
Submitted to the Annals of Applied Statistics
arXiv: arXiv:1903.08747

STATISTICAL METHODS FOR REPLICABILITY ASSESSMENT
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Large-scale replication studies like the Reproducibility Project:
Psychology (RP:P) provide invaluable systematic data on scientific
replicability, but most analyses and interpretations of the data fail
to agree on the definition of “replicability” and disentangle the inex-
orable consequences of known selection bias from competing explana-
tions. We discuss three concrete definitions of replicability based on
(1) whether published findings about the signs of effects are mostly
correct, (2) how effective replication studies are in reproducing what-
ever true effect size was present in the original experiment, and
(3) whether true effect sizes tend to diminish in replication. We ap-
ply techniques from multiple testing and post-selection inference to
develop new methods that answer these questions while explicitly
accounting for selection bias. Our analyses suggest that the RP:P
dataset is largely consistent with publication bias due to selection of
significant effects. The methods in this paper make no distributional
assumptions about the true effect sizes.

1. Introduction. Growing concerns about selection bias, p-hacking, and other question-
able research practices (QRPs) have raised urgent questions about the reliability of scientific
findings. While concerns about replicability cut across scientific disciplines, psychologists have
led large-scale efforts to assess the replicability of their own field. The largest and most sys-
tematic of these efforts has been the Reproducibility Project: Psychology (RP:P),1 a major col-
laboration by several hundred psychologists to replicate a representative sample of 100 studies
published in 2008 in three top psychology journals, Psychological Science, Journal of Person-
ality and Social Psychology, and Journal of Experimental Psychology: Learning, Memory, and
Cognition.2

While the RP:P dataset is an invaluable resource, scientists disagree on how to quantify
or measure replicability (Goodman, Fanelli and Ioannidis, 2016; Amrhein, Korner-Nievergelt
and Roth, 2017). Open Science Collaboration (OSC; 2015) reported three main metrics: it
found that 64% (= 1 − 36%) of the replication studies did not find statistically significant
results in the same direction as the original studies, that 53% (= 1 − 47%) of 95% confidence
intervals for the replication studies do not contain the point estimates for their corresponding
original studies, and that 83% of the effect size estimates declined from original studies to
replications. All three summary statistics were widely reported as indicating a dire crisis for
the credibility of experimental psychology research. For example, the Washington Post reported
that RP:P “affirms that the skepticism [of published results] was warranted” (Achenbach, 2015);

MSC 2010 subject classifications: Primary 62F03; secondary 62P25
Keywords and phrases: replicability, multiple testing, post-selection inference, publication bias, meta-analysis
1In some parts of the literature, “reproducibility” has taken on a computational connotation, meaning only

that other scientists can repeat the analysis using the original study’s data; we will lean toward the more
unambiguous term “replicability.”

2The test statistics, effect sizes and most pertinent information are all publicly available on at the Open
Science Foundation website at https://osf.io/ezcuj/.
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the Economist noted that OSC “managed to replicate satisfactorily the results of only 39% of
the studies investigated” (2016); and the New York Times reported that “more than half of the
findings did not hold up when retested” (Carey, 2015).

This negative gloss was challenged in a comment by Gilbert et al. (2016a), who criticized
both the fidelity of some of the replications’ experimental designs and the aptness of the metrics
reported by Open Science Collaboration (2015). In particular, Gilbert et al. pointed out that,
because there is sampling error in the replication point estimates, we should not expect 95% of
the estimates to fall into the replication confidence intervals even under ideal conditions. More-
over, any small or large variations in the true effect sizes between the original and replication
studies could further deflate the expected fraction of “successful replications,” as measured in
this way. Gilbert et al. concluded that “OSC seriously underestimated the reproducibility of
psychological science,” sparking further debate between defenders of OSC’s conclusions (An-
derson et al., 2016; Srivastava, 2016; Nosek and Gilbert, 2016) and the critics (Gilbert et al.,
2016b,c).3

1.1. Three definitions of replicability. To determine whether OSC truly underestimated
replicability, we must first pin down the rather slippery question of what “replicability” ac-
tually is. Although the three metrics used by OSC are simply descriptive statistics that do not
purport to estimate any explicitly defined underlying quantity, we can loosely characterize the
64%, 53% and 83% numbers respectively as qualitative answers to three questions:

False directional claims. What fraction of the original studies were erroneous in claiming
that the true effect was nonzero, in the claimed direction (positive or negative)? Gelman
and Tuerlinckx (2000) called such mistakes type S errors.

Effect shift. How much do the effect sizes shift from the original study to the replication
study? We call the discrepancy between the original and replication effect effect shift.

Effect decline. What fraction of the effect sizes decline? More precisely, what fraction of the
true effect sizes shift in a direction opposite to the original claims when the studies were
replicated, and by how much?

The first question concerns a type of false discovery rate (FDR) of the statistical hypotheses,
viewing the field of social psychology as a collective enterprise in large-scale multiple testing:
it quantifies the fraction of findings that would be confirmed if the exact same studies could
be carried out again with much larger samples from the same populations. The second ques-
tion concerns a basic form of repeatability: whether scientists are typically successful in closely
replicating each others’ experimental conditions, so that the true effect being measured is sta-
ble across different experiments. The third question builds upon the second question: whether
true effect sizes tend systematically to attenuate in replications. An overall trend of declining
true effects could suggest various interpretations, including systematic biases in the original
experiments or failures by the replication teams to reproduce key experimental conditions that
produced the original effects.

As we will see, however, none of the three reported metrics can be taken at face value
as estimates of the answers to the corresponding questions, due to the confounding factor of
pervasive selection bias. By using techniques from multiple testing and post-selection inference,

3While much of the ensuing discussion focused on the question of whether the confidence interval metric
53% is too pessimistic, analogous criticisms apply to the “significant replications” metric of 64% as well: the
replication studies could be underpowered even when a true effect is present.
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we will develop methods to rigorously address these questions without assuming a model for the
prior distribution of effect sizes. For the RP:P data we estimate the rate of false directional claims
at roughly 32% among studies with p < 0.05, which would be considered unacceptably high in
most multiple testing applications. By contrast, among studies with p < 0.005, a lower threshold
proposed by Benjamin et al. (2018), our estimate drops to 7%, with an upper confidence bound
of 18%. We also compute confidence intervals for the effect shift in each individual study pair and
find that, after adjusting for multiplicity, about 11% of the intervals exclude zero, an idealized
null hypothesis of perfect replication. For effect decline, we find in aggregate that 35% of the
true effects declined, and 22% declined by at least 25%.

In addressing each question, we define our estimands in terms of the true effects present
in the statistical populations actually sampled in each study. Because some studies may be
biased or lack external validity — for example, because of flaws in the study design, or because
survey participants are unrepresentative of the broader population of scientific interest — these
effect sizes may not reflect the latent scientific quantities the experiments purport to measure.
Uncovering such discrepancies is beyond the reach of data analysis alone, but we should keep
them in mind as we interpret the results.

1.2. The role of selection bias. The RP:P data shows unmistakable signs of selection for
statistically significant findings in the original experiments: 91 of the 100 results replicated by
OSC were statistically significant at the 0.05 level in the original study and four of the others
had “marginally significant” p-values between 0.05 and 0.06. This is due partly to publication
bias (that the studies might not have been published, or the results discussed, if the p-values had
not been significant), but also partly to OSC’s method for choosing which results to replicate.
Each OSC replication team selected a “key result” from the last experiment presented in the
original paper, and evidently most teams chose a significant finding as the key result (justifiably
so, since positive results usually draw the most attention from journal readers and the outside
world). Figure 1 shows the empirical distribution of p-values from the original and replication
studies.

The resulting selection bias in the original studies leads to many well-known and predictable
pathologies, such as systematically inflated effect size estimates, undercoverage of (unadjusted)
confidence intervals, and misleading answers from unadjusted meta-analyses. Indeed, most of
the phenomena reported by OSC, including the three metrics discussed above, could easily be
produced by selection bias alone. This would be true even if there are few false directional
claims, all replications are exact, and true effects do not decline, as illustrated in the following
simulation study.

Example 1. Consider a stylized setting where all experiments (both original and replica-
tion) have an identical effect size θ, producing an unbiased Gaussian estimate with standard
error 1. Assume, however, that we observe only study pairs for which the original study is
significant at level 0.05.

Figure 2a shows the expected fraction of replication studies which are not statistically signif-
icant in the same direction as the corresponding original studies, as a function of effect size θ,
along with the true proportion of false directional claims; or type S errors. Even when the true
error rate is low, e.g. at θ = 1 as shown in Figure 2b, the proportion of replications reporting
the same directional findings as the original studies can remain low.

Likewise, we simulate the expected fraction of 95% replication confidence intervals that fail
to cover their original point estimates in Figure 3 and the expected fraction of effect sizes that
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Fig 1: The empirical distribution of the original and replication p-values.
Nearly all of the original p-values (in red) are smaller than 0.05.
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(a) The expected fraction of replications that do not confirm
(at level 0.05) the original directional claim (red), and the
proportion of false directional claims in the original studies
(blue), as a function of effect size θ. For small θ, the fraction
of replications that do not confirm the claims in the original
studies may dramatically overestimate the fraction of false
original claims.
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(b) θ = 1. The gray region is unobserved.
For points in the red region, the replica-
tion does not confirm the original direc-
tional claim, and for points in the blue
region, the original claim is directionally
false. The red and blue regions overlap
in the purple region.

Fig 2
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decline in Figure 4. In both cases, we see that selection bias is more than sufficient to produce
the metrics in RP:P, even in our idealized simulation with exact replications and relatively few
type S errors.

RP:P non−coverage = 53%
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(a) Expected fraction of original point estimates falling out-
side the replication confidence interval, as a function of effect
size θ. For small θ, the fraction of original point estimates
falling outside the replication 95% confidence intervals can
easily exceed the RP:P reported metric of 53%, even when all
replications are perfectly exact.
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(b) θ = 0.5. The gray region is unob-
served. For points in the red region, the
original point estimate differs from the
replication estimate by more than zα/2
and hence the original point estimate
falls outside in the replication 95% con-
fidence interval.

Fig 3

Because selection bias could, in principle, provide a sufficient explanation for the metrics
reported in RP:P, those metrics do not, in and of themselves, provide any evidence of any other
problems. In particular, they shed no light on whether the FDR is actually high, or how much
the effect sizes shifted, or whether effect sizes tend to decline. Nor do they provide evidence for
any competing accounts of the replication crisis, such as QRPs like p-hacking, high between-
study variability in effect sizes, or systematic biases in the original studies. To discern anything
about other explanations, we must adjust for the pervasive effects of selection bias.

Another good reason to disentangle selection bias from other sources of error is that the
former is, in some sense, the most innocuous explanation for the phenomena observed by OSC
while the others present much deeper scientific issues. The technical issues of selection bias
can be addressed either retrospectively by statistical adjustments (e.g. Duval and Tweedie,
2000; Hedges, 1992; Simonsohn, Nelson and Simmons, 2014a; Fithian, Sun and Taylor, 2014;
Andrews and Kasy, 2018), or prospectively with more preregistration or larger sample sizes.
By contrast, it would be deeply worrying if psychologists were systematically unable to repeat
their colleagues’ experiments, or if most published claims about effect sizes were directionally
incorrect.

1.3. Formalizing replicability. We now introduce a simple formal model for replication stud-
ies with selection bias. For study i = 1, . . . ,m, let θi,O and θi,R denote the true effect sizes in the
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replication estimate; on the other hand,
if the original estimate is negative, a de-
cline is indicated by a larger replication
estimate.
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original and the replication studies, respectively. Abstracting away experimental design details,
assume that each study pair produces two normally distributed effect size estimators θ̂i,O and
θ̂i,R. Assume additionally that for the study pair to appear in our replication data, θ̂i,O must
be statistically significant at level α = 0.05;4 then for some significance threshold c > 0 we have

(1) θ̂i,O ∼ N
(
θi,O, σ

2
i,O

)
1{|θ̂i,O|>c} and θ̂i,R ∼ N

(
θi,R, σ

2
i,R

)
,

with all estimates assumed to be independent of each other. The indicator 1{|θ̂i,O|>c} beside the

normal distribution in (1) means that the distribution of θ̂i,O has been truncated to the event
where |θ̂i,O| > c and renormalized so that it integrates to 1. For the moment, we assume that the
variances σ2i,O and σ2i,R are known; in that case c = z0.05/2 σi,O. We will relax this assumption
in Section 2.

False directional claims. To formalize false directional claims in terms of the parameters of
model (1), we note that a type S error occurs when a statistically significant finding gets the
sign of the parameter wrong:

HS,O
i : sign(θi,O) 6= sign(θ̂i,O), where sign(x) =


+1, x > 0

−1, x < 0

0, x = 0

.

Note that |θ̂i,O| is always larger than c, so sign(θ̂i,O) ∈ {−1,+1}. Letting Si = sign(θ̂i,O), we
can rewrite the hypothesis as

HS,O
i : Si · θi,O ≤ 0.

Here HS,O
i is fundamentally data-dependent as it is determined by Si. Nonetheless it is a

meaningful hypothesis: when Si = +1, we want to test the null that θi,O ≤ 0; otherwise we
want to test the null that θi,O ≥ 0. Our strategy is to condition on the value of Si, since
the null hypothesis is fixed again once we know Si. We defer the discussion of valid testing of
data-dependent hypotheses for now.

The question of false directional claims, then, boils down to asking how many HS,O
i are true:

a multiple testing problem. Our estimand, the proportion of type S errors that occurred, is V/R,
where V is the number of type S errors and R is the number of “discoveries,” i.e. rejections. If
we classify the hypotheses by whether HS,O

i is true and whether the test for HS,O
i is significant,

then V and R correspond to the cell counts in Table 1.

Original p-value HS,O
i is true HS,O

i is false Total

Significant V ∗ R
Not-significant ∗ ∗ ∗
Total ∗ ∗ ∗

Table 1
Classification of the hypotheses, in the style of Benjamini and Hochberg (1995). Only R is observed and we

wish to infer on V .

In the multiple testing literature, V/R is called the directional false discovery proportion
(directional FDP, or FDPdir), the type S error analog of false discovery proportion (FDP;

4We relax this assumption in Section 2.
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Benjamini and Hochberg, 2000). In addition to an estimate, we also provide an upper confidence
bound for the directional FDP in Section 2. Both the estimator and the confidence bound
are based on a “p-curve” analysis, i.e. an analysis of the distribution of significant p-values
(Simonsohn, Nelson and Simmons, 2014b). We further modify these methods to evaluate the
proposal to lower the statistical significance threshold by Benjamin et al. (2018).

Although θ̂i,R is irrelevant to testing HS,O
i , it is informative for the closely related question

of whether θ̂i,O incorrectly predicts the direction of the effect in a replication study, i.e.

HS,R
i : Si · θi,R ≤ 0.

Note that Si is computed from the original study, so this hypothesis is a measure of external
validity as to the (claimed) directions of effects. If an experimental result has external validity,
then any directional claim about the true effect should apply not only to the original study, but
also to direct replications thereof. We provide analogous methods for multiple testing of the
hypotheses HS,R

i .

Effect shift. To assess the effect shift in a specific replication attempt, we can test the hy-
pothesis HE

i : θi,O = θi,R (an exact replication). As Anderson et al. (2016) noted, “there is
no such thing as exact replication”; nevertheless, exactness serves usefully as an idealized null
hypothesis. By inverting a test for HE

i we can obtain a predictive interval for θ̂i,R. Furthermore,
by inverting tests for a related hypothesis HE,δ

i : θi,O−θi,R = δ, we obtain a confidence interval
for θi,O−θi,R, the effect shift in study i. Our methods explicitly take into account the truncation
of θ̂i,O.

Effect size decline. The null hypothesis for effect size decline is closely related to effect shift,
and can be formalized as the null hypothesis where the true effect size has declined by no more
than a fraction ρ ∈ [0, 1]:

HD,ρ
i : Si · θi,R ≥ Si · (1− ρ)θi,O.

If Si = +1 and ρ = 0.25, for example, rejecting HD,ρ
i amounts to an assertion that θi,R <

0.75 θi,O, i.e. the true effect declined by more than 25%, or is negative.
In particular, if ρ = 0 then HD,0

i is a one-sided version of HE
i , and when ρ = 1, HD,1

i is
equivalent to HS,R

i . We can subsequently ask how many of HD,ρ
i are false: another multiple

testing problem. We provide two estimators (one overestimate and one underestimate) and
confidence interval for the proportion of false HD,ρ

i .
To facilitate the rest of the paper, we recapitulate the notations above in Table 2.

1.4. Data-dependent hypotheses and conditional inference. Our hypotheses above, HS,O
i ,

HS,R
i and HD,ρ

i , are all innately data-dependent. While data-dependent hypotheses may at
first sound unusual, they are commonplace in practice, for example when pilot studies are per-
formed to generate hypotheses that are tested later on with fresh data. There is no inherent
conceptual problem with testing these data-dependent hypotheses: intuitively, we understand
that the test remains valid because the type I error rate is controlled for whatever hypothesis
is selected, conditional on that hypothesis having been selected.

Conditional inference is well-established in the statistical literature as a means of construct-
ing valid confidence intervals for parameters that were selected in a data-dependent way (e.g.
Sampson and Sill, 2005; Zöllner and Pritchard, 2007; Weinstein, Fithian and Benjamini, 2013;
Yekutieli, 2012). Fithian, Sun and Taylor (2014) generalized the intuition about pilot studies
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Symbol Meaning

θi,O, θi,R True effect sizes in the original and replication i-th studies
θ̂i,O, θ̂i,R Effect size estimates in the original and replication i-th studies
σi,O, σi,R Standard errors in the original and replication i-th studies
Si Sign of the original i-th study
HS,O
i , HS,R

i Hypothesis that a type S error has occurred in the original and replication i-th
studies

HE
i = HE,0

i , HE,δ
i Hypothesis that the true effect has shifted by δ from the original to the replication

i-th study
HD,ρ
i Hypothesis that the true effect size has declined by no more than the fraction ρ

Table 2
Summary of notations introduced.

to argue that a test of a data-dependent hypothesis is valid, so long as the type I error rate
is controlled conditioned on the portion of the data that generated the hypothesis. For our
hypotheses here, Si is the part of the data that determines the hypothesis: in effect, we can
imagine ourselves in the position of having observed the signs of all the original estimators, but
knowing nothing else about the data. At that stage, it is valid to formulate a hypothesis that
depends on Si, and plan to test it using the still-unobserved data: namely, |θ̂i,O| and θ̂i,R.

After conditioning on Si, each hypothesis discussed above amounts to testing a fixed linear
hypotheses about (θi,R, θi,O), the natural parameter of the truncated bivariate normal model (1);
as a result, they are all amenable to post-selection inference using the selective z-test built on
the work of Lee et al. (2016). Section 2 discusses the methodology in detail.

1.5. Related work. There has been much commentary on how to define replicability for sci-
entific experiments. Valentine et al. (2011) pointed out that the definition should depend on the
scientific context. For example, sometimes one may wish to test the robustness of conclusions to
subpopulation differences, but in other times, to changes in experimental conditions. Goodman,
Fanelli and Ioannidis (2016) expanded on this, and gave a few useful definitions for what replica-
bility is, such as methods reproducibility, results reproducibility, inferential reproducibility, etc.,
but stopped short of an operational statistical criterion for replicability. False directional claims
and effect shift can be loosely interpreted as inferential and results reproducibility, respectively.

Operationally, Valentine et al. (2011) and Nosek and Errington (2017) proposed the metrics
used in RP:P and Camerer et al. (2018), a similar replication effort in experimental economics.
These metrics however suffer the shortcomings discussed earlier, in that they do not answer a
concrete statistical question and cannot disentangle selection bias from other explanations.

In this article, our definitions of replicability are inspired primarily by the statistical literature
on multiple testing and meta-analysis, such as the estimator in Storey (2002), the FDP and
directional FDP from Benjamini and Hochberg (2000); Benjamini and Yekutieli (2005), and
the partial conjunction testing framework of Heller et al. (2007); Benjamini and Heller (2008).
Related error rates have also been estimated before: Jager and Leek (2013) have modeled the p-
value distributions under alternatives and the selection for statistical significance to estimate the
FDR in the medical literature, accompanied by useful discussions from Gelman and O’Rourke
(2013); Goodman (2013); Ioannidis (2013); in addition, Camerer et al. (2018) used Bayesian
methods to estimate the false positive rate, instead of the FDR, for published social science
results in Nature and Science.

Furthermore, there are many past efforts to model and quantify selection bias, specifically
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using the RP:P dataset. For instance, Johnson et al. (2017) considered a publication bias model
where the probability of publication is a step function of the p-value, which is generalized
nonparametrically in Andrews and Kasy (2018). The two analyses estimated that a statistically
significant result was 200 (Johnson et al., 2017) or 30 (Andrews and Kasy, 2018) times as likely
to be published as a statistically insignificant one.

Adjusting for selection, van Aert and van Assen (2017, 2018) have combined the evidences
from both the original and replication experiments to provide estimates for the effect sizes.
Specifically with a truncated Gaussian model, Etz and Vandekerckhove (2016) have also ana-
lyzed the RP:P dataset from a Bayesian perspective, and investigated the discrepancies between
the original and replication studies. Our analysis provides a complementary point of view with
frequentist hypothesis testing without any prior on the effect sizes, with the help of recent
advances in post-selection inference, including primarily the selective z-test framework of Lee
et al. (2016).

1.6. Outline. Section 2 details the methodology and assumptions used in this analysis, and
is somewhat technical. Section 3 applies the developed methodology to the RP:P dataset, sum-
marizes and interprets the results. Section 4 concludes.

2. Methodology. In this section we will construct an estimator for directional FDP, a
test for the effect shift in replication i and an estimator for the proportion of effect sizes that
declined. We also use X ≥st Y to denote that X is stochastically larger than Y . The index i is
suppressed when there is no risk of ambiguity.

Since we need a well-defined notion of direction to consider the proportion of false directional
claims, we restrict our attention to univariate tests, namely z-, t-, F (1, ·)-tests or correlations.
Thus, studies that are not univariate or have p-values greater than α0 = 0.05 are discarded:
our estimates and analyses below consider only the m = 68 remaining studies with univariate
structure and conventionally significant original p-values.

2.1. Selection bias model. Model (1) assumes that results are only published if they achieved
statistical significance at some conventional threshold level α0, which is 0.05 in our data. While
this assumption is not true in the case of RP:P since some original p-values are above 0.05, we
note that the model can be relaxed to the following milder assumption:

Assumption 1. pO < α0 is “significant enough”: a result with pO < α0 would be equally
likely to be published (or selected for replication), if the p-value were some other statistically
significant value.

Assumption 1 allows some significant p-values to go unpublished. If it holds, then we can
model the original test statistics as following their theoretical distribution, truncated to the
event where the corresponding p-values are below α0, as in Model 1.

Note that Assumption 1 contemplates a fairly straightforward mechanism for selection on
statistical significance, which may not be adequate to describe the effects of more complex and
difficult-to-model QRPs. In particular, p-hacking — the iterative tweaking of an analysis until
the p-value drops below the researcher’s desired significance level α0 — is commonly suspected
to produce a pileup of p-values just below the significance threshold (see e.g. Simonsohn, Nelson
and Simmons, 2014b). Because p-hacking is such a vaguely defined practice, it is unclear how we
might incorporate it into our model, but in any case there is no evidence of a pileup just below
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0.05 in the original RP:P studies (see Figure 6a). We will reconsider the validity of Assumption 1
in Section 4.

2.2. False directional claims. We will adapt the method in Storey (2002) to estimate the
directional FDP while accounting for selection bias. Furthermore, if we believe the chosen studies
are representative of the publications in the journal or discipline (e.g. Stroebe, 2016), then this
estimator can also be regarded as an estimator for the journal-wide or discipline-wide directional
false discovery rate (FDRdir), the expectation of the directional FDP (Benjamini and Yekutieli,
2005).

Adjusting for selection bias. While dividing a post-selection p-value by α0 intuitively adjusts
for selection, it is not immediately valid when the null is one-sided with a true effect not on
the boundary. We demonstrate below that this adjustment typically remains valid even in this
case.

Recall that a valid p-value is a random variable that is stochastically larger than Uniform[0, 1]
(i.e. superuniform) under the null hypothesis. If we only observe the original p-value when it
is significant, it is not superuniform after selection under HS,O, and it is therefore not valid
for testing the hypothesis of a false directional claim. To adjust these p-values for selection, we
follow the principle in Fithian, Sun and Taylor (2014) by conditioning on the event that the
p-values are selected, and also on the variable S = sign(θ̂O) which determines the hypothesis
HS,O that we test. We consider two cases: when the original study is a one-sided test and when
it is a two-sided test. As we will see, the adjustment in either case is to divide by α0.

First we consider the case where the original study was a one-sided test. Assume pO is a
p-value for a test of the hypothesis H0 : θO ≤ 0, in which case S = +1 deterministically (the
opposite case with H0 : θO ≥ 0, and S = −1 deterministically, is directly analogous). Suppose
pO is the original p-value, which we observe only when it is significant at the conventional
threshold, i.e. when pO < α0. Under mild assumptions satisfied by both z-tests and t-tests,5

pO ≥st Uniform[0, α0] under HS,O, in which case pO/α0 ≥st Uniform[0, 1].
Next we consider the case where pO is a p-value for a two-sided test of H0 : θO = 0, and

where S = +1 (the case with S = −1 is analogous). If p+O was the original one-sided p-value for
H0 : θO ≤ 0, then pO = 2p+O when S = +1 (pO = 2− 2p+O if S = −1). In our truncated model,
under the same assumptions as above and conditional on S = +1, p+O ≥st Uniform[0, α0/2]
and therefore pO/α0 = 2p+O/α0 ≥st Uniform[0, 1] under HS,O. We write p′O = pO/α0 for the
adjusted p-value.

Inference on FDP: estimate and upper confidence bound. Using the adjusted original p-values,
we can estimate the directional FDP in the original studies. Recall from Table 1 that

R = #{pi,O ≤ α0} = m,

V = #{pi,O ≤ α0 and HS,O
i is true}.

Since all of the studies were deemed discoveries, R = m is the total number of studies here.
Table 3 classifies the m conventionally significant studies according to whether HS,O

i is true and
whether the adjusted p-value is larger than some fixed value λ in (0, 1), e.g. λ = 0.5.

Note that B = #{λα0 ≤ pi,O < α0} from Table 3 is observable, while V and U are not.
Under the one-sided null, the p-value is superuniform, and so

(2) B ≥st U ≥st Binomial(V, 1− λ).
5namely, that the test statistic has monotone likelihood ratio in the parameter
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Adjusted p-value HS,O
i is true HS,O

i is false Total

p′i,O < λ ∗ ∗ ∗
p′i,O ≥ λ U ∗ B
Total V ∗ R = m

Table 3
Classification of the R = m significant original studies. Here only R and B are observed, and we wish to infer

on V .

As a result, E[B] ≥ (1− λ)V and a conservative (upwardly biased) estimator of the directional
FDP is

F̂DPdir =
B

(1− λ)R
.

This estimate is conservative in the sense that it overestimates the type I error, and is equivalent
to the estimator π̂0 of the true null proportion in Storey (2002). Using λ = 0.5 and α0 = 0.05,
the estimate boils down to

F̂DPdir =
2

m
·#{0.025 ≤ pi,O < 0.05}.

While the above is formally an estimator for the number of directional errors, it can be
interpreted practically as an estimate of the fraction of directional claims where either the
direction is wrong or the effect has a negligible magnitude, cf. type M error from Gelman and
Carlin (2014). This is because p-values whose effect sizes are very close to zero are nearly uniform
and contribute to our estimator similarly as if the true effect were exactly zero.

Additionally, we can exploit (2) to obtain an upper confidence bound for the directional FDP,
by testing the hypothesis H0 : V ≥ v0, a partial conjunction hypothesis investigated in Heller
et al. (2007). Here we combine only the coarse information of whether each p-value is greater
than λ,6 and reject for small values of B. We can compute the largest v0 such that the test still
accepts, which gives an upper confidence bound of V . Dividing this bound by R gives an upper
confidence bound for the directional FDP.

Directional FDP at smaller thresholds. One proposal to address the replicability crisis is to
lower the conventional significance threshold from α0 = 0.05 to some smaller value α, such
as 0.005 (Benjamin et al., 2018). As suggested by Goodman (2013), an empirical method to
evaluate the hypothetical scenario with a smaller threshold can be helpful. We now discuss
methods for inference on the directional FDP for those studies with pO < α < α0, based on
comparing the number of adjusted p-values below α with the number above λα0, for some
λ > α/α0. We call this method the external comparison method in contrast to the earlier
internal comparison method that bases on (2). This method will be less conservative as we are
not constrained to only using the p-values in [0, α).

Let N ≤ m denote the total number of original p-values in [0, α)∪ [λα0, α0) (or equivalently,
the number of adjusted p-values in [0, α′) ∪ [λ, 1) for α′ = α/α0). Table 4 classifies these N
studies according to whether HS,O

i is true and whether the adjusted p-value is larger than λ
or smaller than α′. The numbers of false directional claims and all directional claims under the
hypothetical threshold are Vα and Rα, respectively. Auxiliary counts, Tα and W , are defined
according to Table 4 as well. The directional FDP, Vα/Rα, remains as our quantity of interest.

6More precisely, we count number of p-values that are greater than λ and consider its distribution under the
partial conjunction null hypothesis
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Adjusted p-value HS,O
i is true HS,O

i is false Total

Small (p′i,O < α′) Vα Tα Rα
Big (p′i,O ≥ λ) U W B
Total N0 ∗ N

Table 4
Classification of the N ≤ m original studies with adjusted p-values in [0, α′] ∪ [λ, 1]. Only Rα, B and N are

observed. Auxiliary unobserved quantities, N0, Tα and Rα, are defined accordingly. Our goal is to infer on Vα.

Our method is inspired by the following stochastic inequality.

Lemma 1. Conditional on N , Tα and W , we have

(3) B | N,Tα,W ≥st Binomial(N − Tα, β).

Proof. All adjusted p-values are independent, and are either small (p ≤ α′) or big (p ≥ λ).
The adjusted p-values corresponding to a true null are big with probability at least β = 1−λ

1−λ+α′ .
We proceed to condition on Tα and W , so they are now considered deterministic. So the total
number of big adjusted p-values, B, satisfies

B = U +W ≥st Binomial(N −N0, β) +W ≥st Binomial(N − Tα, β).

With (3), we can estimate N − Tα conservatively with B/β. Since Vα = N − Tα − B, a
reasonable estimator for the directional FDP is

F̂DPdir =
1− β
β
· B
Rα

.

Furthermore (3) gives us a 95% upper confidence bound for the directional FDP:

FDP∗dir =
Q−B
Rα

, where Q = max{q : P[Binomial(q, β) ≥ B] ≥ 0.95}.

Proposition 2. The expectation of F̂DPdir is at least the expectation of the true directional
FDP, and FDP∗dir is greater than the true directional FDP, with probability at least 95%.

Proof. For the estimator, we start by taking the expectation of F̂DPdir−FDPdir, conditional
on N , Tα and W :

E[F̂DPdir − FDPdir | N,Tα,W ] = E

[
1−β
β B − Vα
Rα

∣∣∣∣∣N,Tα,W
]

≥ E

[
1−β
β (N0 − Vα)− Vα

Vα + Tα

∣∣∣∣∣N,Tα,W
]

= E
[
(1− β)N0 − Vα
β(Vα + Tα)

∣∣∣∣N,Tα,W]
≥ (1− β)N0 − E[Vα | N,Tα,W ]

β(E[Vα | N,Tα,W ] + Tα)
(4)

≥ 0,(5)
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where (4) follows from applying Jensen’s inequality to the convex function f(x) = (1−β)N0−x
β(x+Tα)

,
and (5) follows from Vα | N,Tα,W ≤st Binomial(N0, 1− β). Taking expectation on both sides
completes the proof.

For FDP∗dir, we can directly compute the probability that it is greater than FDPdir, conditional
on N , Tα and W :

P[FDP∗dir ≥ FDPdir | N,Tα,W ] = P
[
Q−B
Rα

≥ Vα
Rα

∣∣∣∣N,Tα,W]
= P[Q ≥ B + Vα | N,Tα,W ]

= P[Q ≥ N − Tα | N,Tα,W ]

≥ 0.95,

from the construction of Q. Taking expectation on both sides hence yields the desired marginal
coverage.

Remark. This proof of conservativeness actually shows something stronger than marginal
guarantees: the estimator and confidence upper bound are both conservative conditionally, even
when we condition on the signs Si.

Methods using replication p-values. As mentioned in Section 1, we can use the replication p-
values in lieu of the adjusted original p-values above, providing an estimate and confidence bound
for the frequency of when the θ̂O incorrectly predicts the replication effect direction. While this
approach requires potentially costly replications in future applications, it provides valuable
additional information. In particular, the replication p-values are more likely to be free of QRPs
or p-hacking that may violate our assumption that adjusted p-values are superuniform under
the null, providing more robust evidence regarding replicability. The corresponding estimator
for unadjusted replication p-values with λ = 0.5 is

F̂DPdir =
2

m
·#{pi,R ≥ 0.5}.

2.3. Effect shift. We will derive a test for the hypothesisHE : θO = θR at level 0.05. Our test
is based on a normal distribution, so we start by demonstrating that the effect size estimates of
the univariate studies can be reasonably modeled by our truncated bivariate normal distribution
in model (1). We classify these studies into two categories and provide a rough rationale in our
definition of effect size in each category: (1) t-tests and F (1, ·) ANOVAs, where all independent
variables are categorical; and, (2) correlations and regressions, where one or more independent
variables are continuous.

For a t-test or F (1, ·) ANOVA, we can define the effect size as the noncentrality parameter,
scaled for cell sizes. In other words, the t-statistic is distributed as T ∼ tdf (kθ), for some real
constant k chosen based on the study design. For example, k =

√
n for a one-sample t-test.

When df is sufficiently large, the t-statistic is approximated well by a z-statistic, and distributed
approximately as

T ∼ N(kθ, 1).

For our analysis, we consider studies where the original and replication degrees of freedom are
at least 30.7

7The choice of 30 complies with the analysis in Andrews and Kasy (2018). Further discussion on the approx-
imation in available in the supplement.
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For a (partial) correlation coefficient estimate, R, we can apply Fisher transformation (1921;
1924) to convert it into a z-statistic, which approximately follows√

n− 3− p tanh−1(R) ∼ N(
√
n− 3− p θ, 1),

where p is the number of controlled covariates and θ is a quantity that can be taken as the
effect size.

In either case, the test statistic in 46 studies can be transformed to an approximate z-score
Z ∼ N(kθ, 1) for some real constant k. Additional considerations in certain studies are detailed
in the supplement.

Adjusting for selection bias. We turn next to address the issue of post-selection inference.
Again, we condition on the event where the z-scores are observed, but we do not need to
condition on S as the hypothesis HE is no longer random. Since the statistic is only observed if
it is statistically significant, the original and replication z-statistics follow a truncated bivariate
normal joint distribution: [

ZO
ZR

]
∼ N

([
kOθO
kRθR

]
,

[
1 0
0 1

])
1{ZO∈A}.

Here A is the selection event, which contains the statistically significant values of ZO. We are
interested in testing HE : θO = θR and more generally the null hypothesis HE,δ : θO − θR = δ,
which can be inverted to yield a confidence interval.

We cast this as a more general testing problem here to benefit later derivations on effect
decline. Suppose we have a truncated bivariate distribution

Z =

[
Z1

Z2

]
∼ N

(
µ,

[
1 0
0 1

])
1{Z1∈A}, where µ =

[
µ1
µ2

]
,

and we want to test η′µ = δ for some constant vector η = (η1, η2) with η1 > 0. Test for HE and
HE,δ are special cases where η = (1/kO,−1/kR).

We can perform this general testing problem with the selective z-test, based on the framework
in Lee et al. (2016).

Definition 1 (Selective z-test). Let η⊥ = (η2,−η1), D = η′Z and M = η′⊥Z. We now
consider M as a constant and test η′µ = δ using the test statistic D against the null distribution

N(δ, ‖η‖2)1{
D∈ ‖η‖

2A−η2M
η1

}.
Specifically, we reject η′µ = δ when D is below the 0.05

2 -quantile or over the (1− 0.05
2 )-quantile

of this null distribution.

We proceed to show that this is a valid test by construction.

Proposition 3. The selective z-test defined in Definition 1 has level 0.05.

Proof. Leveraging the fact that η′η⊥ = 0, we reparametrize the joint distribution of (Z1, Z2)
under the null such that δ is a parameter, i.e.[

D
M

]
=

[
η′Z
η′⊥Z

]
∼ N

([
δ
η′⊥µ

]
,

[
‖η‖2 0
0 ‖η‖2

])
1{Z1∈A}.



16 K. HUNG AND W. FITHIAN

In particular, the event Z1 ∈ A can be rewritten as

D ∈ ‖η‖
2A− η2M
η1

.

And so the distribution of D conditional on M under Hδ
0 is a truncated Gaussian distribution,

[D |M ] ∼ N
(
δ, ‖η‖2

)
1{

D∈ ‖η‖
2A−η2M
η1

}
and we obtain a valid test by rejecting when D is smaller than the 0.05

2 -quantile or larger than
the

(
1− 0.05

2

)
-quantile.

The construction above is represented graphically in Figure 5, in the style of Lee et al. (2016).
We can represent the observation (Z1, Z2) as a point in R2. Conditioning on M is equivalent
to conditioning on M/‖η⊥‖, which means we are now considering the conditional distribution
on the truncated line `. The test statistic D, or equivalently D/‖η‖, indicates the position on
`. Under the null that η′µ = δ, the conditional distribution on ` is known and a valid p-value
can be obtained, yielding the selective z-test.

z2

z1

(Z1, Z2)

η

M/‖η⊥‖

`

D/‖η‖

Fig 5: Graphical representation of the selective z-test. The observation
(Z1, Z2) is a point and the truncation on Z1 means that the shaded area
is the support of the joint distribution (Z1, Z2). Conditioning on M is the
same as conditioning on M/‖η⊥‖, so we now consider the conditional dis-
tribution on the truncated line `. The test statistic D indicates the position
on `. Under the null HE,δ : θ1 − θ2 = δ, the conditional distribution on ` is
known and a valid p-value can be obtained, yielding the selective z-test.

Remark. It is not necessary to use 0.05
2 - and (1 − 0.05

2 )-quantiles of the null distribution,
as long as the desired significance level is achieved under the null distribution. For example,
a uniformly most powerful unbiased test can be used in lieu of a test with equal tail cutoffs.
Furthermore, if we are interested in a one-sided hypothesis, e.g. η′µ ≤ 0, we can reject on one
tail only. This will be particularly useful for derivations about effect decline later.
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Interval estimation. Given a valid test φ(ZO, ZR) for testing HE,δ : θO−θR = δ, we can obtain
two intervals: a predictive interval for the replication effect size estimate, and a confidence
interval for effect shifts.

Under the null hypothesis HE : θO = θR, P[φ(ZO, ZR) rejects] = 0.05, or equivalently,

P[{zR : φ(ZO, zR) accepts} 3 ZR] = 0.95.

Hence {zR : φ(ZO, zR) accepts} is a predictive interval for ZR, which translates to a predictive
interval for the point estimate θ̂R of the replication effect size.

By the duality of hypothesis testing and confidence set, the set

{δ : HE,δ is rejected}

covers the difference of the original and replication effect sizes with probability 95%.

2.4. Effect decline. We will estimate the proportion of effect sizes that declined by at least
a fraction of ρ. Our procedure consists of two parts: (1) for each study i, test and produce a
p-value for the hypothesis HD,ρ

i , and (2) adapt the method for the directional FDP to estimate
the proportion of HD,ρ

i that are false.

Adjusting for selection bias. As with the exactness test, we condition not only on the event
where the z-scores are observed, but also on S = sign(θ̂O) as our hypothesis HD,ρ is determined
by this random variable. In other words, we consider the z-statistic ZO to be drawn from the
set A+, where A is the selection event from our test for effect shift and

A+ = A ∩ R+ = {zO : zO is statistically significant} ∩ R+.

Putting ZO and ZR together, they follow a truncated bivariate normal joint distribution:[
ZO
ZR

]
∼ N

([
kOθO
kRθR

]
,

[
1 0
0 1

])
1{ZO∈A+}.

By convention RP:P chose θ̂O > 0 so the hypothesis HD,ρ reduces to θi,R ≥ (1 − ρ)θi,O, or
equivalently θi,R − (1 − ρ)θi,O ≥ 0. This can be tested using the selective z-test with η =
(1/kO,−1/(1− ρ)kR) and rejecting on one tail only.

Inference on effect decline: estimates and confidence bounds. With the resulting p-values, our
earlier methods on directional FDP can provide an overestimate and a upper confidence bound
for the proportion of true HD,ρ. Subtracting these from 1 yields an underestimate and a lower
confidence bound for the proportion of false HD,ρ. On the other hand, by considering the com-
plement of the hypothesis HD,ρ, we can also provide an overestimate and an upper confidence
bound for the proportion of false HD,ρ. These estimators and bounds together provide an over-
estimate, an underestimate and a 90% confidence interval for the proportion of effect sizes that
at least declined by a fraction of ρ.

3. Re-analysis of RP:P.
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3.1. False directional claims. We implemented our method with λ = 0.5 to estimate the
number of one-sided nulls and the directional FDP.8 The adjusted original p-values and replica-
tion p-values are given in Figures 6a and 6b respectively. Using the original p-values, we estimate
that 22 of the 68 (32%) original directional claims are false, with a 95% upper confidence bound
of 47%. Using the replication p-values, we estimate that 32 of the 68 (47%) original directional
claims incorrectly predict the direction of the replication effect, with a 95% upper confidence
bound of 63%. In particular both of our FDP estimates are much lower than the 64% which
could be suggested by a naive reading of RP:P (e.g. Baker, 2015). These numbers are summa-
rized again in Table 5 later. Furthermore, while we can compute a lower confidence bound, it
will always be 0% as the data is obviously consistent with many null hypotheses being slightly
false.

λ=0.5
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(a) Histogram of the adjusted original p-values.
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(b) Histogram of the replication p-values.

Fig 6: Method from Storey (2002) as demonstrated using histograms of p-
values. We estimate the number of true nulls by conservatively assuming that
every hypothesis right of the vertical red line to be true. Since the p-value
under the null is superuniform, on average there are fewer null hypotheses
left of the line than right of the line. Our overestimate of the number of true
nulls in each bin is shown by the horizontal red line. A net excess of p-values
above this line means false directional claims.

We proceeded to evaluate the proposal to reduce the statistical significance threshold (Ben-
jamin et al., 2018). We considered three candidates for the new threshold, 0.001, 0.005 and 0.01,
using the external comparison method. The directional FDP estimates and upper confidence
bounds are given in Table 5.

These estimates corroborate Benjamin et al. (2018)’s suggestion that reducing the statistical
8Choosing λ = 0.5 follows the convention in the multiple testing literature for a bias-variance trade off: if λ

is too small, many true discoveries are counted as false; if λ is too big, the estimator can have large variance.
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α
Adjusted original Replication

Est. U.C.B. Est. U.C.B.

0.001 0.4/22 = 2%† 2/22 = 9%† 6/22 = 27% 12/22 = 55%
0.005 2.2/33 = 7%† 6/33 = 18%† 12/33 = 36% 20/33 = 61%
0.01 4.4/41 = 11%† 9/41 = 22%† 16/41 = 39% 25/41 = 61%
0.05 22/68 = 32% 32/68 = 47% 32/68 = 47% 43/68 = 63%

Table 5
The directional FDP estimates and 95% upper confidence bounds, using the adjusted original and replication
p-values. The statistical significance level is α. The external comparison method was used for computing the
directional FDP estimates and the upper confidence bounds marked with daggers(†) above, as information of
p-values between α and 0.05 can improve the precision. The estimates and upper confidence bounds in the
“Replication” column are relatively noisy due to the small number of p-values below the stricter rejection

thresholds, and give little basis for any conclusions.

significance threshold may improve replicability, at least regarding the directional FDP of the
original statistical hypotheses (of course, there is no way to account for potential change in
researcher’s behavior in response to the lowered threshold). Shall this be of interest, this method
provides an empirical way to determine a better significance threshold, as no replications are
needed. Nonetheless, potential effect heterogeneity is often a bigger concern. In this case, we are
more concerned about the directional FDP for replications, which remains unacceptably high
and requires replication experiments. Note, however, that a replication with low power could
contribute to our estimates, even if there were no type S error.

3.2. Effect shift. We performed the selective z-test for the hypothesis HE : θO = θR while
adjusting for selection, where seven (15%) studies are rejected. In contrast, without adjusting for
selection, 18 (39%) studies are rejected at 0.05 significance. If we wish to correct for multiplicity,
we can apply Benjamini–Hochberg procedure (1995), which rules five (11%) replication studies
as inconsistent with the original studies at false discovery rate 0.10.9 Applying the more stringent
Holm’s method (1979) to control the familywise error rate rules only the replication of Farris
et al. (2008) as inconsistent at familywise error rate 0.05.

We inverted the test for the hypothesis HE , to yield a predictive interval for ZR and hence a
predictive interval for the replication effect size estimate θ̂R, shown in Figure 7. By definitionHE

is rejected when θ̂R is not included in the predictive interval. Adjusting for selection generally
stretches the predictive intervals, resulting in fewer rejections.

We also inverted the test for HE,δ and obtained a confidence interval for the effect shifts,
θO − θR, given in Figure 8. By construction the null hypothesis HE : θO = θR is rejected when
the confidence interval does not include 0. Adjusting for selection also generally lengthens the
confidence intervals, resulting in fewer rejections.

If all procedures are replicated perfectly, we should expect to reject 5% of the tests on
average, rather than the observed 15%, and after the Benjamini–Hochberg correction, there
would be no rejection with 90% probability. In other words, while selection bias can partly
explain the discrepancies between the original and replication studies, it does not explain all
of it. Nevertheless, the RP:P data cannot be taken as strong evidence of widespread failure by
replication teams to satisfactorily repeat the same experiment performed in the original study.
The lack of strong evidence is hardly surprising: if the original study lacks power (Morey and

9The five rejected studies are Dodson, Darragh and Williams (2008); van Dijk et al. (2008); Purdie-Vaughns
et al. (2008); Farris et al. (2008); Larsen and McKibban (2008).
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Fig 7: Predictive intervals for θ̂R, both adjusted and unadjusted for selection,
overlay with a plot of θ̂R against θ̂O. Studies 36 and 145 are not shown here.
By definition we reject H0 : θO = θR whenever the replication effect size
estimate lies outside of the predictive interval. The intervals are generally
longer after adjusting for selection.
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Fig 8: Confidence intervals for θO − θR, both adjusted and unadjusted for
selection. By construction the null hypothesis H0 : θO = θR is rejected when
the confidence interval does not include 0. Many of the adjusted intervals are
fairly long as either the replication studies suffer low power or the original
effect size estimate is near the rejection threshold. The intervals are generally
longer after adjusting for selection.
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Lakens, 2017) or θ̂O is closed to the rejection boundary, little can be said about θO and hence
θO− θR. Furthermore, the replication sample sizes were determined based on the original effect
size to achieve at least 80% in power. Selection bias inflated the original effect size, leading
to lower test power and statistically insignificant replications (Etz and Vandekerckhove, 2016;
Camerer et al., 2018). The lack of information about θO − θR is evident in generally wider
confidence intervals after adjustment in Figure 8.

3.3. Effect decline. Finally, we considered the proportion of effect sizes that declined. Using
the selective z-test, we tested the hypothesis HD, conditioning on the event where the z-scores
are observed and the variable S. The resulting p-values are given in Figure 9. Our underestimate
and overestimate are 35% (= 16/46) and 100% respectively, with a 90% confidence interval of
(11%, 100%).
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Fig 9: Histogram of the p-values for the null hypothesis θR ≥ θO. p-values
to the left gives more evidence for θR < θO whereas p-values to the right
gives more evidence for θR ≥ θO. The estimate of the expected number of
null p-values within each bin is given by the horizontal red line.

More generally, we used the hypothesis HD,ρ to estimate the proportion of effect sizes that
declined by at least a fraction of ρ. The underestimate, overestimate and the 90% confidence
interval are given in Figure 10. For example, we estimate that 10 of the 46 effect sizes (22%)
decreased by at least 25%, even after adjusting for selection on measurement noise. Note that
this does not exclude explanations by other forms of selection, e.g. selecting a large effect when
there is a random effect.

4. Discussion.

4.1. Importance of adjusting for selection bias. As we have seen, selection bias plays a pow-
erful and pervasive role in shaping the data we observe in large-scale replication studies (and,
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Fig 10: The underestimate, overestimate and the 90% confidence interval.
The lower black line is the underestimate, the high black line is the overes-
timate and the gray band is the 90% confidence interval.

by extension, the data we observe in published studies that have not yet been replicated!). It
leads to many predictable pathologies and should be viewed as a proverbial “elephant in the
room” whenever we discuss descriptive statistics computed from such studies. In particular, we
should avoid leaping to any conclusions about how many false claims there were in the original
studies, whether effect sizes declined or by how much, or which replication studies suffered from
infidelities, until we have carefully ruled out the possibility that publication bias alone is to
blame for whatever descriptive statistic we have computed.

Fortunately, the truncated Gaussian model, properly combined with modern multiple testing
and post-selection inference methods, opens many avenues for analyses that directly answer
questions about true effect sizes with appropriate uncertainty quantification. We have explored
several such avenues here (see also Andrews and Kasy, 2018) but many others are possible.

4.2. Importance of statistical formality. In addition, we hope this article serves to advocate
for the benefits of careful formal statistical modeling in analyzing replication studies, in place
of (or in addition to) descriptive statistics. In particular, using vaguely specified models or
eschewing models altogether can lead to analyses from which it is difficult to draw firm con-
clusions. For example, in Open Science Collaboration (2015), McNemar’s test was applied to a
2× 2 contingency table of whether the original and replication studies are equally likely to be
statistically significant. The very small p-value reported for this test establishes nothing more
than that the original studies were selected to be statistically significant, a fact which is likely
already known by most in the field. In fact, the test does not quite establish even that, because
it is unclear whether this hypothesis would be true even without the effect of selection bias: The
proportion of statistically significant p-values is a measure of the average power, which depends
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on the sample sizes, and the sample sizes often differed substantially between the original and
replication studies.

Another example is RP:P’s use of sample correlation coefficients between independent and
dependent variables as a standardized measure of effect size for comparison between the orig-
inal and replication studies. This comparison implicitly assumes that the distribution of the
independent variable is the same in the original and replication studies, an assumption that
was violated by many of the replications. In an extreme case, an ANOVA in Purdie-Vaughns
et al. (2008) with race as one of the factors used 40 African Americans and 37 Whites, but
was replicated with 120 African Americans and 1370 Whites. With such a dramatic change in
the distribution of an independent variable, there is no reason why the correlation coefficients
should remain the same, as illustrated in the following example.

Example 2. A study with a two-sample t-test for some treatment condition is replicated.
Suppose the treatment and control group are drawn from N(1, 1) and N(0, 1), respectively. If
the ratio of the two group sizes changes from one study to another, the correlation coefficients
may differ as well, even without any infidelities or hidden moderators. Borrowing the numbers
from Purdie-Vaughns et al. (2008) for instance, if the original study contains 40 treatment and
37 control units, the true correlation coefficient is 0.45, whereas in a replication with 120 control
and 1370 treatment units the true coefficient is 0.26 instead.

Replication projects similar to RP:P have since materialized, but few stated an explicit
statistical hypothesis. For example, in economics, Camerer et al. (2016) used the same flawed
metric of proportion of statistically significant results in the original direction. A statistical
analysis with explicitly stated models and hypotheses will give us more meaningful estimates,
particularly valuable given how costly these large scale replication efforts are.

4.3. Interpretation of effect shifts. While we have proposed several methods for quantifying
discrepancies between the effect sizes in the original and replication studies, the data alone
cannot tell us why they might differ. Several potential explanations include:

1. design failures, systematic biases or calculation errors in either the original or the repli-
cation study;

2. major differences in experimental conditions between the original and replication studies,
which most researchers would recognize a priori as likely to affect the results; which
Gilbert et al. (2016a) call infidelities; and

3. minor differences in experimental conditions between the studies — such as lighting,
weather, or the passage of time — which cannot all be controlled but whose effects may
nevertheless alter the true effect size in unforeseeable ways, often referred to as hidden
moderators (e.g. Srivastava, 2015).

While there may be no sharp distinction in principle between infidelities and hidden modera-
tors, there is a scientifically crucial difference between moderating factors that can be anticipated
by experimenters and those that cannot. If we can anticipate in advance when replications are
likely to fail by carefully evaluating their designs, we might hope to solve the problem simply
by being more careful in setting up experiments. By contrast, if hidden moderators confound
most attempts to replicate most psychological studies, it would raise profound questions about
the entire enterprise of experimental psychology. In the extreme case, if even trivial changes
to those conditions have large and unpredictable effects on most phenomena of interest, we
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might begin to despair of gaining generalizable knowledge about psychology through laboratory
experimentation.

Our analyses point to several conclusions regarding effect shifts: First, that there are a few
studies where we can be confident the effect in the replication study was significantly different
than in the original study; second, that in aggregate, when effects do shift, they tend to decline
(shift toward zero) in replications rather than increase; and third, that there is insufficient
evidence to conclude that the vast majority of experimental effects simply evaporated upon
replication. In particular, 83% should not be treated as a reasonable estimator of the fraction of
true effect sizes that declined; rather, it likely reflects that the estimates in the original studies
overestimated their corresponding true effects due to selection bias.

One possible explanation for systematically declining effect involves a subtler form of selection
bias, where every experiment’s effect size is random, buffeted by hidden moderators, and those
experiments whose moderators primarily magnify the effect size are more likely to be published.
That is, in the same way that experimenters select studies whose sampling error is large, they
also selects for studies whose true effect size is larger than usual. Further systematic replication
studies may help to shed light on which factors are most often the culprits in moderating
true effect sizes, possibly improving the reliability of experiments and leading to new scientific
insights (Barrett, 2015; Klein et al., 2018).

4.4. Future work. As large-scale replicability studies are becoming more common in assessing
the “well-being” of a scientific domain, this paper serves as a stepping stone for improving
methodologies in future replicability studies.

First, selection for significance is an inevitable consequence of the current scientific process.
Our adjustments for selection allows not only better analysis, but also more informed design
of future replication studies, e.g. better power calculations for and sizing of replications. While
these adjustments are admittedly crude, they are necessitated by the limitations in the given
data. With more available information, a better model for selection can be used. For example,
with the advancement of preregistration, we can use the external comparison method to produce
less conservative estimates of the directional FDP at level α = 0.05 if we have more information
about statistically nonsignificant studies. With more replications carried out, we can estimate
the publication bias model in Andrews and Kasy (2018) more precisely, which allows different
propensity for publication for different statistical significant p-values as opposed to Assump-
tion 1. Together with higher powered design in replications (e.g. Camerer et al., 2018), we can
enhance the precision of our estimators and power of our tests.

Second, we emphasized the importance of statistical formality. Our proposed criteria are based
on clearly defined parameters. While these criteria may not suit all needs in future replicability
studies, additional formal hypotheses can also be analyzed under the post-selection inference
framework similarly.

With our proposed criteria and procedures, researchers can perform more informative infer-
ences than the current practice, and provide a clearer picture of the replicability crisis.

Reproducibility. A git repository containing with the code generating the images in this
article is available at https://github.com/kenhungkk/assessing-replicability.git.
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Statistical Methods for Replicability Assessment”
(https://github.com/kenhungkk/assessing-replicability/raw/public/supplement.pdf). We eval-
uate our approximation of t-distributions by normal distributions, as well as detail considera-
tions made for individual studies.
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