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In everyday life, we are constantly confronted with simple con-
sumer choices such as whether to have an apple or a banana 
for breakfast or which bottle of juice to buy at the supermarket. 

Traditional models describing this type of consumer choice assume 
that people assign a utility (or value) to each available option and 
make utility-maximizing choices1. Notably, choices are assumed to 
be based solely on the attributes of the option, and are therefore 
independent of information search processes during the decision-
making process2. This assumption has recently been challenged by 
a variety of empirical findings showing that the allocation of gaze 
during the decision-making process also plays a substantial role, as a 
longer gaze towards one option is regularly associated with a higher 
choice probability for that option (independent of its value)3–17.  
Similarly, stimulus salience has been shown to influence decision 
behaviour18–20. Furthermore, external manipulation of gaze allo-
cation leads to changes in choice probabilities3,12,14. Similar effects 
have recently been demonstrated in perceptual decision-making, 
whereby participants judge perceptual attributes of stimuli based on 
the available sensory information (for example, the orientation of 
line segments21).

These findings led to the development of computational mod-
els that integrate eye movement data into the choice process and 
formalize the empirically observed association between gaze and 
choice4,9–11,20,22–24. These models are based on classical evidence-
accumulation models25,26, but make the additional assumption 
that the momentary rate of evidence accumulation depends on the 
eye movements of the decision-maker. Evidence accumulation for 
an option is assumed to be discounted by a constant factor while 
another item is fixated on. Accounting for this gaze bias, these 
models provide a precise account of many aspects of simple choice 
behaviour at the group level4,9–11,20,22–24.

While group-level statistics are informative for some research 
questions (for example, to specifically address differences between 
groups or experimental conditions or to forecast product sales in 

economic research), they can be unsuitable for understanding the 
choice behaviour of an individual. Aggregate models can lead to 
false conclusions about true underlying individual processes27,28. In 
a learning task, for example, the group-level average learning curve 
would appear as a gradual, smooth function over time, even if all 
individuals showed abrupt, step-like learning curves (much like an 
epiphany), but with variable learning onsets across individuals29. In 
this case, the group-level model would not accurately describe any 
individual of the group, and the deduction that individual learn-
ing occurs smoothly would be false. Similarly, using a single model 
parameter set to describe the choice behaviour of a group could lead 
to false conclusions about the behaviour of the underlying individu-
als. Therefore, it is crucial to study choice behaviour at the level of 
the individual.

Previously reported group-level models that quantify the asso-
ciation between gaze and choice specified a constant gaze bias for 
all individuals without rigorously testing the performance of the 
model at the level of the individual9,10. A rigorous test of gaze bias 
effects at the level of the individual should ideally be based on non-
restricted individual model fits, include comparisons to models 
without gaze bias, establish that the model provides an accurate 
account of individually observed data and test how individu-
als’ gaze biases relate to their response behaviour. If, for example, 
people’s decisions were affected differently by gaze behaviour, we 
would find that the choices of some individuals were more biased 
by gaze than others and possibly be more inconsistent with the 
values of the items. Imagine, for example, a choice between two 
bottles of juice at the supermarket: one has a slightly higher value 
for the decision-maker than the other, but it is also less visually 
salient20,30. If a person’s association of gaze and choice behaviour 
was strong, their choice would be biased towards the more visually 
salient bottle that attracts more of their gaze, even though it has a 
lower value. Conversely, if the person’s association was weak, they 
would be able to select the higher valued option, despite their gaze 
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being attracted more towards the visually salient but lower valued 
option. Accordingly, if the strength of this association is variable 
across individuals, it is necessary to account for these differences to 
accurately predict individual choice behaviour.

Here, we investigated whether the previously reported link 
between gaze and choice behaviour is variable across individuals. 
We analysed four previously published choice datasets6,9,10,21, in total 
including 118 individuals, two choice set sizes (two- and three-alter-
native) and two choice domains (value-based and perceptual). For 
the analysis, we developed a computational model that can be easily 
applied to individual participant and multialternative choice data. 
With this model, we reaffirmed that an association between gaze 
and choice is present for most individuals. The strength of this asso-
ciation, however, varied substantially. This variability was directly 
linked to an individual’s ability of choosing the best item from a 
choice set, such that stronger associations of gaze and choice were 
linked to lower probabilities of choosing the best item. Accounting 
for the variability in individuals’ gaze biases, we were able to explain 
and accurately predict observed differences in choice behaviour.

Results
Datasets and task overview. We investigated individual differ-
ences in the influence of gaze allocation on simple choice behav-
iour across four previously published datasets6,9,10,21. In each dataset, 
healthy participants made repeated decisions between multiple 
options while their eye movements were recorded (for additional 
details, see Fig. 1 and Supplementary Methods 1).

The first dataset is from Krajbich and colleagues10 (henceforth 
referred to as Krajbich 2010). In the corresponding experiment, 
hungry participants made choices between two snack food items 
without any time restrictions (Fig. 1a). Participants also gave a lik-
ing rating for each of the 70 snack food items that were used in the 
experiment. This dataset includes 39 participants, each of whom 
performed 100 trials.

The second dataset from Krajbich and Rangel9 (henceforth 
referred to as Krajbich 2011) is similar to that from Krajbich 2010. 
In Krajbich 2011, participants chose between three snack food items 
(Fig. 1b). As in Krajbich 2010, participants provided liking ratings 
for all available items in a separate task. This dataset includes 30 
participants, each of whom performed 100 trials.

The third dataset consists of experiment 2 from the study by 
Folke and colleagues6 (henceforth referred to as Folke 2016). In 
this experiment, 24 hungry participants performed 144 trials of 
a task that closely resembled the Krajbich 2011 three-alternative 
forced-choice snack food task (Fig. 1c). Unlike in Krajbich 2011, 
however, the choice task used a gaze-contingent presentation, 
whereby items were only revealed when the participant’s gaze was 
directed to an item’s location on the screen. In addition, after each 
choice, the participants provided confidence ratings (which we did 
not use in this study). Similar to Krajbich 2010 and Krajbich 2011, 
item values were estimated in a separate task, in which a Becker–
DeGroot–Marschak auction procedure was used to elicit willing-
ness-to-pay estimates31.

The fourth dataset is the first experiment from the study by 
Tavares and colleagues21 (henceforth referred to as Tavares 2017). 
This dataset is qualitatively different from the other three value-
based choice datasets. Participants made perceptual judgments 
about the orientations of two line segments and were asked to 
decide which is closer to a target (Fig. 1d). In this case, we define 
the value of an item by its angular distance to the target (with higher 
values for smaller distances). This dataset includes 25 participants, 
each of whom performed 1,344 trials across four sessions.

In sum, our analyses span a total of four datasets (n = 118) that 
contain data from two- and three-alternative forced-choice tasks 
in two different choice domains (value-based and perceptual) and 
from two different laboratories.

Individual differences in the data. We analysed the following three 
metrics for individual differences: participants’ mean response time 
(RT); mean probability of choosing the best item (we define the best 
item either as the item with the highest liking rating or willingness-
to-pay in the value-based choice tasks, or the item with the smaller 
angular distance to the target in the perceptual choice task); and 
influence of gaze allocation on choice probability (defined as the 
mean increase in choice probability for an item that was fixated on 
longer than the others, after correcting for the influence of the item 
value; see below). We found that participants differed considerably 
in all metrics (Fig. 2). The participants’ (n = 118) overall mean RTs 
ranged from 958 to 7,577 ms, with a mean ± s.d. of 2,844 ± 1,676 ms 
(Fig. 2a), while their probabilities of choosing the best item in a trial 
ranged from 45% to 97%, with a mean ± s.d. of 77% ± 12% (Fig. 2c).

We also probed the relationship between individual allocation 
of gaze and choice. Previous studies of simple choice tasks have 
shown that individuals are more likely to choose an option when 
they spent more time fixating on it compared with the other opti
ons3,4,6,9,10. Here, we devised a measure to quantify this relationship 
for each individual. Following previous work9,10, we first estimated 
a participant’s probability of choosing an item in a choice set using 
logistic regression, based on its relative item value (the difference 
between the item’s value and the mean value of all other items in 
that trial) and the range between the other items’ value (this regres-
sor was omitted in all two-item datasets). We then subtracted this 
estimated probability from the empirically observed choice (either 
1 if the item was chosen or 0 otherwise). Finally, we averaged the 
resulting ‘residual’ choice probability for trials in which the item 
had a positive and negative final gaze advantage (computed as the 
difference in the fraction of the total fixation time that the partici-
pants spent fixating on the item and the average fraction that they 
spent fixating on the others). The difference between these two 
described the average difference in choice probability for the items 
with a positive versus negative final gaze advantage, when corrected 
for the influence of the values of the items. We found that individual 
scores on this measure varied substantially and ranged from −11% 
to 72%, with a mean ± s.d. of 24% ± 15% (Fig. 2b). Notably, 98% of 
the participants showed positive scores, indicating an overall posi-
tive relationship between gaze allocation and choice.

The four datasets differed strongly in the three behavioural 
metrics (Table 1). Differences between datasets, however, can-
not be attributed to the effect of choice domain (perceptual versus 
value-based) or set size (two versus three items) alone, as original 
tasks also differed in other aspects (for example, different stimuli 
in value-based versus perceptual tasks, different number of trials 
and different presentation format). However, when comparing the 
two- and three-alternative choice data, individuals exhibited shorter 
response times (Mann–Whitney U = 821, P < 0.001, Pearson’s 
r = 0.52) and a higher probability of choosing the best item (U = 444, 
P < 0.001, r = 0.74) when making choices between two alternatives. 
Furthermore, individuals exhibited a weaker association of gaze 
and choice behaviour, indicated by the gaze influence measure 
(U = 1,001, P < 0.001, r = 0.42), when making choices between two 
alternatives. Comparing behavioural data from value-based and 
perceptual choice tasks, we found that response times were shorter 
(U = 632, P < 0.001, r = 0.46) and individuals had a higher probabil-
ity of choosing the best item (U = 342, P < 0.001, r = 0.71) in the per-
ceptual choice task. The average strength of the association of gaze 
and choice behaviour in the perceptual choice task, however, was 
similar to that measured in the two-alternative value-based choice 
experiment (U = 419, P = 0.17, r = 0.14).

All regression coefficients reported throughout represent 
fixed effects from Bayesian mixed-effects linear (for continuous-
dependent variables) or logistic (for binary-dependent variables) 
regression models, including a random intercept and slope for 
each dataset on each predictor. For each fixed effect, we report the  
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coefficient’s posterior mean (β) and the associated 95% highest 
posterior density interval (HDI) values (for further details, see the 
“Mixed effects modelling” section).

To further probe the relationship between the three behavioural 
metrics, we computed pairwise mixed-effects regression models 
between them (Fig. 2d–f). We did not find any association between 
participants’ probability of choosing the best item and their RTs 
(Fig. 2d; β = −0.19%, 95% HDI = [−3.08%, 2.87%] per second 
increase in RT). Similarly, participants’ gaze influence was not 
related to their RTs (Fig. 2e; β = −1 ms, 95% HDI = [−33 ms, 33 ms] 
per percentage increase in the gaze influence measure). However, 
participants’ probability of choosing the best item from a choice 
set decreased with increasing individual gaze influence measures 
(Fig. 2f; β = −0.34%, 95% HDI = [−0.71%, 0.08%] per percentage 
increase in gaze influence, 95.2% of posterior density below 0).

Modelling individual differences in gaze influence on simple 
choice. The behavioural and eye-tracking data suggested that there 
is substantial variability in the extent to which gaze affects partici-
pants’ choice behaviour (Fig. 2b). However, conclusive quantitative 
evidence for or against the presence of a mechanism that biases 
choices depending on the distribution of gaze has yet to be provided 
at the level of the individual (for example, by means of a formal 

model comparison). We therefore adopted a computational model-
ling approach to investigate whether a formalized gaze bias mecha-
nism, in conjunction with individual gaze patterns, can improve 
model predictions of individual choice and RT data when compared 
with a model without gaze bias.

We propose a model called the Gaze-weighted Linear 
Accumulator Model (GLAM; Fig. 3) that we view as an analytical 
tool to study gaze bias effects at the level of the individual and that 
is inspired by the multialternative attentional Drift Diffusion Model 
(aDDM)9. Similar to the aDDM, the GLAM assumes accumulation 
of evidence in favour of each item that is modulated by gaze behav-
iour. While an item is not fixated on, accumulation occurs at a rate 
discounted by the gaze bias parameter γ (Fig. 3a). A choice is made 
as soon as evidence in favour of one item reaches a decision thresh-
old. In contrast to the aDDM, which focuses on the effect of indi-
vidual trial fixation sequences on the decision-making process, the 
GLAM focuses on gaze bias effects at the level of the trial. Therefore, 
it can average over the observed sequence of fixations within a trial 
(Fig. 3b). The resulting gaze-weighted decision signals are then fed 
through a logistic transform into a linear stochastic race32,33 (Fig. 3c,d).  
Race models are generalizable to choice scenarios with more than 
two items and remain analytically tractable, allowing for more 
complex applications (for example, Bayesian parameter estimation, 
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Fig. 1 | Experimental paradigms. a–d, We included four datasets in our analyses. These include three value-based experiments (a Krajbich 201010,  
b Krajbich 20119, c Folke 20166) and one perceptual choice experiment (d Tavares 201721). In all experiments, participants were instructed to choose the best 
out of two (a, d) or three (b, c) items (that is, the item they would like to eat most in value-based tasks or the item most similar to a target stimulus that 
was presented every five trials in the perceptual task). Value-based experiments included a valuation task before the main choice task, whereby participants 
either rated each item (a, b) or indicated their willingness-to-pay in a Becker–DeGroot–Marschak procedure (c). All choices were made without time 
restrictions. The choice task in c used a gaze-contingent presentation, whereby items were only revealed when the participant’s gaze was directed to an 
item’s location on the screen. Experiments used real snack food items instead of illustrations. For additional details, see Supplementary Methods 1.
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embedding in a hierarchical Bayesian framework). In addition to 
the gaze bias parameter γ, the GLAM includes a velocity parameter 
v, a noise parameter σ and a scaling parameter τ (for further details, 
see the “GLAM details” section).

Even though both models are closely related, the GLAM has a 
practical advantage over the aDDM in that it sidesteps the complex 
problem of modelling and simulating the fixation process in a given 
task. The development of such fixation models for individual par-
ticipants, particularly in more complex choice scenarios with more 
than two items or multiple item attributes, is often not trivial (for 
example, see ref. 20) or not of main interest to the researcher. The 
GLAM solely uses the observed distribution of gaze to the items 
over the course of the trial. In contrast, the aDDM is fitted to empir-
ical data using model simulations, which themselves rely on an 
accurate simulation of the fixation trajectories. As a side effect, this 

allows the application of the GLAM in situations in which only lim-
ited trial-level data are available (for example, the Folke 2016 dataset 
included here, which only contains trial-averaged gaze data). In the-
ory, a similar simplification of the multialternative aDDM9 would be 
possible, but would result in a model highly similar to the GLAM. 
Furthermore, fitting such a simplified aDDM variant would still rely 
on simulations of the decision-making process. These simulations 
are particularly costly in the case of the aDDM, whereby every trial 
represents a unique condition owing to the incorporation of trial-
specific eye movement data.

Testing the presence of gaze biases in individuals. We fitted and 
compared two GLAM variants to the RT and choice data of each par-
ticipant to gauge the evidence in favour of the previously described 
gaze bias mechanism and to quantify its strength on an individual 
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Fig. 2 | Individual differences in the three studied behavioural metrics and their associations. a–c, Distributions of individuals’ mean RT (a), gaze 
influence (mean increase in choice probability for an item that is fixated longer than the others, after correcting for the influence of item value) (b) and 
probability of choosing the best item (c) per dataset. d, There is no association between mean RTs and the individual probability of choosing the best item 
(β = −0.19%, 95% HDI = [−3.08%, 2.87%] per second increase in RT). e, There is no association between gaze influence and the mean RT (β = −1 ms, 
95% HDI = [−33 ms, 33 ms]) per percentage increase in the gaze influence measure. f, An individual’s probability of choosing the best item decreases with 
increasing gaze influence (β = −0.34%, 95% HDI = [−0.71%, 0.08%] per percentage increase in the gaze influence measure). Each circle represents one 
individual participant. Grey lines represent the fixed effect from mixed-effects regression models with random slopes and intercepts for each dataset. The 
key in d is applicable to all panels.

Table 1 | Description of the behavioural metrics of the included datasets

Dataset Krajbich 2010 Krajbich 2011 Folke 2016 Tavares 2017 Overall

N 39 30 24 25 118

Set size 2 3 3 2 –

Choice domain Value-based Value-based Value-based Perceptual –

Mean RT (ms) 2,192 ms (851 ms) 2,462 ms (1,298 ms) 5,414 ms (1,284 ms) 1,849 ms (601 ms) 2,844 ms (1,676 ms)

P(choose best) 81% (6%) 72% (10%) 66% (12%) 86% (5%) 77% (12%)

Gaze influence 19% (17%) 25% (14%) 35% (11%) 19% (9%) 24% (15%)

Means are given, with respective standard deviations in parentheses.
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level. The first is a full GLAM variant (with gaze bias) with free 
parameters v, γ, σ and τ. This model allowed the gaze bias parameter 
γ to vary freely between individuals. The second is a no-gaze-bias 
GLAM variant, whereby the gaze bias parameter γ was fixed to 1 
(resulting in no influence of gaze on the accumulation process).

The two models differ in their complexity. The full model has 
one more free parameter and can therefore be expected to provide a 
better absolute fit to the data. We used the widely applicable infor-
mation criterion (WAIC)34 to perform model comparisons at the 
level of the individual, as it includes a penalty for model complexity. 
Lower WAIC scores indicate a better model fit, accounting for dif-
ferences in model complexity.

Overall, the full GLAM fitted 109 out of 118 (92%) participants 
better than the no-gaze-bias variant. Within each dataset, the data 
of 79% (Krajbich 2010), 97% (Krajbich 2011), 100% (Folke 2016) 
and 100% (Tavares 2017) of the participants were better described 
by the full GLAM (Fig. 4a).

This analysis also suggested a categorical distinction between 
the perceptual and value-based choice datasets (such that the com-
parison more clearly favours the model with gaze bias in percep-
tual decisions). However, these more extreme differences in relative 
model fit (difference in WAIC scores; Fig. 4b) could be driven by the 
fact that the perceptual dataset contains approximately nine times 
more trials per participant than the other datasets, allowing the 
comparison to be more decisive. Consequently, they cannot neces-
sarily be attributed to the difference between perceptual and value-
based decision processing alone.

Individual estimates of the gaze bias parameter γ in the full 
model ranged from −1.03 (strong gaze bias) to 0.97 (almost no gaze 
bias), with a mean ± s.d. of 0.15 ± 0.39 (n = 118) (Supplementary 
Fig. 1). Importantly, sizeable gaze biases were present for all data-
sets (across choice domains and set sizes), with mean ± s.d. values 
of 0.26 ± 0.48 (Krajbich 2010, n = 39), 0.18 ± 0.41 (Krajbich 2011, 
n = 30), −0.017 ± 0.28 (Folke 2016, n = 24) and 0.08 ± 0.23 (Tavares 
2017, n = 25). Note, however, that the order of datasets according to 
γ estimates differs from their order based on the behavioural gaze 
influence measure (Fig. 2b and Table 1). This result demonstrates 
the conceptual difference between the behavioural measure and the 
model’s estimates of the latent gaze bias variable. While the behav-
ioural measure aggregates instances of observed behaviour, the latent 
gaze bias γ describes the assumed underlying generative mechanism.

We further probed the relationship between the difference in the 
models’ WAIC scores (which describe how much better the data of 
an individual is described by the full GLAM relative to the no-gaze-
bias variant) and the three behavioural metrics. We did not find any 
association between the differences in WAIC scores and mean RTs 
(β = 1 ms, 95% HDI = [−17 ms, 10 ms] per unit increase in WAIC 
difference). However, both the probability of choosing the best item 
in a trial (Fig. 2c; β = 0.10%, 95% HDI = [−0.01%, 0.22%] per unit 
increase in WAIC difference; 95.9% of posterior density above 0) 
and the strength of participants’ influence of gaze on choice (Fig. 2b; 
β = −0.21%, 95% HDI = [−0.42%, 0.01%] per unit increase in WAIC 
difference, 96.4% of the posterior density below 0) varied system-
atically with the WAIC differences. The full GLAM therefore out-
performed the no-bias variant, particularly for individuals with low 
choice accuracies and a strong influence of gaze on their choices.

Taken together, these findings provide strong empirical evidence 
to indicate that a gaze bias mechanism is present for most partici-
pants. Importantly, the extent to which the accumulation process 
was influenced by gaze, as captured by individual gaze bias (γ) esti-
mates, showed nontrivial individual differences.

Probing the functional form of individuals’ gaze bias. We also 
compared the gaze bias mechanism implemented in the GLAM 
against another variant that included an additive effect of gaze on 
choice behaviour (see also ref. 4; for a detailed description of this 
variant, see Supplementary Methods 2). This comparison revealed 
that similar proportions of participants were better described 
by either model variant, with an additional group of participants 
whose choice behaviour was described similarly well by both vari-
ants (Supplementary Fig. 2a). We therefore concluded that there 
is not a ‘winning’ gaze bias mechanism that we can identify across 
individuals. Model simulations also revealed that both variants 
described participants’ response behaviour similarly well and mim-
icked each other considerably in their predictions, both on the 
individual (Supplementary Fig. 2b–d) and group-averaged level 
(Supplementary Fig. 3). The variants’ gaze bias estimates were also 
highly correlated (Spearman’s ρ(117) = −0.86, P < 0.001). Therefore, 
we decided to continue using the original multiplicative variant, as 
multiplicative effects have received more empirical support in the 
literature9–11,20,21,35–37. Importantly, however, the results and conclu-
sions of our study would not change if we had used the additive 
variant instead (Supplementary Fig. 2). Further distinguishing these 
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other two. The GLAM assumes an adaptive representation of these relative 
evidence signals that is maximally sensitive to small differences in the 
relative decision signals. To this end, a logistic transform is applied (c). The 
resulting scaled relative evidence signals determine the drift terms Ri of 
the relative evidence accumulators Ei in the stochastic race (d). A choice 
for an option is made as soon as the accumulated relative evidence Ei 
reaches a choice threshold. The stochastic race provides first-passage time 
distributions pi, describing the likelihood of each item being chosen at each 
time point. For a more detailed model description, see the “GLAM details” 
section. Colours indicate choice alternatives.
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variants would ideally require choice datasets that include both 
appetitive and aversive choice options (positive and negative val-
ues, respectively), as the two mechanisms’ predictions diverge more 
clearly in these choice settings (for example, a multiplicative effect 
would predict that a longer gaze towards an aversive item should 
reduce its probability of being chosen, whereas an additive effect 
would predict the opposite).

Predicting individual choice behaviour. We found that in a rela-
tive model comparison, the data of most participants were better 
described by the full model with a gaze bias mechanism compared 
with a restricted variant with no gaze bias (γ = 1; Fig. 4). However, 
this analysis did not take into account whether the model with bias 
also accurately predicts individuals’ behaviour on an absolute level. 
To test this, we used both model variants to simulate response data 
for each individual. This time, however, we split the data into even- 
and odd-numbered trials. We then used all even trials to estimate 
individual model parameters. Subsequently, we predicted choices 
and RTs for all odd-numbered trials, thereby comparing model pre-
dictions to data that did not inform the parameter estimates. We 
note, however, that even- and odd-numbered trials from the same 
participant are not fully independent from one another.

To assess the quality of the fit of both models’ predictions to the 
empirically observed data across datasets, we performed the follow-
ing test. For each model and each behavioural measure, we computed 
a mixed-effects regression, regressing the respective measure onto a 
binary variable, which indicates whether each value on this measure 
comes from the empirically observed data or from the model simu-
lations. If the fixed-effects estimate of the indicator variable differed 
from 0, model predictions deviate meaningfully from observed data 
across datasets. Overall, the full model accurately predicted partici-
pants’ RTs (Fig. 5a; β = −9 ms, 95% HDI = [−410 ms, 344 ms] differ-
ence between the observed and predicted data), the probability of 
choosing the best item (Fig. 5b; β = −2.22%, 95% HDI = [−7.03%, 
2.30%] difference between the observed and predicted data) as well 
as the strength of their gaze influence (Fig. 5c; β = −2.20%, 95% 
HDI = [−8.25%, 4.21%] difference between the observed and pre-
dicted data). The full model also accurately recovered the observed 
associations between the three behavioural metrics (for a compari-
son, see Fig. 2 and Supplementary Fig. 4). The no-gaze-bias variant 
predicted the participants’ individual mean RTs (Fig. 5d; β = 15 ms, 
95% HDI = [−355 ms, 413 ms] difference between the observed and 
predicted data) and the probability of choosing the best item (Fig. 5e;  
β = 0.13%, 95% HDI = [−4.43%, 4.83%] difference between the 
observed and predicted data) similarly well. However, the restricted 
model by design cannot predict the influence of gaze on the par-
ticipants’ choices (Fig. 5f; β = −22.72%, 95% HDI = [−30.81%, 

−13.20%] difference between the observed and predicted data), 
resulting in no association between the predicted and empirical 
data in our gaze influence measure. This illustrates the inferiority of 
the restricted model. The full model further accurately captured the 
distribution of RTs within and across individuals (Supplementary 
Figs. 5 and 6).

Overall, these results show that the full model with gaze bias 
outperformed the restricted model in accurately predicting the par-
ticipants’ empirical choices, as it also captured empirical choice pat-
terns that are driven by gaze and not solely by the values of the items.

Model parameters explain individual choice behaviour. We found 
that the full model with gaze bias accurately predicted individuals’ 
response behaviour. Next, we tested whether the model’s param-
eters are able to explain variability in participants’ choice behaviour. 
Again, we used mixed-effects models to predict the three behav-
ioural metrics in the odd-numbered trials from the parameters 
estimated from the even-numbered trials (Fig. 6). We found that 
v (velocity parameter) scaled logarithmically with the participants’ 
mean RT (Fig. 6a; β = −0.79 log(ms), 95% HDI = [−0.85 log(ms), 
−0.71 log(ms)] per unit increase in log(v)). We did not find a 
meaningful relationship between σ estimates and the probability of 
choosing the best item (β = −0.23%, 95% HDI = [−2.32%, 1.25%] 
per 0.001 increase in σ), even though the σ parameter determines 
the magnitude of noise in the accumulation process. We also found 
that γ estimates predicted the strength of participants’ gaze influence 
on choice probability (Fig. 6b; β = −26.59%, 95% HDI = −37.10%, 
−17.24% per unit increase in γ).

Additionally, we found that γ (gaze bias) estimates relate to par-
ticipants’ probabilities of choosing the best item (Fig. 6c; β = 12.65%, 
95% HDI = [−3.19%, 28.84%] per unit increase in γ; 94.5% of the 
posterior density estimates were greater than 0). Thereby, stronger 
gaze biases (smaller γ) were associated with more choices inconsis-
tent with the value of the items. This relationship can be explained 
as follows: the gaze bias parameter lets the model bias the choice 
process according to the distribution of gaze between items. That 
is, with a strong gaze bias, the model’s predictions are strongly 
dependent on the distribution of gaze, and a gaze distribution that 
is random with respect to the value of the items then leads to more 
random choices. Conversely, the model’s predictions are indepen-
dent of gaze when no gaze bias is present. The model then neglects 
gaze and predicts choices solely driven by the values of the item.

To further probe the robustness of this association between gaze 
bias strength and probability of choosing the best item, we per-
formed three additional tests. First, we tested whether the correla-
tion of individual gaze bias estimates and individuals’ probability of 
choosing the best item was also present and statistically meaningful  
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within each of the four datasets. The relationship is present in 
three out of the four included datasets (Krajbich 2010: Spearman’s 
ρ(38) = 0.15, P = 0.36; Krajbich 2011: Pearson’s r(29) = 0.62, 
P < 0.001; Folke 2016: Pearson’s r(23) = 0.75, P < 0.001; Tavares 2017: 
Pearson’s r(24) = 0.41, P = 0.04). Second, we ascertained that this 
relationship is not determined by first trial fixations only. First trial 
fixations have been shown to be less influenced by item value9,10 and 
more driven by other factors, such as screen position (for example, 
first fixations are often directed towards items in the upper left por-
tion of the screen, irrespective of the value of that item). One could 
therefore hypothesize that individuals with a strong association of 
gaze and choice are more prone to choosing the first item seen in a 
trial (and thereby less likely to choose the best item) compared with 

individuals with a weak association. This effect would then dimin-
ish, however, in the later stages of the trial (in which fixations are 
driven more by item value). To establish whether this relationship 
also holds later in the trial, we repeated our analyses after discard-
ing first fixations in each trial (and trials in which only one fixation 
was made). Note that this analysis did not include the Folke 2016 
dataset, which only contains trial-aggregated gaze data, and thus did 
not allow us to remove first fixation data. Importantly, the relation-
ship between individuals’ gaze bias strength and their probability of 
choosing the best item was still present and statistically meaningful 
(β = 8.78%, 95% HDI = [0.14%; 17.08%] increase in probability of 
choosing the best item per unit increase in γ; 97.3% of the poste-
rior density estimate was greater than 0). Third, to ensure that the 
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relationship between the estimated gaze bias strength (γ) and indi-
viduals’ probability of choosing the best item is not dependent on 
the specific formulation of the gaze bias mechanism in the GLAM, 
we also established that this association remains statistically mean-
ingful when using γ estimates from the additive variant instead 
(β = −0.54%, 95% HDI = [−0.98%, −0.06%] per unit increase in 
γadditive; 97.8% of the posterior density estimate were greater than 0).

Discussion
We investigated individual differences in the influence of gaze 
allocation on choice behaviour by analysing four previously pub-
lished datasets6,9,10,21, in total including 118 individuals, two choice 
set sizes (two- and three-alternative) and two choice domains 
(value-based and perceptual). Across datasets, we found an over-
all positive behavioural relationship between gaze and choice (with 
a longer gaze increasing choice probability). The strength of this 
relationship, however, was highly variable across individuals. To 
better understand the underlying computational mechanism, we 
proposed a model called GLAM, which is inspired by the multial-
ternative aDDM9 and can be used to study gaze biases at the level 
of the individual. The GLAM assumes that individuals accumulate 
evidence in favour of each available item and make a choice as soon 
as the cumulative evidence for one item reaches a choice thresh-
old. Importantly, the accumulation process is biased by gaze behav-
iour, with discounted accumulation rates for unattended items. 
The model is statistically and computationally tractable, making 
it readily extendable to novel choice tasks and research questions. 
Generally, the GLAM can be seen as a way to sidestep the complex 
problem of simulating individual fixation trajectories. Although 
researchers have started to explore generative fixation models 
in simple decision-making tasks (for example, see ref. 20), this is 
often not feasible or not of main interest to researchers trying to 
understand the influence of gaze allocation on the decision-making 
process. Here, the GLAM provides a tractable, but simplified, alter-
native to the aDDM that solely requires trial-level statistics, namely 
overall gaze proportions (next to the RTs, choices and item values).

We then used the GLAM to perform three rigorous tests of gaze 
bias effects at the level of the individual. First, we formally tested 
whether individuals’ behaviour was better described by a model 
with or without gaze bias. In this comparison, a large majority of 
participants (109 out of 118) were better described by the full model 
with gaze bias than by a restricted variant without. Second, we estab-
lished that the full model accurately predicts observed behavioural 
differences between individuals, namely, in the RT, the probability 
of choosing the best item and the observed influence of gaze allo-
cation on choice behaviour. Third, we tested how individuals’ gaze 
bias estimates relate to their response behaviour. The strength of 
individuals’ gaze biases was predictive of both the strength of indi-
viduals’ association of gaze and choice and individuals’ probabil-
ity of choosing the best item (stronger gaze biases were associated 
with more choices that were inconsistent with item values). This 
identifies another source of variability among individuals’ ability to 
choose the best item from a choice set. Previously, these differences 
were mostly attributed to differences in generic accumulation noise 
parameters38,39, obscuring further insight into the mechanisms driv-
ing these individual differences.

Thereby, our approach goes beyond previous analyses of indi-
viduals’ gaze biases. For example, the Krajbich 2010 study10 reported 
individual gaze bias estimates in supplementary figure 11 of their 
paper. These estimates, however, do not result from non-restricted 
model fits and also leave open the possibility that individuals’ 
behaviour might be better described by a model without gaze bias.

One reason for the superior performance of models with a gaze 
bias is their use of individual trial gaze data, which allows them to 
make different predictions across otherwise identical choice sets. 
Leveraging a gaze bias mechanism lets these models make trial-spe-

cific predictions, which will have higher predictive accuracy owing 
to the positive relationship between gaze and choice. Conversely, a 
stochastic choice model without a gaze bias mechanism will make 
probabilistic, but identical, predictions for two such trials. Previous 
work has also shown a higher influence of gaze on choice in trials in 
which individuals did not have strong preferences among the alter-
natives19, suggesting that decision models with a gaze bias mecha-
nism will be particularly useful in these situations.

Our analyses also confirmed the need to account for individual 
variability in model parameters, as we found substantial variability 
across individuals in the influence of gaze on choice that was hid-
den in the group-level analyses. Given that the influence of gaze on 
choice is variable among individuals, a single gaze bias parameter γ 
for the whole group would not fit all individuals well, and therefore 
result in inferior predictive performance of the model. On the one 
hand, individuals whose link between gaze allocation and choice 
behaviour is weaker than the group average would falsely be pre-
dicted to make choices less consistent with item values, and driven 
more by looking behaviour. On the other hand, predictions for indi-
viduals’ choices with a stronger link than the group average would 
not contain enough influence of gaze. Accounting for individual 
differences in the link between gaze allocation and choice behav-
iour opens important avenues for future research that focus on the 
specific determinants of these differences. For example, are these 
differences best characterized as a trait (stable within a person, but 
variable between persons, as suggested in ref. 40), a state (variable 
within a person, between different situations or contexts) or both 
(variable between persons and contexts)?

Despite a wealth of evidence exploring the computational 
mechanisms underlying simple choice behaviour and its link to 
gaze allocation3,4,9–11,14,20,23, most of this work, and the associated 
computational frameworks (for example, see ref. 26), is difficult to 
extend to choice scenarios involving more than two choice alter-
natives. For example, a previous study4 explored the link between 
gaze behaviour and the choice mechanism underlying binary value-
based choices. To model the decision process, the authors used a 
hierarchical variant of the DDM, combined with a trial-averaged 
gaze-weighting mechanism similar to the GLAM. This model is 
strictly limited to binary decisions, as it describes the decision-
making process as a single accumulator that diffuses between two 
decision bounds (each bound representing one of the two choice 
alternatives). Therefore, this model cannot be used to study choices 
between more than two alternatives. Furthermore, their hierar-
chical estimation of the model’s parameters is solely focused on 
obtaining better group-level estimates and not on better capturing 
individuals’ choice behaviour. As a result, they neither analyse nor 
report individual parameter estimates or any associations of such 
estimates with individuals’ response behaviour. Our work thereby 
expands on their findings in three meaningful ways. First, our mod-
elling approach can be extended to an unlimited amount of choice 
alternatives. Second, our analyses, decision modelling and findings 
focus explicitly on the individual level, leading to insights into the 
association of individuals’ association of gaze allocation and choice 
behaviour. In particular, we found that individuals’ choice behav-
iour is better described by a model with a gaze bias compared with 
one without, and that individuals’ gaze bias estimates predict their 
behaviour on several measures (Fig. 6). Third, our analyses span 
both multiple choice set sizes and choice domains.

While we have shown that the GLAM accurately captures indi-
viduals’ choice behaviour in choice situations with two and three 
choice alternatives, it also extends to choices involving many more 
options, scenarios that we mostly encounter in our everyday lives. 
Vending machines, for example, can easily display up to 20 items. 
We assume that in these multialternative choice situations, both gaze 
and individual differences will play a prominent role. That is, indi-
viduals when confronted with large choice sets do not always look at 
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all available items (for example, see ref. 41). A choice model that only 
considers item values will therefore fail to accurately predict individ-
uals’ choice behaviour. Conversely, a model that includes informa-
tion about individuals’ gaze distribution during decision formation 
will outperform such naive models, because it will better account 
for the set of items that individuals actually consider for a choice. 
In addition, we assume behavioural differences between individu-
als to increase with increasing choice set size. Some individuals, for 
example, may look at only a few of the available items before mak-
ing a choice, while others may spend a long time searching for the 
most highly valued option (as indicated in a previous study41). To 
understand whether there is a common choice mechanism underly-
ing these different types of choice behaviour, it is necessary to test 
the ability of a model to capture individual choice patterns.

Recently, it was also shown that single-trial electroencepha-
lography components reflecting attention in simple perceptual 
decision-making tasks explain the variance in single-trial evidence 
accumulation rates of the decision-making process42 and that vari-
ability in these components can explain behavioural differences 
between individuals43. Two recent studies also provided empiri-
cal evidence that value-driven activity in the orbitofrontal cortex 
of monkeys is modulated by fixation location when they viewed 
reward-associated visual cues in a free-viewing paradigm44,45. 
Together, these studies provide neurobiological evidence of the 
influence of visual fixations on the process of decision formation. 
Ultimately, a better understanding of these computations will be 
central to building holistic models of the choice process and for 
advancing existing choice frameworks. In addition, it might also 
help us to better understand the origin of the behavioural variability 
that we observe within and between individuals as well as the spe-
cific functional form of the underlying computational mechanisms 
linking gaze allocation and choice behaviour.

Methods
Datasets, tasks, procedure and preprocessing. We reanalysed four datasets 
previously published by Krajbich and colleagues10, Krajbich and Rangel9, Folke and 
colleagues6 and Tavares and colleagues21. An overview of the corresponding tasks 
and procedures is given in Fig. 1 and in the “Datasets and task overview” section. A 
more detailed description of the datasets can be found in Supplementary Methods 2  
or in the original publications.

Additional processing. The original studies used different scales of item value 
(that is, liking rating between −10 and +10, willingness-to-pay, angular distance 
to target line segment). We linearly rescaled all values to a common scale from 1 to 
10 so that model parameters are comparable across datasets. For the Tavares 2017 
data, values were rescaled so that higher values indicate lower angular distance to 
the target. Furthermore, for each trial, we computed relative gaze gi as the sum of 
gazes towards this item, divided by the total sum of gazes to all items in that trial 
for each item.

GLAM details. The GLAM belongs to the class of linear stochastic race models32,33. 
It assumes accumulation of noisy evidence in favour of each alternative i, and that 
choices are determined by the first accumulator that reaches a common boundary 
b (which we set to 1). In particular, we define the accumulated relative evidence Ei 
in favour of alternative i, as a stochastic process that changes at each time point t 
according to equation (1):

σ= − + + =E t E t vR N E( ) ( 1) (0, ), with (0) 0 (1)i i i i
2

Ei consists of two separate components: a drift term Ri and zero-centred normally 
distributed noise with standard deviation σ. The overall speed of the accumulation 
is governed by the velocity parameter v. The drift term Ri describes the average 
amount of relative evidence for item i that is accumulated at each time point t. 
We define the relative evidence Ri

* as the difference in the stationary absolute 
evidence signal Ai of item i and the maximum absolute evidence of all other items J 
according to equation (2):

= −R A A* max ( ) (2)i i J J

The gaze bias mechanism is implemented in the absolute evidence signal Ai. 
Similar to the aDDM, absolute evidence signals are assumed to be proportional 
to the item value ri, and, crucially, switch between two different states during the 

trial: an unbiased state, when an item is currently looked at, and a biased state, 
when gaze is directed towards a different item. Therefore, on average, Ai is a linear 
combination of two terms weighted by relative gaze gi according to equation (3):

γ= + −A g r g r(1 ) (3)i i i i i

Here, γ (γ ≤ 1) is the gaze bias parameter that determines the strength of the 
downweighting during the biased state. If γ = 1, there is no difference between the 
biased and unbiased state, producing no gaze bias. If γ < 1, the absolute evidence 
signal is discounted, resulting in a gaze bias. If γ < 0, the sign of the evidence signal 
changes, thereby leaking evidence, when the item is not fixated on. This leakage 
mechanism is supported by a recent empirical study22.

Importantly, by computing an average absolute evidence signal over the two 
states (equation (3)), each accumulator Ei has constant drift, allowing the use of 
an analytical solution for its first passage time density (equation (6)). Thereby, the 
GLAM is statistically and computationally tractable.

Note that the range of possible Ri
* (equation (2)) depends on the participants’ 

use of the item value scale. That is, if the item values ri only cover a narrow range 
of possible values on the given scale, relative evidence values Ri

* will likewise be 
small, whereas they will be large if the participant utilizes the entire range of the 
value scale. The GLAM assumes an adaptive representation of the relative evidence 
signals that is compensating for the participants’ use of the value scale and thereby 
sensitive to marginal differences in the relative evidence, particularly to values 
close to 0 (where the absolute evidence signal for one item is only marginally 
different to the maximum of all others). To this end, a logistic transform s(x), with 
scaling parameter τ is applied as follows:

τ
=

+ −
s x

x
( ) 1

1 exp( ) (4)

=R s R( *) (5)i i

The first passage time density fi(t) of a single linear stochastic accumulator Ei, 
with decision boundary b, is given by the inverse Gaussian distribution46 as follows:
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However, this density does not take into account that there are multiple 
accumulators in each trial racing towards the same boundary. As soon as any of 
these accumulators crosses the boundary, a choice is made and the trial ends. For 
this reason, fi(t) must be corrected for the probability that any other accumulator 
crosses the boundary first. The probability that a single accumulator crosses the 
boundary before t is given by its cumulative distribution function Fi(t) as follows:
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where Φ(x) is the standard normal cumulative distribution function. Hence, the 
joint probability pi(t) that accumulator Ei crosses b at time t, and that no other 
accumulator Ei has reached b first, is given by equation (8):

∏= −p t f t F t( ) ( ) (1 ( )) (8)i i
J

i

Importantly, all of the GLAM’s parameters could be recovered to a satisfying 
degree without bias (see Supplementary Methods 3 for detailed a procedure and 
results).

GLAM parameter estimation. All models were implemented in a Bayesian 
framework using the Python library PyMC347. The full GLAM has four parameters 
(v, γ, σ, τ). We placed uninformative, uniform priors between sensible limits on all 
parameters as follows:

γ
σ
τ

~ .
~ −
~ .
~

−

−

v Uniform(1 , 0 01)
Uniform( 10, 1)
Uniform(1 , 0 02)
Uniform(0, 5)

10

10

The γ parameter has a natural upper bound at 1 (no gaze bias). The τ parameter 
has a natural lower bound at 0 (no sensitivity to differences in relative evidence Ri

*).
The GLAM variant without gaze bias used the specification of the absolute 

evidence signal Ai from the full variant (equation (3)) and fixed γ at a value of 1, 
resulting in no influence of gaze on the drift term.

To reduce the influence of erroneous responses (for example, when the 
participant presses a button by accident or has a lapse of attention during the task) 
on parameter estimation, we explicitly included a model of contaminant processes 
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in all estimation procedures. In line with existing DDM modelling toolboxes48, we 
assumed a fixed 5% rate of erroneous responses, which we model as a participant-
specific uniform likelihood distribution us(t). This contaminant likelihood 
describes the probability of a random choice for any of the N available choice items 
at a random time point in the interval of empirically observed RTs as follows (see 
also refs. 48,49):

=
−

u t
N rt rt

( ) 1
(max( ) min( )) (9)s

s s

The resulting choice likelihood is then given by the following:

= . ⋅ + . ⋅l t p t u t( ) 0 95 ( ) 0 05 ( ) (10)i i s

Models were fit using Markov–Chain–Monte–Carlo sampling. We used the 
default implementation of the No-U-Turn-Sampler (NUTS50) in PyMC 3.4.1. 
We sampled two chains with 500 tuning samples that were discarded, and 2,000 
posterior samples to estimate the model parameters. If the sampler did not 
converge as indicated by the Gelman–Rubin statistic (|Rˆ – 1| < 0.05) or if the 
number of effective samples was low (<100), all of this participant’s models were 
re-estimated using more robust but less efficient Metropolis sampling (two chains, 
with 10,000 samples each). Again, convergence was diagnosed using the Gelman–
Rubin statistic. Convergence was achieved for all models. Reported parameter 
estimates are maximum a posteriori estimates.

Model simulations. Choice and RT data were simulated from the GLAM 
according to the following procedures. Each trial in the left-out dataset (all 
odd-numbered trials) was repeated 50 times. For every trial, the model used the 
observed item values and gaze distributions. With a fixed rate of 5% the simulation 
produced a random choice and RT between the participant’s minimum and 
maximum observed RT (see equations (9) and (10)). With a rate of 95% the choice 
and RT were simulated from the GLAM.

Parametric statistical tests. Assumptions of normality and homoscedasticity were 
tested for all reported parametric tests. If the normality assumption was violated, 
we report results from non-parametric tests (Spearman’s ρ, Mann–Whitney U). 
We report rank-biserial correlations r as effect size measures for U-tests. If the 
homoscedasticity assumption was violated, we report results from the more robust 
Welch’s t-test. All tests were two-tailed.

Mixed-effects modelling. All mixed-effects models reported in the manuscript 
across datasets were implemented and estimated using the bambi Python library51. 
Bambi automatically generates weakly informative priors for all model terms 
by default52. We sampled two chains, with 20,000 samples each, using NUTS. 
Convergence was diagnosed using the Gelman–Rubin criterion (|Rˆ – 1| < 0.05) for 
all analyses. We declare fixed effects as statistically meaningful either when the 95% 
HDI excludes zero or when 95% of the posterior density is above (below) zero (see 
also ref. 4). In the latter case, we also report the proportion of the posterior mass 
above (below) zero, directly indicating the posterior probability of the effect being 
larger (smaller) than zero (see also ref. 53).

Software. All analyses were performed in Python, using the NumPy and SciPy54, 
Pandas55, Statsmodels56, PyMC347, bambi51 and Theano57 libraries. We used 
Matplotlib58 for visualization.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All datasets are available at http://www.github.com/glamlab/gaze-bias-differences. 
The Folke 2016 dataset59 is originally available at figshare: https://doi.org/10.6084/
m9.figshare.3756144.v2.

Code availability
All analyses and figures can be reproduced using the datasets, scripts and GLAM 
resources that are available at http://www.github.com/glamlab/gaze-bias-
differences.
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Software and code
Policy information about availability of computer code

Data collection No new data was collected in this study. Therefore, no software was used in the collection of the data.

Data analysis All analyses were performed in Python 3.5.2, using the NumPy 1.13 and SciPy 1.0 (Van der Walt, Colbert & Varoquaux, 2011), Pandas 
0.21 (McKinney, 2010), Statsmodels 0.8 (Skipper & Perktold, 2010), PyMC 3.4.1 (Salvatier et al., 2016) and Theano 1.0.1 (Theano 
Development Team, 2016) libraries. We used Matplotlib 2.1.1 (Hunter, 2007) for visualization. For our modeling we used a custom code 
(http://www.github.com/glamlab/gaze-bias-differences).
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All analyses and figures can be reproduced using the dataset, scripts and GLAM resources that are available at http://www.github.com/glamlab/gaze-bias-
differences. The dataset from Folke et al. (Nat Hum Beh, 2016) is licensed under CC BY 4.0 and originally available under https://doi.org/10.6084/
m9.figshare.3756144.v2.
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Study description Our study includes choice, reaction time and eye tracking data collected from human participants in four previously published datasets.

Research sample The dataset from Krajbich et al. (2010) contains data from 39 Caltech students. Only participants who self-reportedly regularly ate the 
snack foods used in the experiment and without food restrictions could participate. No information about participants' age or gender is 
provided in the original study. 
The dataset from Krajbich and Rangel (2011) includes data from 30 Caltech students. Only participants who self-reportedly regularly ate 
the snack foods used in the participants and without food restrictions could participate. No information about participants' age or gender 
is provided in the original study. 
The dataset from Folke et al. (2016) includes data from 24 participants (17 females, age 21-38). Participants were required to fast for 4 
hours before taking part in the experiment. 
The dataset from Tavares et al. (2017) includes data from 25 participants (10 female, mean age 23) which included Caltech students and 
staff as well as members of the surrounding community.

Sampling strategy We have no information about the sampling strategies used in the original studies.

Data collection The original studies recorded participants' choices and eye movements using a task presented on a computer. Eye movements were 
recorded using an eye tracker. We do not have any information about the experimenters presence in the room or their blindness to the 
research hypotheses.

Timing We do not have any information about start and end of data collection in the original datasets.

Data exclusions We did not exclude any data from the dataset that we obtained from the original authors.

Non-participation We do not have any information about drop-outs or declined participation in the original datasets.

Randomization We allocated data into separate groups once in our analysis, when performing an out of sample prediction exercise. Here, we split the 
data into a training and test data set, respectively including the even and odd numbered experiment trials. 
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Materials & experimental systems
n/a Involved in the study

Unique biological materials
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Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The dataset from Krajbich et al. (2010) contains data from 39 Caltech students. Only participants who self-reportedly regularly 
ate the snack foods used in the experiment and without food restrictions could participate. No information about participants' 
age or gender is provided in the original study. 
The dataset from Krajbich and Rangel (2011) includes data from 30 Caltech students. Only participants who self-reportedly 
regularly ate the snack foods used in the participants and without food restrictions could participate. No information about 
participants' age or gender is provided in the original study. 
The dataset from Folke et al. (2016) includes data from 24 participants (17 females, age 21-38). Participants were required to 
fast for 4 hours before taking part in the experiment. 
The dataset from Tavares et al. (2017) includes data from 25 participants (10 female, mean age 23) which included Caltech 
students and staff as well as members of the surrounding community.

Recruitment We have no information about the recruitment process in the original studies.
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