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Abstract
When making decisions, people tend to look back and forth between the alternatives 
until they eventually make a choice. Eye-tracking research has established that these 
shifts in attention are strongly linked to choice outcomes. A predominant framework 
for understanding the dynamics of the choice process, and thus the effects of atten-
tion, is sequential sampling of information. However, existing methods for estimat-
ing the attention parameters in these models are computationally costly and overly 
flexible, and yield estimates with unknown precision and bias. Here we propose an 
estimation method that relies on a link between sequential sampling models and 
random utility models (RUM). This method uses familiar econometric tools (i.e., 
logistic regression) and yields estimates that appear to be unbiased and relatively 
precise compared to existing methods, in a small fraction of the computation time. 
The RUM thus appears to be a useful tool for estimating the effects of attention on 
choice.

Keywords  Eye tracking · Sequential sampling · Diffusion model · Random utility · 
aDDM · Attention

JEL Classification  C81 · C91 · D87

1  Introduction

A central question for choice researchers is how decision makers collect information 
during the choice process, and how the information collected can be measured and 
modeled (Sims 2003). To understand the role of information accumulation, econo-
mists have recently turned to sequential sampling models (Fehr and Rangel 2011; 
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Krajbich et al. 2014; Woodford 2014; Gossner et al. 2018; Fudenberg et al. 2018). 
These models conceptualize the decision process as one of accumulation and com-
parison of noisy information up to a pre-specified confidence threshold. For exam-
ple, the most well-known model of this class, the drift diffusion model (DDM), uses 
data on choice and the distribution of response time (RT) to identify latent decision 
parameters such as the strength of preference (quality of the sampled information) 
and the confidence required to decide.

Attention to a given option—and the simultaneous inattention to the other 
option(s)—constrains the sampling process: attention favors the focal alternative at 
the expense of other(s). While attention can in some cases be inferred from peo-
ple’s choices (Gabaix 2017), a more direct approach is to use eye tracking (Wang 
et al. 2010; Knoepfle et al. 2009; Reutskaja et al. 2011; Arieli et al. 2011; Lahey and 
Oxley 2016; Devetag et al. 2016; Polonio et al. 2015; Shi et al. 2013; Chen and Kra-
jbich 2017). Eye-tracking data—either collected in the laboratory, or increasingly, 
field settings1—provides a dynamic, rich set of data that is useful for predicting 
choice above and beyond a subject’s stated preferences. Recent work has established 
a stable individual difference in the degree to which visual attention and choice are 
linked (Smith and Krajbich 2018).

Given that the link between attention and choice is empirically well established 
and theoretically accounted for in the DDM framework, it is now important to 
develop statistical tools to study the link between attention and choice. Doing so will 
allow the researchers to better assess and predict the role of attention across contexts 
and decision makers. In this paper, we propose an effective and efficient method for 
estimating the role of attention in choice. Our approach is based on recent results 
which demonstrate that the basic DDM can be represented by a random utility 
model (RUM) in which the distribution of utilities depends on time (Echenique and 
Saito 2017; Webb 2019). Here, we extend this result to incorporate the role of atten-
tion. This leads to approximation methods for estimating the role of attention using 
familiar methods in the econometrician’s toolkit, such as the standard logit model.

1  Advances in mobile eye-tracking have enabled field research in the area. In a typical study, partici-
pants wear glasses with embedded eye-tracking technology while they shop in stores. The glasses record 
both eye movements and the environment, allowing researchers to investigate the role of attention in a 
field setting (e.g., Harwood and Jones 2014; Bagdziunaite et al. 2014). While academic research in this 
area is nascent, a number of commercial enterprises are already collecting and using this data. Three 
examples include: (1) market research firms like Nielsen are currently using eye tracking to measure con-
sumer responses to advertisements; (2) Consumer-grade eye tracking is being tested and implemented by 
a number of firms, for both general use (Google Glass) as well as specific uses (VR headsets); and (3) 
Retailors like Amazon are implementing high-definition, high-density, camera technology in brick-and-
mortar locations that can track a shopper’s attention to specific products on the shelf. We expect further 
technological advances to be made in this area. For instance, researchers can take advantage of front-
facing cameras on phones, tablets, and computers to better understand how consumers interact with and 
attend to the information on their screens.
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2 � Background

In the standard DDM, the agent is faced with two options of unknown utility. At 
each instant in time, the agent samples a stochastic signal about the utility of each 
option. The agent calculates the difference between the two signals and adds this 
new piece of evidence to the sum of all previous evidence. This process continues 
until the accumulated evidence reaches a pre-determined stopping criterion. The 
optimal stopping criterion depends on various assumptions, but in the standard 
DDM, it is constant over time (Fudenberg et al. 2018).

A central assumption in the standard DDM is that the stochastic signals from 
each option are i.i.d. over time. However, this assumption has been challenged 
based on two basic facts from cognitive science. First, people move their eyes 
around in discrete steps; eye movements are characterized by near-instantaneous 
transitions (“saccades”) between periods of fixed gaze (“fixations”) that typically 
last about 0.3  s. Second, decision makers extract more information from items 
that are being fixated than from those that are not. Together, these two facts imply 
unaccounted-for autocorrelation in the time series of sampled signals. In a binary 
decision, the agent spends some blocks of time looking at option i and others at 
option j. These blocks of time (or “dwells”) correspond to periods during which 
signals about either option i or option j are amplified. Consequently, if both 
options are positively valued and option i receives more attention than expected, 
it should be more preferred than expected.

Currently, the most comprehensive method for estimating the relationship 
between attention and choice involves extending the DDM to include an atten-
tional discounting parameter (θ), such that the rate of evidence accumulation 
(“drift rate”) is modulated by attention. This extension is known as the attentional 
DDM, or aDDM (Krajbich et  al. 2010). Its usefulness stems from its ability to 
integrate multiple inputs (stated or inferred preferences and eye movements) to 
determine the joint probability distributions of choice and RT.

The aDDM has been used to study choice behavior in a number of domains, 
including food (Fisher 2017; Krajbich et  al. 2010; Krajbich and Rangel 2011; 
Towal et  al. 2013), durable goods (Krajbich et  al. 2012), artwork (Vaidya and 
Fellows 2015), social preferences (Ashby et al. 2016; Smith and Krajbich 2018), 
conditioned stimuli (Cavanagh et al. 2014), roaming bandits (Konovalov and Kra-
jbich 2016), and explicit lotteries (Smith and Krajbich 2018; Stewart et al. 2015). 
Additional studies have used the aDDM for inspiration, but without explicit 
model fitting, in the domains of morality (Pärnamets et al. 2015) and intertempo-
ral choice (Amasino et al. 2019). Needless to say, the link between attention and 
choice is under intense study in a wide variety of choice environments.

Smith and Krajbich (2018) describe how the aDDM accounts for several prom-
inent features of typical choice data. As alluded to above, it captures the robust 
relationship between relative dwell-time advantage and choice probability: in a 
2–3 s decision, a dwell-time advantage of 0.5 s results in a 30% increase in choice 
probability. It also accounts for the utility-dependent probability of choosing the 
last-seen item: at indifference a typical subject chooses the last-seen item 70% of 
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the time, but this probability increases (decreases) as the utility of the last-seen 
item increases (decreases). Finally, the model accounts for the finding that the 
effect of attention on choice increases with the utility of the option; in the extreme 
case of aversive items subjects are less likely to choose the more-attended option 
(Armel et al. 2008; Smith and Krajbich 2019).

Despite surprising stability across experiments in the link between attention 
and choice, there is of course interesting variation across individuals and con-
texts. Estimating this variation, and identifying which individuals or choice con-
texts are particularly prone to attentional manipulations is of particular impor-
tance. However, a major obstacle to studying this variation is the difficulty in 
fitting the aDDM to data. Fitting the model at the individual level requires many 
trials and even then, the fitting process is prone to issues. Though methods exist 
for simulating the RT distribution of the basic DDM, applying them to the aDDM 
is complicated by the fact that the simulations must incorporate the eye-move-
ment data. As a result, the aDDM has typically been fit to data using very large 
Monte Carlo simulations coupled with grid search parameter selection to maxi-
mize likelihood functions (detailed below).

This simulation/grid search approach has several important limitations. First, 
the properties of the parameter estimates are unknown. If parameter estimates are 
biased, this has important implications for inference and predicting choices out 
of sample. Second, a grid search method does not directly yield standard errors 
for inference. This is particularly an issue for studies that attempt to demonstrate 
a difference in parameter estimates across subjects or conditions. While, in prin-
ciple, bootstrap methods can be used to compute standard errors, they are limited 
in this case by the severe computational burden of the fitting process. Even with 
parallelization, it can take days to fit the model to a group of subjects, which 
translates to weeks or even months of computation time to generate bootstrap 
confidence intervals. Moreover, the traditional fitting process can be somewhat 
arbitrary. There are several researcher degrees of freedom: how many simulations 
to run, how many parameter combinations to test, how to adjust the RT bins, how 
to use eye-tracking data in the fitting process, etc. Additionally, the reliance on 
RT data in the traditional likelihood calculations could be a problem if the RT 
data are contaminated by other non-decision-related processes.

Here, we address these issues by demonstrating the equivalence of the aDDM 
to models within the class of RUM. This leads to approximation methods for esti-
mating parameters of the aDDM directly from choice and eye-movement data 
using the RUM toolkit (e.g., logit). As such, the properties of these estimates are 
well described and standard errors can be computed directly. In contrast to the 
aDDM, the RUM approach to estimating attentional effects does not require any 
arbitrary binning decisions; it uses raw continuous measures of dwell proportion. 
While the aDDM might provide slightly different estimates of θ depending on 
the exact binning procedure, the RUM method provides a unique estimate. We 
find significant improvement in parameter recovery for the attentional discounting 
parameter θ with more accurate Type 1 error rates compared to existing methods 
for estimating the aDDM.
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3 � Binary choice model

In the standard DDM, the agent is faced with two options i and j. Each option has a 
subjective value vi which could be a function of various observable attributes Xi.2 At 
each instant in time, the agent receives a stochastic Gaussian signal zi,t ∼ N

(
vi, s

2
i

)
 

and similarly for j. Each signal zi,t is added to the previous signals for that option. 
Formally, for each option i and j, there is an accumulator3:

In the aDDM, there is one small, but important difference from the above: the mean 
of the signal distribution depends on the fixation location. Let ei,t capture the role of 
attention and let ei,t = 1 if the agent is attending to option i, 0 otherwise. Then, the 
signal zi,t is distributed with a mean that depends on decision-specific inputs vi and 
ei,t, as well as an agent-specific parameter θ:

where θ ∈ [0, 1]. If θ = 1, then attention plays no role, as in the standard DDM. If 
θ = 0 then evidence is only accumulated for the attended option.

To close the model, a stopping rule must be specified. In the DDM and aDDM, 
this rule takes the form of the difference between the accumulators crossing a con-
stant threshold b:

with the largest accumulator, argmax
{
Z
i,t∗

}
 , yielding the choice, where t* is the 

first t for which Eq. (3) is satisfied. The drift rate at time t is therefore the net rate of 
evidence accumulation towards option i: 

(
vi − vj

)
� +

(
ei,tvi − ej,tvj

)
(1 − �).

There are three technical issues worth noting about the model. First, since at each 
moment in time, the stopping rule calculates the difference between two Gaussian 
random variables with variance s2

i
 , only the summed variance can be estimated:

Second, in addition to the decision time t*, there is additional time required for the 
agent to attend to the first option and to physically indicate their choice once the 
threshold b is crossed. This extra time is known as the non-decision time (Ter). Thus, 
the recorded RT is:

(1)Zi,t =

t∑

k=1

zi,k

(2)zi,t ∼ N
(
vi

(
� + e

i,t
(1 − �)

)
, s2

i

)
,

(3)
|||
Zi,t − Zj,t

|||
≥ b,

(4)�2 = s2
i
+ s2

j
.

2  For an example of how components of value can be estimated from observable attributes in the DDM 
framework, see Chiong et al. (2018).
3  In many applications, an “initial point” Zi,0 can be specified to allow for any priors that decision mak-
ers might have.
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While Ter is estimated during the full model-fitting procedure, it does not factor into 
the estimate of θ.

Third, the units in the model are arbitrary, and so when estimating the best-fitting 
aDDM parameters, we include a scaling parameter d that converts any observables 
Xi to subjective valuations, vi = Xid. Because of the arbitrary units in the model, the 
parameter set d, b, and σ are not uniquely identified, thus one must be normalized to 
identify the others. Here we let b = ± 1, as is standard with the aDDM.

Our first result demonstrates that the aDDM can be mapped into the space of 
RUMs. The result follows the mapping from the general sequential sampling model 
class into the RUM demonstrated by Webb (2019), depicted in Fig. 1. Since an accu-
mulation model picks the alternative with the largest accumulator, and this is true 
even when the levels are divided by the RT (a positive number), the determinant of 
choice in classic DDM is a maximization over vi with an error term suitably normal-
ized by the RT distribution. For example, a longer RT leads to a smaller error vari-
ance, typically referred to as the “speed-accuracy tradeoff.”

The reason this result can be extended to include the aDDM lies in the exchange-
ability property of the accumulation. Since the accumulation in the aDDM is a 
Markov process, the order in which attention is allocated does not change the level 
of the accumulator. This means that only the proportion of attention allocated to an 
alternative interacted with the underlying value (vi) determines the level of the accu-
mulator. In combination with the threshold b, this determines the choice probability.4

If we let ui be the utility of option i, Ei be the fraction of t* spent attending to 
option i (with Ej = 1 − Ei), and ηi be a random component of the utility, then the fol-
lowing result states this equivalence.

Proposition 1  The aDDM can be represented by a RUM of the form:

where ηi has mean zero and the choice probabilities are given by,

Proof  Following Webb (2019),

(5)RT = t∗ + Ter.

(6)ui = (Ei + �Ej)vi + �i,

(7)P(i, t) = Prob
[
Eivi − Ejvj + 𝜃

(
Ejvi − Eivj

)
> 𝜂i − 𝜂j

]
.

Zi,t∗ = vi

t∗∑

1

(
� + e

i,t
(1 − �)

)
+

t∗∑

1

�i,t

4  It should be noted that the distribution of choice probabilities is not completely independent of the 
order of attention in this model. For example, a process with high autocorrelation in the gaze pattern will 
lead to an earlier boundary crossing than a process with low autocorrelation, even with equal ex ante 
division of attention in both cases. This will be captured by the distribution of ηi implied by Proposition 1 
and how it depends on time.
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where ϵi,t is the deviation from the drift rate due to the stochastic sampling. Moreo-
ver, argmax

{
Z
i,t∗

}
= argmax

{
Z
i,t∗

t∗

}
 , therefore this model can be represented via 

the RUM

where D(ei,t) ≡
1

t∗

t∗∑

1

�
� + e

i,t
(1 − �)

�
 , and �i ≡

1

t∗

∑t∗

1
�i,t.

The function D(ei,t) has the following interpretation.

ui = D(ei,t)vi + �i

(a)

(b) (c)

Fig. 1   a The equivalence between the DDM and the RUM. Here, the x-axis represents time and the 
y-axis represents accumulated evidence for option i. In the DDM, the distribution of accumulated evi-
dence has a mean that is a linear function of time with slope given by the value of option i, plus some 
error. The distribution of the RUM, on the other hand, is equal to the DDM distribution, scaled down 
linearly by time. Thus, the function for the RUM distribution is simply the DDM distribution function, 
divided by t*. b In the aDDM, attention toward the other alternative leads to a discounting of the valu-
ation by θ (dashed line), and therefore, a slower rate of evidence accumulation. The solid line repre-
sents accumulated evidence over time while attention is devoted to option i, and the dashed line repre-
sents accumulated evidence over time while attention is devoted to option j. In this example, attention is 
devoted to option i, then option j, and then option i again. c The final level of the accumulator does not 
depend on the order of attentional shifts (compare to b). Here, attention is devoted to option i and then 
option j. The total amount of time spent on each option is the same as in b, but the order of attentional 
shifts is irrelevant, so the total accumulated evidence is equivalent to b 
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The relation of the aDDM to the RUM has important consequences for parameter 
estimation which we now discuss.

4 � Finite sample performance of the estimator

Consider two alternatives i and j with ratings Xi and Xj, therefore the subjective val-
ues are given by vi = Xid. In this case, we can consider estimation of Eq. (7) from a 
standard logit regression

where 𝜃̂ can be recovered via 𝜃̂ =
𝛾̂

d̂
.5

The valuation can also be alternative specific provided enough variation over 
alternatives in the dataset, so vi = Xidi. In this case, the standard logit regression is

and 𝜃̂i can be recovered via 𝜃̂i =
𝛾̂i

𝛽i
 . The attentional parameter can be further 

restricted to be symmetric across alternatives, so θi = θj = θ.
Note that, strictly, the estimation of Eqs. (14) and (15) is misspecified, since the 

random utility error distribution implied by the DDM differs from that used by the 
logit (see Webb 2019). However, in the next section, we will demonstrate that the 
approximation of this distribution provided by the logit model does not appear to 
bias the resulting model estimates meaningfully.

4.1 � Simulated data

To evaluate our proposed estimation method, we performed a Monte Carlo parame-
ter recovery exercise. The data generating process was the aDDM with the following 

D(ei,t) =
1

t∗

t∗∑

1

(
� + e

i,t
(1 − �)

)

=
1

t∗

t∗∑

1

ei,t + �
1

t∗

t∗∑

1

(
1 − ei,t

)

= Ei + �(1 − Ei) = Ei + �Ej

(8)Pi = Prob
[
(EiXi − EjXj)d + (EjXi − EiXj)𝛾 > 𝜂i − 𝜂j

]
,

(9)P(i, t) = Prob
[
EiXidi − EjXjdj + EjXi𝛾i − EiXj𝛾j > 𝜂i − 𝜂j

]
,

5  For a related derivation of θ , though using a DDM-based method rather than Logit, see Cavanagh 
et al. 2014.
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parameters: d ∈ {0.00015, 0.0002, 0.00025} per millisecond, σ ∈ {0.015, 0.02, 
0.025}, θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, Ter ∈ {300, 400, 500} milliseconds. For every 
combination of these parameter values, 20 datasets were simulated using the empir-
ical subjective value ratings and gaze patterns from 100 randomly sampled trials 
from Krajbich et al. (2010). Therefore, for each value of θ, there were 540 datasets, 
each with 100 simulated trials. We then recovered estimates of θ for each dataset 
using a standard logit estimation of the RUM from Eq. (8).

To evaluate the grid search method, we followed standard practice and fit each of 
the datasets using maximum simulated likelihood estimation (MSLE). This method 
is quite involved and requires simulating a large number of sample datasets for each 
set of parameters in the grid. We bin the simulations and the datasets in the same 
way. We first separate the trials from the dataset according to the absolute difference 
in rating between the two options, the decision made, and the direction of the final 
fixation. Next, we bin the trials according to RTs, using a median split for decisions 
where the lower-rated option was chosen and with quantile bins of {0.1, 0.3, 0.5, 
0.7, 0.9} for decisions where the weakly higher-rated option was chosen.

To implement the grid search, we used three iterations of 5000 random grid 
parameter combinations each (Bergstra and Bengio 2012), with 10 simulations per 
trial. The range of parameters for the first iteration was d ∈ [0.0001, 0.0003] per 
millisecond, σ ∈ [0.01, 0.03], θ ∈ [0, 1], Ter ∈ [200, 600] milliseconds. The second 
and third iterations’ parameter ranges were based on the top 5% best-fitting model 
parameters of the previous iterations (according to log likelihood). We adjusted 
these ranges according to a dummy parameter, ξ, to correct for artificial contrac-
tion of the parameter range over time (e.g., if ξ’s upper value decreased by 1% of its 
initial range, we increased the upper value on each of the parameters by 1% of their 
respective ranges, with the initial upper values as an upper bound).

Our results demonstrate that the RUM estimates of θ appear to be unbiased and 
estimated relatively precisely (Fig. 2). This is in contrast to estimates of the aDDM 
using the grid search method. In particular, there is a stark improvement both in the 
mean estimates and an improved standard deviation. Computation time of the RUM 
is negligible at 0.03  s per dataset, while the grid search method takes ~ 2.5 h per 
dataset (note: this can be reduced to 10 min per dataset if parallelized on 50 cores). 
This comparison, while impressive, is actually conservative since we chose rela-
tively tight boundaries for the grid search that included the true parameter values.

Finally, it is difficult to assess the performance of the grid search method in 
parameter inference, because it does not directly yield standard errors of the esti-
mates. Given the computational burden of the grid search, even when the grid search 
is parallelized over 50 cores, minimal 1000 bootstrap samples would take ~ 7 days 
to estimate. The RUM method, however, yields standard errors directly with Type 1 
errors that are near the expected 0.05 level.

Clearly, the RUM method is effective and efficient at estimating the degree to 
which attention shapes the choice process. However, it is also beneficial when esti-
mating the rest of the parameters, as well. After estimating the attention parameter 
θ with the RUM method, we used a grid search (as described above) to estimate the 
remaining parameters for each of the 2700 datasets. Essentially, we fixed θ to be the 
RUM estimate across all three iterations, and fit the remaining parameters.
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Because we know the true parameters that generated each of the 2700 data-
sets, we can evaluate the success of each method in identifying these parameters. 
Indeed, the RUM method provides significantly better fits than the traditional grid 
search, total RUM log likelihood = −1,483,267 versus total grid search log likeli-
hood = −1,485,244. A Wilcoxon signed rank test shows that the RUM fits are sig-
nificantly better, as well, V = 2,648,900, p < 10−16. At the level of the dataset, 68% 
of the 2700 paired log likelihoods are higher in the RUM method. Moreover, the 
root mean squared error of the RUM method is smaller than that of the grid search 
method for all parameters (d: 3.510 × 10−5 vs. 3.514 × 10−5; σ: 2.282 × 10−3 vs. 
2.319 × 10−3; θ: 0.107 vs. 0.145; Ter: 99.54 vs. 101.2) and the correlations between 
true and fitted parameters are higher in the RUM method than in the grid search 
method (d: 0.745 vs. 0.741; σ: 0.882 vs. 0.873; θ: 0.937 vs. 0.874; Ter: 0.550 vs. 
0.538; each p < 10−15). Overall, estimating θ with the RUM method does not simply 
improve the estimation of θ, it also improves the precision of other estimated param-
eters and the overall goodness-of-fit.

Fig. 2   a Histograms of the deviations with mean (sd) and b, c direct comparisons between the recovered 
θ values and their true values from each of the methods on the 2700 datasets, with Type 1 error rates in 
b. The RUM method is more precise and less biased than the traditional grid search method



1 3

Estimating the dynamic role of attention via random utility﻿	

4.2 � Real data

To assess the performance of the RUM method on a real (i.e., non-simulated) data-
set, we also fit the aDDM to the participant-level data from Krajbich et al. (2010). 
In this study, subjects (N = 39) first rated how much they would like to eat 70 food 
items. Then, they made 100 incentivized choices between pairs of food items while 
their eye movements were tracked. We used subjects’ self-reported valuations from 
the rating data (as Xi and Xj) while fitting the choice task data (comprising RTs, 
choices, and eye movements). We fit both with the traditional grid search and the 
RUM method (estimating θ with the model and then fitting the remaining param-
eters with a grid search). Here, the fit of the RUM and the grid search yielded simi-
lar values, with correlations of 0.74, 0.90, 0.57, 0.46 for d, σ, θ, Ter, respectively. It 
is also reassuring that the median/mean difference between parameter values is very 
close to zero in each case, indicating that the two methods agree in the aggregate as 
well (Fig. 3). A major advantage of the RUM method is that it estimates θ essen-
tially instantaneously, allowing the overall fitting exercise to, again, finish in a frac-
tion of the time of the grid search method.

The RUM method also provides standard errors on θ, which are key for inferen-
tial statistics (Fig. 4a). Using the RUM method, we find that 35 out of 39 subjects 
have θ < 1, with 26 out of 39 significant at the 0.05 level. Interestingly, 12 out of 
39 subjects (6 significantly) have θ < 0, which falls outside of the theoretically pre-
dicted range of estimates. The implication of θ < 0 is that while attending to option 
i, the accumulator on option j decreases at a rate proportional to its underlying util-
ity. A negative value of θ is typically not allowed by the aDDM, as it would imply 
that items that are more highly valued while being attended to are more negatively 
valued while not being attended to. One possibility is that the negative θ estimates 
are due to features of the data that are not captured by the aDDM. For instance, it 
is possible that unattended items leak evidence; leakage is a feature of some other 
sequential sampling models (e.g., leaky competing accumulator; Usher & McClel-
land 2001) but has yet to be incorporated in the aDDM framework. In the logit 
method, a negative θ arises because the logit places no boundaries on the estimate of 
θ. Such an estimate is precluded by the grid search approach, because it simply does 
not search in this domain of the parameter space (Fig. 4b).

If a researcher so desired, a positivity constraint on θ can simply be added to 
the maximum likelihood procedure used to estimate the logit model. This can be 
accomplished by putting positivity constraints on the two parameters (γ and d, 
where � =

�

d
 ) estimated via the logit maximum likelihood procedure. The subjects 

with nonnegative θ in the unconstrained regression displayed very little difference 
between the constrained and unconstrained regressions (mean deviance = 0.018, 
SE = 0.0075; Pearson’s correlation = 0.99, p < 0.0001). On the other hand, the sub-
jects with negative θ in the unconstrained regression were best fit with θ ≈ 0 in the 
constrained regression. Overall, constraining the regression does not change our 
conclusions about the improved estimation of θ with the RUM.
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Fig. 3   Histograms of the difference between RUM and grid search estimated parameters, using real data. 
Inset numbers refer to Pearson correlation coefficients and p values. Note: for θ, one observation (− 20.8) 
was removed from the graph as an outlier. Coefficients in brackets refer to the correlation without the 
outlier

Fig. 4   a Inference test of RUM θ estimates. Again, the outlier (− 20.7) was removed from the graph for 
clarity. b Distribution of θ from the grid search method
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5 � Conclusion

In this paper, we have demonstrated the benefits of applying the RUM to estimate 
the effects of attention on choice. In doing so, we have established that the role of 
attention in choice can be accurately and quickly estimated. We find improvement 
in parameter recovery using a mere fraction of the computational time of existing 
methods. Moreover, the RUM rests on a well-known, firmly structured analysis (i.e., 
a logit regression), while existing methods are plagued by their flexibility and lack 
of standardization. The binning process, use of eye-tracking data, number of sim-
ulations, and range of parameter combinations are all left to the discretion of the 
researcher. Finally, parameters estimated via existing methods are not amenable to 
conducting inference tests. These are all problems the RUM method solves.

There are, of course, limitations to this approach. The effectiveness of the DDM 
in modeling choice behavior is rooted in its capability to make use of RT, in addition 
to choices. However, with the RUM approach, RTs are ignored in the estimation of 
the attentional parameter θ. This could mean that valuable information is lost, but 
it could also mean that the RUM method is more robust to assumptions about other 
components of the model. With eye trackers now commercially available for ~ $100, 
and phone manufacturers and retailers deploying mobile eye-tracking tools, the use 
of eye-movement data in research will likely soon become commonplace. It is there-
fore important to continue to develop better methods for analyzing that data.
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