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specifically, better-remembered items might be looked at more than 
forgotten items, leading to an advantage for those items in the choice 
process. 

On the other hand, in memory-based choices, attention might overall 
play a more prominent role because participants can rely less on the 
options' subjective values, as they do not see them directly, but have to 
retrieve them from memory. In this case, the necessity to retrieve op
tions might enhance the influence of visual attention, independent of the 
recall success. Recent work suggests that looking more at an option 
amplifies its subjective value (Smith & Krajbich, 2019). In our 
remember-and-decide task, people are presented with two equally 
salient white squares and try to recall the identities and their value to 
find the better option. We hypothesize that the choice process is medi
ated by attention: looking longer at a particular area makes that option 
more attractive and more likely to be chosen in memory-based 
compared to non-memory based choice. 

To test these predictions, we conducted an eye-tracking experiment 
in which participants completed an adapted version of the remember- 
and-decide task (Fig. 1). In this task, participants first learned the as
sociation between choice options (i.e., snack items) and locations. Then, 
they were asked to indicate their preferred option in binary decisions. In 
two-thirds of trials (subsequently referred to as memory trials), partici
pants had to recall the choice options from memory. The remaining third 
of trials served as control trials, in which the options were displayed on 
the screen. After the decision phase, the memory for each option was 
probed via cued recall. During the learning and decision phases we used 
eye-tracking to record participants' eye movements. 

To better understand the cognitive process underlying the role of 
attention in memory-based decisions, we applied and adapted a recently 
proposed computational model that integrates eye-movement data into 
the choice process. The Gaze-weighted Linear Accumulator Model 
[GLAM; Thomas, Molter, Krajbich, Heekeren, & Mohr, 2019] is based on 
the attentional Drift Diffusion Model [aDDM; Krajbich et al., 2010 
Krajbich & Rangel, 2011] and describes how the value of the presented 
choice options and the gaze proportion of each option determine de
cisions. GLAM is a multi-alternative sequential sampling model (Buse
meyer, Gluth, Rieskamp, & Turner, 2019), and thus makes joint 
predictions of response times and decisions for two or more choice op
tions. It has been shown to offer very robust parameter estimates, which 
makes it a suitable tool to compare parameters across our different 
conditions of memory- and non-memory-based decisions. 

Our results provide evidence for an even stronger influence of 
attention on preference formation in memory-based decisions, as par
ticipants' tendency to prefer the option they looked at longer was 
enhanced in memory trials as compared to control trials. Computa
tionally, this difference mapped onto different estimates of the param
eter that quantifies the influence of attention on preference formation in 
memory and control trials. However, we did not observe longer dwell 
time on remembered (compared to forgotten) items, so that attention 
does not appear to mediate the memory bias on preferential choice. 

2. Method 

All processed data and data analysis files of this study can be found 
on the Open Science Framework website (osf.io/fvqhu/). 

2.1. Participants 

A power analysis with G*Power [version 3.1.9.2; (Faul, Erdfelder, 
Lang, & Buchner, 2007)] indicated that a sample size of n = 32 is 
required to identify the memory bias in preferential choice (one sample 
t-test, one-tailed, power = 0.95, medium effect size Cohen's d = 0.6). A 
total of 51 participants started the experiment and we continued data 
collection until complete data was obtained from 40 participants (data 
from 11 participants had to be excluded; 5 participants did not show up 
for the second session, 3 were excluded due to technical problems, 2 

could not be eye-tracked, 1 aborted the study). In addition, the data of 
one participant was excluded from the analyses because there were too 
few critical trials with one remembered and one forgotten option (see 
section data exclusion). In our behavioral analysis we thus included n =
39 participants (women = 29, age: range 18–46, M = 24.08, SD = 5.34, 
BMI: range 16.92–35.08, M = 22.16, SD = 3.27). Participants performed 
two sessions differing only in the decision phase on the remember-and- 
decide task (more details see section experimental procedures). From the 
39 included participants, 20 participants completed first a parallel 
presentation session and one week later a sequential presentation ses
sion,1 and vice versa for the other 19 participants. In the parallel session, 
choice options were presented simultaneously on the screen (see details 
in Section 2.4). All participants had normal or corrected-to normal 
vision with glasses. The study was approved by the Institutional Review 
Board of the Faculty of Psychology, University of Basel, and all partic
ipants gave written informed consent. For their participation, they 
received either course credit or 5 Swiss Francs (CHF) per 15 min. In 
addition, they had the opportunity to get two snack bonuses per session 
(see the Section 2.4.2). 

2.2. Apparatus 

Participants were seated in front of a 24-in. computer screen (reso
lution 1680 × 1050 pixel), instructed to move as little as possible during 
the main experiment and to sit comfortably. If necessary the chair or the 
screen were moved to optimize eye tracking (with an ideal distance 
between participant and screen of 60 to 80 cm). Stimulus presentation 
and creation of choice sets were realized using MATLAB Version R2016a 
and its toolbox Cogent 2000 (version 1.33). The screen resolution was 
set to 1280 × 1024 pixel. An SMI RED 500 eye-tracking device was used 
to record participants' gaze positions at a sampling rate of 500 Hz. 

For the main remember-and-decide task participants performed 24 
rounds in four blocks of approx. 20 min each with a mandatory break 
after every sixth round. We included the breaks to avoid participants 
getting tired and unfocused, therefore we asked participants to either 
leave the room or to stand up and move around during that time. The 
eye-tracking recording software (iView X™ SDK version 3.6) was 
controlled via MATLAB using remote commands. The eye tracker 
sampled data of both eyes at 500 Hz during the encoding and the de
cision phases. The calibration procedure consisted of a five-point cali
bration followed by a four-point validation. The calibration procedure 
was repeated after each break or in case a fixation criterion was not 
reached while participants had to fixate on a fixation cross centered on 
the screen. The fixation criterion tested whether the collected eye- 
tracking data sample deviated >200 pixels left/right/top/down from 
the screen's centroid within ten independent data samples (a data 
sample contains 100 data points collected every millisecond, consisting 
of the x and y coordinates of the left eye's gaze). 

2.3. Selection of stimulus material 

Prior to running the study, we conducted a pilot experiment of 
approximately 15 min to select a suitable set of food snack items. A 
separate group of participants (n = 21, women = 15, age: range 18–29, 
M = 21.86, SD = 2.5) rated 60 snacks on the dimensions familiarity, 
distinctiveness, representativeness (of their snack category), and sub
jective value on a discrete scale from 0 to 10. Snacks were grouped into 
six categories (bars, bonbons, chocolate, wine gums, nuts, salty snacks). 
From these 60 snacks, 48 were then selected for the current study, 
mainly on the basis of familiarity and subjective value (e.g., snack items 
that were unfamiliar to many participants were excluded). The mean 
ratings for the 48 remaining snacks for the four dimensions were: 

1 Here we report findings from the former only. Details concerning the 
sequential session can be found in Appendix D. 
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Weilbächer, R. A., & Gluth, S. (2017). The interplay of hippocampus and ventromedial 
prefrontal cortex in memory-based decision making. Brain Sciences, 7(12), 4. https:// 
doi.org/10.3390/brainsci7010004. 
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