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A B S T R A C T

What role does attention play in decision-making? Prior research has demonstrated a link between visual at-
tention and value-based choice, but the direction of causality is still unclear. Here we aimed to demonstrate that
attention has a causal influence on choice. We tested whether spatially biasing attention in a visual search task
would produce choice biases in a later choice task. We ran four experiments where the search target was more
likely to appear on one “rich” side of the screen. In the subsequent choice tasks, participants were more likely to
choose items appearing on the rich side and the average choice bias depended on how well participants learned
the regularity in the search task. Additionally, eye-tracking data revealed a first-fixation bias toward the rich
side, which in turn influenced choices. Taken together, these results provide novel support for a causal effect of
attention on choice.

1. Introduction

One of the most fundamental challenges we face as humans is to
efficiently process the information that we are surrounded by. Attention
allows us to prioritize behaviorally relevant information while ignoring
irrelevant information (Chun, Golomb, & Turk-Browne, 2011; Egeth &
Yantis, 1997). An abundance of research suggests that attention inter-
acts with essentially every known cognitive function (Baddeley, Lewis,
Eldridge, & Thomson, 1984; Chun & Johnson, 2011; Chun et al., 2011;
Hillyard et al., 1998; Hillyard, Vogel, & Luck, 1998; Kane & Engle,
2000; Woldorff et al., 1993). Attention is also thought to play a critical
role in decision-making, influencing which aspects of a choice problem
are evaluated from moment to moment (Roe, Busemeyer, & Townsend,
2001), though it may also limit our ability to simultaneously compare
options (Krajbich, Armel, & Rangel, 2010). For instance, when deciding
what to eat for lunch, we may imagine at one moment what it would be
like to eat a cheeseburger while imagining at another moment what it
would be like to eat a salad. However, it is still not well understood
whether attention causally determines the outcomes of decisions or
merely reflects the emerging preference.

Many models of the decision process assume serial processing of
information, including seminal models such as satisficing (Simon,
1955), elimination-by-aspects (Tversky, 1972), decision field theory
(Busemeyer & Townsend, 1993; Diederich, 1997; Roe et al., 2001), fast-
and-frugal heuristics (Gigerenzer & Goldstein, 1999), and query theory
(Weber et al., 2007). In these models, attention to attributes or

alternatives varies over time, influencing the extent to which they affect
the final decision.

In many of these models, attention is thought to be attracted to
more important or predictive attributes/alternatives (Aschenbrenner,
Albert, & Schmalhofer, 1984; Bordalo, Gennaioli, & Shleifer, 2012;
Cassey, Evens, Bogacz, Marshall, & Ludwig, 2013; Khodadadi, Fakhari,
& Busemeyer, 2017; Wallsten & Barton, 1982). At the same time, other
(potentially irrelevant) factors such as visual saliency (Mormann,
Navalpakkam, Koch, & Rangel, 2012), even when made salient after the
decision process has begun (Bear & Bloom, 2016), or emotional content
(Vuilleumier, 2015) might also attract attention and thus affect the
decision outcome.

In a related literature, perceptual fluency, or the ease with which
one perceives information, is also thought to influence preferences.
Prior studies have demonstrated that positive affective judgments are
increased by prior exposure (Zajonc, 1968), primes that facilitate per-
ception (Winkielman & Cacioppo, 2001), and higher contrast (Reber,
Winkielman, & Schwarz, 1998). Previously ignored stimuli are also
devalued (Raymond, Fenske, & Tavassoli, 2003), though it has been
argued that this is more likely due to attentional inhibition than per-
ceptual fluency (Fenske & Raymond, 2006).

To more systematically investigate the link between attention and
decision making, some researchers have employed eye tracking. For
example, Shimojo and colleagues showed that, over time, gaze tends to
shift towards the option that is eventually chosen; a phenomenon re-
ferred to as the gaze cascade effect (Shimojo, Simion, Shimojo, &
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Scheier, 2003). Because eye position is a reliable overt measure of at-
tentional allocation (Corbetta et al., 1998; Hoffman & Subramaniam,
1995), this effect provides an important demonstration of the interplay
between choice and attention.

To model the relationship between attention and choice, Krajbich
et al. (2010) proposed an attentional drift diffusion model (aDDM) in
which evidence for each option is accumulated and compared over time
until one item gains sufficiently more evidence than the other. The key,
novel feature of this model was that evidence is accumulated more
quickly for an item when it is being looked at than when it is not. Using
a binary food choice task, the authors demonstrated that the model
could quantitatively capture many complex relationships between
choices, response times, and gaze data. In particular, it was able to
predict the gaze cascade effect without assuming that attention is
drawn to the emerging favorite. The aDDM itself is agnostic about the
direction of causality, but other features of the data suggest a causal
link from attention to choice. For instance, the authors found no cor-
relation between gaze time and independently measured valuations of
the items, but they did find that gaze time was predictive of choice.

Other studies have also implicated an important role for eye
movements in choice (Ashby, Dickert, & Glöckner, 2012; Ashby, Jekel,
Dickert, & Glöckner, 2016; Cavanagh, Wiecki, Kochar, & Frank, 2014;
Fiedler & Glöckner, 2012; Fiedler, Glöckner, Nicklisch, & Dickert, 2013;
Fisher, 2017; Folke, Jacobsen, Fleming, & De Martino, 2016; Franco-
Watkins & Johnson, 2011; Glaholt & Reingold, 2011; Isham & Geng,
2013; Janiszewski, Kuo, & Tavassoli, 2013; Kim, Seligman, & Kable,
2012; Konovalov & Krajbich, 2016; Kovach, Sutterer, Rushia,
Teriakidis, & Jenison, 2014; Krajbich & Rangel, 2011; Krajbich, Lu,
Camerer, & Rangel, 2012; Mullett & Stewart, 2016; Noguchi & Stewart,
2014; Orquin & Mueller Loose, 2013; Pärnamets, Johansson, Gidlöf, &
Wallin, 2016; Polonio, Di Guida, & Coricelli, 2015; Reutskaja, Nagel,
Camerer, & Rangel, 2011; Russo & Leclerc, 1994; Shi, Wedel, & Pieters,
2012; Stewart, Hermens, & Matthews, 2015; Tavares, Perona, & Rangel,
2017; Vaidya & Fellows, 2015; Wang, Spezio, & Camerer, 2009;
Willemsen, Böckenholt, & Johnson, 2011). Still, these studies have fo-
cused on correlations between visual attention and choices, so they
cannot fully address the issue of causality, i.e. whether attention is
driving preference or preference is driving attention.

To address this problem, other studies have attempted to influence
attention exogenously. Armel, Beaumel, and Rangel (2008) displayed
one option at a time and thus were able to manipulate relative exposure
times. Participants were more likely to pick the item that appeared on
the screen for a longer duration. Lim, O’Doherty, and Rangel (2011)
used an analogous paradigm, but kept both choice items on the screen
and directed gaze using exogenous cueing. Again, items receiving more
attention were more likely to be chosen.

Another set of studies attempted to physically alter the salience
properties of the stimuli in order to more subtly influence attention. In
the first study (Mormann et al., 2012) the researchers increased the
brightness of one of the items so that it would be more salient than the
other. This manipulation did increase choices for the more salient item,
with the strongest effects at shorter presentation durations (on the order
of 100 ms). In a follow-up paper, Towal, Mormann, and Koch (2013)
introduced a choice model which takes into account the salience of an
item in relation to its surroundings. They found that a model accounting
for both salience and value of each item was best able to predict de-
cisions. Still other studies have shown that one can bias choice by
prompting participants to decide when their attention has been parti-
cularly devoted to one option over the other (Pärnamets et al., 2015), or
by making options in one location more valuable than in other locations
(Colas & Lu, 2017).

While these studies have made important strides in establishing the
causal link between attention and choice, they utilize techniques that
directly interfere with the natural choice process (Armel et al., 2008;
Lim et al., 2011; Pärnamets et al., 2015), alter the properties of the
choice options (Mormann et al., 2012; Towal et al., 2013), or

manipulate participants’ expectations (Colas & Lu, 2017). Thus, we
cannot rule out alternative explanations for the results.

The attention literature has provided several techniques for ex-
perimentally manipulating attention. For instance, in probability cueing,
targets are presented more frequently in one spatial location compared
to others (either a specific location or a general region of the display).
This has been shown to influence attentional allocation through shorter
reaction times (RT) and eye movements directed towards targets ap-
pearing in more probable locations, even after the probability manip-
ulation has ceased (Druker & Anderson, 2010; Geng & Behrmann, 2005;
Jiang, Swallow, & Rosenbaum, 2013; Jiang, Won, & Swallow, 2014).

Here, we aimed to use this attentional learning technique to provide
definitive evidence that attention influences choice. We did so by in-
troducing attentional biases without altering the presented choice sti-
muli in any way, and without unnaturally forcing eye movements or
decision times. Instead, we used a separate attentional learning task to
induce a spatial bias in attention, and then tested whether that spatial
bias would spill over into a later, independent choice task.

In Experiment 1, we aimed to provide evidence that attention cau-
sally influences choice by using probability cueing to induce a spatial
bias in attention. We hypothesized that this spatial bias would spill over
into a later, independent choice task where participants chose which of
two food items they would prefer to eat. Moreover, we also hypothe-
sized that the extent of each individual’s attentional learning, as cap-
tured by the RT-difference between spatial locations, would predict the
size of their subsequent choice bias. In two additional experiments
(Experiments 2 & 3) we investigated whether these spatial biases could
be induced or reversed in a second set of food choices following the first
food-choice task. These experiments probed the malleability and limits
of attentional learning while also controlling for potential baseline
spatial biases. Finally, in Experiment 4 we collected eye-tracking data
to directly establish that probability cueing affected subsequent eye-
movements, and therefore choice.

2. Experiment 1

2.1. Materials and methods

2.1.1. Participants
42 undergraduate students at The Ohio State University participated

in the initial experiment (Gwinn, Krajbich, & Leber, 2018a). One par-
ticipant failed to complete the binary choice task due to insufficient
positively rated items. One other participant was excluded due to per-
forming significantly below chance during the visual search task. Par-
ticipants earned a show-up fee of $7. In addition to this, participants
earned an average of $7.59 during the probability manipulation as well
as the food item from one randomly selected choice trial.

2.1.2. Apparatus
All images were created and displayed using Matlab (Mathworks) in

conjunction with Psychtoolbox (Brainard, 1997). Participants sat ap-
proximately 101 cm away from the screen and used a standard U.S.
keyboard to indicate their responses.

2.1.3. Obtaining value
The first task that participants completed was a rating task (Fig. 1A).

Participants saw an individual image of each of the snack items (91 in
total for Experiment 1) and a rating scale from −10 to +10 in incre-
ments of one. Participants used the right and left arrow keys to move
the slider on this number scale to indicate their desired rating, at which
point they pressed “enter” on the keyboard to confirm. A rating of
“−10” indicated that the item was very disliked, “+10” indicated that
the item was very liked, and “0” indicated that the item was neither
liked nor disliked. Items were presented in a random order and tran-
sitioned immediately between ratings. Food images were procured from
a database made available by the Rangel lab (Plassmann, O’Doherty, &

R. Gwinn et al. Cognition 182 (2019) 294–306

295



Rangel, 2007) and supplemented with additional images.

2.1.4. Training – attentional biasing
In order to manipulate attentional allocation, we used a visual

search task (Fig. 1B). In this task, we presented participants with 12
rotated L’s (distractors) and one T (target) which was rotated 90° left or
right. The task was to report whether the target T was rotated to the left
(press the left arrow key) or to the right (press the right arrow key). The
key attentional manipulation was that the “rich” side of the display was
more likely to contain the target (75%) than the other “sparse” side
(25%).

At the beginning of each trial, participants saw a fixation cross at
the center of the screen, which lasted for 1 s. They were instructed to
look at the fixation cross until the search display appeared.

In the search display, T’s and L’s were matched for size, each letter
subtending 0.72° visual angle and appearing at a minimum eccentricity
of 1.20° from the center of the screen and a maximum eccentricity of
7.23° from the center of the screen. Each T and L was randomly and
independently colored blue, red, yellow, or green. Each L was randomly

rotated by 90 or 270° and randomly flipped over the horizontal axis or
not. To increase search difficulty, we slightly offset the horizontal line
segment of each L to make it more similar to a sideways T. A dashed
grey line vertically bisected the screen, so as to clearly separate the left
from the right, in order to encourage learning. The search display was
presented until response or for 8 s, whichever came first.

Each participant was assigned a different rich side of the display;
47.5% of the participants had the rich side on the left. While we did not
tell participants about the probability manipulation, prior research in-
dicates that most participants do not become aware of it (Druker &
Anderson, 2010; Geng & Behrmann, 2002; Jiang, Swallow, Rosenbaum,
& Herzig, 2013).

Participants completed 200 search trials, with a break halfway
through. Accurate responses to targets yielded a reward of 4 points.
Immediately upon responding, participants were shown how many
points they had earned on that trial. The total number of points earned
was also displayed at the resting point 100 trials into the task and was
displayed again at the end of the task. Points were translated to dollars
at the rate of 100 points per dollar. Maximum earnings were $8.

Fig. 1. Experiment components (a) Rating task: Participants rated each item on a scale from −10 to +10 based on how much they would like to eat the item. (b)
Visual search task: participants had 8 s to locate a rotated T among rotated Ls and indicate whether the T was rotated 90° to the left or to the right. A correct answer
was given a reward of 4 points (c) Binary food-choice task: Participants indicated which of two food items they preferred.
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2.1.5. Test – choice
To test the effects of our attention manipulation we used a binary

food-choice task. In each trial, participants saw two food items on the
screen and were told to choose the item that they preferred. These
choices were incentivized. That is, a trial was drawn at random at the
end of the study, and the participant received the item they had chosen
on that trial. If the randomly selected food item was not in stock, an-
other trial was drawn at random until we were able to provide the
participant with a food item they had chosen.

Choice trials were created by selecting every possible pair of items
with an absolute rating difference of 1 or less. Pairs were then randomly
selected from this master list, attempting to minimize the number of
times any one item was seen. On average, the maximum number of
times any one item was seen was 5.9.

At the beginning of each trial, participants saw a fixation cross at
the center of the screen, which lasted for 1 s. They were instructed to
look at the fixation cross until the choice screen appeared.

As in the search task (Section 2.1.4), a dashed grey line once again
appeared down the center of the screen in order to define the left from
the right side. Two food items appeared on the screen, each subtending
6.94° and appearing 1.34° from the center (Fig. 1C). Participants chose
their preferred food item using the left and right arrow keys. Food items
remained on the screen until a choice was made. Once a choice was
made, a blue outline square appeared around the chosen item for
500 ms.

Participants completed 130 binary choice trials. We did not include
any items that received a rating less than 0 (we did not mention this to
the participants). Additionally, we only used pairs of items with a
maximum rating difference of 1; we did this to focus on difficult
choices, in which the effects of attention would be most noticeable. The
percentage of trials with a rating difference of 0 was 39–44% in all four
experiments.

2.2. Results

In this study, the target during the search task was more likely to
appear on the rich side (75%) than the sparse side (25%), which has
been shown to increase attentional allocation to the rich side (Geng &
Behrmann, 2002). We hypothesized that this spatial prioritization of
attention toward the rich side would then carry over into the food
choice task, biasing participants’ choices towards the rich side.

2.2.1. Training
First, we analyzed behavior during the visual search task. Mean

accuracy was 91.32% (s.e. = 2.7%) and did not differ between targets
on the rich vs. sparse side (mean difference = 0.40%, t = 0.48, 95% CI
[−1.30%, 2.09%], d= 0.02). RTs were significantly shorter for targets
appearing on the rich vs. sparse side (mean difference = 475 ms,
t = 6.14, 95% CI [318 ms, 631 ms], d= 0.85) (Fig. 2A). This replicated
previous probability cueing results, demonstrating that the participants
learned to attentionally prioritize the rich side of the display.

2.2.2. Test – main effect
We next investigated whether there was an effect of the attentional

manipulation on the food choice task. Because we were interested in the
effect of the attentional manipulation, we excluded participants who
did not score significantly above chance during the visual search task
(N = 2); we reasoned that these individuals had not learned the task
and thus would not display biases induced by the manipulation.

We used a mixed-effects logistic regression with the probability of
choosing the food item from the rich side as a function of the value
difference between the rich item and the sparse item (i.e. the item on
the rich side minus the item on the sparse side), with random effects for
all regressors. In this regression, the value-difference variable indicates
how well participants’ choices aligned with their earlier ratings, and the
intercept indicates any bias toward choosing the rich item or the sparse

item. Specifically, a positive intercept indicates a bias toward choosing
the rich item.

The effect of value difference was highly significant ( = 0.42, 95%
CI [0.33, 0.51]), indicating that participants’ choices were indeed cor-
related with their earlier liking ratings. Note that across all experi-
ments, this regressor was always highly significant and so for brevity
we omit reporting it in subsequent results sections (although full re-
gression results for all analyses are available in the Supplementary
material).

In line with our hypothesis, we found a positive intercept ( = 0.07,
95% CI [0.02, 0.13]). This indicates that participants’ decisions were
biased toward the rich side of the display (Table S1).

2.2.3. Test – establishing the role of attention
In order to establish that our observed choice bias was due to at-

tention and not other possible factors, we sought to test whether there
was a correlation between the degree of attentional learning during the
search task and the size of the choice bias during the decision task. For
this we used the RT difference between the sparse and rich sides during
training.

It was also suggested to us that accuracy during the search task
might be predictive of the subsequent choice bias, as it might serve as
an alternative measure of learning in the search task. We also suspected
that overall value, that is the sum of the ratings for the left and right
items, might affect the choice bias. This last prediction comes from a
subtle feature of the aDDM. In the model, evidence for an unattended
item is discounted by a factor of . This means that items with higher
values are discounted more in absolute terms, leading to a larger effect
of attention on choice.

To best characterize which, if any, of these variables were important
in determining final choice, we ran several mixed-effects logistic re-
gressions with all possible combinations of these three variables plus
rating difference and intercept and used the Akaike Information
Criterion (AIC) to compare them (see Table S2). Because we later
conducted a meta-analysis across all four experiments, the goal here
was simply to rule out variables/models that provided clearly worse fits
to the data. Therefore, here (and later for Experiments 2 & 3) we report
the results from the most complex model whose AIC fell within 2 of the
best-fitting model (Posada & Buckley, 2004). Later, in the meta-ana-
lysis, we focus exclusively on the best-fitting model.

For these analyses we ran the regressions including the participants
who did not score significantly above chance on the search task, since
they essentially serve as control participants that did not learn the at-
tention manipulation. In other words, it helps to compare participants
who did not learn the attentional manipulation to those who did (but
see Table S3 for results without these inclusions). We continued to
exclude participants who scored significantly below chance (N = 1), as
these participants seem to have learned the manipulation but were not
following directions.

Our AIC rule selected the model that included both RT difference
and accuracy, in addition to rating difference and intercept. RT differ-
ence and accuracy, both proxies for the degree of attentional learning,
positively predicted choosing from the rich side ( = 0.11, 95% CI
[−0.004, 0.22] and = 0.64, 95% CI [0.21, 1.06] respectively) though
RT difference was not quite significant. In other words, participants
who displayed bigger learning effects in the search task were more
biased in their later food choices (Fig. 3A).

After accounting for the degree of attentional learning, we should
not expect any remaining choice bias. Indeed, this more complex model
yielded a negative intercept ( = −0.58, 95% CI [−0.99, −0.18]).
Because the accuracy variable was coded from 0 to 100%, with 50%
being chance level, the negative intercept in this complex model simply
indicates that, in theory, a participant with 0% accuracy would be
biased towards choosing from the poor side. In other words, this merely
confirms the effect of accuracy on choosing from the rich side.
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3. Experiment 2

In this pre-registered experiment, we sought to replicate our first
experiment and test whether the attentional bias could be detected
relative to participants’ baseline behavior on a choice task prior to the
search task. It was unclear whether the attentional manipulation would

still succeed in this context, since participants might become less sus-
ceptible to the manipulation after already going through the choice
task. To preview the results, we do not replicate the choice bias, though
the effect is in the predicted direction. We do however observe some
new effects when comparing pre- and post-training choices.

Fig. 2. Search task results. Reaction times (RT) from the search task in (a) Experiment 1 (b) Experiment 2 (c) Experiment 3, first search task (d) Experiment 3, second
search task, separated into blocks of 50 trials (e) Experiment 4, first search task (f) Experiment 4, second search task, separated into blocks of 50 trials (g) Experiment
4, first search task initial fixations (h) Experiment 4, second search task initial fixations by blocks of 50 trials. Rich and sparse refer to the assignment in the original
search task. In (d), (f), and (h) the original sparse side (orange) is now the rich side, and so its RTs, as well as first fixations to the original rich side, decline as
participants learn the new assignment. Bars indicate 95% confidence interval. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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3.1. Methods

3.1.1. Participants
As detailed in the pre-registration of this study, we used a power

analysis to determine that we should use a sample size of at least 135
participants to achieve power of 0.9 (Gwinn, Krajbich, & Leber, 2016,
February 24). We ran these experiments in a 30-person experimental
lab at the Ohio State University and our stopping rule was to invite full
sessions until we had run 135 participants. We ended up with 163
undergraduate students. Nine participants were excluded for having too
few positively rated food items. An additional 3 were excluded due to
computer crashes. One final participant was excluded from all analyses
for scoring significantly below chance on the search task. Participants
earned an average of $7.89 during the search task (Gwinn et al.,
2018a).

3.1.2. Task
The procedure for this experiment was the same as Experiment 1

(Section 2.1.2), except as noted below.
The main difference from Experiment 1 was that between the food

rating task and the visual search task, participants completed 130 trials
of the binary choice task. This was done to establish participants’
baseline behavior on the choice task. In the second, manipulated choice
task (also 130 trials), we made sure to not repeat any of the pairings
from the first choice task. To accommodate these additional choice
trials, we expanded the number of food items to 147. 49% of the non-
excluded participants had their rich side on the left. On average, the
maximum number of times any one item was seen was 6.81.

3.2. Results

3.2.1. Training
As in Experiment 1, we first analyzed the results from the search

task (Section 2.2.1). Average accuracy was 96.28% (s.e. = 0.65%) and
was greater for targets on the rich side (mean accuracy differ-
ence = 0.99%, t = 3.35, 95% CI [0.41%, 1.60%], d= 0.12). As ex-
pected, RTs to items appearing on the rich side were significantly
shorter (mean difference = 517 ms, t = 13.99, 95% CI [444 ms,
590 ms], d= 0.97), replicating the probability-cueing effect (Fig. 2B).
This again indicates that participants learned the attentional manip-
ulation.

3.2.2. Test – main effect
Next we wanted to know if the attentional manipulation influenced

choices. To do this we first looked at only the second choice task, which
occurred after the attentional manipulation. This analysis simply re-
plicated that from the first experiment. As before, we ran a mixed-

effects logistic regression of the probability of choosing the rich item,
controlling for the rating difference between the items on the rich and
sparse sides. In contrast to Experiment 1 (Section 2.2.2) the intercept
was not significant ( = 0.011, 95% CI [−0.03, 0.05]) (Table S4).
Hence, there was no significant choice bias in this study.

3.2.3. Test – establishing the role of attention
To investigate further, we again expanded our regression models to

include RT difference, accuracy, and overall value as independent
variables. Here the AIC-selected model included only RT difference as
an additional predictor (Table S5). RT difference did not significantly
predict choosing from the rich side, though the effect was in the pre-
dicted direction ( = 0.06, 95% CI [−0.02, 0.14]) (Fig. 3B). Again,
after accounting for the degree of attentional learning, we expect and
find no remaining choice bias ( = −0.02, 95% CI [−0.07, 0.04]).

3.2.4. Test – comparing pre-training and post-training
In accordance with our registration for this study, we ran a mixed-

effects logistic regression of the probability of choosing the rich side on
every combination of the following parameters: rating difference, RT
difference, accuracy, overall value, and treatment (a binary variable
coding for whether choices occurred before (0) or after (1) the search
task), as well as models including two and three way interactions with
the treatment variable.

Out of these models, the regression with rating difference, overall
value, treatment, and the interaction between treatment and rating
difference produced the best fit (Table S6). There was no significant
coefficient on the intercept ( = 0.032, 95% CI [−0.01, 0.08]), overall
value ( = −0.003, 95% CI [−0.006, 0.001]), or on treatment
( = 0.004, 95% CI [−0.04, 0.05]). However, there was a significant
negative interaction between treatment and rating difference
( = −0.15, 95% CI [−0.20, −0.09]), indicating that after the search
task, participants were less likely to choose the higher rated foods.

This last result suggests that our attentional manipulation did have
an effect on participants’ food choices, though not in the exact same
way as in Experiment 1. One concern is that the increased delay be-
tween the rating task and the second choice task (and possibly fatigue)
could be responsible for the less consistent choices. To test these
competing hypotheses we again included the RT-difference variable as
a way to capture the amount of learning during the search task. We
reasoned that if the RT-difference variable modulated the effect of the
treatment on choice consistency, then that would support the hypoth-
esis that the change in behavior was due to the treatment and not due to
time delay or fatigue.

Indeed, in this analysis we see that there was a significant, three-
way, negative interaction between rating difference, RT difference, and
treatment ( = −0.16, 95% CI [−0.30, −0.02]). This means that after

Fig. 2. (continued)

R. Gwinn et al. Cognition 182 (2019) 294–306

299



the search task, participants who displayed a bigger attentional bias
were less likely to choose the higher rated items. All other coefficients
and interactions were non-significant (intercept: = 0.01, 95% CI
[−0.05, 0.07]; treatment: = −0.03, 95% CI [−0.09, 0.03]; RT dif-
ference: = −0.01, 95% CI [−0.09, 0.07]; rating difference x RT
difference: = 0.04, 95% CI [−0.08, 0.16]; treatment x RT difference:

= 0.07, 95% CI [−0.03, 0.17]; treatment x rating difference:
= −0.06, 95% CI [−0.14, 0.02]).

4. Experiment 3

In the third experiment we again sought to replicate Experiment 1

while attempting to erase or reverse the attentional bias within parti-
cipant. We began with a closer replication of Experiment 1, including
the search task, followed by a choice task, but then participants com-
pleted a second search task in which the spatial manipulation was re-
versed, followed again by a second choice task. We anticipated a re-
plication of the choice bias found in Experiment 1 on the first choice
task. Furthermore, we hypothesized that the bias in the second choice
task would disappear, or possibly reverse, relative to the bias in the first
choice task.

Fig. 3. Choice bias as a function of attention bias.
(a–d) Mean probability of choosing the food item
from the rich side of the display, as a function of
the RT difference from the search task. Subjects
were split into five even-sized groups (quintiles)
within each experiment. (e) Subjects were then
combined across experiments. In other words, the
far-right bin represents the most attentionally
biased 20% of the subjects from Experiment 1,
20% of the subjects from Experiment 2, 20% of the
subjects from Experiment 3, and 20% of the sub-
jects from Experiment 4. We observe a fairly
consistent increase in the choice bias as the RT
difference increased. (f) Probability of choosing
from the rich side for each study. Bars indicate
95% confidence intervals.
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4.1. Methods

4.1.1. Participants
126 undergraduate students at the Ohio State University partici-

pated in this study, as outlined in a second pre-registration (Gwinn,
Krajbich, & Leber, 2016, March 14). Two participants were excluded
from the analyses for having an insufficient number of positively rated
items. Two additional participants experienced computer crashes and
were unable to finish the study.

To compensate for the longer experiment, participants in this ex-
periment earned a show-up fee of $5 for the study in addition to an
average of $15.79 during the search tasks (as well as one food item
from a randomly selected trial) (Gwinn et al., 2018a).

4.1.2. Task order
The procedure for this experiment was the same as Experiment 1

(Section 2.1.2), except as noted below.
The main difference from Experiment 1 was that after completing

the rating task, the search task and then the 130 trials of the choice task,
participants then completed another 200 trials of the search task with
the rich side reversed from before, so that if it originally was on the left,
it would now be on the right, and vice-versa. This has been shown to
eliminate attentional bias effects (Jiang, Swallow, Rosenbaum, et al.,
2013). This was followed by another 130 trials of the choice task. As in
Experiment 2, we made sure to not repeat any of the pairings from the
first choice task and we used 147 food items. In this experiment exactly
50% of the participants had their rich side on the left during the first
search task. On average, the maximum number of times any one item
was seen was 8.2.

4.2. Results

4.2.1. Training
As before, we describe the results from the search tasks first. Mean

accuracy during the first search task was 96.66% (s.e. = 0.68%) and
was significantly higher on the rich side (mean accuracy differ-
ence = 0.68%, t = 2.93, 95% CI [0.22%, 1.14%], d= 0.09), unlike
Experiment 1 (Section 2.2.1) but replicating Experiment 2 (Section
3.2.1). As before, RTs showed a significant difference between sparse
and rich sides (mean difference = 492 ms, t = 10.74, 95% CI [402 ms,
583 ms], d= 0.98) (Fig. 2C).

In the second search task, accuracy was 97.57% (s.e. = 0.72%) and
was not significantly different between sides (mean accuracy differ-
ence = 0.26%, t = 1.35, 95% CI [−0.12%, 0.63%], d= 0.03). For
simplicity we will always refer to the rich and sparse sides based on
how they were assigned in the first search task. In other words, for one
participant the “rich” side label would be the left side in both the first
and second search tasks, despite the actual reversal. As predicted, the
RT difference between the sparse and rich sides disappeared (mean
difference = 1.91 ms, t = 0.042, 95% CI [−86 ms, 90 ms], d= 0). For
a more fine-grained look at the extinction of the RT effect we examined
behavior in the second search task in blocks of 50 trials. Participants
remained significantly faster at detecting targets on the rich side for the
first 50 trials (mean difference = 266 ms, t = 5.06, 95% CI [162 ms,
370 ms], d= 0.54), were not significantly faster in either direction for
the next two blocks of 50 trials (mean difference = 10 ms, −98 ms,
t = 0.17, −1.74, 95% CI [−108 ms, 128 ms], [−210 ms, 14 ms],
d= 0.02, −0.2), and were significantly faster for targets on the sparse
side for the last block of 50 trials, (mean difference = −173 ms,
t = −3.84, 95% CI [−263 ms, −84 ms], d= −0.37) (Fig. 2D).

4.2.2. Test – main effect
Next we turned to the choice data. Looking only at the first 130

choice trials, and using data taken from only the first search task, we
ran the same mixed-effects logistic regression, looking at the probability
of choosing from the rich side based on rating difference. As before,

anyone with a search accuracy not significantly above chance was ex-
cluded (N = 3). Here we found that the intercept was marginally sig-
nificant ( = 0.04, 95% CI [−0.005, 0.09]) (Table S7).

4.2.3. Test – establishing the role of attention
To investigate further, we again expanded our regression models to

include RT difference, accuracy, and overall value as predictors. As in
the prior experiments, the three excluded participants were re-included
in this analysis. Here the AIC-selected model included overall value and
RT difference as additional predictors (Table S8). RT difference, our
measure of attention, was in the correct direction but not significant
( = 0.06, 95% CI [−0.03, 0.15]) (Fig. 3C). Overall value was mar-
ginally significant ( = 0.005, 95% CI [−0.0003, 0.01]). Again, ac-
counting for the degree of attentional learning, we expect and find no
remaining choice bias ( = −0.04, 95% CI [−0.11, 0.04]).

4.2.4. Test – post extinction
We next investigated how these same regressions differed after the

reversed search task. First, we ran the simple regression of choosing the
original rich side on rating difference, again excluding those partici-
pants who did not perform above chance on the search task (N = 3).
The bias to choose the original rich side disappeared (in fact slightly
changed sign) (intercept = −0.005, 95% CI [−0.066, 0.056]) (Table
S9).

Additional regressions including RT-difference from the two search
tasks paint a complex picture and are described in detail in the sup-
plements. Also, direct comparisons between the two choice tasks failed
to reveal any significant differences (see supplements and Tables S10
and S11).

5. Experiment 4

In the fourth experiment, we collected eye-tracking data to test
whether the effects we had found in the prior experiments were indeed
due to attention. We replicated the procedure for Experiment 3 (Section
4.1.2), testing whether the probability cueing task would bias partici-
pants’ first fixations or dwell times towards the rich side of the display.

5.1. Methods

5.1.1. Participants
43 undergraduate students at The Ohio State University participated

in this study. Eight participants were excluded for having an insufficient
number of positively rated items, leaving us with 35 valid participants,
as outlined in our pre-registration (Gwinn, Krajbich, & Leber, 2017,
August 11).

As in Experiment 3, participants in this experiment earned a show-
up fee of $5 for the study in addition to an average of $15.88 during the
search tasks (as well as one food item from a randomly selected trial)
(Gwinn, Krajbich, & Leber, 2018b).

5.1.2. Task order
This study was identical to Experiment 3 (Section 4.1.2) in task

order, with the addition of eye-tracking during both search and choice
tasks. Participants’ left-eye movements were recorded at 1000 Hz using
an Eyelink 1000 Plus (SR Research, Osgoode, ON, Canada) eye-tracker,
located 40.5 cm in front of the participant. We used a chinrest provided
by the manufacturer to minimize head movement. All stimuli were
presented on an LCD monitor (24′ XL2420TE, BenQ), located 79 cm in
front of the participant. After the food rating task, participants were
calibrated using the standard nine-dot calibration procedure provided
by the manufacturer.

In this experiment 46% of the participants had their rich side on the
left during the first search task. On average, the maximum number of
times any one item was seen was 14.32.
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5.2. Results

5.2.1. Training
We first checked the accuracy during the first and second search

tasks, as in Experiment 3. During the first search task, mean accuracy
was 96.29% (se = 1.50%) and did not differ between the rich and
sparse side in a two-sided t-test (mean accuracy difference = 0.69%,
t = 1.23, 96% CI [−0.45%, 1.82%], d= 0.21). In contrast to accuracy,
but in line with all of the prior studies, RT did significantly differ be-
tween the rich and sparse sides during the first search task (mean dif-
ference = 426 ms, t = 5.94, 95% CI [280 ms, 572 ms], d= 1.003)
(Fig. 2E).

In line with (Jiang et al., 2014), we found that participants were
significantly more likely to look at the rich side first during the search
task (mean proportion of trials = 0.66, t = 4.37, 95% CI [0.59, 0.74])
(Fig. 2G). This confirms that the attentional biasing indeed affected
participants’ eye movements.

In the second search task, accuracy was 99.01% (se = 0.24%) and
did not differ between sides (mean accuracy difference = 0.32%,
t = 1.33, 95% CI [−0.17%, 0.82%], d= 0.22). As in Experiment 3, the
terms “rich” and “sparse” always refer to the original rich and sparse
sides unless otherwise specified. As expected, and in line with
Experiment 3 (Section 4.2.1), the RT difference between the rich and
sparse side was now negligible (mean difference = 34 ms, t = 0.50,
95% CI [−103 ms, 171 ms], d= 0.09). When we break the RT differ-
ence down to 50-trial blocks, we see that participants quickly un-
learned the original training within the first 50 trials, as there was no
significant difference in RT between sides (mean difference = 162 ms,
t = 1.62, 95% CI [−366 ms, 41 ms], d= −0.27). By the final 50 trials,
participants had learned the new probability structure and the RT dif-
ference reversed (participants were faster to respond to targets on the
sparse side), although it was still not significantly different from zero
(mean difference = 153 ms, t = 1.70, 95% CI [−30 ms, 338 ms],
d= 0.29) (Fig. 2F).

In a similar fashion, first fixations showed no bias towards either
side until the final block of 50 trials where they were biased towards the
sparse side (mean proportion of trials in the final block = 0.59, 95% CI
[0.51, 0.67]) (Fig. 2H). Thus, participants’ eye-movements mirrored
their RT differences in the search tasks.

5.2.2. Test – main effect
Looking at only the first 130 choice trials, we ran a simple mixed-

effects logistic regression of fixating the rich side first on rating dif-
ference. Here we find no significant effect of rating difference on first
fixations ( = 0.020, 95% CI [−0.064, 0.104]), which is in line with
previous literature (Krajbich et al., 2010).

Importantly, we do find a significant bias to fixate the rich side first,
as evidenced by a positive intercept ( = 0.335, 95% CI [0.023,
0.647]), indicating that the attentional bias did transfer to the choice
task (Table S13).

We next investigated how this first-fixation bias translated into
behavior by running the same mixed-effects logistic regression as that
in Experiment 3 (Section 4.2.2): choosing the rich side on rating dif-
ference. Participants showed a significant bias to choose the item on the
rich side (intercept = 0.087, 95% CI [0.028, 0.146]) (Table S12).

5.2.3. Test – establishing the role of attention
While we have shown that our manipulation biases both first-fixa-

tion location and choice, it is not yet clear that there is a trial-level
effect of first-fixation location on choice. To establish the link between
first fixation and choice, we ran another mixed-effects logistic regres-
sion of choosing the rich side on rating difference and first-fixation
location. Critically, the effect of first-fixation location on choice was
strongly positive ( = 0.354, 95% CI [0.215, 0.493]), and the choice
bias for trials with the first fixation to the sparse side was negative
( = −0.114, 95% CI [−0.220, −0.008]).

It is important to note at the outset that the following analyses are
underpowered, since the sole aim of this experiment was simply to
establish the eye-tracking effects. With only 35 participants, we should
not expect to reliably demonstrate the individual-difference effects seen
with greater sample sizes in the previous experiments. Nevertheless, for
completeness, we report the results of those analyses here.

Focusing on the first 130 choice trials, we added the RT difference
from the first search task into the aforementioned regressions. We first
investigated whether those who learned the probabilities in the first
search task, as measured by a larger RT difference, also demonstrated
more of a first-fixation bias while controlling for the rating difference.
Indeed, we found a strong positive relationship between RT difference
and the first-fixation bias ( = 0.819, 95% CI [0.143, 1.495]). This
indicates that those who better learned the attention manipulation were
more likely to look at the rich side first during the choice task.

As before, the rating difference did not predict first fixations
( = 0.020, 95% CI [−0.064, 0.104]). The intercept also becomes non-
significant ( = −0.005, 95% CI [−0.401, 0.391]), as expected after
accounting for the degree of attentional learning (RT difference) (Table
S13).

We looked at whether this pattern of results held for the choice
behavior as well by running the mixed-effects logistic regression of
choice on rating difference and RT difference.

The RT difference effect was in the predicted direction, though it did
not reach significance ( = 0.136, 95% CI [−0.062, 0.334]) (Fig. 3D).
Again, we expect and find no overall choice bias ( = 0.036, 95% CI
[−0.064, 0.136]) after accounting for the degree of attentional
learning (Table S12).

5.2.4. Test – post extinction
We next ran these same analyses on the second set of 130 choice

trials. When predicting first fixations from rating difference, there is
again no significant effect of rating difference ( = 0.012, 95% CI
[−0.086, 0.110]), and participants no longer showed a significant
tendency to fixate the rich side first ( = 0.175, 95% CI [−0.141,
0.491]). Similarly, choice behavior was also no longer significantly
biased towards the rich side (intercept = 0.015, 95% CI [−0.079,
0.109]) (Tables S15 and S16).

As with Experiment 3, additional regressions including RT differ-
ence from the two search tasks paint a complex picture and are de-
scribed in detail in the supplements. Again, direct comparisons between
the two choice tasks failed to reveal any significant differences (Tables
S18–S20).

5.2.5. Dwell time effects
In accordance with our pre-registration, we also investigated whe-

ther there were biases in the total dwell time advantages to the rich side
in either choice task. None of these effects approached significance, and
we report them in the supplements (Tables S14, S17, & S20). Moreover,
accounting for the dwell time advantage in the choice regressions did
not reduce the choice bias, if anything it increased it (Table S12). These
results confirm past findings on the effect of dwell time on choice but
indicate that our attention manipulation operated through a different
mechanism, namely an initial bias due to first-fixation location.

6. Pooled data analysis

A recent paper by Scheibehenne et al. (Scheibehenne, Jamil, &
Wagenmakers, 2016) highlighted a method to study the consistency of
results across studies. This type of analysis is useful for interpreting our
data, given the fact that our effects were consistently in the same di-
rection, but in some cases were not statistically significant. Here we
present such an analysis, in which we used only the one choice task
from Experiment 1, the second choice task from Experiment 2, and the
first choice task from Experiments 3 and 4, since these were the tasks
where we expected participants to choose more often from the rich side.
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All analyses were run using the BRMS package for R.
First we tested the simple model from each study, which is the

mixed-effects logistic regression of choosing from the rich side as a
function of the rating difference. Here we focused on the intercept and
computed the Bayes factor testing whether participants had a bias to
choose from the rich side vs. the alternative hypothesis of no bias. In
order to avoid any biasing of the outcome, we used improper, uniform
distributions over all real numbers as the priors on the intercept and
rating difference coefficients.

Considering all four tasks, the Bayes factor for the intercept was
332. According to Scheibehenne et al. (2016), this indicates “extreme”
evidence for a choice bias (see Fig. 4A for the evolution of the Bayes
factor across studies; also Table S21). A more traditional frequentist t-
test was also significant (p = 0.005) (Fig. 3F).

6.1. Establishing the role of attention

Next we tested a more complex version of the model, which in-
cluded all the variables that were selected by our AIC comparisons in
any of the experiments. This model thus included rating difference,
accuracy, overall value, and RT difference. We again computed the
Bayes factors for each variable being greater than zero and used uni-
form distributions over all real numbers as the priors on all the vari-
ables.

Considering all four tasks, the overall Bayes factors for the intercept,
rating difference, accuracy, overall value, and RT difference were (re-
spectively): 0.48 (anecdotal evidence against), 9999 (extreme), 2.04
(anecdotal), 1.194 (anecdotal), and 141.857 (extreme) (Fig. 4B). Thus
we find extreme support for only rating difference and RT difference. A
frequentist t-test on RT difference was also significant (p = 0.015)
(Fig. 3E). Again, we expected the zero-to-negative intercept in this
model after accounting for RT difference and accuracy.

This conclusion is supported when we compare AIC values for all
the combinations of these variables in the meta-analysis (Table 1). From
the pooled analysis we see that the best-fitting model includes only
rating difference and RT difference. This confirms the overarching story
that our search task had a significant effect on participants’ food choices
and that this effect was modulated by their attention bias (Fig. 4B). We
see that for participants in the top 20% in terms of RT difference, their
choice bias was 2.3%. To get a sense for the subjective magnitude of
this effect, we went back to the original study by Krajbich et al. (2010),
which used a very similar binary food-choice task. For a proper

comparison with our current study, we focused solely on trials with the
same range of rating differences (−1 to +1). In those trials, partici-
pants looked at the left item first on 75.4% of trials and chose the left
item on 52.3% of trials. Thus, for our most influenced participants, it
seems that with our simple 8-minute search task, we were able to erase
or double (depending on the rich side) their average ‘left-bias’, a bias
that has developed over their entire lives.

6.2. Decay over trials

A natural question to ask is whether the effects of our attention
manipulation decay over time. That is, are participants’ choices more
spatially biased at the beginning of the choice block, compared to at the
end? We examined this in each dataset by running mixed-effects logistic
regressions predicting choice of the rich-side item as a function of rating
difference and trial number. As before, we used only the one choice task
from Experiment 1, the second choice task from Experiment 2, and the
first choice task from Experiments 3 and 4, since these were the tasks
where we expected participants to choose more often from the rich side.
We find no evidence of a reduction in choosing the rich side over trials,
in any dataset (Table 2).

7. Discussion

Here we have shown that manipulating spatial attention can influ-
ence which item a person will choose. In four separate experiments we
manipulated attention using a spatially biased visual search task and
then tested for a corresponding spatial bias in a subsequent food-choice
task. Across the four experiments we found varying degrees of evidence
for the hypothesized choice bias, which while small in size, was 332
times more likely to exist than to not, according to our Bayesian meta-
analysis. We were also able to establish how well participants learned
the attentional manipulation by measuring their spatial RT difference
during the search task. This measure fully determined the effect of the
search task on the choice behavior. It is worth noting that these effects
are clearly driven by our manipulation and not reflective of any natu-
rally occurring spatial biases, as the biases were randomly assigned and
disappeared after the reversed search task (Experiments 3–4).

In addition to the RT effect, we also presented eye-tracking evi-
dence, which mirrors the results of prior work using probability cueing,
namely that it biases initial fixations (Jiang et al., 2014). Consistent
with our current results, past research with the aDDM has demonstrated

Fig. 4. Bayesian logistic regression results. Mixed-effects Bayesian logistic regression results from experiments 1, 2, 3 and 4 combined cumulatively. (A) Bayes Factor
of the intercept being greater than 0 from the simple model p(choose rich side) ∼ Rating Difference. (B) Bayes Factor of each coefficient of the full model p(choose
rich side) ∼ Rating Difference + Accuracy + Overall Value + RT Difference. Rating Difference is not shown here as the Bayes Factor was 9999 across all four studies.
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an effect of the first fixation on choice. For example, participants who
are more likely to look left first are more likely to choose items on the
left. Interestingly, here first fixations did not influence choice via dwell
time, perhaps suggesting a non-linearity in the decision process that
favors early information. Such non-linearities are a feature of several
prominent sequential sampling models, including the Ornstein-Uhlen-
beck model (Ratcliff & Smith, 2004) and the Wang model (Wang,
2002), though notably not the standard DDM. It is worth noting that
some prior research with the aDDM has indicated that the effect of the
first fixation may be larger than predicted by the model (Krajbich et al.,
2010, but see Krajbich & Rangel, 2011; Cavanagh et al., 2014).

Our results provide novel evidence for a causal effect of attention on
choice. From a modelling standpoint, the aDDM merely captures a
mathematical relationship between gaze and choice; it is agnostic about
the direction of causality. Its key insight is that the value information
being sampled over the course of the decision is not i.i.d., as assumed by
most other sequential sampling models (though not decision field
theory). Instead, value information is preferentially biased towards one
alternative during certain time intervals, and these biases are tied to
gaze. It could be that gaze merely reflects the shift in information
sampling, or it could be that gaze causes the shift in sampling.

Proponents of the gaze-cascade effect have argued that both me-
chanisms are at play, with preference driving gaze (Shimojo et al.,
2003). Proponents of the aDDM have instead argued that it is primarily
gaze that drives preference, based in part on a lack of correlation

between dwell times and independently measured stimulus values
(Krajbich et al., 2010). Either way, we would expect that gaze manip-
ulations would influence choice.

While a few papers have provided such evidence, ours overcomes
some of their potential limitations and extends the scope of this link to
temporally distinct settings. Prior work has manipulated gaze time
(Armel et al., 2008; Lim et al., 2011; Shimojo et al., 2003), prompted a
decision once a certain gaze criterion is fulfilled (Pärnamets et al.,
2015; Tavares et al., 2017), made certain items more visually salient
(Mormann et al., 2012; Towal et al., 2013) or systematically placed
better items on one side of the screen (Colas & Lu, 2017). While it is
reassuring that all of these manipulations lead to the predicted choice
biases, there are some concerns with each of these manipulations. The
primary concerns include interfering with the natural choice process,
altering the stimuli, and manipulating value expectations.

Interfering with the natural choice process might be problematic,
because while we control which item the subject is looking at, this does
not mean that we control which item the subject is attending to. The
subject may be forced to look at Coke, but still be focused on Pepsi. We
see this possibility as very unlikely when subjects are free to look at
Coke and Pepsi as they please. Related literatures have worried about
the effects of interfering with cognitive processes, for example using
Mouselab to reveal information with mouse clicks (Lohse & Johnson,
1996), or “think-aloud” paradigms (Leow & Morgan-Short, 2004). Thus,
there is precedent to be concerned about experimenter manipulations of
the choice process. Our study avoids this issue by placing no constraints
on our participants during the choice tasks.

Altering the stimuli themselves may be problematic for the simple
reason that it might facilitate identification (e.g. through perceptual
fluency), explaining why, for example, people greatly prefer the salient
item under very short exposure, but less so with longer exposure
(Mormann et al., 2012). We know that people are generally un-
certainty-averse, and so if faced with two items, one known and one
unknown, people will generally prefer the known item. Our study
avoids this issue by placing no time constraints on our participants,
allowing them time to identify both alternatives.

Manipulating value expectations is problematic because adaptive
decision makers should develop a response bias, based on their belief
that this side of the screen is more likely to contain the better option.
Our study avoids this issue by randomly assigning options to the rich
and sparse sides during the choice task, and by holding constant the
value of finding a target on each side during the search task.

An additional feature of our study is that it demonstrates that at-
tentional biases developed in one setting can have impacts in other
settings. For example, cultural differences in reading direction might

Table 1
Meta-analysis results. Bold indicates significance at p ≤ 0.05. Italics indicate the best-fitting model.

Dependent variable Intercept (bias) Rating diff. Overall value Training accuracy Training RT Diff. AIC

Choose rich side 0.034
(0.009, 0.059)

0.401
(0.370, 0.432)

61,255

0.399
(0.368, 0.430)

61,327

0.033
(−0.004, 0.070)

0.401
(0.370, 0.432)

0.001
(−0.032, 0.034)

61,253

−0.092
(−0.376, 0.192)

0.401
(0.370, 0.432)

0.130
(−0.166, 0.426)

61,256

−0.002
(−0.037, 0.033)

0.401
(0.370, 0.432)

0.074
(0.021, 0.127)

61,252

−0.108
(−0.384, 0.168)

0.401
(0.370, 0.432)

0.001
(−0.032, 0.034)

61,256

−0.005
(−0.049, 0.041)

0.401
(0.370, 0.432)

0.002
(−0.031, 0.035)

0.074
(0.021, 0.127)

61,249

−0.111
(−0.385, 0.163)

0.041
(0.370, 0.432)

0.113
(−0.171, 0.397)

0.073
(0.022, 0.124)

61,255

−0.131
(−0.407, 0.145)

0.401
(0.370, 0.432)

0.002
(−0.031, 0.035)

0.132
(−0.154, 0.418)

0.074
(0.023, 0.125)

61,252

Table 2
Effects of trial number on the choice bias.

Dependent Variable
P(Choose Rich Side)

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Intercept 0.106*

(0.058)
0.022
(0.029)

0.070**

(0.033)
−0.009
(0.062)

Rating Difference 0.418***

(0.038)
0.352***

(0.025)
0.447***

(0.028)
0.492***

(0.040)
Trial Number −0.005

(0.008)
−0.002
(0.004)

−0.005
(0.005)

0.013
(0.009)

Observations 4940 19,110 15,470 4420
Log Likelihood −3358.947 −13,065.730 −10,482.330 −2979.034
Alaike Inf. Crit. 6729.894 26,143.460 20,976.660 5970.068
Bayesian Inf. Crit. 6768.925 26,190.610 21,022.540 6008.431

* p < 0.1.
** p < 0.05.
*** p < 0.01.
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lead to biases in whether people look left or right first, which in turn
would influence how often they choose items on the left.

One potential concern with our study, as well as results from other
attention-manipulation studies, is experimenter demand. It is possible
that participants thought that they should choose items on the rich side
of the display. We took steps to reduce this possibility by incentivizing
the decisions, which is a standard approach for combatting demand
effects in experimental economics. We also avoided interleaving the
search and choice tasks, to minimize the likelihood that subjects would
form a connection between the two. Finally, our analyses demonstrated
that measures of attentional biasing (training RTs and initial fixations)
predicted the size of subjects’ choice biases, arguing against a simple
response bias.

Our results are also consistent with the literature on perceptual
fluency. That literature has argued that the ease with which informa-
tion is perceived, influences preferences. Factors that facilitate per-
ception, such as prior exposure, primes, or visual contrast, appear to
affect preference judgments (Reber et al., 1998; Winkielman &
Cacioppo, 2001; Zajonc, 1968). Perceptual fluency might be one of the
mechanisms by which attention increases the rate of evidence accu-
mulation and thus biases choices. The distractor devaluation effect is
likely also closely related to our work, as there attentional inhibition of
a distractor stimulus leads to reduced preferences for those stimuli
(Fenske & Raymond, 2006).

In conclusion, our results support a causal mechanism from atten-
tion to choice. Therefore, inherent biases or exogenous manipulations
of attention will, in turn, result in choice biases. A better understanding
of attentional processes, biases, and salience are thus likely critical to
the study of decision-making.
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