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Abstract

‘We propose an Exponential DG approach for numerically solving partial differential equations (PDEs). The idea is to decompose
the governing PDE operators into linear (fast dynamics extracted by linearization) and nonlinear (the remaining after removing
the former) parts, on which we apply the discontinuous Galerkin (DG) spatial discretization. The resulting semi-discrete system
is then integrated using exponential time-integrators: exact for the former and approximate for the latter. By construction, our
approach 1) is stable with a large Courant number (Cr > 1); ii) supports high-order solutions both in time and space; iii) is
computationally favorable compared to IMEX DG methods with no preconditioner; iv) requires comparable computational time
compared to explicit RKDG methods, while having time stepsizes orders magnitude larger than maximal stable time stepsizes
for explicit RKDG methods;v) is scalable in a modern massively parallel computing architecture by exploiting Krylov-subspace
matrix-free exponential time integrators and compact communication stencil of DG methods. Various numerical results for both
Burgers and Euler equations are presented to showcase these expected properties. For Burgers equation, we present a detailed
stability and convergence analyses for the exponential Euler DG scheme.

Keywords: Exponential integrators; Discontinuous Galerkin methods; Euler systems; Burgers equation

1. Introduction

The discontinuous Galerkin (DG) method has gain popularity for decades as a spatial discretization. The DG
method—originally developed [1, 2, 3] for the neutron transport equation—has been studied extensively for various
types of partial differential equations (PDEs) including Poisson type equation [4, 5, 6, 7], poroelasticity [8], shal-
low water equations [9, 10, 11, 12], Euler and Navier-Stokes equations [13, 14], Maxwell equations [15, 16], solid
dynamics [17], magma dynamics [18], to name a few. One of the reason is that DG methods are well-suited for
parallel-computing due to the local nature of the methods. DG methods combine advantages of finite volume and
finite element methods in the sense that a global solution is approximated by a finite set of local functions, and each
local element communicates with its adjacent element through numerical flux on element boundary. Since the nu-
merical flux is calculated using the state variables on the face, DG methods have compact stencil, hence reduces
inter-communication cost. Another reason can be the positive properties of the scheme, i.e., flexibilty for handling
complex geometry, hp-adaptivity, high-order accuracy, upwid stabilization, etc [4, 5, 6, 7, 19].
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To fully discretize a time-dependent partial differential equation (PDE), temporal discretization is also necessary.
Explicit time integrators such as Runge-Kutta methods are popular due to their simplicity and ease in computer
implementation. However, scale-separated or geometrically-induced stiffness limits the time-step size severely for
high-order DG methods (see, e.g., [20, 10]). For long-time integration this can lead to an excessive number of time
steps, and hence substantially taxing computing and storage resources. On the other hand, fully-implicit methods
could be expensive, especially for nonlinear PDEs for which Newton-like methods are typically required. Semi-
implicit time-integrators have been designed to relax the time-step size restriction caused by the stiffness in order
to reduce the computational burden arising from the linear solve [21, 22, 23]. In the context of low-speed fluid
flows, including Euler, Navier-Stokes, and shallow water equations, implicit-explicit (IMEX) DG methods have been
proposed and demonstrated to be more advantageous than either explicit or fully-implicit DG methods [24, 25, 26].
The common feature of these methods is that they relax the stiffness condition by employing implicit time-stepping
schemes for handling the linear stiff part of the PDE. Therefore the performance highly depends on a linear solver,
which means an appropriate preconditioner needs to be constructed for achieving decent performance. However,
developing such a preconditioner is not a trivial task and it is problem-specific.

Alternatively, exponential time integrators have been received great attention due to the positive characteristics
such as stability and accuracy. The methods have been applied to various types of PDEs including linear advection-
diffusion equations [27], Schrodinger equation [28], Maxwell equations [29], magnetohydrodynamics (MHD) equa-
tions [30], Euler equations [31], incompressible Navier-Stokes equations [32], compressible Navier-Stokes equations
[33, 34], shallow water equations [35], among others.

Exponential time integrators is similar to IMEX methods in the sense of splitting a governing equation into stiff
and non-stiff parts. However, exponential time integrators exactly integrate the linear stiff part by multiplying an
integrating factor instead of using a quadrature in time. Compared to IMEX methods, exponential time integrators
replaces a linear solve at each time step with a computationally demanding matrix exponential.

Many researchers have conducted various studies to mitigate the challenge, one way is to use Krylov subspace,
where a large matrix is projected onto a small Krylov subspace so that computing the matrix exponential becomes
less expensive. To improve the Krylov subspace projection-based algorithm, rational Krylov method [36, 37], restart
Krylov method [38, 39], block Krylov method [40, 41], adaptive Krylov method [42] have been developed. Lately,
[43] and [44] enhance the computational efficiency of the adaptive Krylov method by replacing the Arnoldi procedure
[45] with the incomplete orthogonalization procedure [46, 47]. The work in [48] shows that the exponential propaga-
tion iterative (EPI) schemes can outperform the standard implicit Newton-Krylov integrators with no preconditioning.
The work in [35] observes the second-order EPI2 provides comparable results to the explicit fourth-order Runge-Kutta
(RK4). For elastodynamic problems, the second-order Gautschi-type exponential integratoroutperform the backward
Euler integrators [49, 50].

In this study, we propose an Exponential DG framework for partial differential equations. To that end, we separate
governing equations into linear and nonlinear parts, to which we apply the DG spatial discretization. The former
is integrated analytically, whereas the latter is approximated. Since the method does not require any linear solve, it
has a potential to be scalable in a modern massively parallel computing architecture. The proposed Exponential DG
method: i) is stable with a large Courant number (Cr > 1); ii) exploits high-order solutions both in time and space;
iii) is more efficient than IMEX DG methods with no preconditioner; iv) is comparable to explicit RKDG methods on
uniform mesh and more beneficial on non-uniform grid for Euler equations; v) provides promising weak and strong
scalable parallel solutions.

In the following, we discuss Exponential DG framework in Section 2. In Section 3, we apply Exponential DG
framework to Burgers equation and Euler equations, where we show the construction of linear operator based on a
flux Jacobian. Then, we presents a detailed analysis on the stability and convergence of the exponential DG scheme
for Burgers equation. The performance of the proposed method will be discussed in Section 5 with several numerical
examples for both Burgers and Euler equations. We finally conclude the paper in Section 6.

2. Exponential DG framework

In this section, we present the key idea behind Exponential DG framework. We first split a given PDE into a
linear and a nonlinear parts, to which DG discretization and exponential time integrators are applied. We begin with
notations and conventions used in the paper.
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2.1. Finite element definitions and notations

Let Q be an open and bounded subset of R?, where d = {1,2,3} is the spatial dimention. We denote by Q, :=
Uff‘l K; the mesh containing a finite collection of non-overlapping elements, K;, that partition Q. Here, 4 is defined as

h = maxje,..n,) diam (K j). Let 0Q; := {0K : K € Q,} be the collection of the faces of all elements. Let us define
&y, as the skeleton of the mesh which consists of the set of all uniquely defined faces. For two neighboring elements
K* and K~ that share an interior interface e = K* N K, we denote by ¢* the trace of their solutions on e. We define
n~ as the unit outward normal vector on the boundary K~ of element K~, and n* = —n~ the unit outward normal
of a neighboring element K*. On the interior interfaces e € &, we define the mean/average operator {v}, where v is
either a scalar or a vector quantify, as {v} := (v~ + v*) /2, and the jump operator [v] := 2{v - n}. On the boundary faces
ee€ 82, unless otherwise stated, we define the mean and jump operators as {v} :=v, [v]:=v-n.

Let P* (D) denote the space of polynomials of degree at most k on a domain D. Next, we introduce discontinuous
piecewise polynomial spaces for scalars and vectors as

Vi (@) = {v e L (@) : vk € PX(K), VK € Q)
A (&)= {Ae L2 (&) : A, € P e), Ve € &,

Vi () :
An (&) :

={ve[L? @] : vik e [P* )] VK e ),
={de[L2@]" : A [P @] Vees).
and similar spaces V;, (K), Ay, (e), V;, (K), and Ay, (e) by replacing Q;, with K and &;, with e. Here, m is the number of
components of the vector under consideration.

We define (-, -)g as the [*-inner product on an element K € R4, and (-, Yok as the [*-inner product on the element
boundary 0K € RY"!. We also define the broken inner products as (-,-)q = (-, o, = Zkeq, ()x and (-, Ygq =
(s aq, = 2okesn, (> Yok, and on the mesh skeleton as (-, )g, = X.eg, (-, ). We also define associated norms as

1 1 1 1
- lle, 2= (Ekea, Il 11)" and Il llaey, = ke, Il 13¢)" where [l llx = ()7 and || llak = ().

2.2. Constructing linear and nonlinear DG operators for conservation laws

We consider conservation laws governed by a generic system of partial differential equation (PDE):

dq

— +V-F=s, inQ, 1

5 F (D
where q is the conservative variable, 7 = ¥ (q) is the flux tensor, and s is the source vector. We seek a stiff linear flux
1, that, we assume, captures the rapidly changing dynamics in the system. Inspired by the works in [48, 51], we use

a flux Jacobian to define the linear flux, i.e.,

oF
7: = ) 2
L aq ~(1 (2)
q
where q is a reference state. By adding and subtracting the linear flux ¥ in (1), we split the divergence term into a
linear (stiff) part V - £, and a nonlinear (non-stiff) part V - (¥ — ¥.). Similarly, we decompose the source term s into
a linear term s,

0s
sL:=—14q, (3)
oq e
and a nonlinear term s — s;. Thus (1) becomes
9q
E+V'TL+V'TN=SL+SN (4)

at the continuous level, where ¥ = ¥ - and sy = s—s;. The decomposition at continuous level avoids complicated
derivatives of the stabilization parameter coming from a numerical flux in DG methods when applying exponential
3
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time integrators. To the rest of the paper, except for the analysis in Section 4, we use the same notations for the exact
and the DG solutions for simplicity. A semi-discrete form of (4) using DG discretization for spatial derivatives reads:
find q € V;,(€;,) such that

0
(a—‘:v) = (Lq.v) + (N(qQ). V). )
Qh

for all v € V,(Q,,), where

IN@. V) := = (V- Ty (@) Vo, + (Sn(@. Vo, = {(F3 (@) = Tn (@) -n.v),
(Lq, V) := = (V- FL(Q), Vg, + (SL(Q), Vg, = {(F} (q%) = FL(@) - 1, V)0, -

Here, ¥ and Fy, := F* — ¥, are a linear and a nonlinear DG numerical flux, respectively, such that

([7% @) 0] ), = 0and ([7 (a*) 0], 9}, =0,

for all v € A, (Ey). At this point both spatial linear and the nonlinear operators are discretized with DG, and we
discuss exponential time integrators for temporal derivative next.

2.3. Exponential time integrators

For the clarity of the exposition, let us rewrite (5) as

Z‘t‘ - Lq+N(q), 1€(0,T), 6)

with an initial condition q¢ = q(0). An abuse of notations has been made for brevity: first, the proper form for both L
and N would be a composition with a projection operator onto V}, (€2;,) as in Section 4; second, we don’t distinguish q
with its nodal (or modal) vector; and third, L and N are used interchangeably with their matrix representations from
Vi () to V, () (see also Section 4). Now multiplying (6) with integrating factor e~ yields

q(tn+1) — eAtLq(tn) +f e(At—o‘)LN(q(tn +o)do 7
0

via a simple application of the method of variation of constants. At this point, (7) is exact. The first term e*"“q(") is
the homogeneous solution, whereas the second term is the particular solution that involves a convolution integral with
the matrix exponential. Various exponential integrators have been proposed to approximate (7) in different ways. In
particular, a pth-order time polynomial approximation to the nonlinear map N can be written as

oy

—— vV +0(arh),

N+ oy =3 :

Jj=0

with appropriate choice [52] for v;. This allows us to express an approximation of q("*!) in (7), denoted as ¢"*!, as a

linear combination of ¢-functions [42], i.e.,

P
q"' = ) (sn'gi(arlby, @®)

i=0

where we have defined by := q(¢") and b; : Z’/’ (’) (’;,)/ v, j. Here, ¢;-functions for a scalar 7 are defined by

1 i—l
() = e 2 4
wi(T) : fo e - 1),

4
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with @o(T) := €. It is easy to see the recurrence relation [;(1) — ¢;(0)] 77! = i11(1) and ¢;(0) = ,l' hold true. The
definition of ¢;-functions for matrices is straightforward, e.g., based on Jordan canonical form [53].

For efficient computation of (8), Krylov subspace methods [54, 55, 56] with the exponential of the augmented
matrix can be used [57, 58, 42, 43], in which an augmented matrix is constructed and projected onto a small Krylov
subspace so that matrix exponential is amenable to compute.

In this paper, we use KIOPS [43] algorithm ! for serial computations. For parallel computation, we have imple-
mented an exponential time integrator based on the KIOPS algorithm for our C++ DG finite element library (a spin-off
from mangll [59]). Thanks to DG discretization and explicit nature of the exponential integrators, the proposed
method is highly parallel as the communication cost can be effectively overlapped by computation.

3. Model problems

The key in the operator splitting in (5) is the linearized flux ¥, (2). In this section we choose Burgers and Euler
equations as prototypes for the generic conservation law (1) and construct 7, (hence L and N) for these equations.

3.1. Burgers equation
Burgers equation is a quasi-linear parabolic PDE that comprises of nonlinear convection and linear diffusion:

ou 10ou? 0 [ Ou
— 4+ —=—|k—|inQ, 9
ot T 20x  ox (Kax) n ®)
where u is a scalar quantity and « > 0 is the constant viscosity. The linearization ¥ (2) of ¥ := u*/2 - Kg—l; evaluated
at i1 is given by
ou
Fr =i —Kk—,
L =0 —«k Ep
and thus
W2
Fn = 5 iu
We can now write (9) in the form (4) as
ou 0 ou o (u?
—+ —|wu—-—k—|+—|= —-du|=0inQ 10
ot " ox (”” Kax) ox ( 2 ””) m (10)
——— ————
FL Fn

where i is a reference state (for example & = u”: the numerical solution at #*). The DG weak formulation of (10)
reads: seek ¢, u € V}, (€;,) such that

6 ko
(4. P)g, = (a—z,p)ﬂh + ™ = u), pag, » (11a)
(%,v) = (Lu,v) + (N),v), (11b)
at ),
where
(Lu,v) = — (Kq — fu, @) + (kg™ = (@u)*),v)sq, » (12a)
0x o, '

- 1, ov o w?\

N(u),v)y := - (uu - EM , a)g/ + <n ((uu) - (?) ), v>th , (12b)

I'The performance of the adaptive Krylov subspace solver depends on several parameters such as the size of Krylov space. We empirically
determine the parameters in this studies.

5
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for all p,v € V;,(Q;) with n = +1 for one-dimensional problems. Here, we use the central flux for ™ and ¢** for
diffusion operator, i.e., ¢** = {g} and u** = {u}, the entropy flux for inviscid Burgers part, i.e., (“72) = % ({{% uz}} + {u}z) +
% [u], where o > 0 is a constant (the Lax-Friedrichs flux ("2—2) = {%u2}+ % max(|u*|) [u] is also considered to compare

with the entropy flux), and the Lax-Friedrichs flux for linear Jacobian part, i.e., (itu)"* := {iu} + % max(|i*]) [u]. With
the central flux u™*, g can be computed locally element-by-element from (11a), and the only actual (global) unknown
isuin (11).

3.2. Euler equations
We consider the compressible Euler equations written in the following form

% v ow=0, (132)

ag;tu+V-(pu®u+p[)=0, (13b)

a’g—tE+V-(puH)=O, (13¢)

where p is the density, u the velocity, p the pressure, pE = pe + %pllull2 the total energy, e = ‘ﬁ the internal energy,

p the pressure, H = E + % = y“—fl + %Ilull2 the total specific enthalpy, a = +/yp/p the sound speed, vy the ratio of the
specific heat, and 7 the d X d identity matrix. In a compact form, (13) can be written as

oq 3

with q = (p, pu, pE)T,'s = (5, Spu» S)7 > and F(q) = (ou, pueu+pI, puH)". Let us define u, := n-u, ¢ := (5+) [lul,
¥ := vy — 1, the flux Jacobian A := % where

0 n’ 0
A=|¢n—-uy, u®n-ymou+u,l yn|.
(¢ - H) Uy HnT - 7uTuV iy

The linearized flux (2) in this case is defined 77, := A(§)q =: Aq, and (4) now reads

P i ~
a—?+V-@+V-(7’(q)—Aq)=0. (15)
FL Fn

By multiplying a test function v to (15), integrating by parts for each element, and summing all the elements we arrive
at the semi-discretization with DG: seek q € V;(€2;) such that

0
(6—“v) = (Lq, V) + (N(@).V), Vv € Vi),
t Q

where
)= (0. %), - ((Aa) “n.v),,.
N@.v) = - (A - F(@). V), +(((Aa) -7 @)-n.v),, -
For this work, we use the Roe flux [60] for both linear and nonlinear fluxes, i.e.,
* + 1 *
F(q) ={F (@} + ElA(qRueN [n-q],

(Aq®)" = {Aq)+ 3@, [n-al,
6
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where qj, . and qj,, are Roe average states, and JA| := R|AJR™! with (A, R) as the eigen-pairs of A (see, e.g [61], for
more details).

3.2.1. Artificial viscosity

Solving nonlinear Euler equations is a notoriously challenging task. A smooth solution can turn into a discontin-
uous one due to nonlinearity. For numerical stability, a sufficient numerical diffusion needs to be equipped with the
Euler system. The questions are how to measure the regularity of a solution, and how to choose a reasonable amount
of the artificial viscosity. The authors in [62, 63] introduced entropy viscosity to stabilize numerical solution in Runge
Kutta time stepping. Since a large entropy is produced in the vicinity of strong shocks, the size of the entropy residual
can be used to measure the solution regularity and the viscosity coefficient.

We employ the entropy viscosity method in the context of exponential DG methods for handling sharp gradient
solutions. The procedure is as following: given an entropy pair (S, uS) for Euler systems, we first define the entropy
residual, Res(q) := % + V- (uS(q)), an effective viscosity vg := th,znaX max (IRes| , [uS] h‘l), an upper bound
to the ViSCOSity Vimax := Cmax/tmax Max [f'(q)| and the entropy viscosity vgy := Smooth(min(v,,, vg)). Here, S :=

% log ( ;%) is the physical entropy functional for Euler equations; cg and ¢, are tunable parameters; / is an element

size; 3 f'(q) = g—f is the flux Jacobian; and S mooth is a smooth function.  Then, we add the artifical diffusion term to
Euler systems in (14), which leads to

aq EV

E+V-7—'(q):V-¢ (16)
with FEV := (vgyVq). Note that this choice of the viscous flux makes the diffusion term linear if we compute the
entropy viscosity vgy using the solutions at current and previous timestep. > Thus, the linearized flux in (15) becomes
F1 = Aq — vgyVq. Treating the linear diffusion for Euler systems is similar to that for Burgers equation, and hence
omitted here.

4. An analysis of the exponential DG method for Burgers equation

In this Section we shall provide a rigorous analysis of the exponential DG approach in Section 2 for the Burger
equation (11). For the simplicity of the exposition, we assume that the integrals can be computed exactly though we
use LGL quadrature for computing the integrals. Note that aliasing errors from LGL quadrature and interpolation are
typically negligible for well-resolved solutions or can be made vanished by using a split form of the flux (see, e.g.,
[16, 64]). For brevity, we assume zero boundary conditions® on both sides of the domain Q or periodic boundary
conditions. Without any ambiguity, we also neglect the dependency of the (semi-discrete and exact) solutions on time
t, e.g. u = u(t), except for cases where this dependence is important. We assume that k > 0 is a constant. The
stability is trivial (see, e.g. [64], and the references therein), thanks to the entropy numerical flux. (Note that unlike
the standard entropy numerical flux, ours has an additional jump term.) Indeed, by taking p = kg in (11a) and v = u
in (11b), and then adding the resulting equations together we obtain

1d. 2 1 ou? u?\" o »
—= k ==—,1] (=], =—— . 17
> lulg, + klglg, (6 5o, > [u] . A [[elg, a7

prJr o _ \/pTuUr\EuJr H* _ \/,oTHUr\EH+
\ > “Roe \//F+\/p7 > "“Roe \//F+\/p7

>The Roe average state for Q.- for example, is defined as py , = ,and ap , =

O = D}, ~ S, 1P,
3We define  := 27' with r := ﬁl’[?zl s; as the radius of the circumscribed circle on the Kth triangular element.
“4For smoothing, we first compute vertex averaged entropy vicosity and then linearly reconstruct the entropy vicosity on each element.

n n—1
STn this study, we approximate the entropy residual by Res ~ % + % (V S(u'S(g") + V- (u"‘l.S(q"‘1 )))

6 At the Dirichlet boundary, we take u* = up = 0 for the numerical fluxes (iiu)* and (% ,u™ =up =0,and ¢ = ¢~
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Let us define the DG-norm’ for H'! () as follows

oul?

1 2
— - . 1
ox Q * h l[u]lah ( 8)

2
lulp =
h

Lemma 1 (Semi-discrete stability and uniqueness). The semi-discretization with DG in (11), with u € V;, (), is
stable in the following sense

3
2 2 2
lulg, +C fo lulpg dr < lu O, .
where C is some positive constant and u (0) is the DG initial condition. Hence, the DG solution is unique.

Proof. From an inverse and a multiplicative trace inequalities we have

I LR < ou
0 &, =T ox
ou

where ¢;r in a constant independent of the meshsize h. Taking p = ¢ in (11a) we obtain

2
0
. Vv e v, @, (19)
Q, Ox

C_1||2+La_u2> % _@2_[,/[]% >

2 Mo T 50 |ox Q T ox o, loxlg, o), ~
Oul? o) ) h {0y 2 crr \16ul? Cr 5
— - = - >|11 - —1||— - =
oxlg, 2h Il 2¢) {6 & ( 2C2) oxlg, 2h Il

where we have used (19) in the third inequality, and ¢y, ¢, are arbitrary positive constant. It follows that

2
C| ) CciT 1 ou (&) 2
— >l - — — —||— - = s
2 ldla, 2 ( 20 261) oxlo, ~ 20 11le,
which, together with (17), yields
d 2k T 1\|0ul? 2 KCo oy
— +—2-——-—]|=| +-|c—— <0.
dt lulgh Cl ( ¢ c)loxlg, h 7 c I[u]l‘g”
Now, by choosing ¢y, ¢, large enough such that
1
o'—@>0, andZ—CI—T——>0,
C1 C C1

and defining

we arrive at J
2 2
d_t Il/tlgh +C IuIDG < O,

which concludes the proof. O
Remark 1. We can choose c; sufficiently large relative to kc, so that o can be chosen to be (very) small.

7"Recall our convention that on the boundary faces 82 we have [u] = u. For periodic boundary condition, |u|pg; in Lemma 1 and Theorem 1
treats the boundary and interior interfaces the same.
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Note that the L>-stability in Lemma 1 does not imply L*-stability in general. The fact that V}, (€,) is piecewise
continuous implies® V;, () € L™ (Q), i.e., |ul., < oo. For the convergence analysis, we assume that |u|,, is bounded
uniformly for the time horizon (0, T), i.e., there exists M < oo so that Iul‘,o < M atanyt € (0,T). Let us denote by i
and g = g” the exact solution and its gradient, and we assume that i, az € H* (Q) with s > 3/2 for ¢t € (0,T). By the
Sobolev embedding theorem, #& and § are continuous and without loss of generality we assume |ii|, < M. It is easy to

see that # and g satisfy the DG weak form (11). Let I be the Lz-projection onto V;, () and let us define

goo=hi—u=a—Ma+Hia—u=¢g +&"
——

Since both the exact and the DG solutions satisfy the DG weak form (11), we subtract their corresponding equations,
take v =gl and p = KSZ, and add the resulting equations altogether to obtain

1d Oe,
sl oIl = (el + K(a_i,g;)gh et e,

E,

Lemma 2 (Estimate for E). Assume that the mesh €y, is regular. There holds:

1 1 o&" 2 O
R O |3 Al A e A D

c1 c1 c ax
2
Proof. Since both the exact and DG solutions satisfy (11a), taking p = %u i (11a) yields
c 2 1 ot o oeh I’ O
Sl s ], 2 (5, =[5, (e “}})
2 4 ox o 0x |, Ox . ox)) e,

e el del 0"
_ 82 , u + u , u _ [8{, ] ; u )
Ox o, ox Ox o, Ox s,
Now using Cauchy-Schwarz we have

(Gl <5z 5|+ sl

where c¢;r, independent of #, is constant resulting from the inverse and multiplicative trace inequalities (19). Now
combining the two inequalities ends the proof. O

14

8In fact, by an inverse inequality and shape regularity, we can obtain the estimate |u|o, < Ch™! lulg,-

9
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Lemma 3 (Estimate for E,). Assume that the mesh €y, is regular. There holds:
( LA ‘IT] &'
q q Q,°
6'2 C1 h
q

where cjr, independent of h, is constant resulting from an inverse and a multiplicative trace inequalities, while c‘f, Ccy
and c'{ are any positive constants.

68

q
E2<C1u1u2
K_ qgh

Proof. The proof is straightforward using an Cauchy-Schwarz, an inverse, and a multiplicative trace inequalities. [

Lemma 4 (Estimate for £% — Eg /2). Assume that the mesh Qy, is regular. There holds:

gl

K—2 1 CIT 2
+( 2y e 2cg‘) 1],

where cir, independent of h, is constant resulting from an inverse and a multiplicative trace inequalities, while
u u u u 117
¢y, ¢4, cy and cg are any positive constants.

I
e 81

q
0x o

cy(k=2)  «keprch 2
b 3\
-E}2 < + |sq|10h

2 2

K

oeh |’
ox

Q,

Proof. The proof is straightforward using an Cauchy-Schwarz, and an inverse and a multiplicative trace inequality
similar to (19). O

Lemma 5 (Estimate for E4). Assume that the mesh €y, is regular. There holds:

L yoape
2_c’g |5u“Q,, :

Q
where cg is any positive constant.

Lemma 6 (Estimate for Es). Assume that the mesh €y, is regular, lil, < M, and |u|., < M over the time horizon of
interest. There holds:
J 0'c7

Mc;Tc8 ( del
where ¢!y and cg are any positive constant.

Ox

2
Qh

Mcirct 1 2
huDG % Mgzu; + %(26? - 1) u[eﬁ]ush ,

Proof. We begin with the Lipschitz continuity of the flux function and the numerical flux

(#* —1*) < Mg, and (“;) - (”—2) < M ([sf] +|ea]) + % AR

1
2 2

and thus by Cauchy-Schwarz inequality we have

et ,
E')Qh + M<|8u+

B(sL EZ)

Es < M(|g{,|,

+ |8£_| Hsh

“] >8h

o h
%u ) + M<|(~3Z+ +
ox o

B(eheh)

+M(|gg|,

h h
o). [[]

h

e Sl + 5 (5

u 9
En

10
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where we have defined &, := (sh)i.

u
To estimate B (81 el

o, u) we apply Cauchy-Schwarz inequality and a multiplicative trace inequality to obtain

(S

i
|8u DG

Mcg 2 2 M
< 32 (1l 1L )+ 5 el

B(el.el) < M (|elf, + nlell;, )

712
Memes (1P |2l |+ M jop
-2 ey, Ox 20y 17#IDG
Q, 8
Similarly, together with an inverse inequality, we have
Mck M Mcyrc
h _h 8 [1.4]2 n|? e ITCg 1 _n|2 e
B(Su’gu) s ) (ugulg,, + hlguu&,) + 2t usu DG =" 5 | uugh + 20t Ieu DG
Combining the above estimates concludes the proof. U
Now combining Lemmas 2—6 and (20) we arrive at
2
dyoap h|? n|? ul )12 2 ds,,
a u‘gulg,, +C nglﬂ,l +C |8MMDG < Mcyreg |‘9u"9h +h Ox o
h
712
q 102 q a“314
+ (Kc1 + ¢y (k= 2) + keppcs + ZCZ) Maquﬂh + (K6‘2 + 2cZ) P
Q
el 1 2 2
u u u u u 1 h
+ g Y o + (Kc1 +c5+ 0'c7) p "g“]“sh + C; Igulg,l , (21
where we have defined
2K 1 c 1 1 c
C,i==2-—-0)_ — _ — - _%;
C1 C1 (6 cl C2 C1
Cl . (K K—2 2 crr 2M)
2= \A " 4 T a —a_ 5
2 s ¢, C g
1 Kk  2M  2kc
Greofi L) £ B 2m
4 o ors cy
C; :=min{C}.C3}.
1 u
C3 =l +MC1TC8 .
6
As can be seen, for a given «, we can choose cy, ¢, T, c?, cg, and c!,i=1,...,8 such that all the constants Cy, C; and

(5 are positive.

Theorem 1 (Semi-discrete error estimate). Assume it, % € H* (Q) with s > 3/2 fort € [0,T], and o > 0. There exist

positive constants C independent of the meshsize h and t such that
oi

d .
I, + 1o, Vel < el + crmst (a5, + | 57

2
) ; (22)

H(Q)

and thus, in addition, if i 9 ¢ 12((0,T); H (Q)) and u(0) = It (0), there exists a constant C independent of the

> ot
meshsize h and t such that

t 5 -
leul, + f (|sq||Q] + |gu|§)c) ds < CR*™M5H (exp (C1) - 1).
o l
11
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Proof. The first assertion is the direct consequence of the error estimation (21), the Lz—projection error [65, 66, 67,
68, 69], and the following definition of C:

C := max G G
. min{l,Cy,Cp} min{l,Cy,Co} "

The second assertion is straightforward by 1) integrating the first assertion and then applying a Gronwall’s lemma to
obtain,

oi

ot

! ! 2
|2 |2 |2 2 min{s,k A2
R+ [ (1, + By ) s crmoct expin v [ (i + [ 2] s

and 2) using the the Lz-projection error [65, 66, 67, 68, 69] and triangle inequalities for g, and g, e.g.,

' h
|8u|Qh < usulgh + usu Q

O

Remark 2. Theorem 1 shows that though the convergence of the solution in the DG norm (18) is optimal, the conver-
gence in L*-error is suboptimal, i.e. leulg, = O (hk) if k < s, and this seems to be sharp as we observe this rate in the
diffusion-dominated numerical results especially for odd k. When Ct < 1, then exp (Ct) — 1 ~ Ct, and thus the error
increases at most linearly in time.

We next analyze the temporal discretization error using the exponential integrator. We begin with a few important
lemmas.

Lemma 7. There exists a constant C, independent of the meshsize h, such that:
2 2 2
hl{ghls, + lglg, < Clulpg

Proof. Taking p = q in (11a), then using Cauchy-Schwarz and multiplicative trace and inverse inequality similar to
(19) give

h , 3, ,  (Ou |8u 201, 2., h 5
— + = < =(=, —([ul, <=|1=] +=z + == + — ,
To NG, o, <ok, = (0] (U dabe, < 5[] 3 b, + SR, + g N,
then taking C = max {%, ZCIT} / min {ﬁ, }T} concludes the proof. O

Using the definition of the Lz-projection, e.g., [IN (u) € Vj,(€y) such that (N (w),v) = (IIN (u),v)q, for all

v €V, (Qy), we can write (11b) as

ou

— =TILu +TIN (u).

ot " @)
For the clarity of the exposition let us define I := IL and N := IIN. For the rest of the analysis, we do not distinguish
the operator Lu (and hence N (u) ) and its matrix representation from Vj, (€;,) to V}, (€;) since in finite dimension all
norms are equivalent and V}, (€2;) is homeomorphic to R¥, where M is the dimension of V}, (€2;). This allows us to

work conveniently and directly on L, N, V}, (Q;,), and the DG-norm.

Lemma 8 (Uniform boundedness of L and I on Vj, (Q},)). Suppose that liil,, < M, the linear operator 1L defined in
(11b), as a linear operator from V;, (€,) to V;, (), is bounded for any t € (0, T) in the following sense: there exists a
constant Cy, independent of the meshsize h, u, v, such that

|@at. v)g, | = KLu, W) < Cplulpg Wlpg» Yu,v € Vi (Q).

12
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Proof. We have
m()*, vysa, < Mul,|vIDsq, » and (nkg™,v)sq, < kgl IVIDg, »

(Kq—ﬁu,@) SK(IqI,‘@) +KM(|M|,Q) .
Ox)q, Oxl)g, Q,

Ox
Now from definition of L in (12a) using Cauchy-Schwarz inequality we obtain

B, +

> (kM 5 PR, K, » kh kM | v |
(Lu,v)” < (7 |u|Qh + > Iulagh + D) |CIIQh + EX “q}lgh X BN

v
2 |ox

ox

K 2
o, h I[V]IS/,) >

Now using the result of Lemma 7, a Poincaré-Friedrichs inequality for H' (Q;), and a multiplicative trace inequality
for |ulg, we arrive at

kM ﬂtlr)

(Lu, v)* <[CPF( >t ]IuIDGXmaX{K /3+ }IvIDc’

where Cpp is the constant in the Poincaré-Friedrichs inequality. The result follows by taking

C [CPF (KM BCIT) + E

N kM« K}
2 2 2

]XmaX{T-FE,,B-FE .

Corollary 1. Suppose the assumptions for Lemma 8 hold. We have that

i (tIL)’”

is a uniform continuous operator semigroup in Vy, (). In particular, 1L is the infinitesimal generator of the semigroup
Lo
e"™ with

I
’Ie’ﬂ‘m < e and |g; (TL)| < Cy, (1) 1= ™" f - dz,
! 0 (l - 1)!

where || is the operator norm from V;, (€) to Vi, ().
Proof. The proof is straightforward using the boundedness of L. in Lemma 8 [70, 71]. U

Lemma 9 (Lipschitz continuity of N). Let u and w be in V;, (Qy), ul, < M and |w|,, < M fort € (0,T), there exists
a constant Cy independent of the meshsize such that

KN () =N W), v)| < Cn lu=wlpg VIpg,  ¥v € Vi () .

Proof. From the definition of N in (12b), it is easy to see that

\© (WA M, + + foa
(?) —(7) S?(|u -w |+|u -w |)+Z[u—w],

+)’

()~ Gow)” < 20 (= | +

1 1
(ﬁu - Euz) - (ﬁw - sz) <2M|u —w|.

13
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Thus,
ov ™
(KN () = N (W), )| < 2M |u — wlg, il T3 lu = wlaq, 1lV]lg,
X Q, 3
o 08 202 :
+ [[u = wllg, IV]lg, < [Mz (4 + 3617) lu — wlg, + e llu=wliz,| Mpo
2 98 2|’
<|CprM~ |4 + 5 < +207| |u—wlpg VIpg »
Cn

where we have used Cauchy-Schwarz, inverse trace, and Poincaré-Friedrichs inequalities. O

A direct consequence of Lemmas 8 and 9 is that ‘;—‘; = Lu+N(u) € V, (©;,) c L* (€;,). Thus from (12b), % given
by

AT Y Ry 730 Ty S (7 W RO 173 O S U1/ 27| WO 7\ W (2
() =l 5o 5, A s3] ), -Gl el 73] ),

is well-defined. Indeed the next results show that % is a Lipschitz continuous map from Vj, () to Vj, ().

Lemma 10 (Lipschitz continuity of aa—l?). Suppose u, g—’f, it,w reside in Vi, (), lulee < M, W, < M, lill, < M, and
< M jort € (0,T). There exists a constant C}, independent of the mesh size h such that

a
0t loo

< Cy lu—wlpg VIpg

<6N(u)_(9N(w) >
o or "

Proof. Let us define z as

ou ow
:E_E:L(M_W)-'_N(u)_N(W),

and Lemmas 8 and 9 imply |zlpg < (Cr + Cpn) lu — wlpg. We have

ou ) - 1 i
(T,v) = ((u -w) i w—1i)z, 5‘)9/, + <{uz} +3 max(|i”]) [z], [V]>

Ep
- H{u - w) % - w%}+ - wu{{%}} 2o+ T, M>ah :
where T := % - %. Now following similar arguments as in the proof of Lemma 9 we obtain
(T,v) < Clalpg IVIpg < C(CL + Cn) lu = wlpg VIpg »
where C = C (¢;r, M, o, Cpp). ]

Let us denote by u” the approximation solution of (11) using a time discretization. We are now in the position
to analyze error of the fully discrete system using the exponential-Euler in time and DG in space. The fully discrete
system using the exponential Euler integrator reads

u™ = 2y 4 At (ALY N (),
while the semi-discrete solution u (") satisfies
u (1) = e Mu (") + sty (ALY N (u (1) + 6",

14
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YiV2 T aN
5= f oL f — (w({" +0)) dodr.

= -u"=0")-u(@)+ul@)-u"=¢g,({") +p".
—_——— — —

&u(1") =p"

with

Let us define ?

We thus have
P = et pt 4 Aty (AfL) [N (u (£7)) — N ()] +6"*.
=f@")

After some algebraic manipulations we obtain

n—1 n—1
p' = ar Y eI (afl) £ (1) + ) ele"
j=0 j=0

Theorem 2 (Convergence of the exponential Euler-DG). Assume the conditions of Corollary 1, Lemma 10, Lemma
9, Lemma 1, and Theorem 1 hold. There exists a constant C depending only t",Cr,Cn, lu (0)lg, » Cpr such that the
following estimate for the total discrete error " at t" = nAt holds true:

€], < C (ar+pmnH).

Proof. Using Corollary 1, Lemma 10, and Lemma 1 we have

n—1 n i v
AL cn—j "'C e 2
Zew I < ate LCjVZ f lu (Dlpg di < arNe"LCY, f lu (D3 dt < ALC |u(0)lg,
1 -1 0 ———

=0 =
J DG J Cs

where we have absorbed all quantities depending only on %, Cy, Cy into C. Now combining the above estimate with
Lipschitz continuity of N (Lemma 9) and Corollary 1 we have that there exists a constant C; depending on C,, (Af)
and C;s such that

.
Io"lpe < Ciat ) ||, + Crat,

J

1l
(=]

which, together with a discrete Gronwall’s lemma, yield

|Pn|Qh < Cpr Ip"IDG < Cat,
where C = C (Cpp, C;). We thus, via Theorem 1, conclude

1", < 10"lg, + leu (Mg, < C(at+ ™),

5. Numerical Results

In this section, we conduct several numerical experiments to evaluate the performance of the proposed exponential
DG framework for both Burgers and Euler equations. In particular, we examine the numerical stability for a wide range
of Courant numbers'? larger than unity, i.e. Cr > 1, the high-order convergence in both space and time, the efficiency,
and weak and strong parallel scalability. We measure L? error for convergence studies by |lu — ii|lo, where # is either
an exact solution or a reference solution.

9p0 =0.

10We define Courant numbers Cr := Cr, + Crg, where Cry := %’ for convection part and Cry := ((’;f)'z for diffusion part. Here, dx is the
minimum distance between two LGL nodes; c is the maximum speed in the system, e.g., ¢ = |u| for Burgers equation and ¢ = |u - n| + a for Euler

equations.

15
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Table 1. A time-independent manufactured solution for the viscous Burgers equation: a spatial convergence study using N, = {20, 40, 80, 160}

elements is conducted with Lax-Friedrich (LF) flux, entropy flux (EF). EXPRB32 scheme with A7 = 5 X 107 is used as the time integrator.

A LF EF (c=3x107% EF (0 =0) \
error order error order error order
1/20 | 4.093E-04 - 4.096E-04 - 4.097E-04 -
k=1 1/40 | 1.223E-04 1.743 | 1.225E-04 1.741 | 1.232E-04 1.734
1/80 | 4.494E-05 1.445 | 4.378E-05 1.484 | 4.620E-05 1.415
1/160 | 1.937E-05 1.214 | 1.562E-05 1.487 | 2.074E-05 1.155
1/20 | 2.630E-06 - 2.632E-06 - 2.634E-06 -
k=2 1/40 | 3.210E-07 3.034 | 3.213E-07 3.034 | 3.222E-07 3.031
1/80 | 3.966E-08 3.017 | 3.952E-08 3.023 | 3.996E-08 3.011
1/160 | 4916E-09 3.012 | 4.833E-09 3.032 | 4.984E-09 3.003
1/20 | 1.431E-07 - 1.459E-07 - 1.471E-07 -
k=3 1/40 | 1.709E-08 3.066 | 1.742E-08 3.066 | 1.819E-08 3.015
1/80 | 2.003E-09 3.093 | 1.876E-09 3.215 | 2.268E-09 3.003
1/160 | 2.251E-10 3.154 | 1.441E-10 3.703 | 2.834E-10 3.001
1/20 | 5.946E-10 - 5.991E-10 - 6.013E-10 -
k=4 1/40 | 1.827E-11 5.024 | 1.837E-11 5.027 | 1.860E-11 5.015
1/80 | 5.626E-13 5.021 | 5.590E-13 5.039 | 5.796E-13 5.004
1/160 | 1.730E-14 5.023 | 1.690E-14 5.048 | 1.810E-14 5.001

5.1. Viscous Burgers equation

5.1.1. An exact time-independent smooth solution
We consider a time-independent manufactured solution with « = 0.03 for the Burgers equation

u(x, 1) = sin(x*)x(x — 1)

by adding the corresponding source term to (9). We perform a spatial convergence study with both Lax-Friedrich
(LF) flux and entropy flux (EF) (we take o = 0 and 00 = 3 X 10™4). In order to prevent temporal discretization
error from polluting the spatial one, we employ high-order accurate EXPRB32 scheme !' with At = 5 x 107> and
N, = {20,40, 80, 160} elements. The error is measured at r = 0.01 and the results are summarized in Table 1. We
observe that entropy flux with no additional stabilization (i.e. oo = 0) and Lax-Friedrichs flux provide similar results,
that is, the convergence order is optimal for even solution orders but sub-optimal for odd ones. This similar behavior
when using the central flux for diffusion term has been recorded in the literature (see, e.g. [72], and the references
therein) and it is also consistent with our analysis in Section 4 in which we have shown that the spatial convergence
is sub-optimal. Entropy flux with small additional stabilization seems to asymptotically deliver convergence rates

between k + 1/2 and k + 1 for all solution orders considered in this case, which is better than what we could prove.

ITEXPRB32 [71] is the third-order two-stage exponential method given by

q® = q" + st (LADR",

"' = " + a1 (LADR" + 28103(LADD,, 5,

where R(q) = Lg + N(q), R" :== R(¢") and D, := N(G?®) — N(¢"). Here, we choose L = ?Tﬂq"'
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Table 2. A smooth solution for the viscous Burgers equation: a spatial convergence study using N, = {20, 40, 80, 160} elements is conducted with
Lax-Friedrich (LF) flux and entropy flux (EF), and EXPRB32 scheme with Af = 5 X 107 as the time integrator.

A LF EF(c=3x10"% EF(o =0) \
error order error order error order
1/20 | 7.061E-03 - 7.157E-03 - 7.161E-03 -
k=1 1/40 | 2.080E-03 1.764 | 2.285E-03 1.647 | 2.308E-03 1.633
1/80 | 6.731E-04 1.627 | 8.552E-04 1.418 | 9.186E-04 1.329
1/160 | 2.432E-04 1.469 | 3.070E-04 1.478 | 4241E-04 1.115
1/20 | 2.511E-04 - 2.540E-04 - 2.541E-04 -
k=2 1/40 | 2.741E-05 3.196 | 2.744E-05 3.210 | 2.744E-05 3.211
1/80 | 3.317E-06 3.047 | 3.317E-06 3.048 | 3.317E-06 3.048
1/160 | 4.112E-07 3.012 | 4.113E-07 3.012 | 4.112E-07 3.012
1/20 | 2.574E-05 - 2.738E-05 — 2.748E-05 -
k=3 1/40 | 2.883E-06 3.158 | 3.243E-06 3.078 | 3.311E-06 3.053
1/80 | 3.414E-07 3.078 | 3.748E-07 3.113 | 4.087E-07 3.018
1/160 | 4.108E-08 3.055 | 3.722E-08 3.332 | 5.091E-08 3.005
1/20 | 9.225E-07 - 9.273E-07 - 9.273E-07 -
k=4 1/40 | 2.529E-08 5.189 | 2.785E-08 5.057 | 2.858E-08 5.020
1/80 | 7.135E-10 5.147 | 7.563E-10 5.202 | 8.445E-10 5.081
1/160 | 2.188E-11 5.027 | 2.190E-11 5.110 | 2.604E-11 5.019

5.1.2. A smooth solution
We next consider a case with smooth solution generated by the following initial condition,

u(x,t = 0) = sin 2ax)(1 — x)2,

zero Dirichlet boundary conditions, and « = 0.03. The smooth initial profile is spread out due to the viscosity as time
goes by.

We conduct a spatial convergence study with both LF and EF fluxes with N, = {20, 40, 80, 160}. We again use
EXPRB32 for the time integrator with Ar = 5 x 107>, Since there is no exact solution we use RK4 solution with
At = 5% 1077, k = 10, and N, = 160 as the ”ground truth” solution. The error at + = 0.01 is used to compute
the convergence rate and the results are summarized in Table 2. Similar to the case of the manufactured solution,
we observe that the convergence rates for odd solution orders are sub-optimal, but optimal for even solution orders.
Again, a little additional stabilization via o not only facilitates our convergence analysis but also seems to improve
the convergence rates.

Before showing temporal convergence rates let us demonstrate the numerical stability of exponential integrators
by using very large Courant numbers. For this purpose, it is sufficient to choose EPI2 scheme'?. We compare EPI2
and RK2 solutions at r = 1, both with EF flux, in Figure 1. For RK2 solution, we take At = 10™* (Cry = 0.16) as
approximately the maximal stable timestep size since At = 2 x 107* leads to unstability. Unlike RK2, with 1000 times
larger timestep size, i.e. Cry = 161.0, EPI2 still produces a comparable result compared to RK2. Even with 5000
times larger timestep size (Cry = 804.9), EPI2 solution is still stable though less accurate (see Figure 1(b) in which we

12EPI2 [48] is the second-order exponential method given by
g™ = ¢" + st (LanR”

— OR
where L = % |q,l.
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compare the accuracy of EPI2 and RK2 using RK4 with A7 = 5 x 1075 as a reference solution). As for the wallclock
time, RK2 takes 8.3s, whereas EPI2 does 1.6s with Cr; = 161.0 and 1.3s with Cry; = 804.9. EPI2 is five to six times

faster than RK2 in this example.

0.2

‘ — 0.02 : :
—RK2 (Cr,=0.16) —RK2(Cr,=0.16)-RK4
i --—-EPI2 (Cr,=161.0)| | 0.015| --—-EPI2(Cr,=161.0)-RK4 ||
' - - EPI12(Cr=804.9) 0,011 - - EPI2(Cr,=804.9)-RK4||
01+ 0.005+, Y
1 AY
N
0 N Tt L
\
0.05r ‘
-0.005 | Y 7
\ 7
-0.01 | \ t
0 ~— \ e
-0.015 N R
Y N ’/
_005 L L L L _002 L L il L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) solutions (b) differences

Figure 1. Accuracy comparisons between EPI2 and RK?2 using Burgers equation with smooth solutions at ¢t = 1 with k = 4 and N, = 40: Figure
1(a) shows RK2 with Cry = 0.16 (black), EPI2 with Cr; = 161.0 (red-dashed), and EPI2 with Cr; = 804.9 (blue-dashed). Figure 1(b) plots their
differences with RK4 solution with df = 5 x 107°.

We now compute the temporal convergence rates of two exponential integrators, EPI2 and EXPRB32, using our
DG spatial discretization with k = 4 and N, = 40. To that end, we take the RK4 solution with Ar = 5 X 1076 as
a ground truth. The error is computed at # = 1. As can be seen in Table 3, the numerical results with both LF and
EF fluxes show second- and third-order convergence rates for EPI2 and EXPRB32, respectively. We observe that the
difference in the solutions of LF and EF are negligibly small (on the order of O(107%)). This, we believe, is due to
the diffusion-dominated regime, for which different numerical fluxes for the nonlinear convection term do not make
(much) difference on the solution.

5.1.3. A solution with steep gradient
We next consider a solution with steep gradient, namely, a stationary shock that evolves in time from the following
initial condition

u(x,t = 0) =sin(2rx), for x € [0, 1],

and homogeneous boundary conditions. We perform the simulation for ¢ € [0, 1] with k = 4 and N, = 40. As time
goes on, a sharp interface is progressively formed at x = 0.5. In this convection-dominated example, EF flux with a
uniform bound of o~ leads to an unstable solution, whereas LF flux still produces a stable solution. This may be related
to the growth of aliasing errors arising from the sharp gradient, or insufficient artificial diffusion between the elements
due to the lack of upwinding of the uniform value of o. Inspired by LF flux, we set o = /100 + h max(Ju*|) for EF
flux in this example. Figure 2 are the EPI2 solution snapshots at # = 1 with df = 0.01 and « € {0.02, 0.005, 0.002}. By
decreasing «, the shock solutions with EF flux become stiffer, and the difference of EPI2 solutions between LF flux
and EF flux increases up to O(107%).

With « = 0.002, we now perform spatial and temporal convergence studies. For spatial convergence study, we use
nested meshes with N, = {40, 80, 160} '* and the EXPRB32 integrator with At = 5 x 107. RK4 solution (with LF
flux, ar = 5x 1077, k = 10, and N, = 160) is used as the ”ground truth” solution for measuring the [*erroratt=1.
We observe k + % rate of convergence for both LF and EF fluxes in Table 4.

For temporal convergence study, we consider the DG discretization with k = 4, and N, = 160. We take the RK4
solution (with LF flux, At = 5x 1077, k = 10, and N, = 160) as a reference solution to measure the L” error at f = 1.
In Table 5, we observe second- and third-order convergence rates for EPI2 and EXPRB32, respectively.

13 All the meshes are chosen to align with the sharp interface at x = 0.5.
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Table 3. Temporal convergence rates for EPI2 and EXPRB32 for a smooth solution of the viscous Burgers equation by computing the error at
t = 1 using RK4 solution with Ar = 5 x 107° as the reference solution. Spatial discretization is carried out using our DG approach with k = 4 and
N, = 40. We observe second- and third-order convergence rates for EPI2 and EXPRB32, respectively.

EPI2 EXPRB32
flux At Cry
error order error order
0.50 804.9 || 1.171E-02 - 5.272E-03 -
0.25 402.5 || 3.303E-03 1.827 | 1.077E-03 2.292
LF 0.10 161.0 || 5.411E-04 1974 | 9.575E-05 2.641

0.05 80.5 || 1.312E-04 2.044 | 1.300E-05 2.881
0.01 16.1 || 4.943E-06 2.037 | 1.042E-07 2.999

0.50 8049 || 1.171E-02 - 5.272E-03 -

0.25 4025 || 3.303E-03 1.827 | 1.077E-03  2.292
EF(c=3x10%) | 0.10 161.0 | 5411E-04 1.974 | 9.575E-05 2.641
0.05 80.5 || 1.312E-04 2.044 | 1.300E-05 2.881
0.01 16.1 || 4.943E-06 2.037 | 1.042E-07 2.999

0.50 804.9 || 1.171E-02 - 5.272E-03 -

0.25 4025 || 3.303E-03 1.827 | 1.077E-03  2.292
EF(o = 0) 0.10 161.0 || 5411E-04 1.974 | 9.575E-05 2.641
0.05 80.5 || 1.312E-04 2.044 | 1.300E-05 2.881
001 16.1 || 4943E-06 2.037 | 1.043E-07 2.988

05 5 %107
— EF (:=0.0C — LF-EF (:=0.002)
—-—-EF (+=0.0( —-=-LF-EF (5=0.005)
- - EF (:=0.0 15} - - LF-EF (s=0.02) H
e
05F
0 + +
0.1F 05
0.2+
1rF
0.3F
o4l 15+
05 . . . . 2 . . . .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
(a) solutions (b) differences

Figure 2. Burgers equation with a steep gradient solution with EPI2 time integrator, k = 4, and N, = 40 at t = 1: (a) the snapshots with
x ={0.02,0.005,0.0002} and (b) the solution differences between LF and EF fluxes.

Considering the simplicity and upwinding nature of Lax-Friedrich flux, we use Lax-Friedrich flux for Euler equa-
tions (which are hyperbolic) in the following examples.
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Table 4. A shock solution to the viscous Burgers equation with a spatial convergence study using N, = {40, 80, 160} elements is conducted with
Lax-Friedrich (LF) flux and entropy flux (EF), and EXPRB32 scheme with At = 5 X 1075 as the time integrator. We take the RK4 solution (with
At=5x%x10"7,k = 10, and N, = 160) as a reference solution to measure the [%erroratt = 1.

LF EF
error order error order

1/40 | 1.295E-02 - 1.353E-02 -
k=1 1/80 | 5.558E-03 1.221 | 5.577E-03 1.279
1/160 | 2.001E-03 1.474 | 1.964E-03 1.506

1/40 | 4.223E-03 - 4.229E-03 -
k=2 1/80 | 6.722E-04 2.651 | 6.712E-04 2.656
1/160 | 9.852E-05 2.770 | 9.616E-05 2.803

1/40 | 9.976E-04 - 9.969E-04 -
k=3 1/80 | 1.435E-04 2.797 | 1.449E-04 2.782
1/160 | 1.224E-05 3.551 | 1.219E-05 3.571

1/40 | 3.606E-04 - 3.577E-04 -
k=4 1/80 | 2.728E-05 3.724 | 2.706E-05 3.725
1/160 | 8.084E-07 5.077 | 7.432E-07 5.186

Table 5. Temporal convergence study of EPI2 and EXPRB32 for a shock solution to the viscous Burgers equation: we take the RK4 solution (with
LF flux, At = 5% 1077, k = 10, and N, = 160) as a reference solution, and measure the [?erroratt = 1. Spatial discretization is carried out using
our DG approach with k = 4 and N, = 160. We observe second- and third-order convergence rates for EPI2 and EXPRB32, respectively.

EPI2 EXPRB32
error order error order

0.25 559.1 || 2.276E-02 - 8.424E-03 -

0.10 2133 || 3.706E-03 1.981 | 5.711E-04 2.937
LF | 0.05 1055 || 8.784E-04 2.077 | 6.440E-05 3.149
0.02 42.0 || 1.327E-04 2.063 | 3.755E-06 3.102

flux At Cr

0.25 559.1 || 2.276E-02 - 8.424E-03 -

0.10 2133 || 3.706E-03 1.981 | 5.711E-04 2.937
EF | 0.05 1055 || 8.784E-04 2.077 | 6.440E-05 3.149
0.02 42.0 || 1.327E-04 2.063 | 3.745E-06 3.105

5.2. Euler equations: Isentropic vortex translation

We consider the isentropic vortex example in [73], where a small vortex perturbation is added to the uniform mean
flow and translated without changing its shape. The superposed flow is given as

U=t = ij)e"(l_rz)/z, V= Ve F i)”ce‘l(l‘rz)/z,
2m 2m
2
T =T (i) o(1-7).
20c, )\ 21

where 7 = [|X—X; —Ueof|l, £ = X —Xc —Uool, ¥ = Y=Y = Vool, Ueo = (Uheo, Voo), and X, = (5, 0). Here, ¢, is the specific heat
ratio at constant pressure and A the vortex strength. The mean flow is set to be (#eo, Voos Poos Toos Poo) = (0.2,0,1, 1, 1).
20
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Wetakea =2,y =14,4=0.05and ¢, = %1 The exact solution is generated from the isentropic relation'*. The
domain is Q = (0, 10) X (-5, 5) and periodic boundary conditions are applied to all directions. For a three-dimensional
simulation, we take the zero vertical velocity, w = 0, and extrude the 2D domain vertically from O to 1 to obtain
Q =(0,10) X (=5,5) x (0, 1).

5.2.1. Stability of exponential integrators

We perform the simulation for ¢ € [0, 15] with k = 12 and N, = 256 in Figure 3. Compared to the stable EPI2
solution with At = 0.5 (i.e. Cr = 42.75) in Figure 3(a), the EPI2 solution with At = 1 (Cr = 85.56) in Figure 3(b)
is oscillatory (part of the domain away from the vortex). One can reduce the oscillation while keeping large Courant
number by employing a more accurate, e.g. higher-order, time integrator '°. To demonstrate this point we show the
third-order EXPRB32 solution with A = 1 (Cr = 85.56) in Figure 3(c) for which oscillations are not visible in the
same scale. A closer look, see Figure 4, in which we plot a slice along y = 0 for all sub-figures in Figure 3, shows
that the EXPRB32 solution with (Cr = 85.56) does reduce oscillations. This is not surprising: though exponential
integrators are inherently implicit, large timestep size must be chosen with care in order to avoid adverse affect on the

accuracy.

%107

6 6 6
-8 v 8 \ | 8
5 5 / 5
0 0 0
. 1 g 1 . 1
5 9 5 0 )
(a) EPI2 (Cr = 42.75) (b) EPI2 (Cr = 85.56) (c) EXPRB32 (Cr = 85.56)

Figure 3. Translating isentropic vortex example for the two-dimensional Euler equations at # = 15: numerical solution using EPI2 with Cr = 42.75
is in Figure 3(a), using EPI2 with Cr = 85.56 in Figure 3(b), and using EXPRB32 with Cr = 85.56 in Figure 3(c).

5.2.2. Accuracy and efficient comparison among exponential integrators

In this section, we take the second, the third, and the fourth-order exponential integrators: EPI2, EXPRB32, and
EXPRB42,'% respectively, and compare their relative accuracy and efficiency. Time convergence studies are conducted
on a uniform mesh and a non-uniform mesh in Figure 5.

We start with a very high-order accurate discretization in space with k = 16 for the uniform mesh so that the spatial
error (around 107'3) does not pollute the temporal one. Figure 6(a) presents the L2-error for the density p over a wide

)
Poo Te Poo

15Since high-order methods requires more nonlinear evaluations, the evolution of the solution can be captured more accurately than the low-order
methods. For example, EPI2 needs one nonlinear evaluation at #*, whereas EXPRB32 uses two nonlinear evaluations at #* and ol
16EXPRB42 [74] is the fourth-order two-stage method,

3 3
@ = ¢" + Zatp; | > Lat| R
q q 1 P1 i ,

32
¢ = ¢ + atp (LADR" + 35 b1 (Laf) Dy,

where R(q) = Lg + N(g), R" := R(¢") and D, := N(¢®) - N(g").
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Figure 4. Translating isentropic vortex example for the two-dimension (black is for EPI2 with Cr = 85.56, red-dashed for EPI2 with Cr = 42.75,
and blue-dashed for EXPRB32 with Cr = 85.56) Euler equations at # = 15: a slice along y = O for all sub-figures in Figure 3.

range of timestep sizes. Note that the numbers on the top of the figure is the corresponding Courant number for the
timestep size displayed on the x-axis. As can be seen, EPI2, EXPRB32, and EXPRB42 achieve expected convergence
rate of 2, 3, and 4, respectively. Beyond 10~!3 the error is dominated by spatial discretization error, which explains
why the error for the last two points (the two smallest timestep size cases) of the EXPRB42 error curve plateaus.

5.2.3. Accuracy and efficient comparison between exponential and IMEX integrators

We now compare exponential methods with IMEX (implicit-explicit) time integrators. For IMEX integrators, we
integrate the linearized operator L implicitly and the nonlinear operator N explicitly. We consider the second-order
ARS232 [21] and the third-order ARS443 [21] IMEX schemes. The L?-error for p corresponding to these IMEX
methods on the uniform mesh are summarized in Figure 6. As can be seen in Figure 6(a), for a given timestep size
EXPRB32 is (an order of magnitude) more accurate than ARS443 while EPI2 is (about half order of magnitude) less
accurate than ARS232. Efficiency comparison in Figure 6(b) shows that, for a given level of accuracy, exponential
integrators EXPRB32 and EPI2 are much (from two to ten times) more efficient than the IMEX counterparts ARS232
and ARS443. Though both EXPRB32 and EXPRB42 require two matrix exponential evaluations, and hence having
similar wallclock, EXPRB42, due to its high-order accuracy, is more efficient than EXPRB32.

5.2.4. Accuracy and efficient comparison between exponential and RK integrators
We next compare exponential methods with explicit RK (Runge-Kutta) time integrators. We consider second-
order RK2, third-order RK3, and fourth-order RK4 methods. Figure 6(a) shows that RK2 solution converges to the
22
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Figure 5. (a) A uniform mesh with N, = 256 elements, and (b) a non-uniform meshes with N, = 250 elements.
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Figure 6. Accuray and effiicency of exponential, IMEX, and RK integrators for the isentropic vortex translation in two dimensions on a uniform
mesh with N, = 256 and k = 16.

true solution with the second-order accuracy, while RK3 and RK4 solutions immediately saturate at the error level of
O(10713) as the temporal error is smaller than the spatial one. Note that the right most point for each of RK method
corresponds to (approximately) the largest stable timestep size. Exponential methods, again due to their implicit na-
ture, does not have time stepsize restriction. As expected Figure 6(b) shows that with a same accuracy, exponential
integrators are less efficient than their same order RK counterparts since the formers require matrix exponential eval-
uations. Times taken by high-order exponential integrators become comparable to low-order RK counterparts. This
should not understood as a disadvantage. On the contrary, the main advantage of EI is on stiff problems or problem
requires large time stepsizes (with CFL number greater than 1) for which explicit RK methods fail. The example
shows that the cost of exponential methods are similar to stable explicit RK methods while stably providing solutions
with time stepsizes orders of magnitude larger than the maximal stable time stepsizes for explicit RK methods.

On the non-uniform mesh, we set the center of the vortex to be x. = (0,0) at + = 0 so that the initial vortex is
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defined on a coarse region. This means that more spatial discretization error is introduced than that on the uniform
mesh. In Figure 7(a), the saturated error level of O(10~!'!) is higher than the counterpart on the uniform mesh. All RK
solutions immediately reach to the saturated error level of 0107, In Figure 7(b) and Table 6, RK4 is faster than
RK2 and RK3. Compared to RK4, Exponential DG methods shows slightly better performance at the error level of
O(107'"). For example, EPI2 with Cr = 7.49 is 1.5 times faster than RK4.

When we lower the solution order from k = 16 to k = 8§, we see the computational gain of Exponential DG
methods in Table 7. All the numerical solutions saturate at O(107°) error level. The wallclock times of RK2, RK3,
and RK4 are 155.8, 150.0, and 101.9. EPI2 is three times faster than RK2 and RK3, and two times faster than RK4.
EXPRB32 and EXPRBA42 slightly better perform RK4.

1.5 15 299.4

-6
10 -4-EPI2
108 -& EXPRB32
-e-EXPRB42
1107 ~-ARS232
4 — ARS443
_ 10 —~+RK2
e 108 8 -+ RK3
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104 107 1072 107 100 200 500 1000 5000 20000
Timestep size [sec] Wallclock [sec]
(a) Accuracy (b) Efficiency

Figure 7. Isentropic vortex translation in two dimensions: time convergence study for (a) accuracy and (b) efficiency on non-uniform mesh. The
computational domain is discretized with N, = 250 and k = 16.

To demonstrate the high-order convergence in space, we perform the spatial convergence test. We use a sequence
of nested meshes with N, = (256, 1024, 4096, 16384) for k = (1,2, 3,4) and measure the errors at t = 1. As can be
seen in Table 8, the convergence rate of (k + %) is observed as refining the meshes.

5.2.5. Performance of Exponential DG on parallel computers

Now we study the parallel performance, namely weak and strong scalings, of Exponential DG methods for three-
dimensional Euler equations. For this purpose, we choose the EPI2 integrator. Parallel simulations are conducted
on Stampede?2 at the Texas Advanced Computing Center (TACC) using Skylake (SKX) nodes. Each node of SKX
consists of 48 cores of Intel Xeon Platinum 8160 2.1GHz processors and 192GB DDR4 RAM. The interconnect is a
100GBy/s Intel Omni-Path (OPA) network with a fat-tree topology.

We begin with strong scaling in which the problem size is fixed while the number of cores increases. Table 9
compares the efficiencies of two different timestep sizes: At = 0.125 and At = 0.25 on the mesh with N, = 51200
(elements) and k = 6 (solution order). For either of the timestep sizes, the corresponding run with 32 cores and 1600
elements per core is served as the based line. As the number of cores increases (i.e. the number of elements per core
decreases) communication-computation overlapping is less effective and thus decreasing the efficiency. The efficiency
with Ar = 0.125 is slightly higher than that with Ar = 0.25 as the latter requires more Krylov iterations than the former:
the total number of Krylov iterations N,y is 561 for Cr = 15.49(at = 0.125) and 1024 for Cr = 32.98(at = 0.25)
17 This implies that the spectrum of the linear operator becomes broad by increasing the timestep size'.

Next, we conduct a strong scaling test using the exponential DG with EPI2, Cr = 8.1 (ar = 0.03125), N, =
3,276,800 and k = 4. We choose the number of processors to be n, = {16,32,64, 128,256,512, 868} x 48 so that the

7We observe N, Krylov = 556 for Cr = 7.75(at = 0.0625). The total number of Krylov iterations is proportional to Courant number above a
certain Courant number. In Table 11, Ng,yioy is about 40 for Cr <= 2.8. However, for Cr > 2.8, doubling Courant number tends to double Nk yioy.
18Note that the input argument of ¢-function is AzL.
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number of elements per core approximately becomes {4267, 2133, 1067, 533,267, 133,79}, i.e., every time we double
the number of processors, the number of elements is halved. The speedup factors'® for all cases in Figure 8 show that
the exponential DG approach delivers good strong scalability up to 41664 cores—the maximum number of cores in
Skylake system in TACC.

41664 | L

—+—EP|2

'|~+-ldeal
24576

12288 |

6144

Speedup

3072

1536

768 -

S © Z
/\(b \65 A
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o & ,\q,q/ %b(? b:\(b
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Figure 8. Isentropic vortex translation in three dimensions: strong scaling study for EPI2 with Cr = 8.1 (At = 0.03125). The computational domain
is discretized using N, = 3,276,800 and k = 4. The number of processors used are n,, = {16, 32, 64, 128,256, 512, 868} x 48.

For the weak scaling test, we assign the same amount of work to each processor (by refining the mesh) while
increasing the number of processors. Our exponential DG approach uses EPI2, N, = {1, 8,64,512,4096} x 100, and
k = 8. The number of processors is chosen in the set {4, 32,256,2048, 16384} so that the number of elements per core
is 25 (i.e. 18,225 degrees-of-freedom). We have tabulated the weak scaling results in Table 10, in which each row
block shows, for a fixed Courant number, the number of processors, the timestep sizes, the final times, the wallclock
times taken, and the number of Krylov iterations. For each fixed Courant number, good weak scalings can be seen
through the wallclock times (and N,y,,) that do not vary much as the number of processors (and thus the problem
size) increases. To see this visually, we plot the average time-per-timestep against the number of degrees-of-freedom
in Figure 9: almost plateau curve for each Courant number indicates favorable weak scaling can be obtained by the
Exponential DG method. As can also be observed, the number of Krylov iterations Ng,yj,,, and hence the wallclock
time, scales linearly with the Courant number.

How does the weak scaling behaves if we fix timestep size At instead of Courant number Cr? In this case, refining
the mesh (in order to keep the number of elements per core the same) adds geometrically-induced stiffness to the

19Speedup is defined as ;—; with Ty serial wallclock time and 7', parallel wallclock time.
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Figure 9. Weak scaling study with fixed Courant numbers for the isentropic vortex translation with three dimensional Euler equations.
The exponential DG approach consists of EPI2, N, = {1,8,64,512,4096} x 100, and k = 8. The number of processors for each N, is
np = {4,32,256,2048, 16384} so that each processor has 25 elements (18,225 degrees-of-freedom) for all cases.

system, and thus making the total number of Krylov iterations to increase. This is verified in Table 11, which shows
linear growth in the total number of Krylov iterations as the mesh is refined for Cr > 2.8. As shown in Figure 10, the
increase in number of Krylov iterations induces the growth in wallclock time.

5.3. Euler equations: Kelvin-Helmholtz instability

Kelvin—Helmbholtz instability (KHI) is an important mechanism in the development of turbulence. KHI occurs
when two fluids meet across their interface with different densities and tangential velocities. As time goes by, small
disturbances at the interface grow exponentially, and the interface rolls up into KH rotors [75, 76, 77]. The computa-
tional domain is Q = (=5,5) x (0,5). We apply periodic boundary condition to the lateral direction, whereas no-slip
boundary condition to the top and the bottom walls.

The initial conditions are chosen as

pet (5w

u=0.1+(tanh(y sl) tanh( )—1),
v—A51n(27rx)( ( b-s ])2)+exp( @_—52)2)),

(o

P=7
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Figure 10. Weak scaling study with fixed Af for the isentropic vortex translation with three dimensional Euler equations. The exponential DG
approach uses EPI2, N, = {100, 800, 6400, 51200}, and k = 8.The corresponding number of processors are n, = {4, 32,256,2048}, respectively, so
that each processor has 25 elements for each case.

where we take a = 0.05, A = 0.01, 0 = 0.2, 51 = 2, 5, = 3, and cyex = 0.1 and ¢g = 1 for entropy viscosity.

The numerical simulations are performed with EPI2 and RK4 methods over the uniform mesh with k¥ = 6 and N, =
722 for t € [0, 100]. We take At = 0.005 =: Atgg4 for RK4, and Ar = 0.04(= Atggs X 8) and At = 0.5(= Atggs X 100)
for EPI2. The temperature fields are plotted at # = 50 and # = 100 in Figure 11. The wallock times of RK4, EPI2 (with
At = 0.04) and EPI2 (with Ar = 0.5) are 8729s, 35055 and 26565, respectively. EPI2 with Ar = 0.04 (8 times larger
time stepsize) are in good agreement with RK4 but about 2.5 times faster. However, EPI2 solution with At = 0.5 is
quite deviated from RK4 solution. This is due to the way to approximate the entropy residual. ?° Note that in this
study, the temporal tendency of the entropy residual is approximated by the first-order Euler method, i.e., % ~ S"*A—“fﬂ
Thus, using different timestep sizes yields different artificial viscosity. The accuracy of the residual computation can
be enhanced by incorporating the second-order approximation such as backward differentiation formula, but this is
out of the scope of the paper.

5.4. Euler equations: shock problems

Exponential-DG methods are now tested for shock problems by considering benchmark examples in [78].

20Using high-order exponential integrators does not improve the solution quality unlike the isentropic vortex example in Figure 3.
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(c) RK4

Figure 11. Kelvin—-Helmholtz instability: evolution of temperature for (a) EPI2 with df = 0.5(= Atgga % 100), (b) EPI2 with A7 = 0.04(= Atrk4 X 8)
and (c) RK4 with A7 = 0.005(=: Atgka) at t = (50, 100) on a uniform mesh with N, = 722 and k = 6. The temperature ranges from 0.49 to 1.01.

5.4.1. Riemann problem: case #4
This example develops four shocks. The initial condition with y = 1.4 is defined to be

p=11Lu=0,v=0,p=1.1 x>0.5,y>0.5,
p =0.5065,u =0.8939,v=0,p =0.35 x<0.5,y>0.5,
p=11,u=0.8939,v=0.8939,p=1.1 x<0.5,y<0.5,
p =0.5065,u=0,v=0.8939,p =0.35 x>0.5,y<0.5

on Q = (0, 1)>. The control parameters of the entropy viscosity are ¢pax = 0.1 and ¢z = 1.

‘We conduct the numerical simulation with EPI2 and RK4 methods for ¢ € [0,0.24] with k = 3 and N, = 5000 in
Figure 12. We take Atggxs = 0.0004 for RK4 and At = 0.004(= Atggs X 10) for EPI2. In general, EPI2 solution is
comparable with RK4 counterpart. With 10 times larger time stepsize, EPI2 (taking 324s) is 4 times faster than RK4
(taking 1366s).
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(a) EPI2 with Atgxa X S (b) RK4 with Atgxa = 0.0002

Figure 12. Riemann problem: case #4: density field of (a) EPI2 with Ar = 0.002(= Afgg4 X 10) and (b) RK4 with Atggs = 0.0002 at = 0.25 on a
uniform mesh with N, = 5000 and k = 3. The density ranges from 0.5 to 1.9.

5.4.2. Riemann problem: case #12
This example develops two contact waves and two shocks. The initial condition with y = 1.4 is given as

p=05313,u=0,v=0,p=04 x>0.5,y>0.5,
p=10,u=07276,v=0,p=1 x<0.5,y>0.5,
p=08u=0v=0,p=1 x<05,y<0.5,
p=10,u=0,v=0.7276,p =1 x>0.5,y<0.5

on Q = (0, 1)>. The control parameters of the entropy viscosity are cpa = 0.05 and ¢z = 0.5.

We conduct the numerical simulation for ¢ € [0, 0.24] with k = 3 and N, = 5000 in Figure 13. We take Atggq =
0.0004 for RK4 and Ar = 0.004(= Atggs X 10 for EPI2. The wallclock times of RK4 and EPI2 are 1051.0s and 327.5s,
respectively. EPI2, with 10 times larger time stepsize, is about 3 times faster than RK4, and produces the comparable
solution to RK4 counterpart.

Figure 14 shows the viscosity fields of EPI2 and RK4. As mentioned in [62], the viscosity becomes strong in the
shocks, whereas weak in the rest including contact discontinuities. As expected, we also see that the magnitude of
the viscosities for EPI2 and RK4 are different due to the approximation of the entropy residual. Also, the entropy
viscosity method does not completely remove the Gibbs phenomenon associated with high-order spatial discretizaton
for shock problems. A further study is needed to handle the issue by incorporating several limiters.

6. Conclusions

In this paper, we have developed a Exponential DG framework. This is done by splitting the governing differential
operator into linear and nonlinear parts to which we apply DG spatial discretization. In particular, we construct the
linear part by linearization aiming to absorb the stiffness in the system. Since the linear-nonlinear decomposition
is done on continuous level, we can avoid taking derivatives of nonsmooth functions possibly resulting from both
spatial and time discretizations. The resulting semi-discrete system is then intetegrated with exponential integrators.
Our proposed approach aims to i) circumvent the stringent timestep size arising from explicit integrators; ii) support
high-order accuracy in both space and time; iii) outperform over IMEX DG methods with no preconditioner; iv) be

29



— 1.7e+00

1.4

— 3.5e-03

— 0.003
0.0025
0.002
0.0015

— 0.001

— 0.0005

— 0.0e+00

comparable to explicit RKDG methods for stiff problems; v) be scalable in a modern massively parallel computing
architecture. We present a detailed stability and convergence analyses for the Burgers equation using the exponential
Euler DG scheme.

Numerical results (for Burgers equation and Euler equations) have shown that while explicit RKDG methods
suffer from restricted timestep sizes due to numerical stability, Exponential DG framework supports a wide range of
Courant numbers. We numerically observe that the proposed methods achieve the high-order temporal and spatial
convergence rates. We also see that Exponential DG is more economical than IMEX DG in the isentropic vortex
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example on both uniform and non-uniform meshes. For the Euler systems on the non-uniform mesh, Exponential
DG is comparable to explicit RKDG. Moreover, for the shock problems, EPI2 solutions become 3 times faster than
RK4 solutions when artificial viscosity is employed. This is because the diffusion term becomes a dominant source
to restrict the timestep size of the explicit methods in the shock problems. For all cases, if relaxing the accuracy is
allowed, while time stepsize beyond the maximum stable time stepsize for explicit RKDG is needed, Exponential DG
can be faster than the explicit RKDG.

As have been demonstrated, our proposed framework can exploit current and future parallel computing systems to
solve large scale problems. The key explored in the proposed methods do not require a linear solve matrix-free Krylov-
based matrix exponential computations and the DG compact communication stencil. Indeed, we have numerically
shown that Exponential DG methods have favorable strong scaling up to 40K cores and weak scaling for 16K cores for
the Euler isentropic vortex example. Ongoing work is to extend the approach to various partial differential equations
and to scale it beyond hundreds of thousands cores.

Appendix A. Local discontinuous Galerkin methods for viscous Burgers equation

We have seen that suboptimal convergence rates for odd orders in Table 1, Table 2 and Table 4. This is related to
the use of central fluxes in the diffusion term. To improve a spatial convergence rate, we employ local discontinuous
Galerkin methods (LDG) [72]. That is, we define the numerical flux ™ in (11a) and ¢** in (12a) by

u” =ty - [ul B, q” ={g}+[4]B.

where we take 8 = 0.5. 2! Indeed, we numerically observe that the spatial convergence rates increase to k + 1 for
odd orders in the case with the time-independent smooth solution as shown in Table A.12. We also see that the spatial
convergence rates for odd orders are improved up to 0.45 compared with central flux for time-dependent problems in
Table A.13 and Table A.14. The spatial convergence results are encouraging, thus, we will consider to incorporate
LDG methods for developing Naiver—Stokes models in the future.
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Table 6. Isentropic vortex translation in two dimensions: time convergence study on a nonuniform mesh. The computational domain is discretized
with N, = 256 and k = 16. The error is measured at 7 = 1.

k=16 Cr p pu PE

error order error order error order
0.45 6.126E-11 - 1.378E-10 - 3.539E-11 - 1491.5
RK2 0.30 | 6.127E-11 -0.000 | 1.368E-10 0.018 | 3.533E-11 0.004 | 2213.5
0.15 6.127E-11  0.000 | 1.366E-10 0.002 | 3.531E-11 0.001 | 4457.2

wc [s]

RK3 0.75 | 6.127E-11 - 1.366E-10 - 3.530E-11 - 1044.9
0.37 | 6.127E-11 0.000 | 1.366E-10 0.000 | 3.530E-11 0.000 | 2033.4

RK4 1.50 | 6.127E-11 - 1.366E-10 - 3.530E-11 - 655.7
1.12 | 6.127E-11  0.000 | 1.366E-10 0.000 | 3.530E-11  0.000 873.2

299.42 | 8.115E-08 - 9.834E-08 - 2.858E-07 - 277.3

149.71 | 2.031E-08 1.998 | 2.437E-08 2.013 | 7.153E-08 1.998 285.3

74.85 | 5.079E-09 2.000 | 6.080E-09 2.003 | 1.788E-08 2.000 287.4

EPD2 29.94 | 8.093E-10 2.004 | 1.068E-09 1.898 | 2.840E-09  2.008 289.3
14.97 | 2.035E-10 1.992 | 7.288E-10 0.551 | 6.848E-10 2.052 327.7

749 | 8.002E-11 1.347 | 1.495E-10 2.285 | 1.823E-10 1.909 438.2

299 | 6.188E-11 0.281 | 1.369E-10 0.096 | 4.527E-11 1.520 | 1086.7

1.50 | 6.132E-11 0.013 | 1.366E-10  0.003 | 3.596E-11 0.332 | 2174.3

299.42 | 6.324E-10 - 9.584E-10 - 2.218E-09 - 586.5

149.71 | 9.847E-11 2.683 | 1.865E-10 2.361 | 2.733E-10 3.021 572.8

EXPRB32 74.85 | 6.206E-11 0.666 | 2.220E-10 -0.251 | 5.044E-11  2.438 588.4

2994 | 6.129E-11  0.014 | 4297E-10 -0.721 | 4.666E-11  0.085 599.2
1497 | 6.133E-11 -0.001 | 8.731E-10 -1.023 | 7.249E-11 -0.636 | 6564
749 | 6.127E-11 0.001 | 1.366E-10 2.676 | 3.530E-11 1.038 870.0

299.42 | 9.660E-11 - 1.735E-10 - 2.707E-10 - 480.6
149.71 | 6.142E-11  0.653 | 1.505E-10  0.205 | 3.940E-11 2.780 481.6
EXPRB42 | 74.85 | 6.127E-11 0.004 | 2.662E-10 -0.823 | 3.946E-11 -0.002 | 496.9
29.94 | 6.128E-11 -0.000 | 4.534E-10 -0.581 | 4.786E-11 -0.211 | 491.3
1497 | 6.133E-11 -0.001 | 9.018E-10 -0.992 | 7.430E-11 -0.635 | 534.8

299.42 | 1.806E-08 - 1.920E-06 - 1.503E-07 - 3931.8
149.71 | 4.127E-09  2.130 | 4.803E-07 1.999 | 3.718E-08 2.015 | 1889.8
74.85 | 1.005E-09 2.038 | 1.201E-07 2.000 | 9.266E-09 2.005 | 1234.8
29.94 | 1.707E-10  1.935 | 1.922E-08 2.000 | 1.481E-09 2.001 | 1092.3
1497 | 7.321E-11 1.221 | 4.806E-09 2.000 | 3.707E-10 1.998 | 1256.3
749 | 6.214E-11 0.237 | 1.209E-09 1.991 | 9.790E-11 1.921 1751.2

ARS232

299.42 | 1.049E-08 - 1.183E-07 - 3.750E-08 - 28140.8
149.71 | 1.302E-09 3.010 | 1.484E-08 2.995 | 47702E-09 2.996 | 11017.5
ARS443 74.85 | 1.714E-10  2.925 | 1.863E-09 2.994 | 5.7787E-10 3.022 | 5219.5
29.94 | 6.235E-11 1.104 | 1.812E-10 2.543 | 5.088E-11 2.653 | 3327.1
14.97 | 6.131E-11  0.024 | 1.374E-10 0.399 | 3.562E-11 0.514 | 3319.0
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Table 7. Isentropic vortex translation in two dimensions: time convergence study on a nonuniform mesh. The computational domain is discretized
with N, = 256 and k = 8. The error is measured at 7 = 1.

_ P pu PE
k=8 Cr error order error order error order we ls]
RK2 0.63 | 1.533E-06 - 2.884E-06 - 7.851E-07 - 155.8
0.33 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.851E-07 0.000 306.7
RK3 0.81 1.533E-06 2.884E-06 7.851E-07 150.0

0.41 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.851E-07 0.000 | 294.3

1.36 | 1.533E-06 - 2.884E-06 - 7.851E-07 - 101.9
RK4 0.90 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.851E-07 0.000 | 152.5
0.45 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.851E-07 0.000 | 307.7

90.42 | 1.536E-06 - 2.887E-06 - 8.365E-07 - 45.2
45.21 | 1.533E-06 0.003 | 2.885E-06 0.001 | 7.907E-07 0.081 49.2
EPI2 22.60 | 1.534E-06 -0.001 | 2.893E-06 -0.004 | 7.938E-07 -0.006 | 52.6
9.04 | 1.533E-06 0.001 | 2.884E-06 0.003 | 7.849E-07 0.012 59.9
4.52 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.851E-07 -0.000 | 113.3

90.42 | 1.533E-06 - 2.884E-06 - 7.862E-07 - 91.4
45.21 | 1.533E-06  0.000 | 2.884E-06 0.000 | 7.862E-07  0.000 94.9
EXPRB32 | 22.60 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.866E-07 -0.001 | 99.5
9.04 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.849E-07 0.002 | 111.0
4.52 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.851E-07 -0.000 | 221.3

90.42 | 1.533E-06 - 2.884E-06 - 7.861E-07 - 77.9
45.21 | 1.533E-06  0.000 | 2.884E-06 0.000 | 7.859E-07  0.000 75.7
EXPRB42 | 22.60 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.870E-07 -0.002 | 81.4
9.04 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.849E-07 0.003 | 110.9
4.52 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.851E-07 -0.000 | 221.1

90.42 | 1.515E-06 - 3.469E-06 - 7.17T7TE-07 - 343.7
45.21 | 1.530E-06 -0.014 | 2.925E-06 0.246 | 7.612E-07 -0.085 | 248.6
ARS232 22.60 | 1.533E-06 -0.003 | 2.887E-06 0.019 | 7.803E-07 -0.036 | 205.9
9.04 | 1.533E-06 0.000 | 2.884E-06 0.001 | 7.852E-07 -0.007 | 226.1
4.52 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.851E-07 0.000 | 317.7

90.42 | 1.512E-06 - 2.882E-06 - 6.233E-07 - 1616.1
45.21 | 1.526E-06 -0.013 | 2.881E-06  0.001 | 6.762E-07 -0.118 | 1050.9
ARS443 22.60 | 1.531E-06 -0.005 | 2.883E-06 -0.001 | 7.490E-07 -0.148 | 765.3
9.04 | 1.533E-06 -0.001 | 2.884E-06 -0.000 | 7.816E-07 -0.046 | 684.7
4.52 | 1.533E-06 0.000 | 2.884E-06 0.000 | 7.846E-07 -0.006 | 797.5
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Table 8. Spatial convergence for the isentropic vortex translation in two dimensions.

We use a sequence of nested meshes with N,

{256, 1024, 4096, 16384} for k = {1, 2, 3,4}. We use EXPRB42 scheme with A7 = 0.01 and measure the errors at = 1.

e
error

order

pu
error

order

pE

error

order

1.00
0.50
0.25
0.12

1.00
0.50
0.25
0.12

1.00
0.50
0.25
0.12

1.00
0.50
0.25
0.12

9.942E-04
7.662E-04
4.344E-04
2.312E-04

2.909E-04
1.201E-04
3.235E-05
5.787E-06

1.286E-04
1.972E-05
2.123E-06
2.112E-07

2.686E-05
2.067E-06
9.543E-08
4.540E-09

0.376
0.819
0.910

1.276
1.892
2.483

2.705
3.215
3.329

3.700
4.437
4.394

7.389E-03
1.999E-03
5.312E-04
1.383E-04

7.382E-04
1.418E-04
1.570E-05
2.084E-06

2.343E-04
1.541E-05
9.655E-07
6.849E-08

3.180E-05
1.283E-06
4.294E-08
1.458E-09

1.886
1.912
1.941

2.380
3.175
2913

3.926
3.996
3.817

4.631
4.901
4.880

1.595E-03
5.181E-04
2.049E-04
8.571E-05

4.423E-04
4.965E-05
7.084E-06
1.257E-06

6.979E-05
5.605E-06
4.450E-07
4.386E-08

1.311E-05
4.381E-07
1.333E-08
5.294E-10

1.622
1.338
1.257

3.155
2.809
2.495

3.638
3.655
3.343

4.903
5.039
4.654
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Table 9. Isentropic vortex translation in three dimensions: strong scaling results for EPI2 with Cr = 16.49 (At = 0.125) and Cr = 32.98 (at = 0.25)
are performed with N, = 51200 and k = 6up to s = 1.

#cores | N,/core ar=0.125 . o =0.25 .
Wallclock [s]  Efficiency | Wallclock [s]  Efficiency
32 1600 2346 100 4151 100
64 800 1199 97.8 2121 97.9
128 400 607.7 96.5 1255 82.7
256 200 306.9 95.6 605.7 85.7
512 100 237.3 61.8 419.1 61.9
1024 122.7 59.7 219.1 59.2
2048 61.33 59.5 118.0 55.0
4096 12.5 33.72 54.4 63.12 514
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Table 10. Weak scaling study with fixed Courant numbers for the isentropic vortex translation with three dimensional Euler equations. The
exponential DG approach consists of EPI2, N, = {1, 8,64,512,4096} x 100, and k = 8. Each curve presents the wallclock time per timestep for
various number of degrees-of-freedom with a fixed Courant number. The numbers on each of the curves are the number of cores.

Cr N, \ At \ Final time \ Wallclock [s] \ Nirylov
4 0.2 0.8 15.3 103
5.59 32 0.1 0.4 17.8 90
256 0.05 0.2 24.4 81
2048 0.025 0.1 27.8 81
16384 | 0.0125 0.05 29.3 82
4 0.2 0.8 50.4 397
24 32 0.1 0.4 89.9 381
256 0.05 0.2 85.8 355
2048 0.025 0.1 86.9 348
16384 | 0.0125 0.05 93.1 358
4 0.2 0.8 130.9 1024
55.9 32 0.1 0.4 240.4 1023
’ 256 0.05 0.2 246.2 1024
2048 0.025 0.1 248.8 1024
16384 | 0.0125 0.05 342.2 1408

Table 11. Weak scaling study with fixed dt for the isentropic vortex translation with three dimensional Euler equations. The exponential DG
approach uses EP12, N, = {100, 800, 6400, 51200}, and k = 8.The corresponding number of processors are n, = {4,32,256,2048}, respectively, so
that each processor has 25 elements for each case.

At N, =100 N, =800 N, = 6400 N, = 51200
Cr Nk rylov Cr Nk rylov Cr Nk rylov Cr Nk rylov

0.025 0.7 40 1.4 40 2.8 45 5.6 81
0.25 7.0 128 14.0 233 27.9. 448 559 1024
2.5 69.8 1536 | 139.7 3072 | 279.32 5120 | 558.7 10112
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Table A.12. A time-independent manufactured solution for the viscous Burgers equation: a spatial convergence study using N, = {20,40, 80, 160}
elements is conducted with central (C) flux and local discontinous Galkerin (LDG) flux for diffusion term. Lax-Friedrich (LF) flux is used for
advective term. EXPRB32 scheme with A7 = 5 x 107> is used as the time integrator.

A LF (C) LF (LDG) ‘
error order error order
1/20 | 4.093E-04 - 4.415E-04 -
k=1 1/40 | 1.223E-04 1.743 | 1.112E-04 1.990
1/80 | 4.494E-05 1.445 | 2.782E-05 1.998
1/160 | 1.937E-05 1.214 | 6.959E-06 1.999
1/20 | 2.630E-06 - 3.586E-06 -
k=2 1/40 | 3.210E-07 3.034 | 4.635E-07 2.952
1/80 | 3.966E-08 3.017 | 5.847E-08 2.987
1/160 | 4916E-09 3.012 | 7.364E-09 2.989
1/20 | 1.431E-07 - 6.185E-08 -
k=3 1/40 | 1.709E-08 3.066 | 3.713E-09 4.058
1/80 | 2.003E-09 3.093 | 2.270E-10 4.032
1/160 | 2.251E-10 3.154 | 1.404E-11 4.015
1/20 | 5.946E-10 - 8.475E-10 -
k=4 1/40 | 1.827E-11 5.024 | 2.593E-11 5.030
1/80 | 5.626E-13 5.021 | 8.027E-13 5.014
1/160 | 1.730E-14 5.023 | 2.498E-14 5.006
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Table A.13. A smooth solution for the viscous Burgers equation: a spatial convergence study using N, = {20, 40, 80, 160} elements is conducted
with central (C) flux and local discontinous Galkerin (LDG) flux for diffusion term. Lax-Friedrich (LF) flux is used for advective term. EXPRB32
scheme with Af = 5 x 107> as the time integrator.

A LF (C) LF (LDG) \
error order error order
1/20 | 7.061E-03 - 7.234E-03 -
k=1 1/40 | 2.080E-03 1.764 | 1.901E-03 1.928
1/80 | 6.731E-04 1.627 | 4.928E-04 1.948
1/160 | 2.432E-04 1.469 | 1.297E-04 1.926
1/20 | 2.511E-04 - 3.203E-04 -
k=2 1/40 | 2.741E-05 3.196 | 4.035E-05 2.989
1/80 | 3.317E-06 3.047 | 5.065E-06 2.994
1/160 | 4.112E-07 3.012 | 6.346E-07 2.997
1/20 | 2.574E-05 - 2.508E-05 -
k=3 1/40 | 2.883E-06 3.158 | 2.321E-06 3.434
1/80 | 3.414E-07 3.078 | 2.172E-07 3.417
1/160 | 4.108E-08 3.055 | 2.002E-08 3.439
1/20 | 9.225E-07 - 1.494E-06 -
k=4 1/40 | 2.529E-08 5.189 | 8.022E-08 4.219
1/80 | 7.135E-10 5.147 | 4.164E-09 4.268
1/160 | 2.188E-11 5.027 | 1.990E-10 4.387

Table A.14. A shock solution to the viscous Burgers equation with a spatial convergence study using N, = {40, 80, 160} elements is conducted
with central (C) flux and local discontinous Galkerin (LDG) flux for diffusion term. Lax-Friedrich (LF) flux is used for advective term. EXPRB32
scheme with A7 = 5 x 1075 as the time integrator. We take the RK4 solution (with At = 5 X 1077, k = 10, and N, = 160) as a reference solution to

measure the L2 error at ¢ = 1.

P LF (O) LF (LDG) \

error order error order

1/40 | 1.295E-02 - 1.517E-02 -
k=1 1/80 | 5.558E-03 1.221 | 5.960E-03 1.347
1/160 | 2.001E-03 1.474 | 1.838E-03 1.698

1/40 | 4.223E-03 - 4.273E-03 -
k=2 1/80 | 6.722E-04 2.651 | 7.225E-04 2.564
1/160 | 9.852E-05 2.770 | 1.029E-04 2.812

1/40 | 9.976E-04 - 1.159E-03 -
k=3 1/80 | 1.435E-04 2.797 | 1.672E-04 2.793
1/160 | 1.224E-05 3.551 | 1.065E-05 3.972

1/40 | 3.606E-04 - 4.442E-04 -
k=4 1/80 | 2.728E-05 3.724 | 2.256E-05 4.299
1/160 | 8.084E-07 5.077 | 7.304E-07 4.949

39



	1 Introduction
	2 Exponential DG framework
	2.1 Finite element definitions and notations
	2.2 Constructing linear and nonlinear DG operators for conservation laws
	2.3 Exponential time integrators

	3 Model problems
	3.1 Burgers equation
	3.2 Euler equations
	3.2.1 Artificial viscosity


	4 An analysis of the exponential DG method for Burgers equation
	5 Numerical Results
	5.1 Viscous Burgers equation
	5.1.1 An exact time-independent smooth solution
	5.1.2 A smooth solution
	5.1.3 A solution with steep gradient

	5.2 Euler equations: Isentropic vortex translation
	5.2.1 Stability of exponential integrators
	5.2.2 Accuracy and efficient comparison among exponential integrators
	5.2.3 Accuracy and efficient comparison between exponential and IMEX integrators
	5.2.4 Accuracy and efficient comparison between exponential and RK integrators
	5.2.5 Performance of Exponential DG on parallel computers

	5.3 Euler equations: Kelvin-Helmholtz instability
	5.4 Euler equations: shock problems
	5.4.1 Riemann problem: case # 4 
	5.4.2 Riemann problem: case # 12 


	6 Conclusions
	Appendix A Local discontinuous Galerkin methods for viscous Burgers equation

