2011 ). Similar tools are available based on Atheros 

hipsets as well ( Xie et al., 2018 ). CSI amplitude and phase data are

ollected in this work using IWL5300 NIC by configuring the trans- 

itter and receiver in injection and monitor modes, respectively. 

e use Lenovo ThinkPad systems equipped with Linux based OS 

4.02 and kernel version 4.2 due to the version-specific CSI tool. 

oth systems are equipped with IWL5300 NIC with a modified 

river and firmware for data collection. Orthogonal frequency- 

ivision multiplexing (OFDM) is often utilized to deal with impair- 

ents in wireless propagation such as frequency selective fading. 

n OFDM signal modulation, a single data stream is split into mul- 

iple orthogonal subcarriers at different frequencies to avoid inter- 

erence and crosstalk. The IWL5300 NIC used in this work imple- 

ents an OFDM system with 56 subcarriers, out of which 30 sub- 

arriers can be read using the CSItool, which is built on IWL5300 

IC using a custom modified firmware and open source Linux 

ireless drivers ( Halperin et al., 2011 ). Each channel matrix entry 

s a complex number, with signed 8-bit resolution each for the real 

nd imaginary parts. It specifies the gain and phase of the signal 

ath between a single transmit-receive antenna pair. For example, 

he channel response of the i th subcarrier can be represented as: 

C S I i = | C S I i | exp { ∠ C S I i } (2) 

here | CS I i | is the amplitude response of the i th subcarrier and 

 CS I i is the phase response. 

CSI can reflect indoor channel characteristics such as multipath 

ffect, shadowing, fading, and delay ( Ahamed and Vijay, 2017 ). Our 

ypothesis is that the water content in the woodchips has a de- 

ectable impact on the strength and/or the phase of the signals 

hat are received on the receiver side. In other words, woodchips 

t different MC levels would lead to different characteristics of 

SI signal in terms of amplitude and/or phase responses. There- 
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Fig. 1. CSI signals collected on the three receiving antennas at three different MC levels: (a) amplitude; (b) phase difference. Only signals from subcarrier 15 are shown. 
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Fig. 2. Experimental setup for CSI data collection. 
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ore, machine learning algorithms can be utilized to correlate these 

haracteristics to woodchip MC levels. 

In this work, two laptops equipped with IWL5300 NIC and 

odified drivers with specific Linux kernels are used to collect CSI 

ata. One is set in injection mode while the other is set in moni-

or mode to collect 5 GHz CSI amplitude and phase data. One an- 

enna is used on the transmitter side, while three antennas are 

sed on the receiver side to take the advantage of the multiple- 

nput multiple-output (MIMO) systems for improving diversity of 

ignals ( Ahamed and Vijay, 2017 ; Halperin et al., 2012 ). This diver-

ity is exploited in this work to improve the multiclass classifica- 

ion performance. Also, it is desirable to focus the RF energy in one 

irection as the woodchips are placed in an airtight box between 

he transmitter and receiver. Therefore, unidirectional antennas are 

elected over omnidirectional antennas. As the gain of the direc- 

ional antennas increase, the coverage distance also increases in 

hat direction. Also, directional antennas for point-to-point connec- 

ion reduce interferences from other sources. In this work, panel 

ntennas ALFA (ALFA Network, Taiwan) with 66 ° horizontal beam- 

idth and 16 ° vertical beam-width are used. 

.2. Feasibility test 

To test the technical feasibility of CSI to classify woodchips 

ased on MC levels, we collect CSI for woodchips at three distinc- 

ively different MC levels ( i.e. , 52.34%, 20.40% and 11.93%). Fig. 1 

hows the CSI amplitude and phase difference for the 15 th subcar- 

ier. As shown in Fig. 1 , there are distinctive differences in ampli- 

ude and phase difference of different MC levels from all three an- 

ennas. This preliminary feasibility test indicates that it is possible 

o develop a data-driven model to correlate CSI data with wood- 

hip MC level. Note that the confounding factor of woodchip pack- 

ng is not considered here. 

. Experimental setup and data collection 

.1. Experimental setup 

With the results from the feasibility test in Section II, we de- 

ign an experimental setup with antenna positions fixed on an 

crylic sheet. The experimental setup is shown in Fig. 2 , where 

wo Lenovo T400s systems equipped with IWL5300 NIC are set 3 

 apart. The woodchips at different MC levels are placed at the 

enter ( i.e., 1.5 m from transmitting and receiving antennas) in an 
3 
crylic container with an air-tight lid to avoid any changes in MC 

hile the data are being collected. 

.2. Data collection 

In previous studies a maximum of 5 MC levels have been stud- 

ed with minimum difference of 0.7% in MC ( Yang et al., 2018a ).

owever, this is not nearly sufficient for woodchip MC levels be- 

ause woodchips are usually stored outdoors, which introduces 

ignificant MC variations due to daily weather conditions, and 

easonal temperature and humidity changes. In this work, data 

re collected for 20 different MC classes or levels ranging from 

3.39 % to 11.81% on the wet basis (see Eq. (1) ). Total mass ( m T )

s measured during each experiment and oven drying method 

 ASTM, 2016 ; Reeb and Milota, 1999 ) was performed after all ex- 

eriments were conducted to determine the oven dry weight ( m D ). 

 T and m D are then used to determine the mass of water ( m W 
) 

nd MC according to Eq. (1) . The 20 different MC levels are plotted 

n Fig. 3 . There are two gaps in the tested MC levels, one around

5% and the other around 25%. This is due to the overnight expo- 

ure of the woodchips to air in the lab, which should be avoided if 

 model to be developed for accurate estimation of any MC level in 

he entire range. Nevertheless, this does not affect our methodol- 
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Fig. 3. 20 different MC classes/levels for experimental data collected. 
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gy development, nor the conclusions drawn based on the results 

btained. This is because there are three regions where MC levels 

re reasonably separated as shown in Fig. 3 . In addition, MC levels 

re narrowly separated at the high MC region and even more so at 

he low MC region. The minimum difference between MC levels is 

.05%. If a model can correctly classify MC levels with such narrow 

ifference, we expect it to work if more MC levels were included 

n the middle range with wider difference such as 1%, which is 

ufficient for pulping process optimization and control. 

As discussed previously, the woodchip packing or arrangement 

n the container is expected to have significant impact on CSI data. 

ased on the principle of randomization for addressing this con- 

ounding factor, the woodchips within the air-tight box are shuf- 

ed 10 times for each MC level. In other words, for each MC level,

0 datasets (i.e., samples) are collected corresponding to 10 shuf- 

es. Therefore, the experiments generate totally 200 samples for 

ll 20 MC levels. For each sample, 10,0 0 0 packets were sent from 

he transmitter (setup in injection mode) to the three receiver an- 

ennas (setup in monitoring mode). Data are collected only for the 

ine of sight (LOS) scenario, i.e., the woodchip container is placed 

n the middle of the center line between the transmitter and the 

eceivers. 

. Feature engineering and selection 

For wheat MC classification, normalized raw data were used in 

ong short-term memory (LSTM) recurrent neural network (RNN) 

 Yang et al., 2018a ) and RFB-NN ( Hu et al., 2019a ), while principal

omponent scores from normalized raw data were used in support 

ector machines (SVM) ( Yang et al., 2018b ). In the next section, 

e show that raw data are poor features for woodchip MC clas- 

ification due to the challenges discussed previously in Sec. 1. In 

ddition, the Wi-Fi packets are independent from each other ( i.e. , 

erially uncorrelated) as evidenced by the close-to-zero autocorre- 

ation coefficients beyond lag 0. Therefore, there is no reason to 

se an RNN such as LSTM to account for the serial dependency or 

ynamics of packets. 

.1. The challenges of using raw CSI data as features 

As discussed in the previous section, for each MC level we shuf- 

e the woodchips 10 times and collect CSI data for each shuffle to 

ddress the confounding factor of woodchip arrangement or pack- 

ng. Fig. 4 shows the raw CSI data of amplitude and phase differ- 

nce for woodchips at five distinctively different MC levels with 10 
4 
huffles at each MC level. The five MC levels are: 53.29%, 41.24 %, 

2.57 %, 20.47 % and 11.81 %, in that order where they are plotted 

n Fig. 4 . For the sake of better visualization and easier interpreta- 

ion, only 100 packets from the 10 th subcarrier for each shuffle are 

lotted. 

From Fig. 4 , the impact of shuffling can be seen in both am- 

litude and phase difference, although it is more obvious in the 

hase difference. The observation confirms our earlier suspicion 

hat packing or woodchip arrangement is a significant confound- 

ng factor to MC level. In addition to packing, another challenge is 

he significant noises presented in both amplitude and phase dif- 

erence. Finally, Fig. 4 shows no clear trend or pattern in amplitude 

r phase difference that correlates with MC levels. All these fac- 

ors present significant challenges to model MC level with raw CSI 

ata. As an illustrative example, we use linear discriminant analysis 

LDA) to perform classification using the raw CSI data, with either 

mplitude, or phase difference, or both. For training, 9 samples are 

andomly selected from 10 shuffled samples at each of the 20 MC 

evels, which results in 180 training samples. The remaining one 

huffled sample from each MC level is used for testing after the 

lassification model is trained. This process is repeated 100 times, 

esulting in 100 Monte Carlo runs and the classification results are 

hown in Fig. 5 . For performance evaluation, the classification ac- 

uracy of class i is defined as 

ccurac y i = 

p i 
n i 

(3) 

The overall accuracy of all classes is defined as 

ccuracy = 

∑ C 
i =1 p i ∑ C 
i =1 n i 

= 

∑ C 
i =1 p i 
N 

(4) 

here C denotes total number of classes, n i true/known number 

f samples in class i , N = 

C ∑ 

i =1 

n i total number of samples, and p i 

umber of correctly predicted samples in class ... Fig. 5 (a) com- 

ares the overall classification accuracy of all classes when differ- 

nt components of the CSI data were used. The comparison indi- 

ates that LDA classifier using both amplitude and phase difference 

erforms the best with 86.15% classification accuracy, followed by 

DA classifier using phase difference with 83.85% classification ac- 

uracy, while the LDA classifier using amplitude alone results in 

he lowest classification accuracy of 76.10%. Fig. Fig. 5 (b) plots 

he confusion matrix for the best LDA classifier of using CSI am- 

litude and phase difference, which allows us to dig deeper into 

he classification results. As can be seen from Fig. 5 (b), classifica- 

ion accuracy of individual classes ranges from 15% to 100%. It can 

lso be seen that classification accuracy alone is not a good perfor- 

ance indicator. For example, classification accuracy alone would 

ot be able to distinguish the following two scenarios: (1) the ac- 

ual scenario of misclassifying ten 53.38% MC level samples (class 0 

n Fig. 5 (b)) to 16.52 % MC level (class 12); (2) a hypothetical sce-

ario of misclassifying ten 53.38% MC level (class 0) to 51.59 % MC 

evel (class 1). Both scenarios have a classification accuracy of 90%, 

ut with drastically different im plications in this application. For 

xample, if MC level is used to control the chemical usage, the for- 

er would let to significantly worse outcome than the latter. With 

his point in mind, we see from Fig. 5 (b) that the classification 

esults using raw CSI data are poor as there are samples misclas- 

ified far off their actual classes. In this work, when the predicted 

lass of a sample is off its true class by more than one level, we 

erm it “far-off misclassification”, to distinguish it from the sce- 

ario of “nearest-neighbor misclassification”, where the predicted 

lass is off true class by one level (either above or below). Based 

n this definition, there are totally 478 misclassified samples, of 

hich 30 are far-off misclassifications (highlighted by red circles 

n Fig. 5 (b)). 
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Fig. 4. Raw CSI data for 5 different MC levels showing 10 shuffles for each MC level: (a) amplitude; (b) phase difference. 

Fig. 5. (a) Overall classification accuracy using different raw CSI data with LDA classifier based on 100 Monte Carlo runs. (b) Classification confusion matrix of 100 Monte 

Carlo runs when both amplitude and phase difference are used. Since there are 100 samples in each class (true labels), the numbers on diagonal represent the percentage 

of classification accuracy of individual classes, which range from 15% to 100%. The far-off misclassifications ( i.e. , the predicted class differs from the true class by more than 

one MC level) are highlited by red circles. 
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.2. Feature engineering with statistics pattern analysis (SPA) 

To address the shortcoming of raw CSI features that lead to 

ot only low classification accuracy but also far-off misclassifica- 

ions, in this work, statistics pattern analysis (SPA) is utilized to 

enerate more robust and predictive features. SPA was proposed to 

upplement the traditional multivariate modeling approaches that 

irectly utilize process variables (e.g., temperature, pressure, etc.) 

or monitoring, control and inference purposes. In SPA, the statis- 

ics of the process variables, instead of process variables them- 

elves, are used for modeling. The statistics capture the character- 

stics of each individual variable (e.g., mean and variance), the in- 

eractions among different variables (e.g., covariance), the dynam- 

cs (e.g., auto-, cross-correlations), as well as process nonlinear- 

ty and process data non-Gaussianity (e.g., skewness, kurtosis, and 

ther higher order statistics or HOS). SPA is based on hypothesis 

hat these statistics are sufficient and even better in capturing pro- 

ess characteristics (e.g., static properties and dynamic behaviors) 

han original process variables. This hypothesis has been supported 

P

5 
n various applications, including fault detection ( He et al., 2019 ; 

e and Wang, 2018a , 2011 ; Wang and He, 2010 ), fault diagnosis

 He et al., 2012 ; He and Wang, 2018a ), and virtual metrology or

oft sensor ( Shah et al., 2020 , 2019b ; Suthar et al., 2019 , 2018 ). Due

o the fact that statistics are computed using a set of observatons, 

hey are less affected by noises. In addition, there are robust statis- 

ics that are insensitive to outliers. Finally, due to central limit the- 

rem (CLT), these statistics are asymptotically normally distributed. 

or these reasons, SPA is selected in this work to extract robust and 

redictive features from raw CSI data. It is worth noting that SPA 

oes not require preprocessing of the CSI data (i.e., outlier detec- 

ion and handling, noise removal/reduction) that has been required 

n previous studies ( Hu et al., 2019b ; Yang et al., 2018b , a ). The

chematic diagram of SPA based classification is shown in Fig. 6 . 

n the first step, various statistics are extracted from the CSI am- 

litude and phase data. 

 : X → F (5) 
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Table 1 

Statistics considered as features in this work. 

Statistics Definition Statistics per sample 

Mean μ(x ) = 
1 
K 

K ∑ 

i =1 

x i , where x is a CSI amplitude or phase difference 

variable 

150 

Median Med(x ) = 
1 
2 
( 

⇀ 

x ( K+1 ) / 2 + 

⇀ 

x ( K+1 ) / 2 ) where 
⇀ 

x denotes sorted x in 

ascending order; �·� and �·� denote the floor and ceiling 
functions respectively 

150 

Maximum Max (x ) = 

⇀ 

x K 150 

Minimum Min (x ) = 

⇀ 

x 1 150 

Interquartile range IQR (x ) = Q 3 (x ) − Q 1 (x ) , where Q 3 (x ) and Q 1 (x ) are the upper and 

lower quartiles of x 

150 

Standard Deviation s (x ) = 

√ 

1 
K−1 

K ∑ 

i =1 

( x i − μ(x ) ) 
2 

150 

Mean absolute deviation D mean (x ) = 
1 
K 

K ∑ 

i =1 

| x i − μ(x ) | 150 

Median absolute deviation D med (x ) = 
1 
K 

K ∑ 

i =1 

| x i − Med(x ) | 150 

Coefficient of variation C V (x ) = 
s (x ) 
μ(x ) 

150 

Skewness γ (x ) = 

1 
K 

∑ K 
i =1 ( x i −μ(x ) ) 

3 

s (x ) 
3 150 

Kurtosis κ(x ) = 

1 
K 

∑ K 
i =1 ( x i −μ(x ) ) 

4 

s (x ) 
4 150 

Cross-correlation coefficient (lag 0) R xy = 

1 
K 

∑ K 
i =1 [ ( x i −μ(x ) )( y i −μ(y ) ) ] 

s (x ) s (y ) 
, where x and y are two CSI amplitude 

variables of the same antenna, or phase difference variables of 

the same antenna pair 

1 
2 
( 30 × 29 ) × 3 + 

1 
2 
( 30 × 29 ) × 2 = 

2175 

Mean difference of consecutive 

subcarriers 

MDS C xy = μ(y ) − μ(x ) , where x and y are CSI amplitude or 

phase difference variables of two consecutive subcarriers of a 

same antenna 

29 × 3 + 29 × 2 = 145 

Fig. 6. Schematic of SPA-based feature extraction for classification. 
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here P denotes the operator that maps the 3D CSI data array 

 ε R N×R ×K containing N samples, R amplitudes and phase dif- 

erences of all subcarriers from K packets into a feature matrix 

 ε R N×S containing N samples with each sample now charac- 

erized by S statistics, such as mean, standard deviation, skew- 

ess and kurtosis of amplitude of each subcarrier calculated over 

 packets. Note that K does not have to be the same across dif-

erent samples, as long as it is sufficiently large to obtain reli- 

ble statistics. This is convenient if different number of packets 

ere received for different samples. For between-variable statistics, 

etween-subcarrier differences are considered, but between-packet 

tatistics are not considered as packets are independent from each 

ther. In Fig. 6 , Y ε R N×1 denotes the MC levels for N samples. In

he second step, a classification model is developed to capture the 

elationships between the sample features ( i.e. , statistics) and the 

esponse ( i.e. , MC levels). The SPA framework is a flexible method 

s different statistics can be added or removed based on how well 

hey capture the relationships between the predictors and the re- 

ponse variables or classes. 

Based on the SPA framework, we extracted 13 statistics (listed 

n Table 1 ) of 90 amplitude variables (i.e., 3 antennas, each with 

0 subcarriers) and 60 phase difference variables (i.e., 2 indepen- 

ent antenna pairs, each with 30 subcarriers). All statistics are 

omputed over 40,0 0 0 observations for each of the 200 samples 

i.e., 10 samples/shuffles for each of the 20 MC levels). Autocorrela- 
6 
ions are not considered because the packets are independent from 

ach other as evidenced in Fig. 7 (a) where the sample autocorre- 

ation coefficient of the CSI amplitude from one subcarrier of one 

ntenna is shown, which resembles the pattern of a typical ran- 

om signal. For cross-correlations, only cross-correlations between 

ubcarriers of the same antenna with lag 0 is considered due to 

he absence of serial correlation between lags. Fig. 7 (b) shows 

he cross-correlation coefficient of CSI amplitude among subcar- 

iers of a same antenna. It can be seen that CSI amplitude (and 

hase difference, not shown) from different subcarriers are highly 

orrelated, especially the neighboring subcarriers. Because of this 

bservation, we also considered mean difference between consec- 

tive subcarriers. The idea is to capture the relationships between 

onsecutive subcarriers in a more quantitatively way than cross- 

orrelation coefficient between them. In this way, the overall shape 

f the CSI amplitude or phase difference across subcarriers can be 

aptured. 

Table 1 shows that there are 3,970 feature candidates for each 

ample, which is a rather large feature pool considering that we 

nly have 200 samples. Therefore, a feature selection is desired be- 

ore modeling to avoid over-fitting. There are many feature selec- 

ion methods available. In this work we employ principal compo- 

ent analysis (PCA) for its simplicity and easy visualization, which 

s detailed in the next section. 

.3. Feature selection with principal component analysis (PCA) 

The goal of feature selection is to find features that maximize 

etween-class variance (i.e., distinct difference for samples of dif- 

erent MC levels) while minimizing within-class variance (i.e., high 

imilarity for samples of the same MC level). For simplicity and 

obustness of features, we compare features by types listed in 

able 1 . This is conducted via unsupervised learning of PCA on 

ach feature type and project them onto low-dimensional prin- 

ipal component subspace (PCS). Each feature was normalized to 

ero mean unit variance across all 200 samples prior to PCA. The 

esults are illustrated in Fig. 8 where the 87 CSI amplitude mean 

ifference of consecutive subcarriers (MDCSs) of 70 samples were 
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Fig. 7. (a) Auto-correlation coefficients of CSI amplitude of one antenna subcarrier over 40,0 0 0 packets show no significant serial correlation among packets; (b) Cross- 

correlation coefficients of CSI amplitude between subcarriers of one antenna show high correlations, especially between consecutive subcarriers. 

Fig. 8. (a)~(c): PCA score plots of CSI amplitude means of 70 samples at 7 different MC levels (i.e., 10 samples at each MC level); (d)~(f): PCA score plots of CSI amplitude 

mean difference of consecutive subcarriers (MDCS) of the same 70 samples. MDCSs show much better quality as features in both maximizing between-class variance and 

minimizing within-class variance. 
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rojected onto the first three principal component directions to 

btain the three “score” plots ( Fig. 8 (d)~(f)). For comparison, the 

core plots of 150 CSI amplitude means of the same 70 samples 

ere also generated ( Fig. 8 (a)~(c)). As can be seen from Fig. 8 ,

DCSs show not only significant between-class differences (i.e., 

amples from different MC levels are far apart in one or multiple 

core plots), but also significant within-class similarities (i.e., sam- 

les from the same MC level but different shuffles form a com- 

act cluster). In contrast, the mean of CSI amplitude is much more 

ensitive to woodchip packing, indicated by the wide scattering of 

amples from the same MC level but different shuffles. In addi- 

ion, compared to CSI amplitude MDCS, the CSI amplitude mean 

s less sensitive to MC levels, indicated by the less separation of 

amples from different MC levels. As mean directly resembles raw 
7 
ata behavior, this is an indication of potentially poor performance 

or classification using raw data, which was verified in the previ- 

us section. Through this comparison of all feature types listed in 

able 1 , it was found that the MDCSs of CSI amplitude are the best

eature candidates and therefore were selected as the final fea- 

ures for developing classification models. In this way, we reduce 

he feature space from 3,970 to 87. It is worth noting that further 

eature selection can be conducted to use MDCSs of selected sub- 

arriers instead of all 30 subcarriers. It is also worth noting that 

lassification performance is expected to improve if more a sys- 

ematic feature selection is conducted, such as combining features 

rom different types. These will be our future work to further im- 

rove the technology. However, in this work, we try to strike a bal- 
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Fig. 9. Overall process flow diagram of woodchip MC level classification using CSI 

data. 
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nce that leans more towards simplicity and robustness than nu- 

erical performance. 

. Model building 

Once the 87 CSI amplitude MDCSs are selected as the fea- 

ures, the next step is to develop classification models. In this work 

e compare various state-of-the-art machine learning classification 

echniques in classifying woodchip MC levels using these features. 

he procedure is outlined in Fig. 9 . For each classification model, 

 samples are randomly selected from 10 shuffled samples at the 

ame MC level for each of the 20 MC levels, which results in 180

raining samples. The remaining one shuffled sample from each 

C level is used for independent testing, which results in a to- 

al of 20 testing samples. Due to the limited number of samples, a 

onte Carlo validation and testing (MCVT) procedure ( Shah et al., 

019b ) is followed to repeat the random sample selection, and 

odel training and testing procedure 100 times. In addition to the 

ean and standard deviation of the overall classification accuracy 

 Eq. (4 )) of 100 such MCVTs, the confusion matrix resulted from 

he same MCVTs is also used to evaluate the performance of dif- 

erent classification models. 

The machine learning classification techniques studied in this 

ork include linear discriminant analysis (LDA), support vector 

achine (SVM), artificial neural network (ANN), as well as ensem- 

le modeling of bagging with LDA, and ensemble boosting method 

GBoost. These methods are briefly reviewed in the following sec- 

ions. 

.1. Linear discriminant analysis (LDA) 

LDA is a robust supervised learning technique for multiclass 

lassification. It is a generalization of Fisher’s linear discriminant 

hich find a linear combination of features to separate multi- 

les classes in the dimensional space. Scikit-learn Python library 

 Pedregosa et al., 2011 ) is used to implement LDA in this work, 

hich fits a Gaussian density to each class and estimates the class 

onditional distribution of data for each class k using Bayes’ theo- 
8 
em: 

 ( y = k | x ) = 

P ( x | y = k ) P ( y = k ) 

P ( x ) 
= 

P (x | y = k ) P ( y = k ) ∑ C 
l=1 { P ( x | y = l ) P ( y = l ) } 

(6) 

here x ∈ R d is a sample feature vector of dimension d, y is the 

lass label of that sample, C is the total number of classes. LDA 

akes predictions by estimating the probability of a new sample 

elonging to each class. Based on the class with the highest prob- 

bility, the new sample is assigned to that class. More information 

n multiclass LDA can be found in ( Friedman et al., 2001 ). 

.2. Support vector machine (SVM) 

Support vector machine (SVM) is a supervised machine learning 

echnique. In linear SVM classification of two classes, classification 

s performed by finding a hyperplane that maximizes the separa- 

ion or margin between the two classes. If the two classes are not 

inearly separable, the input vectors can be nonlinearly mapped to 

 high-dimensional feature space through a kernel function that 

resumably makes the separation easier in the kernel space. In 

his application, it was found that linear SVM performs better than 

onlinear kernel (e.g., radial basis function (RBF) and sigmoid ker- 

els) based SVMs. This is consistent with the preliminary finding 

n the previous section where a subset of 7 classes were shown to 

e linearly separable ( Fig. 8 (d)~(f)). More information on SVM can 

ound in ( Bishop, 2006 ; Burges, 1998 ; Cortes and Vapnik, 1995 ). In

his work, multiclass classification is carried out using scikit-learn 

 Pedregosa et al., 2011 ) with the “one-versus-one” approach where 

90 (i.e., ( 20 × 19 ) / 2 ) classifiers are constructed. 

.3. Artificial neural network (ANN) 

Artificial neural network (ANN), or simply neural network (NN), 

as developed with the idea of mimicking human brains, which 

ow form the foundation of many deep learning techniques. A 

eural network consists of several layers, including an input layer 

hat takes input data, one or more hidden layers depending on the 

omplexity of the problem and the representations to be learned, 

nd an output layer that outputs either discrete or continuous val- 

es depending on the type of problem, i.e., classification or regres- 

ion. The constructed ANN represents interconnected input and out 

nits or nodes (called neurons), in which each connection (called 

n edge) has an associated weight. The training of an ANN for clas- 

ification is to adjust these weights to optimize the prediction of 

orrect classes for the training data (e.g., through minimizing a 

ost function such as classification error). Once trained, the ANN 

akes a new set of similar data and make class predictions based 

n the trained model. Keras is used for ANN implementation in 

his work. Because of the likely linear separability of this particular 

pplication, one hidden layer is used in this work. Other hyperpa- 

ameters, including number of neurons in the hidden layer, opti- 

izer, activation function in the hidden layer, initialization, epochs 

nd batch size, are optimized using random search followed by 

ayesian optimization. More information on ANN can be found in 

 Aggarwal, 2018 ; Nielsen, 2016 ; Ripley, 1996 ; Theodoridis, 2015 ). 

.4. Bagging 

Bagging is a bootstrap ensemble method that creates individ- 

al models for its ensemble by training each classifier on a ran- 

om distribution of the training data. Each classifier’s training set 

s generated by random sampling, with or without replacement 

rom all the samples available for training. Individual predictions of 

ach classifier are aggregated based on a voting scheme (hard vot- 

ng or soft voting) to form a final prediction. A simple schematic 
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Fig. 10. Schematic of bagging-based classifier. 
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Table 2 

Overall classification accuracy of LDA when features from 

single or all antennas are used. 

Data used Classification accuracy 

Antenna 1 93.05 ± 5.17 

Antenna 2 92.6 ± 5.97 

Antenna 3 96.35 ± 3.40 

All 97.55 ± 2.89 

Fig. 11. Comparison of classification accuracy of LDA when features from different 

antennas are used. 
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f a bagging classifier is shown in Fig. 10 . Each base classifier can

e trained in parallel with the sub samples generated with ran- 

om sampling. Bagging is known to reduce overfitting or high vari- 

nce by voting. Different base estimators can be used within bag- 

ing. In this work, LDA classifier is used due to the linear sepa- 

ability of the classes. Scikit-learn is used to implement bagging. 

he hyperparameters, including number of base classifiers, boot- 

trapping samples and/or features, and the sample/feature size, are 

ptimized using random search followed by Bayesian optimiza- 

ion. More information on bagging can be found in ( Breiman, 1999 , 

996 ; Ho, 1998 ; Louppe and Geurts, 2012 ). 

.5. XGBoost 

Another ensemble method that constructs multiple regression 

rees is boosting. In comparison to bagging, boosting approaches 

ombine weak learners into a strong learner iteratively by optimiz- 

ng a cost function along the negative gradient direction. XGBoost 

s one of the most successful boosting approaches under the gra- 

ient boosting framework. The XGBoost algorithm objective com- 

ines training loss and regularization terms for a trade-off on bias 

nd variance. Python library xgboost is used for implementation. 

he hyperparameters, include number of base learners (i.e., regres- 

ion trees), learning rate, updater, feature selector, and regulariza- 

ion parameters, are optimized using random search followed by 

ayesian optimization. More information on XGBoost can be found 

n ( Chen and Guestrin, 2016 ). 

.6. Hyperparameter optimization 

Hyperparameter optimization is very important in training ma- 

hine learning models as the model architecture directly affects 

he model performance. There are three major approaches for hy- 

erparameter optimization, including grid search, random search 

 Bergstra and Bengio, 2012 ; Bergstra et al., 2011 ) and Bayesian op-

imization ( Bergstra et al., 2013 ; Komer et al., 2014 ). Grid search

an be quite effective when dealing with a small hyperparameter 

pace. In general, however, random search and Bayesian optimiza- 

ion are more efficient than grid search. For complex models with 

arge parameter spaces, such as XGBoost and ANN, the time re- 

uired for grid search could be prohibitive. In these cases, random 

earch or Bayesian optimization is preferred. Random search sam- 

les random parameter combinations based on certain statistical 

istributions. The idea is that, provided enough iteration, random 

earch can find an optimum or close to optimum in lesser time 

han grid search, although random search does not guarantee a 

lobal optimum. Both grid search and random search find optimal 

yperparameters in an isolated way without considering past eval- 

ations. In contrast, Bayesian optimization considers past hyperpa- 
9 
ameter values that minimize the cost function by building a surro- 

ate model based on past evaluation results. The surrogate model 

s presumably computationally cheaper to optimize than the origi- 

al objective function, so the next input values are selected by ap- 

lying criteria, such as expected improvement (EI), to the surrogate 

odel. In this work, random search is utilized to explore the hy- 

erparameter space. The final hyperparameters are determined by 

ayesian optimization with Tree Parzen estimator using EI as the 

riterion. The Scikit-learn library is used for random search while 

yperopt ( Bergstra et al., 2013 ) is used for Bayesian optimization. 

. Results and discussion 

In this section, we discuss our findings of woodchip MC level 

lassification using the 87 features extracted following the SPA 

ramework. The classification results from the five different clas- 

ification methods discussed in the previous section are compared. 

s discussed previously, due to the limited number of samples, 100 

CVT simulations are conducted. For every classification technique 

n each MCVT simulation, hyperparameters are optimized using 

tratified 10-fold cross validation. The trained model is used for 

valuation on the set-aside testing set. The average and standard 

eviation of classification accuracy of 100 such runs (100 different 

est sets) are used to evaluate the performance of each classifica- 

ion method. In addition, the overall classification confusion matrix 

rom 100 MCVTs is used to visualize and detect the far-off misclas- 

ifications where the predicted class is off its true class by more 

han one MC level. 

We first investigate effect of antennas using LDA. The mean and 

tandard deviation of overall classification accuracy are shown in 

able 2 and Fig. 11 . It can be seen that, when a single antenna (i.e.,

ith 29 out of 87 features) is used, the antenna 3 provides the best 

nformation for classification. The best results, in both mean and 

tandard deviation of classification accuracy, are obtained when all 

hree antennas (i.e., with all 87 features) are used. 

Another advantage of using all three antennas is observed when 

omparing the confusion matrix of different scenarios. Fig. 12 com- 

ares the confusion matrices of using only antenna 3 with that of 

sing all three antennas. It can be seen that there are 29 far-off
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Fig. 12. Comparison of classification confusion matrices when only features from antenna 3 are used (a) vs. when all features from all three antennas are used (b). The red 

circles/ellipse highlight the far-off misclassifications. 

Fig. 13. Comparison of overall classification accuracy when different classification 

techniques are used. 

Table 3 

Overall classification accuracy when differ- 

ent classification techniques are used. 

Method Classification accuracy 

SVM 95.50 ± 3.79 

ANN 95.85 ± 4.15 

XGBoost 96.40 ± 3.70 

LDA 97.55 ± 2.89 

Bagging (LDA) 98.75 ± 2.29 
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isclassifications when only antenna 3 is used. When all three an- 

ennas are used, there is no far-off misclassification occur. There- 

ore, for the remaining of this work, all 87 features from all three 

ntennas are used. 

Next, using all 87 features from all three antennas, we com- 

are performance of different classification methods. The results 

re shown in Fig. 13 and Table 3 , which indicate that all methods

erform well and all achieve greater than 95% overall classification 

ccuracy. SVM performs the worst among all methods in terms 

f mean classification accuracy. ANN performs slightly better than 

VM in mean classification accuracy but with slightly higher stan- 

ard deviation, indicating lower consistency when different train- 

ng and testing samples are used. However, an analysis into the 

onfusion matrices shows that SVM results in seven far-off mis- 

lassifications while all other methods result in zero far-off mis- 

lassification ( Fig. 14 ). XGBoost performs slightly better than 
10 
ANN and SVM, but not as good as LDA. This result is somewhat 

urprising as XGBoost has outperformed other techniques in many 

aggle competitions on real world datasets and a variety of ap- 

lications. However, as shown earlier in Fig. 8 , this application is 

ore of a linearly separable case with the features selected, which 

xplains the good performance from LDA. The results also demon- 

trate the robustness of LDA when dealing with linearly separable 

ases. Nevertheless, bagging can still improve a base classifier such 

s LDA in this work. As shown in Table 3 , bagging of LDA provides

he best performance with the highest average overall classification 

ccuracy of 98.75% and the smallest standard deviation of 2.29% 

rom 100 MCVT’s. The confusion matrices of all methods, shown in 

ig. 12 (b) for LDA and Fig. 14 for the other four methods, indicate

hat only SVM results in far-off misclassifications while all other 

ethods only result in nearest-neighbor misclassification. The spe- 

ific number of the two types of misclassifications are compared 

n Fig. 15 , where the LDA on raw CSI amplitude data is used as

he reference. Fig. 15 shows that feature engineering and selection 

lays a key role in this application, and all methods based on the 

7 CSI amplitude MDCS features easily outperform LDA with raw 

SI amplitude data as features. 

We also compared the following two scenarios of hyperparam- 

ter tuning: 

(A) A set of hyperparameters are optimized for each MCVT run 

using the selected training samples, and that set of hyperpa- 

rameters are used for evaluation on the corresponding test 

set. Therefore, different MCVT runs could potentially have 

different hyperparameter values. 

(B) The optimal hyperparameters from 100 MCVT’s of Scenario 

A are stored and the mode of each hyperparameter (i.e., 

the value appears most frequently) is selected to construct a 

universal set of hyperparameters. The universal hyperparam- 

eter set is used for model training and testing of the same 

100 sets of training and testing samples as in Scenario A. 

One potential issue with Scenario B is that a test sample in one 

CVT is potentially used as a training sample in other MCVT’s. 

hen the hyperparameters from all MCVT’s are pooled together 

o determine the mode, essentially all samples have been used as 

raining samples for hyperparameter tuning and there are no inde- 

endent samples left for testing. This is confirmed by the compari- 

on of the classification accuracy of the two scenarios. As shown in 

able 4 , except LDA, all other methods tuned following Scenario B 

lightly outperform their counterparts tuned following Scenario A. 
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Fig. 14. Classification confusion matrices of different methods: (a) SVM, (b) ANN, (c) XGBoost, (d) Bagging with LDA as the base estimator. The confusion matrix of LDA is 

shown in Fig. 12 (b). The far-off misclassifications by SVM are circled by red ellipse. 

Fig. 15. Comparison of far-off misclassification and total misclassification of different approaches. 

11 



K. Suthar and Q.P. He Computers and Chemical Engineering 154 (2021) 107445 

Table 4 

Comparison of classification accuracy under two hy- 

perparameter tuning scenarios. 

Method Scenario A Scenario B 

SVM 95.50 ± 3.79 96.40 ± 3.63 

ANN 95.85 ± 4.15 96.35 ± 3.61 

XGBoost 96.40 ± 3.70 96.40 ± 3.34 

LDA 97.55 ± 2.89 97.55 ± 2.89 

Bagging (LDA) 98.75 ± 2.29 99.35 ± 1.69 
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herefore, the results reported previously in this work are all based 

n Scenario A for fair evaluation of all methods with independent 

est samples. 

. Conclusion 

For the pulp and paper industry in the U.S., the pulping pro- 

ess has been identified as a major opportunity for improving en- 

rgy efficiency and productivity. However, the implementation of 

odel-based optimization, control and other advanced manufac- 

uring technologies has been hindered by the lack of real-time 

ensing of woodchip MC under the harsh manufacturing environ- 

ent. To overcome this bottleneck, we investigate the potential of 

n IIoT short-range Wi-Fi based woodchip MC sensing technology. 

he proposed technology takes the advantages of IIoT devices (e.g., 

oughness, connectivity, low-cost, small-size, etc.), while overcom- 

ng their shortcomings (e.g., the machine learning challenges of 

essy big data) by SPA-based feature engineering. Specifically, this 

ork demonstrates that woodchip packing is a strong confound- 

ng factor to woodchip MC level, evidenced by its significant im- 

act on both amplitude and phase of the collected CSI data. Al- 

hough randomization is a good strategy to mitigate this confound- 

ng factor, it is not sufficient by itself. As a validation, we demon- 

trated that classification using raw CSI data results in not only 

ow classification accuracy, but also many far-off misclassifications 

here the predicted MC class is off its true class by more than one 

evel. The result also illustrates that classification accuracy alone 

s not a good performance metric, and the practical implications 

e.g., cost) of misclassification must also be considered. We show 

hat SPA-based feature engineering framework is a systematic ap- 

roach for generating physically and statistically meaningful fea- 

ures compared to other kernel-type or algorithmically generated 

 e.g. , square, square root, exponential, etc.) features that are of- 

en unintuitive. Through simple feature selection such as PCA, the 

ean difference of consecutive subcarriers (MDCSs) of CSI ampli- 

ude were found to be robust features that are not only highly sen- 

itive to MC levels but also highly insensitive to woodchip packing. 

sing MDCSs as features, we demonstrated the superior classifica- 

ion performance of using CSI data collected off all three antennas 

ompared to that of using any single antenna. Finally, using MDCSs 

rom all three antennas, we investigate the representative state- 

f-the-art classification techniques, including LDA, SVM, ANN and 

nsemble learning methods including bagging with LDA and gra- 

ient boosting with XGBoost. The results showed that LDA and its 

agging extension perform the best among all methods, achieving 

verall classification accuracy of 98~99%. In addition, when MDCSs 

re used as features, only SVM results in far-off misclassifications, 

hile all other methods only result in nearest-neighbor misclas- 

ifications, which is a significant improvement compared to when 

aw CSI data were used as features. 

It is worth noting that although woodchip packing has signifi- 

ant impact to the collected CSI data (both amplitude and phase 

esponses), its impact to MC classification is completely elimi- 

ated after we selected SPA features that are totally insensitive 

o packing. Although the randomization is done by shaking the 
12 
ame woodchips within a given volume - which means the vol- 

me density of the sample is about the same, the linear den- 

ity ( i.e. , linear void/packing fraction) actually varies significantly. 

f we assume linear paths of the Wi-Fi signal propagation, shuf- 

ing even the same woodchips can introduce significant variations 

o the linear void (or packing) fraction along the straight lines be- 

ween the injector and the three receivers, as evidenced by the 

ignificant changes in the amplitude and phase responses of the 

SI data. However, our results show that the selected SPA features 

 i.e. , mean difference of consecutive subcarriers of CSI amplitude) 

re insensitive to the shuffling, as evidenced by the high classifica- 

ion accuracy of independent ( i.e. , differently shuffled) testing sam- 

les. Therefore, we can conclude that the selected SPA features are 

nsensitive to the void fraction (or packing density) of the wood- 

hips. This is particularly convincing when we consider the excel- 

ent performance of the technology at the low MC range where 

here is only 0.05% change in MC level but significant change in 

inear void fraction along the Wi-Fi propagation paths due to shuf- 

ing. Nevertheless, it is desirable to test woodchips with different 

izes to further validate the technology. We envision that, when 

mplemented to real industrial applications, some form of random 

ampling can be implemented to obtain multiple MC estimations, 

nd some form of aggregation ( e.g. , average) of different measure- 

ents can be used to obtain a reliable estimation of the MC level 

or a large quantity of woodchips. 

It is also worth noting that this work only establishes the feasi- 

ility of this technology in the lab using a box. Whether the tech- 

ology can be applied in more flexible settings, such as woodchips 

ot in a box but in a pile on a fixed or moving surface ( e.g. , a con-

eyor belt), requires further investigation. There is no doubt that 

he problem will be more challenging than what has been stud- 

ed in this work, which is under a much better controlled envi- 

onment in a lab. In addition, we only demonstrate the success of 

lassification-based woodchip MC estimation in this work, while 

ur preliminary results have shown that the regression based MC 

stimation is much more challenging for this application. This is 

ue to the fact that, although MDCSs of CSI amplitude enables lin- 

ar separation of different MC levels, the functional relationship 

etween CSI data and woodchip MC values is actually much more 

omplicated and research in this area is ongoing. 
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