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Abstract

We propose an Exponential DG approach for numerically solving partial differential equations (PDEs). The idea is to decompose
the governing PDE operators into linear (fast dynamics extracted by linearization) and nonlinear (the remaining after removing
the former) parts, on which we apply the discontinuous Galerkin (DG) spatial discretization. The resulting semi-discrete system
is then integrated using exponential time-integrators: exact for the former and approximate for the latter. By construction, our
approach i) is stable with a large Courant number (Cr > 1); ii) supports high-order solutions both in time and space; iii) is
computationally favorable compared to IMEX DG methods with no preconditioner; iv) requires comparable computational time
compared to explicit RKDG methods, while having time stepsizes orders magnitude larger than maximal stable time stepsizes
for explicit RKDG methods;v) is scalable in a modern massively parallel computing architecture by exploiting Krylov-subspace
matrix-free exponential time integrators and compact communication stencil of DG methods. Various numerical results for both
Burgers and Euler equations are presented to showcase these expected properties. For Burgers equation, we present a detailed
stability and convergence analyses for the exponential Euler DG scheme.

Keywords: Exponential integrators; Discontinuous Galerkin methods; Euler systems; Burgers equation

1. Introduction

The discontinuous Galerkin (DG) method has gain popularity for decades as a spatial discretization. The DG
method—originally developed [1, 2, 3] for the neutron transport equation—has been studied extensively for various
types of partial differential equations (PDEs) including Poisson type equation [4, 5, 6, 7], poroelasticity [8], shal-
low water equations [9, 10, 11, 12], Euler and Navier-Stokes equations [13, 14], Maxwell equations [15, 16], solid
dynamics [17], magma dynamics [18], to name a few. One of the reason is that DG methods are well-suited for
parallel-computing due to the local nature of the methods. DG methods combine advantages of finite volume and
finite element methods in the sense that a global solution is approximated by a finite set of local functions, and each
local element communicates with its adjacent element through numerical flux on element boundary. Since the nu-
merical flux is calculated using the state variables on the face, DG methods have compact stencil, hence reduces
inter-communication cost. Another reason can be the positive properties of the scheme, i.e., flexibilty for handling
complex geometry, hp-adaptivity, high-order accuracy, upwid stabilization, etc [4, 5, 6, 7, 19].
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To fully discretize a time-dependent partial differential equation (PDE), temporal discretization is also necessary.
Explicit time integrators such as Runge-Kutta methods are popular due to their simplicity and ease in computer
implementation. However, scale-separated or geometrically-induced stiffness limits the time-step size severely for
high-order DG methods (see, e.g., [20, 10]). For long-time integration this can lead to an excessive number of time
steps, and hence substantially taxing computing and storage resources. On the other hand, fully-implicit methods
could be expensive, especially for nonlinear PDEs for which Newton-like methods are typically required. Semi-
implicit time-integrators have been designed to relax the time-step size restriction caused by the stiffness in order
to reduce the computational burden arising from the linear solve [21, 22, 23]. In the context of low-speed fluid
flows, including Euler, Navier-Stokes, and shallow water equations, implicit-explicit (IMEX) DG methods have been
proposed and demonstrated to be more advantageous than either explicit or fully-implicit DG methods [24, 25, 26].
The common feature of these methods is that they relax the stiffness condition by employing implicit time-stepping
schemes for handling the linear stiff part of the PDE. Therefore the performance highly depends on a linear solver,
which means an appropriate preconditioner needs to be constructed for achieving decent performance. However,
developing such a preconditioner is not a trivial task and it is problem-specific.

Alternatively, exponential time integrators have been received great attention due to the positive characteristics
such as stability and accuracy. The methods have been applied to various types of PDEs including linear advection-
diffusion equations [27], Schrödinger equation [28], Maxwell equations [29], magnetohydrodynamics (MHD) equa-
tions [30], Euler equations [31], incompressible Navier-Stokes equations [32], compressible Navier-Stokes equations
[33, 34], shallow water equations [35], among others.

Exponential time integrators is similar to IMEX methods in the sense of splitting a governing equation into stiff
and non-stiff parts. However, exponential time integrators exactly integrate the linear stiff part by multiplying an
integrating factor instead of using a quadrature in time. Compared to IMEX methods, exponential time integrators
replaces a linear solve at each time step with a computationally demanding matrix exponential.

Many researchers have conducted various studies to mitigate the challenge, one way is to use Krylov subspace,
where a large matrix is projected onto a small Krylov subspace so that computing the matrix exponential becomes
less expensive. To improve the Krylov subspace projection-based algorithm, rational Krylov method [36, 37], restart
Krylov method [38, 39], block Krylov method [40, 41], adaptive Krylov method [42] have been developed. Lately,
[43] and [44] enhance the computational efficiency of the adaptive Krylov method by replacing the Arnoldi procedure
[45] with the incomplete orthogonalization procedure [46, 47]. The work in [48] shows that the exponential propaga-
tion iterative (EPI) schemes can outperform the standard implicit Newton-Krylov integrators with no preconditioning.
The work in [35] observes the second-order EPI2 provides comparable results to the explicit fourth-order Runge-Kutta
(RK4). For elastodynamic problems, the second-order Gautschi-type exponential integratoroutperform the backward
Euler integrators [49, 50].

In this study, we propose an Exponential DG framework for partial differential equations. To that end, we separate
governing equations into linear and nonlinear parts, to which we apply the DG spatial discretization. The former
is integrated analytically, whereas the latter is approximated. Since the method does not require any linear solve, it
has a potential to be scalable in a modern massively parallel computing architecture. The proposed Exponential DG
method: i) is stable with a large Courant number (Cr > 1); ii) exploits high-order solutions both in time and space;
iii) is more efficient than IMEX DG methods with no preconditioner; iv) is comparable to explicit RKDG methods on
uniform mesh and more beneficial on non-uniform grid for Euler equations; v) provides promising weak and strong
scalable parallel solutions.

In the following, we discuss Exponential DG framework in Section 2. In Section 3, we apply Exponential DG
framework to Burgers equation and Euler equations, where we show the construction of linear operator based on a
flux Jacobian. Then, we presents a detailed analysis on the stability and convergence of the exponential DG scheme
for Burgers equation. The performance of the proposed method will be discussed in Section 5 with several numerical
examples for both Burgers and Euler equations. We finally conclude the paper in Section 6.

2. Exponential DG framework

In this section, we present the key idea behind Exponential DG framework. We first split a given PDE into a
linear and a nonlinear parts, to which DG discretization and exponential time integrators are applied. We begin with
notations and conventions used in the paper.
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2.1. Finite element definitions and notations
Let Ω be an open and bounded subset of Rd, where d = {1, 2, 3} is the spatial dimention. We denote by Ωh :=

∪
Nel
i=1Ki the mesh containing a finite collection of non-overlapping elements, Ki, that partition Ω. Here, h is defined as

h := max j∈{1,...,Nel} diam
(
K j

)
. Let ∂Ωh := {∂K : K ∈ Ωh} be the collection of the faces of all elements. Let us define

Eh as the skeleton of the mesh which consists of the set of all uniquely defined faces. For two neighboring elements
K+ and K− that share an interior interface e = K+ ∩ K−, we denote by q± the trace of their solutions on e. We define
n− as the unit outward normal vector on the boundary ∂K− of element K−, and n+ = −n− the unit outward normal
of a neighboring element K+. On the interior interfaces e ∈ Eo

h, we define the mean/average operator {{v}}, where v is
either a scalar or a vector quantify, as {{v}} := (v− + v+) /2, and the jump operator [[v]] := 2 {{v · n}}. On the boundary faces
e ∈ E∂h, unless otherwise stated, we define the mean and jump operators as {{v}} := v, [[v]] := v · n.

Let Pk (D) denote the space of polynomials of degree at most k on a domain D. Next, we introduce discontinuous
piecewise polynomial spaces for scalars and vectors as

Vh (Ωh) :=
{
v ∈ L2 (Ωh) : v|K ∈ P

k (K) ,∀K ∈ Ωh

}
,

Λh (Eh) :=
{
λ ∈ L2 (Eh) : λ|e ∈ P

k (e) ,∀e ∈ Eh

}
,

Vh (Ωh) :=
{
v ∈

[
L2 (Ωh)

]m
: v|K ∈

[
Pk (K)

]m
,∀K ∈ Ωh

}
,

Λh (Eh) :=
{
λ ∈

[
L2 (Eh)

]m
: λ|e ∈

[
Pk (e)

]m
,∀e ∈ Eh

}
.

and similar spaces Vh (K), Λh (e), Vh (K), and Λh (e) by replacing Ωh with K and Eh with e. Here, m is the number of
components of the vector under consideration.

We define (·, ·)K as the L2-inner product on an element K ∈ Rd, and 〈·, ·〉∂K as the L2-inner product on the element
boundary ∂K ∈ Rd−1. We also define the broken inner products as (·, ·)Ω := (·, ·)Ωh

:=
∑

K∈Ωh
(·, ·)K and 〈·, ·〉∂Ω :=

〈·, ·〉∂Ωh
:=

∑
∂K∈∂Ωh

〈·, ·〉∂K , and on the mesh skeleton as 〈·, ·〉Eh
:=

∑
e∈Eh
〈·, ·〉e. We also define associated norms as

‖ · ‖Ωh :=
(∑

K∈Ωh
‖ · ‖2K

) 1
2 and ‖ · ‖∂Ωh :=

(∑
K∈Ωh
‖ · ‖2

∂K

) 1
2 where ‖ · ‖K = (·, ·)

1
2
K and ‖ · ‖∂K = 〈·, ·〉

1
2
∂K .

2.2. Constructing linear and nonlinear DG operators for conservation laws
We consider conservation laws governed by a generic system of partial differential equation (PDE):

∂q
∂t

+ ∇ · F = s, in Ω, (1)

where q is the conservative variable, F = F (q) is the flux tensor, and s is the source vector. We seek a stiff linear flux
FL that, we assume, captures the rapidly changing dynamics in the system. Inspired by the works in [48, 51], we use
a flux Jacobian to define the linear flux, i.e.,

FL :=
∂F

∂q

∣∣∣∣∣∣
q̃
q, (2)

where q̃ is a reference state. By adding and subtracting the linear flux FL in (1), we split the divergence term into a
linear (stiff) part ∇ · FL and a nonlinear (non-stiff) part ∇ · (F − FL). Similarly, we decompose the source term s into
a linear term sL,

sL :=
∂s
∂q

∣∣∣∣∣∣
q̃
q, (3)

and a nonlinear term s − sL. Thus (1) becomes

∂q
∂t

+ ∇ · FL + ∇ · FN = sL + sN (4)

at the continuous level, whereFN = F −FL and sN = s−sL. The decomposition at continuous level avoids complicated
derivatives of the stabilization parameter coming from a numerical flux in DG methods when applying exponential
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time integrators. To the rest of the paper, except for the analysis in Section 4, we use the same notations for the exact
and the DG solutions for simplicity. A semi-discrete form of (4) using DG discretization for spatial derivatives reads:
find q ∈ Vh(Ωh) such that (

∂q
∂t
, v

)
Ωh

= 〈Lq, v〉 + 〈N(q), v〉 , (5)

for all v ∈ Vh(Ωh), where

〈N(q), v〉 := − (∇ · FN (q) , v)Ωh
+ (sN (q), v)Ωh

−
〈(
F ∗N

(
q±

)
− FN (q)

)
· n, v

〉
∂Ωh

,

〈Lq, v〉 := − (∇ · FL (q) , v)Ωh
+ (sL(q), v)Ωh

−
〈(
F ∗L

(
q±

)
− FL (q)

)
· n, v

〉
∂Ωh

.

Here, F ∗L and F ∗
N

:= F ∗ − F ∗L are a linear and a nonlinear DG numerical flux, respectively, such that〈[[
F ∗N

(
q±

)
· n

]]
, v̂

〉
Eh

= 0 and
〈[[
F ∗L

(
q±

)
· n

]]
, v̂

〉
Eh

= 0,

for all v̂ ∈ Λh (Eh). At this point both spatial linear and the nonlinear operators are discretized with DG, and we
discuss exponential time integrators for temporal derivative next.

2.3. Exponential time integrators

For the clarity of the exposition, let us rewrite (5) as

dq
dt

= Lq +N(q), t ∈ (0,T ) , (6)

with an initial condition q0 = q(0). An abuse of notations has been made for brevity: first, the proper form for both L
andN would be a composition with a projection operator onto Vh (Ωh) as in Section 4; second, we don’t distinguish q
with its nodal (or modal) vector; and third, L and N are used interchangeably with their matrix representations from
Vh (Ωh) to Vh (Ωh) (see also Section 4). Now multiplying (6) with integrating factor e−4tL yields

q(tn+1) = e4tLq(tn) +

∫ 4t

0
e(4t−σ)LN(q(tn + σ))dσ (7)

via a simple application of the method of variation of constants. At this point, (7) is exact. The first term e4tLq(tn) is
the homogeneous solution, whereas the second term is the particular solution that involves a convolution integral with
the matrix exponential. Various exponential integrators have been proposed to approximate (7) in different ways. In
particular, a pth-order time polynomial approximation to the nonlinear map N can be written as

N(q(tn + σ)) =

p−1∑
j=0

(tn + σ) j

j!
v j+1 + O (4tp) ,

with appropriate choice [52] for v j. This allows us to express an approximation of q(tn+1) in (7), denoted as qn+1, as a
linear combination of ϕ-functions [42], i.e.,

qn+1 =

p∑
i=0

(4t)iϕi(4tL)bi, (8)

where we have defined b0 := q(tn) and bi :=
∑p−i

j=0
(tn) j

j! vi+ j. Here, ϕi-functions for a scalar τ are defined by

ϕi(τ) :=
∫ 1

0
e(1−z)τ zi−1

(i − 1)!
dz

4
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with ϕ0(τ) := eτ. It is easy to see the recurrence relation
[
ϕi(τ) − ϕi(0)

]
τ−1 = ϕi+1(τ) and ϕi(0) = 1

i! hold true. The
definition of ϕi-functions for matrices is straightforward, e.g., based on Jordan canonical form [53].

For efficient computation of (8), Krylov subspace methods [54, 55, 56] with the exponential of the augmented
matrix can be used [57, 58, 42, 43], in which an augmented matrix is constructed and projected onto a small Krylov
subspace so that matrix exponential is amenable to compute.

In this paper, we use KIOPS [43] algorithm 1 for serial computations. For parallel computation, we have imple-
mented an exponential time integrator based on the KIOPS algorithm for our C++ DG finite element library (a spin-off

from mangll [59]). Thanks to DG discretization and explicit nature of the exponential integrators, the proposed
method is highly parallel as the communication cost can be effectively overlapped by computation.

3. Model problems

The key in the operator splitting in (5) is the linearized flux FL (2). In this section we choose Burgers and Euler
equations as prototypes for the generic conservation law (1) and construct FL (hence L and N) for these equations.

3.1. Burgers equation
Burgers equation is a quasi-linear parabolic PDE that comprises of nonlinear convection and linear diffusion:

∂u
∂t

+
1
2
∂u2

∂x
=

∂

∂x

(
κ
∂u
∂x

)
in Ω, (9)

where u is a scalar quantity and κ > 0 is the constant viscosity. The linearization FL (2) of F := u2/2 − κ ∂u
∂x evaluated

at ũ is given by

FL := ũu − κ
∂u
∂x
,

and thus

FN :=
u2

2
− ũu.

We can now write (9) in the form (4) as

∂u
∂t

+
∂

∂x

(
ũu − κ

∂u
∂x

)
︸       ︷︷       ︸

FL

+
∂

∂x

(
u2

2
− ũu

)
︸     ︷︷     ︸

FN

= 0 in Ω (10)

where ũ is a reference state (for example ũ = un: the numerical solution at tn). The DG weak formulation of (10)
reads: seek q, u ∈ Vh (Ωh) such that

(q, p)Ωh
=

(
∂u
∂x
, p

)
Ωh

+ 〈n(u∗∗ − u), p〉∂Ωh
, (11a)(

∂u
∂t
, v

)
Ωh

:= 〈Lu, v〉 + 〈N(u), v〉 , (11b)

where

〈Lu, v〉 := −
(
κq − ũu,

∂v
∂x

)
Ωh

+ 〈n (κq∗∗ − (ũu)∗) , v〉∂Ωh
, (12a)

〈N(u), v〉 := −
(
ũu −

1
2

u2,
∂v
∂x

)
Ωh

+

〈
n
(
(ũu)∗ −

(
u2

2

)∗)
, v

〉
∂Ωh

, (12b)

1The performance of the adaptive Krylov subspace solver depends on several parameters such as the size of Krylov space. We empirically
determine the parameters in this studies.
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for all p, v ∈ Vh (Ωh) with n = ±1 for one-dimensional problems. Here, we use the central flux for u∗∗ and q∗∗ for
diffusion operator, i.e., q∗∗ = {{q}} and u∗∗ = {{u}}, the entropy flux for inviscid Burgers part, i.e.,

(
u2

2

)∗
:= 1

3

({{
1
2 u2

}}
+ {{u}}2

)
+

σ
h [[u]], where σ ≥ 0 is a constant (the Lax-Friedrichs flux

(
u2

2

)∗
:=

{{
1
2 u2

}}
+ 1

2 max(|u±|) [[u]] is also considered to compare
with the entropy flux), and the Lax-Friedrichs flux for linear Jacobian part, i.e., (ũu)∗ := {{ũu}} + 1

2 max(|ũ±|) [[u]]. With
the central flux u∗∗, q can be computed locally element-by-element from (11a), and the only actual (global) unknown
is u in (11).

3.2. Euler equations
We consider the compressible Euler equations written in the following form

∂ρ

∂t
+ ∇ · (ρu) = 0, (13a)

∂ρu
∂t

+ ∇ · (ρu ⊗ u + pI) = 0, (13b)

∂ρE
∂t

+ ∇ · (ρuH) = 0, (13c)

where ρ is the density, u the velocity, p the pressure, ρE = ρe + 1
2ρ‖u‖

2 the total energy, e =
p

ρ(γ−1) the internal energy,

p the pressure, H = E +
p
ρ

= a2

γ−1 + 1
2 ‖u‖

2 the total specific enthalpy, a =
√
γp/ρ the sound speed, γ the ratio of the

specific heat, and I the d × d identity matrix. In a compact form, (13) can be written as

∂q
∂t

+ ∇ · F (q) = 0, (14)

with q = (ρ, ρu, ρE)T , s = (sρ, sρu, sρE)T , andF (q) = (ρu, ρu⊗u+pI, ρuH)T . Let us define uν := n·u, φ :=
(
γ−1

2

)
‖u‖2,

γ̃ := γ − 1, the flux Jacobian A := ∂F
∂q where

A =

 0 nT 0
φn − uuν u ⊗ n − γ̃n ⊗ u + uνI γ̃n

(φ − H) uν HnT − γ̃uT uν γuν

 .
The linearized flux (2) in this case is defined FL := A(q̃)q =: Ãq, and (4) now reads

∂q
∂t

+ ∇ ·
(
Ãq

)︸︷︷︸
FL

+∇ ·
(
F (q) − Ãq

)︸         ︷︷         ︸
FN

= 0. (15)

By multiplying a test function v to (15), integrating by parts for each element, and summing all the elements we arrive
at the semi-discretization with DG: seek q ∈ Vh(Ωh) such that(

∂q
∂t
, v

)
Ωh

= 〈Lq, v〉 + 〈N(q), v〉 , ∀v ∈ Vh(Ωh),

where

〈Lq, v〉 :=
(
Ãq,∇v

)
Ωh
−

〈(
Ãq

)∗
· n, v

〉
∂Ωh

,

〈N(q), v〉 := −
(
Ãq − F (q),∇v

)
Ωh

+
〈((

Ãq
)∗
− F ∗(q)

)
· n, v

〉
∂Ωh

.

For this work, we use the Roe flux [60] for both linear and nonlinear fluxes, i.e.,

F ∗(q±) = {{F (q)}} +
1
2
|A(q∗Roe)|

[[
n · q

]]
,(

Ãq±
)∗

=
{{
Ãq

}}
+

1
2
|A(q̃∗Roe)|

[[
n · q

]]
,

6
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where q∗Roe and q̃∗Roe are Roe average states2, and |A| := R|Λ|R−1 with (Λ,R) as the eigen-pairs of A (see, e.g [61], for
more details).

3.2.1. Artificial viscosity
Solving nonlinear Euler equations is a notoriously challenging task. A smooth solution can turn into a discontin-

uous one due to nonlinearity. For numerical stability, a sufficient numerical diffusion needs to be equipped with the
Euler system. The questions are how to measure the regularity of a solution, and how to choose a reasonable amount
of the artificial viscosity. The authors in [62, 63] introduced entropy viscosity to stabilize numerical solution in Runge
Kutta time stepping. Since a large entropy is produced in the vicinity of strong shocks, the size of the entropy residual
can be used to measure the solution regularity and the viscosity coefficient.

We employ the entropy viscosity method in the context of exponential DG methods for handling sharp gradient
solutions. The procedure is as following: given an entropy pair (S,uS) for Euler systems, we first define the entropy
residual, Res(q) := ∂S(q)

∂t + ∇ · (uS(q)) , an effective viscosity νE := cEh2
max max

(
|Res| , [[uS]] h−1

)
, an upper bound

to the viscosity νmax := cmaxhmax max |f′(q)| and the entropy viscosity νEV := S mooth(min(νmax, νE)). Here, S :=
ρ
γ−1 log

(
p
ργ

)
is the physical entropy functional for Euler equations; cE and cmax are tunable parameters; h is an element

size; 3 f′(q) = ∂f
∂q is the flux Jacobian; and S mooth is a smooth function. 4 Then, we add the artifical diffusion term to

Euler systems in (14), which leads to

∂q
∂t

+ ∇ · F (q) = ∇ · F EV (16)

with F EV := (νEV∇q). Note that this choice of the viscous flux makes the diffusion term linear if we compute the
entropy viscosity νEV using the solutions at current and previous timestep. 5 Thus, the linearized flux in (15) becomes
FL := Ãq − νEV∇q. Treating the linear diffusion for Euler systems is similar to that for Burgers equation, and hence
omitted here.

4. An analysis of the exponential DG method for Burgers equation

In this Section we shall provide a rigorous analysis of the exponential DG approach in Section 2 for the Burger
equation (11). For the simplicity of the exposition, we assume that the integrals can be computed exactly though we
use LGL quadrature for computing the integrals. Note that aliasing errors from LGL quadrature and interpolation are
typically negligible for well-resolved solutions or can be made vanished by using a split form of the flux (see, e.g.,
[16, 64]). For brevity, we assume zero boundary conditions6 on both sides of the domain Ω or periodic boundary
conditions. Without any ambiguity, we also neglect the dependency of the (semi-discrete and exact) solutions on time
t, e.g. u = u (t), except for cases where this dependence is important. We assume that κ > 0 is a constant. The
stability is trivial (see, e.g. [64], and the references therein), thanks to the entropy numerical flux. (Note that unlike
the standard entropy numerical flux, ours has an additional jump term.) Indeed, by taking p = κq in (11a) and v = u
in (11b), and then adding the resulting equations together we obtain

1
2

d
dt
||u||2Ωh

+ k ||q||2Ωh
=

(
1
6
∂u3

∂x
, 1

)
Ωh

−

〈(
u2

2

)∗
, [[u]]

〉
Eh

= −
σ

h
||[[u]]||2Eh

. (17)

2The Roe average state for q∗Roe, for example, is defined as ρ∗Roe =
√
ρ−ρ+, u∗Roe =

√
ρ−u−+

√
ρ+u+

√
ρ−+
√
ρ+

, H∗Roe =

√
ρ−H−+

√
ρ+H+

√
ρ−+
√
ρ+

, and a∗Roe =√
(γ − 1)(H∗Roe −

1
2 ‖u

∗
Roe‖

2).
3We define h := 2r

k with r := 1
4|K|Π

3
i=1 si as the radius of the circumscribed circle on the Kth triangular element.

4For smoothing, we first compute vertex averaged entropy vicosity and then linearly reconstruct the entropy vicosity on each element.
5In this study, we approximate the entropy residual by Res ≈ S(qn)−S(qn−1)

4t + 1
2

(
∇ · (unS(qn)) + ∇ ·

(
un−1S(qn−1)

))
.

6At the Dirichlet boundary, we take u+ = uD = 0 for the numerical fluxes (ũu)∗ and
(

u2

2

)∗
, u∗∗ = uD = 0, and q∗∗ = q−.

7
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Let us define the DG-norm7 for H1 (Ωh) as follows

||u||2DG =

∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

+
1
h
||[[u]]||2Eh

. (18)

Lemma 1 (Semi-discrete stability and uniqueness). The semi-discretization with DG in (11), with u ∈ Vh (Ωh), is
stable in the following sense

||u||2Ωh
+ C

∫ t

0
||u||2DG dτ ≤ ||u (0)||2Ωh

,

where C is some positive constant and u (0) is the DG initial condition. Hence, the DG solution is unique.

Proof. From an inverse and a multiplicative trace inequalities we have

h

∣∣∣∣∣∣
∣∣∣∣∣∣
{{
∂u
∂x

}}∣∣∣∣∣∣
∣∣∣∣∣∣2
Eh

≤ cIT

∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

, ∀
∂u
∂x
∈ Vh (Ωh) , (19)

where cIT in a constant independent of the meshsize h. Taking p = ∂u
∂x in (11a) we obtain

c1

2
||q||2Ωh

+
1

2c1

∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

≥

(
q,
∂u
∂x

)
Ωh

=

∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

−

〈
[[u]] ,

{{
∂u
∂x

}}〉
Eh

≥

∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

−
c2

2h
||[[u]]||2Eh

−
h

2c2

∣∣∣∣∣∣
∣∣∣∣∣∣
{{
∂u
∂x

}}∣∣∣∣∣∣
∣∣∣∣∣∣2
Eh

≥

(
1 −

cIT

2c2

) ∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

−
c2

2h
||[[u]]||2Eh

,

where we have used (19) in the third inequality, and c1, c2 are arbitrary positive constant. It follows that

c1

2
||q||2Ωh

≥

(
1 −

cIT

2c2
−

1
2c1

) ∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

−
c2

2h
||[[u]]||2Eh

,

which, together with (17), yields

d
dt
||u||2Ωh

+
2κ
c1

(
2 −

cIT

c2
−

1
c1

) ∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

+
2
h

(
σ −

κc2

c1

)
||[[u]]||2Eh

≤ 0.

Now, by choosing c1, c2 large enough such that

σ −
κc2

c1
> 0, and 2 −

cIT

c2
−

1
c1

> 0,

and defining

C := min
{
σ −

κc2

c1
, 2 −

cIT

c2
−

1
c1

}
,

we arrive at
d
dt
||u||2Ωh

+ C ||u||2DG ≤ 0,

which concludes the proof.

Remark 1. We can choose c1 sufficiently large relative to κc2 so that σ can be chosen to be (very) small.

7Recall our convention that on the boundary faces E∂h we have [[u]] = u. For periodic boundary condition, ||u||DG in Lemma 1 and Theorem 1
treats the boundary and interior interfaces the same.
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Note that the L2-stability in Lemma 1 does not imply L∞-stability in general. The fact that Vh (Ωh) is piecewise
continuous implies8 Vh (Ωh) ⊂ L∞ (Ωh), i.e., ||u||∞ < ∞. For the convergence analysis, we assume that ||u||∞ is bounded
uniformly for the time horizon (0,T ), i.e., there exists M < ∞ so that ||u||∞ ≤ M at any t ∈ (0,T ). Let us denote by û
and q̂ = ∂û

∂x the exact solution and its gradient, and we assume that û, ∂û
∂t ∈ Hs (Ω) with s > 3/2 for t ∈ (0,T ). By the

Sobolev embedding theorem, û and q̂ are continuous and without loss of generality we assume ||û||∞ ≤ M. It is easy to
see that û and q̂ satisfy the DG weak form (11). Let Π be the L2-projection onto Vh (Ωh) and let us define

εu := û − u = û − Πû︸ ︷︷ ︸
=:εI

u

+ Πû − u︸ ︷︷ ︸
=:εh

u

= εI
u + εh

u,

εq := q̂ − q = q̂ − Πq̂︸ ︷︷ ︸
=:εI

q

+ Πq̂ − q︸ ︷︷ ︸
=:εh

q

= εI
q + εh

q.

Since both the exact and the DG solutions satisfy the DG weak form (11), we subtract their corresponding equations,
take v = εh

u and p = κεh
q, and add the resulting equations altogether to obtain

1
2

d
dt

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh

+ κ
∣∣∣∣∣∣εh

q

∣∣∣∣∣∣2
Ωh︸︷︷︸

E1

= −κ
(
εI

q, ε
h
q

)
Ωh

+ κ

(
∂εI

u

∂x
, εh

q

)
Ωh

− κ
〈[[
εI

u

]]
,
{{
εh

q

}}〉
Eh︸                                                      ︷︷                                                      ︸

E2

−κ

(
εI

q,
∂εh

u

∂x

)
Ωh

+ κ
〈{{
εI

q

}}
,
[[
εh

u

]]〉
Eh︸                                   ︷︷                                   ︸

Ea
3

−

(
∂εI

u

∂t
, εh

u

)
Ωh︸          ︷︷          ︸

E4

+

(
û2 − u2

2
,
∂εh

u

∂x

)
Ωh

−

〈(
û2

2

)∗
−

(
u2

2

)∗
,
[[
εh

u

]]〉
Eh︸                                                    ︷︷                                                    ︸

E5

. (20)

Lemma 2 (Estimate for E1). Assume that the mesh Ωh is regular. There holds:

E1 ≥
1
c1

(
2 −

1
c1
−

cIT

c2

) ∣∣∣∣∣∣
∣∣∣∣∣∣∂εh

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

−
c2

hc1

∣∣∣∣∣∣∣∣[[εh
u

]]∣∣∣∣∣∣∣∣2
Eh

+
2
c1

(
∂εI

u

∂x
− εI

q,
∂εh

u

∂x

)
Ωh

−
2
c1

〈[[
εI

u

]]
,

{{
∂εh

u

∂x

}}〉
Eh︸                                                  ︷︷                                                  ︸

Eb
3

Proof. Since both the exact and DG solutions satisfy (11a), taking p =
∂εh

u
∂x in (11a) yields

c1

2

∣∣∣∣∣∣εh
q

∣∣∣∣∣∣2
Ωh

+
1

2c1

∣∣∣∣∣∣
∣∣∣∣∣∣∂εh

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

≥

(
εh

q,
∂εh

u

∂x

)
Ωh

=

∣∣∣∣∣∣
∣∣∣∣∣∣∂εh

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

−

〈[[
εh

u

]]
,

{{
∂εh

u

∂x

}}〉
Eh

−

(
εI

q,
∂εh

u

∂x

)
Ωh

+

(
∂εI

u

∂x
,
∂εh

u

∂x

)
Ωh

−

〈[[
εI

u

]]
,

{{
∂εh

u

∂x

}}〉
Eh

.

Now using Cauchy-Schwarz we have〈[[
εh

u

]]
,

{{
∂εh

u

∂x

}}〉
Eh

≤
cIT

2c2

∣∣∣∣∣∣
∣∣∣∣∣∣∂εh

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

+
c2

2h

∣∣∣∣∣∣∣∣[[εh
u

]]∣∣∣∣∣∣∣∣2
Eh
,

where cIT , independent of h, is constant resulting from the inverse and multiplicative trace inequalities (19). Now
combining the two inequalities ends the proof.

8In fact, by an inverse inequality and shape regularity, we can obtain the estimate ||u||∞ ≤ Ch−1 ||u||Ωh .
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Lemma 3 (Estimate for E2). Assume that the mesh Ωh is regular. There holds:

E2

κ
≤

cq
1

2

∣∣∣∣∣∣εI
q

∣∣∣∣∣∣2
Ωh

+
cq

2

2

∣∣∣∣∣∣
∣∣∣∣∣∣∂εI

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

+
cu

1

2h

∣∣∣∣∣∣∣∣[[εI
u

]]∣∣∣∣∣∣∣∣2
Eh

+
1
2

 1
cq

1

+
1
cq

2

+
cIT

cu
1

 ∣∣∣∣∣∣εh
q

∣∣∣∣∣∣2
Ωh
,

where cIT , independent of h, is constant resulting from an inverse and a multiplicative trace inequalities, while cq
1, c

q
2

and cu
1 are any positive constants.

Proof. The proof is straightforward using an Cauchy-Schwarz, an inverse, and a multiplicative trace inequalities.

Lemma 4 (Estimate for Ea
3 − Eb

3/2). Assume that the mesh Ωh is regular. There holds:

Ea
3 − Eb

3/2 ≤
(

cu
2 (κ − 2)

2
+
κcIT cu

3

2

) ∣∣∣∣∣∣εI
q

∣∣∣∣∣∣2
Ωh

+
cu

4

2c2
1

∣∣∣∣∣∣
∣∣∣∣∣∣∂εI

u

∂x
− εI

q

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

+
cu

5

2hc2
1

∣∣∣∣∣∣∣∣[[εI
u

]]∣∣∣∣∣∣∣∣2
Eh

+

(
κ − 2
2cu

2
+

1
2cu

4
+

cIT

2cu
5

) ∣∣∣∣∣∣
∣∣∣∣∣∣∂εh

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

+
κ

2hcu
3

∣∣∣∣∣∣∣∣[[εh
u

]]∣∣∣∣∣∣∣∣2
Eh
,

where cIT , independent of h, is constant resulting from an inverse and a multiplicative trace inequalities, while
cu

2, c
u
3, c

u
4 and cu

5 are any positive constants.

Proof. The proof is straightforward using an Cauchy-Schwarz, and an inverse and a multiplicative trace inequality
similar to (19).

Lemma 5 (Estimate for E4). Assume that the mesh Ωh is regular. There holds:

E4 ≤
cu

6

2

∣∣∣∣∣∣
∣∣∣∣∣∣∂εI

u

∂t

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

+
1

2cu
6

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh
.

where cu
6 is any positive constant.

Lemma 6 (Estimate for E5). Assume that the mesh Ωh is regular, ||û||∞ ≤ M, and ||u||∞ ≤ M over the time horizon of
interest. There holds:

E5 ≤
McIT cu

8

2

∣∣∣∣∣∣εI
u

∣∣∣∣∣∣2
Ωh

+ h2

∣∣∣∣∣∣
∣∣∣∣∣∣∂εI

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

 +
σcu

7

2h

∣∣∣∣∣∣∣∣[[εI
u

]]∣∣∣∣∣∣∣∣2
Eh

+
M
cu

8

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
DG +

McIT cu
8

2

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh

+
σ

h

(
1

2cu
7
− 1

) ∣∣∣∣∣∣∣∣[[εh
u

]]∣∣∣∣∣∣∣∣2
Eh
,

where cu
7 and cu

8 are any positive constant.

Proof. We begin with the Lipschitz continuity of the flux function and the numerical flux

1
2

(
û2 − u2

)
≤ M |εu| , and

(
û2

2

)∗
−

(
u2

2

)∗
≤ M

(∣∣∣ε+
u

∣∣∣ +
∣∣∣ε−u ∣∣∣) +

σ

h
[[εu]] ,

and thus by Cauchy-Schwarz inequality we have

E5 ≤ M
(∣∣∣εI

u

∣∣∣ , ∣∣∣∣∣∣∂εh
u

∂x

∣∣∣∣∣∣
)
Ωh

+ M
〈∣∣∣εI

u+

∣∣∣ +
∣∣∣εI

u−
∣∣∣ , ∣∣∣∣[[εh

u

]]∣∣∣∣〉
Eh︸                                                     ︷︷                                                     ︸

B(εI
u,ε

h
u)

+ M
(∣∣∣εh

u

∣∣∣ , ∣∣∣∣∣∣∂εh
u

∂x

∣∣∣∣∣∣
)
Ωh

+ M
〈∣∣∣εh

u+

∣∣∣ +
∣∣∣εh

u−
∣∣∣ , ∣∣∣∣[[εh

u

]]∣∣∣∣〉
Eh︸                                                     ︷︷                                                     ︸

B(εh
u,ε

h
u)

+
σcu

7

2h

∣∣∣∣∣∣∣∣[[εI
u

]]∣∣∣∣∣∣∣∣2
Eh

+
σ

h

(
1

2cu
7
− 1

) ∣∣∣∣∣∣∣∣[[εh
u

]]∣∣∣∣∣∣∣∣2
Eh
,

10
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where we have defined εh
u± :=

(
εh

u

)±
.

To estimate B
(
εI

u, ε
h
u

)
we apply Cauchy-Schwarz inequality and a multiplicative trace inequality to obtain

B
(
εI

u, ε
h
u

)
≤ M

(∣∣∣∣∣∣εI
u

∣∣∣∣∣∣2
Ωh

+ h
∣∣∣∣∣∣εI

u

∣∣∣∣∣∣2
Eh

) 1
2 ∣∣∣∣∣∣εh

u

∣∣∣∣∣∣
DG

≤
Mcu

8

2

(∣∣∣∣∣∣εI
u

∣∣∣∣∣∣2
Ωh

+ h
∣∣∣∣∣∣εI

u

∣∣∣∣∣∣2
Eh

)
+

M
2cu

8

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
DG

≤
McIT cu

8

2

∣∣∣∣∣∣εI
u

∣∣∣∣∣∣2
Ωh

+ h2

∣∣∣∣∣∣
∣∣∣∣∣∣∂εI

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

 +
M

2cu
8

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
DG .

Similarly, together with an inverse inequality, we have

B
(
εh

u, ε
h
u

)
≤

Mcu
8

2

(∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh

+ h
∣∣∣∣∣∣εh

u

∣∣∣∣∣∣2
Eh

)
+

M
2cu

8

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
DG ≤

McIT cu
8

2

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh

+
M

2cu
8

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
DG .

Combining the above estimates concludes the proof.

Now combining Lemmas 2–6 and (20) we arrive at

d
dt

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh

+ C1
∣∣∣∣∣∣εh

q

∣∣∣∣∣∣2
Ωh

+ C2
∣∣∣∣∣∣εh

u

∣∣∣∣∣∣2
DG ≤ McIT cu

8

∣∣∣∣∣∣εI
u

∣∣∣∣∣∣2
Ωh

+ h2

∣∣∣∣∣∣
∣∣∣∣∣∣∂εI

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh


+

(
κcq

1 + cu
2 (κ − 2) + κcIT cu

3 + 2cu
4

) ∣∣∣∣∣∣εI
q

∣∣∣∣∣∣2
Ωh

+
(
κcq

2 + 2cu
4

) ∣∣∣∣∣∣
∣∣∣∣∣∣∂εI

u

∂x

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

+ cu
6

∣∣∣∣∣∣
∣∣∣∣∣∣∂εI

u

∂t

∣∣∣∣∣∣
∣∣∣∣∣∣2
Ωh

+
(
κcu

1 + cu
5 + σcu

7

) 1
h

∣∣∣∣∣∣∣∣[[εI
u

]]∣∣∣∣∣∣∣∣2
Eh

+ C3
∣∣∣∣∣∣εh

u

∣∣∣∣∣∣2
Ωh
, (21)

where we have defined

C1 :=
2κ
c1

(
2 −

1
c1
−

cIT

c2

)
−

1
cq

1

−
1
cq

2

−
cIT

cu
1
,

C1
2 :=

(
κ

2
−
κ − 2

cu
2
−

2
cu

4
−

cIT

cu
5
−

2M
cu

8

)
,

C2
2 := σ

(
1 −

1
cu

7

)
−
κ

cu
3
−

2M
cu

8
−

2κc2

c1
,

C2 := min
{
C1

2,C
2
2

}
,

C3 :=
(

1
cu

6
+ McIT cu

8

)
.

As can be seen, for a given κ, we can choose c1, c2, σ, cq
1, c

q
2, and cu

i , i = 1, . . . , 8 such that all the constants C1,C2 and
C3 are positive.

Theorem 1 (Semi-discrete error estimate). Assume û, ∂û
∂t ∈ Hs (Ω) with s > 3/2 for t ∈ [0,T ], and σ > 0. There exist

positive constants C independent of the meshsize h and t such that

d
dt

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh

+
∣∣∣∣∣∣εh

q

∣∣∣∣∣∣2
Ωh

+
∣∣∣∣∣∣εh

u

∣∣∣∣∣∣2
DG ≤ C

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh

+ Ch2 min{s,k}
(
||û||2Hs(Ω) +

∣∣∣∣∣∣∣∣∣∣∂û
∂t

∣∣∣∣∣∣∣∣∣∣2
Hs(Ω)

)
, (22)

and thus, in addition, if û, ∂û
∂t ∈ L2 ((0,T ) ; Hs (Ω)) and u (0) = Πû (0), there exists a constant C independent of the

meshsize h and t such that

||εu||
2
Ωh

+

∫ t

0

(∣∣∣∣∣∣εq

∣∣∣∣∣∣2
Ωh

+ ||εu||
2
DG

)
ds ≤ Ch2 min{s,k} (exp (Ct) − 1

)
.

11
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Proof. The first assertion is the direct consequence of the error estimation (21), the L2-projection error [65, 66, 67,
68, 69], and the following definition of C:

C := max
{

C3

min {1,C1,C2}
,

C4

min {1,C1,C2}

}
.

The second assertion is straightforward by 1) integrating the first assertion and then applying a Gronwall’s lemma to
obtain,

∣∣∣∣∣∣εh
u

∣∣∣∣∣∣2
Ωh

+

∫ t

0

(∣∣∣∣∣∣εh
q

∣∣∣∣∣∣2
Ωh

+
∣∣∣∣∣∣εh

u

∣∣∣∣∣∣2
DG

)
ds ≤ Ch2 min{s,k} (exp (Ct) − 1

) ∫ t

0

(
||û||2Hs(Ω) +

∣∣∣∣∣∣∣∣∣∣∂û
∂t

∣∣∣∣∣∣∣∣∣∣2
Hs(Ω)

)
ds.

and 2) using the the L2-projection error [65, 66, 67, 68, 69] and triangle inequalities for εu and εq, e.g.,

||εu||Ωh
≤

∣∣∣∣∣∣εI
u

∣∣∣∣∣∣
Ωh

+
∣∣∣∣∣∣εh

u

∣∣∣∣∣∣
Ωh
.

Remark 2. Theorem 1 shows that though the convergence of the solution in the DG norm (18) is optimal, the conver-
gence in L2-error is suboptimal, i.e. ||εu||Ωh

= O
(
hk

)
if k ≤ s, and this seems to be sharp as we observe this rate in the

diffusion-dominated numerical results especially for odd k. When Ct � 1, then exp (Ct) − 1 ≈ Ct, and thus the error
increases at most linearly in time.

We next analyze the temporal discretization error using the exponential integrator. We begin with a few important
lemmas.

Lemma 7. There exists a constant C, independent of the meshsize h, such that:

h ||{{q}}||2Eh
+ ||q||2Ωh

≤ C ||u||2DG

Proof. Taking p = q in (11a), then using Cauchy-Schwarz and multiplicative trace and inverse inequality similar to
(19) give

h
4cIT

||{{q}}||2Eh
+

3
4
||q||2Ωh

≤ ||q||2Ωh
=

(
∂u
∂x
, q

)
Ωh

− 〈[[u]] , {{q}}〉Eh
≤

1
2

∣∣∣∣∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

+
1
2
||q||2Ωh

+
2cIT

h
||[[u]]||2Eh

+
h

8cIT
||{{q}}||2Eh

,

then taking C = max
{

1
2 , 2cIT

}
/min

{
1

8cIT
, 1

4

}
concludes the proof.

Using the definition of the L2-projection, e.g., ΠN (u) ∈ Vh (Ωh) such that 〈N (u) , v〉 = (ΠN (u) , v)Ωh
for all

v ∈ Vh (Ωh), we can write (11b) as
∂u
∂t

= ΠLu + ΠN (u) .

For the clarity of the exposition let us define L := ΠL and N := ΠN . For the rest of the analysis, we do not distinguish
the operator Lu (and hence N (u) ) and its matrix representation from Vh (Ωh) to Vh (Ωh) since in finite dimension all
norms are equivalent and Vh (Ωh) is homeomorphic to RM , where M is the dimension of Vh (Ωh). This allows us to
work conveniently and directly on L, N, Vh (Ωh), and the DG-norm.

Lemma 8 (Uniform boundedness of L and L on Vh (Ωh)). Suppose that ||ũ||∞ ≤ M, the linear operator L defined in
(11b), as a linear operator from Vh (Ωh) to Vh (Ωh), is bounded for any t ∈ (0,T ) in the following sense: there exists a
constant CL, independent of the meshsize h, u, v, such that∣∣∣(Lu, v)Ωh

∣∣∣ = |〈Lu, v〉| ≤ CL ||u||DG ||v||DG , ∀u, v ∈ Vh (Ωh) .

12
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Proof. We have

〈n (ũu)∗ , v〉∂Ωh
≤ M 〈|u| , |[[v]]|〉∂Ωh

, and 〈nκq∗∗, v〉∂Ωh
≤ κ 〈|{{q}}| , |[[v]]|〉Eh

,(
κq − ũu,

∂v
∂x

)
Ωh

≤ κ

(
|q| ,

∣∣∣∣∣∂v
∂x

∣∣∣∣∣)
Ωh

+ κM
(
|u| ,

∣∣∣∣∣∂v
∂x

∣∣∣∣∣)
Ωh

.

Now from definition of L in (12a) using Cauchy-Schwarz inequality we obtain

〈Lu, v〉2 ≤
(
κM
2
||u||2Ωh

+
βh
2
||u||2∂Ωh

+
κ

2
||q||2Ωh

+
κh
2
||{{q}}||2Eh

)
×

(
κM
2

∣∣∣∣∣∣∣∣∣∣∂v
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

+
β

h
||[[v]]||2Eh

+
κ

2

∣∣∣∣∣∣∣∣∣∣∂v
∂x

∣∣∣∣∣∣∣∣∣∣2
Ωh

+
κ

2h
||[[v]]||2Eh

)
,

Now using the result of Lemma 7, a Poincaré-Friedrichs inequality for H1 (Ωh), and a multiplicative trace inequality
for ||u||Eh

we arrive at

〈Lu, v〉2 ≤
[
CPF

(
κM
2

+
βcIT

2

)
+
κC
2

]
||u||2DG ×max

{
κM
2

+
κ

2
, β +

κ

2

}
||v||2DG ,

where CPF is the constant in the Poincaré-Friedrichs inequality. The result follows by taking

C2
L :=

[
CPF

(
κM
2

+
βcIT

2

)
+
κC
2

]
×max

{
κM
2

+
κ

2
, β +

κ

2

}
.

Corollary 1. Suppose the assumptions for Lemma 8 hold. We have that

etL :=
∞∑

m=0

(tL)m

m!
, t ≥ 0,

is a uniform continuous operator semigroup in Vh (Ωh). In particular, L is the infinitesimal generator of the semigroup
etL with ∣∣∣∣∣∣∣∣∣etL

∣∣∣∣∣∣∣∣∣ ≤ eCLt and |||ϕi (τL)||| ≤ Cϕi (τ) := eτCL

∫ 1

0

zi−1

(i − 1)!
dz,

where |||·||| is the operator norm from Vh (Ωh) to Vh (Ωh).

Proof. The proof is straightforward using the boundedness of L in Lemma 8 [70, 71].

Lemma 9 (Lipschitz continuity of N). Let u and w be in Vh (Ωh), ||u||∞ ≤ M and ||w||∞ ≤ M for t ∈ (0,T ), there exists
a constant CN independent of the meshsize such that

|〈N (u) − N (w) , v〉| ≤ CN ||u − w||DG ||v||DG , ∀v ∈ Vh (Ωh) .

Proof. From the definition of N in (12b), it is easy to see that(
u2

2

)∗
−

(
w2

2

)∗
≤

M
3

(∣∣∣u− − w−
∣∣∣ +

∣∣∣u+ − w+
∣∣∣) +

σ

h
[[u − w]] ,

(ũu)∗ − (ũw)∗ ≤ 2M
(∣∣∣u− − w−

∣∣∣ +
∣∣∣u+ − w+

∣∣∣) ,(
ũu −

1
2

u2
)
−

(
ũw −

1
2

w2
)
≤ 2M |u − w| .

13
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Thus,

|〈N (u) − N (w) , v〉| ≤ 2M ||u − w||Ωh

∣∣∣∣∣∣∣∣∣∣∂v
∂x

∣∣∣∣∣∣∣∣∣∣
Ωh

+
7M
3
||u − w||∂Ωh

||[[v]]||Eh

+
σ

h
||[[u − w]]||Eh

||[[v]]||Eh
≤

[
M2

(
4 +

98
9

cIT

)
||u − w||2Ωh

+
2σ2

h
||[[u − w]]||2Eh

] 1
2

||v||DG

≤

[
CPF M2

(
4 +

98
9

cIT

)
+ 2σ2

] 1
2

︸                                 ︷︷                                 ︸
CN

||u − w||DG ||v||DG ,

where we have used Cauchy-Schwarz, inverse trace, and Poincaré-Friedrichs inequalities.

A direct consequence of Lemmas 8 and 9 is that ∂u
∂t = Lu +N (u) ∈ Vh (Ωh) ⊂ L∞ (Ωh). Thus from (12b), ∂N

∂t given
by 〈

∂N (u)
∂t

, v
〉

:=
(
(u − ũ)

∂u
∂t
,
∂v
∂t

)
Ωh

+

〈{{
ũ
∂u
∂t

}}
+

1
2

max(|ũ±|)
[[
∂u
∂t

]]
, [[v]]

〉
Eh

−

〈
1
3

{{
u
∂u
∂t

}}
+

2
3
{{u}}

{{
∂u
∂t

}}
+
σ

h

[[
∂u
∂t

]]
, [[v]]

〉
Eh

is well-defined. Indeed the next results show that ∂N
∂t is a Lipschitz continuous map from Vh (Ωh) to Vh (Ωh).

Lemma 10 (Lipschitz continuity of ∂N
∂t ). Suppose u, ∂u

∂t , ũ,w reside in Vh (Ωh), ||u||∞ ≤ M, ||w||∞ ≤ M, ||ũ||∞ ≤ M, and∣∣∣∣∣∣ ∂u
∂t

∣∣∣∣∣∣
∞
≤ M for t ∈ (0,T ). There exists a constant C′

N
independent of the mesh size h such that∣∣∣∣∣∣

〈
∂N (u)
∂t

−
∂N (w)
∂t

, v
〉∣∣∣∣∣∣ ≤ C′N ||u − w||DG ||v||DG

Proof. Let us define z as

z :=
∂u
∂t
−
∂w
∂t

= L (u − w) + N (u) − N (w) ,

and Lemmas 8 and 9 imply ||z||DG ≤ (CL + CN ) ||u − w||DG. We have

〈T, v〉 =

(
(u − w)

∂u
∂t

+ (w − ũ) z,
∂v
∂x

)
Ωh

+

〈
{{ũz}} +

1
2

max(|ũ±|) [[z]] , [[v]]
〉
Eh

−

〈
1
3

{{
(u − w)

∂u
∂t

+ wz
}}
+

2
3
{{u − w}}

{{
∂u
∂t

}}
+

2
3
{{w}} {{z}} +

σ

h
[[z]] , [[v]]

〉
Eh

,

where T := ∂N(u)
∂t −

∂N(w)
∂t . Now following similar arguments as in the proof of Lemma 9 we obtain

〈T, v〉 ≤ C ||z||DG ||v||DG ≤ C (CL + CN ) ||u − w||DG ||v||DG ,

where C = C (cIT ,M, σ,CPF).

Let us denote by un the approximation solution of (11) using a time discretization. We are now in the position
to analyze error of the fully discrete system using the exponential-Euler in time and DG in space. The fully discrete
system using the exponential Euler integrator reads

un+1 := e4tLun + 4tϕ1 (4tL)N (un) ,

while the semi-discrete solution u (tn) satisfies

u
(
tn+1

)
= e4tLu (tn) + 4tϕ1 (4tL)N (u (tn)) + δn+1,

14
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with

δn+1 :=
∫ 4t

0
e(4t−τ)L

∫ τ

0

∂N
∂t

(u (tn + θ)) dθ dτ.

Let us define 9

ξn := û (tn) − un = û (tn) − u (tn)︸         ︷︷         ︸
εu(tn)

+ u (tn) − un︸      ︷︷      ︸
=:ρn

= εu (tn) + ρn.

We thus have

ρn+1 = e4tLρn + 4tϕ1 (4tL)
[
N (u (tn)) − N (un)

]︸                   ︷︷                   ︸
=: f (tn)

+δn+1.

After some algebraic manipulations we obtain

ρn = 4t
n−1∑
j=0

e(n− j−1)4tLϕ1 (4tL) f
(
t j

)
+

n−1∑
j=0

e j4tLδn− j.

Theorem 2 (Convergence of the exponential Euler-DG). Assume the conditions of Corollary 1, Lemma 10, Lemma
9, Lemma 1, and Theorem 1 hold. There exists a constant C depending only tn,CL,CN , ||u (0)||Ωh

,CPF such that the
following estimate for the total discrete error ξn at tn = n4t holds true:

||ξn||Ωh
≤ C

(
4t + hmin{s,k}

)
.

Proof. Using Corollary 1, Lemma 10, and Lemma 1 we have∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
n−1∑
j=0

e j4tLδn− j

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
DG

≤ 4tetnCLC′N

n∑
j=1

∫ t j

t j−1
||u (t)||DG dt ≤ 4t

√
tnetnCLC′N

√∫ tn

0
||u (t)||2DG dt ≤ 4t C ||u (0)||Ωh︸      ︷︷      ︸

Cδ

where we have absorbed all quantities depending only on tn,CL,CN into C. Now combining the above estimate with
Lipschitz continuity of N (Lemma 9) and Corollary 1 we have that there exists a constant C1 depending on Cϕ1 (4t)
and Cδ such that

||ρn||DG ≤ C14t
n−1∑
j=0

∣∣∣∣∣∣ρ j
∣∣∣∣∣∣
DG + C14t,

which, together with a discrete Gronwall’s lemma, yield

||ρn||Ωh
≤ CPF ||ρ

n||DG ≤ C4t,

where C = C (CPF ,C1). We thus, via Theorem 1, conclude

||ξn||Ωh
≤ ||ρn||Ωh

+ ||εu (tn)||Ωh
≤ C

(
4t + hmin{s,k}

)
.

5. Numerical Results

In this section, we conduct several numerical experiments to evaluate the performance of the proposed exponential
DG framework for both Burgers and Euler equations. In particular, we examine the numerical stability for a wide range
of Courant numbers10 larger than unity, i.e. Cr > 1, the high-order convergence in both space and time, the efficiency,
and weak and strong parallel scalability. We measure L2 error for convergence studies by ‖u − û‖Ωh where û is either
an exact solution or a reference solution.

9ρ0 = 0.
10We define Courant numbers Cr := Cra + Crd , where Cra := c4t

dx for convection part and Crd := κ4t
(dx)2 for diffusion part. Here, dx is the

minimum distance between two LGL nodes; c is the maximum speed in the system, e.g., c = |u| for Burgers equation and c = |u · n| + a for Euler
equations.

15
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Table 1. A time-independent manufactured solution for the viscous Burgers equation: a spatial convergence study using Ne = {20, 40, 80, 160}
elements is conducted with Lax-Friedrich (LF) flux, entropy flux (EF). EXPRB32 scheme with 4t = 5 × 10−5 is used as the time integrator.

h
LF EF (σ = 3 × 10−4) EF (σ = 0)

error order error order error order

k = 1

1/20 4.093E-04 − 4.096E-04 − 4.097E-04 −

1/40 1.223E-04 1.743 1.225E-04 1.741 1.232E-04 1.734
1/80 4.494E-05 1.445 4.378E-05 1.484 4.620E-05 1.415
1/160 1.937E-05 1.214 1.562E-05 1.487 2.074E-05 1.155

k = 2

1/20 2.630E-06 − 2.632E-06 − 2.634E-06 −

1/40 3.210E-07 3.034 3.213E-07 3.034 3.222E-07 3.031
1/80 3.966E-08 3.017 3.952E-08 3.023 3.996E-08 3.011
1/160 4.916E-09 3.012 4.833E-09 3.032 4.984E-09 3.003

k = 3

1/20 1.431E-07 − 1.459E-07 − 1.471E-07 −

1/40 1.709E-08 3.066 1.742E-08 3.066 1.819E-08 3.015
1/80 2.003E-09 3.093 1.876E-09 3.215 2.268E-09 3.003
1/160 2.251E-10 3.154 1.441E-10 3.703 2.834E-10 3.001

k = 4

1/20 5.946E-10 − 5.991E-10 − 6.013E-10 −

1/40 1.827E-11 5.024 1.837E-11 5.027 1.860E-11 5.015
1/80 5.626E-13 5.021 5.590E-13 5.039 5.796E-13 5.004
1/160 1.730E-14 5.023 1.690E-14 5.048 1.810E-14 5.001

5.1. Viscous Burgers equation

5.1.1. An exact time-independent smooth solution
We consider a time-independent manufactured solution with κ = 0.03 for the Burgers equation

u(x, t) = sin(x2)x(x − 1)

by adding the corresponding source term to (9). We perform a spatial convergence study with both Lax-Friedrich
(LF) flux and entropy flux (EF) (we take σ = 0 and σ = 3 × 10−4). In order to prevent temporal discretization
error from polluting the spatial one, we employ high-order accurate EXPRB32 scheme 11 with 4t = 5 × 10−5 and
Ne = {20, 40, 80, 160} elements. The error is measured at t = 0.01 and the results are summarized in Table 1. We
observe that entropy flux with no additional stabilization (i.e. σ = 0) and Lax-Friedrichs flux provide similar results,
that is, the convergence order is optimal for even solution orders but sub-optimal for odd ones. This similar behavior
when using the central flux for diffusion term has been recorded in the literature (see, e.g. [72], and the references
therein) and it is also consistent with our analysis in Section 4 in which we have shown that the spatial convergence
is sub-optimal. Entropy flux with small additional stabilization seems to asymptotically deliver convergence rates
between k + 1/2 and k + 1 for all solution orders considered in this case, which is better than what we could prove.

11EXPRB32 [71] is the third-order two-stage exponential method given by

q(2) = qn + 4tϕ1(L4t)Rn,

qn+1 = qn + 4tϕ1(L4t)Rn + 24tϕ3(L4t)Dn,2,

where R(q) = Lq +N(q), Rn := R(qn) and Dn,2 := N(q(2)) − N(qn). Here, we choose L = ∂R
∂q

∣∣∣
qn .
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Table 2. A smooth solution for the viscous Burgers equation: a spatial convergence study using Ne = {20, 40, 80, 160} elements is conducted with
Lax-Friedrich (LF) flux and entropy flux (EF), and EXPRB32 scheme with 4t = 5 × 10−5 as the time integrator.

h
LF EF(σ = 3 × 10−4) EF(σ = 0)

error order error order error order

k = 1

1/20 7.061E-03 − 7.157E-03 − 7.161E-03 −

1/40 2.080E-03 1.764 2.285E-03 1.647 2.308E-03 1.633
1/80 6.731E-04 1.627 8.552E-04 1.418 9.186E-04 1.329
1/160 2.432E-04 1.469 3.070E-04 1.478 4.241E-04 1.115

k = 2

1/20 2.511E-04 − 2.540E-04 − 2.541E-04 −

1/40 2.741E-05 3.196 2.744E-05 3.210 2.744E-05 3.211
1/80 3.317E-06 3.047 3.317E-06 3.048 3.317E-06 3.048
1/160 4.112E-07 3.012 4.113E-07 3.012 4.112E-07 3.012

k = 3

1/20 2.574E-05 − 2.738E-05 − 2.748E-05 −

1/40 2.883E-06 3.158 3.243E-06 3.078 3.311E-06 3.053
1/80 3.414E-07 3.078 3.748E-07 3.113 4.087E-07 3.018
1/160 4.108E-08 3.055 3.722E-08 3.332 5.091E-08 3.005

k = 4

1/20 9.225E-07 − 9.273E-07 − 9.273E-07 −

1/40 2.529E-08 5.189 2.785E-08 5.057 2.858E-08 5.020
1/80 7.135E-10 5.147 7.563E-10 5.202 8.445E-10 5.081
1/160 2.188E-11 5.027 2.190E-11 5.110 2.604E-11 5.019

5.1.2. A smooth solution
We next consider a case with smooth solution generated by the following initial condition,

u(x, t = 0) = sin3(2πx)(1 − x)
3
2 ,

zero Dirichlet boundary conditions, and κ = 0.03. The smooth initial profile is spread out due to the viscosity as time
goes by.

We conduct a spatial convergence study with both LF and EF fluxes with Ne = {20, 40, 80, 160}. We again use
EXPRB32 for the time integrator with 4t = 5 × 10−5. Since there is no exact solution we use RK4 solution with
4t = 5 × 10−7, k = 10, and Ne = 160 as the ”ground truth” solution. The error at t = 0.01 is used to compute
the convergence rate and the results are summarized in Table 2. Similar to the case of the manufactured solution,
we observe that the convergence rates for odd solution orders are sub-optimal, but optimal for even solution orders.
Again, a little additional stabilization via σ not only facilitates our convergence analysis but also seems to improve
the convergence rates.

Before showing temporal convergence rates let us demonstrate the numerical stability of exponential integrators
by using very large Courant numbers. For this purpose, it is sufficient to choose EPI2 scheme12. We compare EPI2
and RK2 solutions at t = 1, both with EF flux, in Figure 1. For RK2 solution, we take 4t = 10−4 (Crd = 0.16) as
approximately the maximal stable timestep size since 4t = 2×10−4 leads to unstability. Unlike RK2, with 1000 times
larger timestep size, i.e. Crd = 161.0, EPI2 still produces a comparable result compared to RK2. Even with 5000
times larger timestep size (Crd = 804.9), EPI2 solution is still stable though less accurate (see Figure 1(b) in which we

12EPI2 [48] is the second-order exponential method given by

qn+1 = qn + 4tϕ1(L4t)Rn

where L = ∂R
∂q

∣∣∣
qn .
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compare the accuracy of EPI2 and RK2 using RK4 with 4t = 5 × 10−6 as a reference solution). As for the wallclock
time, RK2 takes 8.3s, whereas EPI2 does 1.6s with Crd = 161.0 and 1.3s with Crd = 804.9. EPI2 is five to six times
faster than RK2 in this example.

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2
RK2 (Crd=0.16)

EPI2 (Crd=161.0)

EPI2 (Crd=804.9)

(a) solutions

0 0.2 0.4 0.6 0.8 1
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
RK2(Crd=0.16)-RK4

EPI2(Crd=161.0)-RK4

EPI2(Crd=804.9)-RK4

(b) differences

Figure 1. Accuracy comparisons between EPI2 and RK2 using Burgers equation with smooth solutions at t = 1 with k = 4 and Ne = 40: Figure
1(a) shows RK2 with Crd = 0.16 (black), EPI2 with Crd = 161.0 (red-dashed), and EPI2 with Crd = 804.9 (blue-dashed). Figure 1(b) plots their
differences with RK4 solution with dt = 5 × 10−6.

We now compute the temporal convergence rates of two exponential integrators, EPI2 and EXPRB32, using our
DG spatial discretization with k = 4 and Ne = 40. To that end, we take the RK4 solution with 4t = 5 × 10−6 as
a ground truth. The error is computed at t = 1. As can be seen in Table 3, the numerical results with both LF and
EF fluxes show second- and third-order convergence rates for EPI2 and EXPRB32, respectively. We observe that the
difference in the solutions of LF and EF are negligibly small (on the order of O(10−9)). This, we believe, is due to
the diffusion-dominated regime, for which different numerical fluxes for the nonlinear convection term do not make
(much) difference on the solution.

5.1.3. A solution with steep gradient
We next consider a solution with steep gradient, namely, a stationary shock that evolves in time from the following

initial condition

u(x, t = 0) = sin(2πx), for x ∈ [0, 1],

and homogeneous boundary conditions. We perform the simulation for t ∈ [0, 1] with k = 4 and Ne = 40. As time
goes on, a sharp interface is progressively formed at x = 0.5. In this convection-dominated example, EF flux with a
uniform bound of σ leads to an unstable solution, whereas LF flux still produces a stable solution. This may be related
to the growth of aliasing errors arising from the sharp gradient, or insufficient artificial diffusion between the elements
due to the lack of upwinding of the uniform value of σ. Inspired by LF flux, we set σ = κ/100 + h max(|u±|) for EF
flux in this example. Figure 2 are the EPI2 solution snapshots at t = 1 with dt = 0.01 and κ ∈ {0.02, 0.005, 0.002}. By
decreasing κ, the shock solutions with EF flux become stiffer, and the difference of EPI2 solutions between LF flux
and EF flux increases up to O(10−4).

With κ = 0.002, we now perform spatial and temporal convergence studies. For spatial convergence study, we use
nested meshes with Ne = {40, 80, 160} 13 and the EXPRB32 integrator with 4t = 5 × 10−5. RK4 solution (with LF
flux, 4t = 5 × 10−7, k = 10, and Ne = 160) is used as the ”ground truth” solution for measuring the L2 error at t = 1.
We observe k + 1

2 rate of convergence for both LF and EF fluxes in Table 4.
For temporal convergence study, we consider the DG discretization with k = 4, and Ne = 160. We take the RK4

solution (with LF flux, 4t = 5 × 10−7, k = 10, and Ne = 160) as a reference solution to measure the L2 error at t = 1.
In Table 5, we observe second- and third-order convergence rates for EPI2 and EXPRB32, respectively.

13All the meshes are chosen to align with the sharp interface at x = 0.5.
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Table 3. Temporal convergence rates for EPI2 and EXPRB32 for a smooth solution of the viscous Burgers equation by computing the error at
t = 1 using RK4 solution with 4t = 5 × 10−6 as the reference solution. Spatial discretization is carried out using our DG approach with k = 4 and
Ne = 40. We observe second- and third-order convergence rates for EPI2 and EXPRB32, respectively.

flux 4t Crd
EPI2 EXPRB32

error order error order

LF

0.50 804.9 1.171E-02 − 5.272E-03 −

0.25 402.5 3.303E-03 1.827 1.077E-03 2.292
0.10 161.0 5.411E-04 1.974 9.575E-05 2.641
0.05 80.5 1.312E-04 2.044 1.300E-05 2.881
0.01 16.1 4.943E-06 2.037 1.042E-07 2.999

EF(σ = 3 × 10−4)

0.50 804.9 1.171E-02 − 5.272E-03 −

0.25 402.5 3.303E-03 1.827 1.077E-03 2.292
0.10 161.0 5.411E-04 1.974 9.575E-05 2.641
0.05 80.5 1.312E-04 2.044 1.300E-05 2.881
0.01 16.1 4.943E-06 2.037 1.042E-07 2.999

EF(σ = 0)

0.50 804.9 1.171E-02 − 5.272E-03 −

0.25 402.5 3.303E-03 1.827 1.077E-03 2.292
0.10 161.0 5.411E-04 1.974 9.575E-05 2.641
0.05 80.5 1.312E-04 2.044 1.300E-05 2.881
0.01 16.1 4.943E-06 2.037 1.043E-07 2.988
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Figure 2. Burgers equation with a steep gradient solution with EPI2 time integrator, k = 4, and Ne = 40 at t = 1: (a) the snapshots with
κ = {0.02, 0.005, 0.0002} and (b) the solution differences between LF and EF fluxes.

Considering the simplicity and upwinding nature of Lax-Friedrich flux, we use Lax-Friedrich flux for Euler equa-
tions (which are hyperbolic) in the following examples.

19



S. Kang and T. Bui-Thanh / Computer Methods in Applied Mechanics and Engineering 00 (2021) 1–33 20

Table 4. A shock solution to the viscous Burgers equation with a spatial convergence study using Ne = {40, 80, 160} elements is conducted with
Lax-Friedrich (LF) flux and entropy flux (EF), and EXPRB32 scheme with 4t = 5 × 10−5 as the time integrator. We take the RK4 solution (with
4t = 5 × 10−7, k = 10, and Ne = 160) as a reference solution to measure the L2 error at t = 1.

h
LF EF

error order error order

k = 1
1/40 1.295E-02 − 1.353E-02 −

1/80 5.558E-03 1.221 5.577E-03 1.279
1/160 2.001E-03 1.474 1.964E-03 1.506

k = 2
1/40 4.223E-03 − 4.229E-03 −

1/80 6.722E-04 2.651 6.712E-04 2.656
1/160 9.852E-05 2.770 9.616E-05 2.803

k = 3
1/40 9.976E-04 − 9.969E-04 −

1/80 1.435E-04 2.797 1.449E-04 2.782
1/160 1.224E-05 3.551 1.219E-05 3.571

k = 4
1/40 3.606E-04 − 3.577E-04 −

1/80 2.728E-05 3.724 2.706E-05 3.725
1/160 8.084E-07 5.077 7.432E-07 5.186

Table 5. Temporal convergence study of EPI2 and EXPRB32 for a shock solution to the viscous Burgers equation: we take the RK4 solution (with
LF flux, 4t = 5 × 10−7, k = 10, and Ne = 160) as a reference solution, and measure the L2 error at t = 1. Spatial discretization is carried out using
our DG approach with k = 4 and Ne = 160. We observe second- and third-order convergence rates for EPI2 and EXPRB32, respectively.

flux 4t Cr
EPI2 EXPRB32

error order error order

LF

0.25 559.1 2.276E-02 − 8.424E-03 −

0.10 213.3 3.706E-03 1.981 5.711E-04 2.937
0.05 105.5 8.784E-04 2.077 6.440E-05 3.149
0.02 42.0 1.327E-04 2.063 3.755E-06 3.102

EF

0.25 559.1 2.276E-02 − 8.424E-03 −

0.10 213.3 3.706E-03 1.981 5.711E-04 2.937
0.05 105.5 8.784E-04 2.077 6.440E-05 3.149
0.02 42.0 1.327E-04 2.063 3.745E-06 3.105

5.2. Euler equations: Isentropic vortex translation

We consider the isentropic vortex example in [73], where a small vortex perturbation is added to the uniform mean
flow and translated without changing its shape. The superposed flow is given as

u = u∞ −
λ

2π
ỹeα(1−r2)/2, v = v∞ +

λ

2π
x̃eα(1−r2)/2,

T = T∞ −
(

1
2αcp

) (
λ

2π

)2

eα(1−r2),

where r = ‖x−xc−u∞t‖, x̃ = x− xc−u∞t, ỹ = y−yc−v∞t, u∞ = (u∞, v∞), and xc = (5, 0). Here, cp is the specific heat
ratio at constant pressure and λ the vortex strength. The mean flow is set to be (u∞, v∞, ρ∞,T∞, p∞) = (0.2, 0, 1, 1, 1).
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We take α = 2, γ = 1.4, λ = 0.05 and cp =
γ
γ−1 . The exact solution is generated from the isentropic relation14. The

domain is Ω = (0, 10)× (−5, 5) and periodic boundary conditions are applied to all directions. For a three-dimensional
simulation, we take the zero vertical velocity, w = 0, and extrude the 2D domain vertically from 0 to 1 to obtain
Ω = (0, 10) × (−5, 5) × (0, 1).

5.2.1. Stability of exponential integrators
We perform the simulation for t ∈ [0, 15] with k = 12 and Ne = 256 in Figure 3. Compared to the stable EPI2

solution with 4t = 0.5 (i.e. Cr = 42.75) in Figure 3(a), the EPI2 solution with 4t = 1 (Cr = 85.56) in Figure 3(b)
is oscillatory (part of the domain away from the vortex). One can reduce the oscillation while keeping large Courant
number by employing a more accurate, e.g. higher-order, time integrator 15. To demonstrate this point we show the
third-order EXPRB32 solution with 4t = 1 (Cr = 85.56) in Figure 3(c) for which oscillations are not visible in the
same scale. A closer look, see Figure 4, in which we plot a slice along y = 0 for all sub-figures in Figure 3, shows
that the EXPRB32 solution with (Cr = 85.56) does reduce oscillations. This is not surprising: though exponential
integrators are inherently implicit, large timestep size must be chosen with care in order to avoid adverse affect on the
accuracy.

(a) EPI2 (Cr = 42.75) (b) EPI2 (Cr = 85.56) (c) EXPRB32 (Cr = 85.56)

Figure 3. Translating isentropic vortex example for the two-dimensional Euler equations at t = 15: numerical solution using EPI2 with Cr = 42.75
is in Figure 3(a), using EPI2 with Cr = 85.56 in Figure 3(b), and using EXPRB32 with Cr = 85.56 in Figure 3(c).

5.2.2. Accuracy and efficient comparison among exponential integrators
In this section, we take the second, the third, and the fourth-order exponential integrators: EPI2, EXPRB32, and

EXPRB42,16 respectively, and compare their relative accuracy and efficiency. Time convergence studies are conducted
on a uniform mesh and a non-uniform mesh in Figure 5.

We start with a very high-order accurate discretization in space with k = 16 for the uniform mesh so that the spatial
error (around 10−13) does not pollute the temporal one. Figure 6(a) presents the L2-error for the density ρ over a wide

14

ρ

ρ∞
=

(
T

T∞

) 1
γ−1

=

(
p

p∞

) 1
γ

15Since high-order methods requires more nonlinear evaluations, the evolution of the solution can be captured more accurately than the low-order
methods. For example, EPI2 needs one nonlinear evaluation at tn, whereas EXPRB32 uses two nonlinear evaluations at tn and tn+1.

16EXPRB42 [74] is the fourth-order two-stage method,

q(2) = qn +
3
4
4tϕ1

(
3
4

L4t
)

Rn,

qn+1 = qn + 4tϕ1(L4t)Rn +
32
9
4tϕ3 (L4t) Dn,2,

where R(q) = Lq +N(q), Rn := R(qn) and Dn,2 := N(q(2)) − N(qn).
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Figure 4. Translating isentropic vortex example for the two-dimension (black is for EPI2 with Cr = 85.56, red-dashed for EPI2 with Cr = 42.75,
and blue-dashed for EXPRB32 with Cr = 85.56) Euler equations at t = 15: a slice along y = 0 for all sub-figures in Figure 3.

range of timestep sizes. Note that the numbers on the top of the figure is the corresponding Courant number for the
timestep size displayed on the x-axis. As can be seen, EPI2, EXPRB32, and EXPRB42 achieve expected convergence
rate of 2, 3, and 4, respectively. Beyond 10−13 the error is dominated by spatial discretization error, which explains
why the error for the last two points (the two smallest timestep size cases) of the EXPRB42 error curve plateaus.

5.2.3. Accuracy and efficient comparison between exponential and IMEX integrators
We now compare exponential methods with IMEX (implicit-explicit) time integrators. For IMEX integrators, we

integrate the linearized operator L implicitly and the nonlinear operator N explicitly. We consider the second-order
ARS232 [21] and the third-order ARS443 [21] IMEX schemes. The L2-error for ρ corresponding to these IMEX
methods on the uniform mesh are summarized in Figure 6. As can be seen in Figure 6(a), for a given timestep size
EXPRB32 is (an order of magnitude) more accurate than ARS443 while EPI2 is (about half order of magnitude) less
accurate than ARS232. Efficiency comparison in Figure 6(b) shows that, for a given level of accuracy, exponential
integrators EXPRB32 and EPI2 are much (from two to ten times) more efficient than the IMEX counterparts ARS232
and ARS443. Though both EXPRB32 and EXPRB42 require two matrix exponential evaluations, and hence having
similar wallclock, EXPRB42, due to its high-order accuracy, is more efficient than EXPRB32.

5.2.4. Accuracy and efficient comparison between exponential and RK integrators
We next compare exponential methods with explicit RK (Runge-Kutta) time integrators. We consider second-

order RK2, third-order RK3, and fourth-order RK4 methods. Figure 6(a) shows that RK2 solution converges to the
22
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Figure 5. (a) A uniform mesh with Ne = 256 elements, and (b) a non-uniform meshes with Ne = 250 elements.
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Figure 6. Accuray and effiicency of exponential, IMEX, and RK integrators for the isentropic vortex translation in two dimensions on a uniform
mesh with Ne = 256 and k = 16.

true solution with the second-order accuracy, while RK3 and RK4 solutions immediately saturate at the error level of
O(10−13) as the temporal error is smaller than the spatial one. Note that the right most point for each of RK method
corresponds to (approximately) the largest stable timestep size. Exponential methods, again due to their implicit na-
ture, does not have time stepsize restriction. As expected Figure 6(b) shows that with a same accuracy, exponential
integrators are less efficient than their same order RK counterparts since the formers require matrix exponential eval-
uations. Times taken by high-order exponential integrators become comparable to low-order RK counterparts. This
should not understood as a disadvantage. On the contrary, the main advantage of EI is on stiff problems or problem
requires large time stepsizes (with CFL number greater than 1) for which explicit RK methods fail. The example
shows that the cost of exponential methods are similar to stable explicit RK methods while stably providing solutions
with time stepsizes orders of magnitude larger than the maximal stable time stepsizes for explicit RK methods.

On the non-uniform mesh, we set the center of the vortex to be xc = (0, 0) at t = 0 so that the initial vortex is
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defined on a coarse region. This means that more spatial discretization error is introduced than that on the uniform
mesh. In Figure 7(a), the saturated error level of O(10−11) is higher than the counterpart on the uniform mesh. All RK
solutions immediately reach to the saturated error level of O(10−11). In Figure 7(b) and Table 6, RK4 is faster than
RK2 and RK3. Compared to RK4, Exponential DG methods shows slightly better performance at the error level of
O(10−11). For example, EPI2 with Cr = 7.49 is 1.5 times faster than RK4.

When we lower the solution order from k = 16 to k = 8, we see the computational gain of Exponential DG
methods in Table 7. All the numerical solutions saturate at O(10−6) error level. The wallclock times of RK2, RK3,
and RK4 are 155.8, 150.0, and 101.9. EPI2 is three times faster than RK2 and RK3, and two times faster than RK4.
EXPRB32 and EXPRB42 slightly better perform RK4.
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Figure 7. Isentropic vortex translation in two dimensions: time convergence study for (a) accuracy and (b) efficiency on non-uniform mesh. The
computational domain is discretized with Ne = 250 and k = 16.

To demonstrate the high-order convergence in space, we perform the spatial convergence test. We use a sequence
of nested meshes with Ne = (256, 1024, 4096, 16384) for k = (1, 2, 3, 4) and measure the errors at t = 1. As can be
seen in Table 8, the convergence rate of (k + 1

2 ) is observed as refining the meshes.

5.2.5. Performance of Exponential DG on parallel computers
Now we study the parallel performance, namely weak and strong scalings, of Exponential DG methods for three-

dimensional Euler equations. For this purpose, we choose the EPI2 integrator. Parallel simulations are conducted
on Stampede2 at the Texas Advanced Computing Center (TACC) using Skylake (SKX) nodes. Each node of SKX
consists of 48 cores of Intel Xeon Platinum 8160 2.1GHz processors and 192GB DDR4 RAM. The interconnect is a
100GB/s Intel Omni-Path (OPA) network with a fat-tree topology.

We begin with strong scaling in which the problem size is fixed while the number of cores increases. Table 9
compares the efficiencies of two different timestep sizes: 4t = 0.125 and 4t = 0.25 on the mesh with Ne = 51200
(elements) and k = 6 (solution order). For either of the timestep sizes, the corresponding run with 32 cores and 1600
elements per core is served as the based line. As the number of cores increases (i.e. the number of elements per core
decreases) communication-computation overlapping is less effective and thus decreasing the efficiency. The efficiency
with 4t = 0.125 is slightly higher than that with 4t = 0.25 as the latter requires more Krylov iterations than the former:
the total number of Krylov iterations NKrylov is 561 for Cr = 15.49(4t = 0.125) and 1024 for Cr = 32.98(4t = 0.25)
17. This implies that the spectrum of the linear operator becomes broad by increasing the timestep size18.

Next, we conduct a strong scaling test using the exponential DG with EPI2, Cr = 8.1 (4t = 0.03125), Ne =

3, 276, 800 and k = 4. We choose the number of processors to be np = {16, 32, 64, 128, 256, 512, 868} × 48 so that the

17We observe NKrylov = 556 for Cr = 7.75(4t = 0.0625). The total number of Krylov iterations is proportional to Courant number above a
certain Courant number. In Table 11, NKrylov is about 40 for Cr <= 2.8. However, for Cr > 2.8, doubling Courant number tends to double NKrylov.

18Note that the input argument of ϕ-function is 4tL.
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number of elements per core approximately becomes {4267, 2133, 1067, 533, 267, 133, 79}, i.e., every time we double
the number of processors, the number of elements is halved. The speedup factors19 for all cases in Figure 8 show that
the exponential DG approach delivers good strong scalability up to 41664 cores—the maximum number of cores in
Skylake system in TACC.
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Figure 8. Isentropic vortex translation in three dimensions: strong scaling study for EPI2 with Cr = 8.1 (4t = 0.03125). The computational domain
is discretized using Ne = 3, 276, 800 and k = 4. The number of processors used are np = {16, 32, 64, 128, 256, 512, 868} × 48.

For the weak scaling test, we assign the same amount of work to each processor (by refining the mesh) while
increasing the number of processors. Our exponential DG approach uses EPI2, Ne = {1, 8, 64, 512, 4096} × 100, and
k = 8. The number of processors is chosen in the set {4, 32, 256, 2048, 16384} so that the number of elements per core
is 25 (i.e. 18, 225 degrees-of-freedom). We have tabulated the weak scaling results in Table 10, in which each row
block shows, for a fixed Courant number, the number of processors, the timestep sizes, the final times, the wallclock
times taken, and the number of Krylov iterations. For each fixed Courant number, good weak scalings can be seen
through the wallclock times (and NKrylov) that do not vary much as the number of processors (and thus the problem
size) increases. To see this visually, we plot the average time-per-timestep against the number of degrees-of-freedom
in Figure 9: almost plateau curve for each Courant number indicates favorable weak scaling can be obtained by the
Exponential DG method. As can also be observed, the number of Krylov iterations NKrylov, and hence the wallclock
time, scales linearly with the Courant number.

How does the weak scaling behaves if we fix timestep size 4t instead of Courant number Cr? In this case, refining
the mesh (in order to keep the number of elements per core the same) adds geometrically-induced stiffness to the

19Speedup is defined as Ts
Tp

with Ts serial wallclock time and Tp parallel wallclock time.
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Figure 9. Weak scaling study with fixed Courant numbers for the isentropic vortex translation with three dimensional Euler equations.
The exponential DG approach consists of EPI2, Ne = {1, 8, 64, 512, 4096} × 100, and k = 8. The number of processors for each Ne is
np = {4, 32, 256, 2048, 16384} so that each processor has 25 elements (18, 225 degrees-of-freedom) for all cases.

system, and thus making the total number of Krylov iterations to increase. This is verified in Table 11, which shows
linear growth in the total number of Krylov iterations as the mesh is refined for Cr > 2.8. As shown in Figure 10, the
increase in number of Krylov iterations induces the growth in wallclock time.

5.3. Euler equations: Kelvin-Helmholtz instability

Kelvin–Helmholtz instability (KHI) is an important mechanism in the development of turbulence. KHI occurs
when two fluids meet across their interface with different densities and tangential velocities. As time goes by, small
disturbances at the interface grow exponentially, and the interface rolls up into KH rotors [75, 76, 77]. The computa-
tional domain is Ω = (−5, 5) × (0, 5). We apply periodic boundary condition to the lateral direction, whereas no-slip
boundary condition to the top and the bottom walls.

The initial conditions are chosen as

ρ = 1 +
1
2

(
tanh

(y − s1

a

)
− tanh

(y − s2

a

))
,

u = 0.1 +

(
tanh

(y − s1

a

)
− tanh

(y − s2

a

)
− 1

)
,

v = A sin (2πx)
(
exp

(
−

(y − s1)2

σ2

)
+ exp

(
−

(y − s2)2

σ2

))
,

p = γ−1,
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Figure 10. Weak scaling study with fixed 4t for the isentropic vortex translation with three dimensional Euler equations. The exponential DG
approach uses EPI2, Ne = {100, 800, 6400, 51200}, and k = 8.The corresponding number of processors are np = {4, 32, 256, 2048}, respectively, so
that each processor has 25 elements for each case.

where we take a = 0.05, A = 0.01, σ = 0.2, s1 = 2, s2 = 3, and cmax = 0.1 and cE = 1 for entropy viscosity.
The numerical simulations are performed with EPI2 and RK4 methods over the uniform mesh with k = 6 and Ne =

722 for t ∈ [0, 100]. We take 4t = 0.005 =: 4tRK4 for RK4, and 4t = 0.04(= 4tRK4 × 8) and 4t = 0.5(= 4tRK4 × 100)
for EPI2. The temperature fields are plotted at t = 50 and t = 100 in Figure 11. The wallock times of RK4, EPI2 (with
4t = 0.04) and EPI2 (with 4t = 0.5) are 8729s, 3505s and 2656s, respectively. EPI2 with 4t = 0.04 (8 times larger
time stepsize) are in good agreement with RK4 but about 2.5 times faster. However, EPI2 solution with 4t = 0.5 is
quite deviated from RK4 solution. This is due to the way to approximate the entropy residual. 20 Note that in this
study, the temporal tendency of the entropy residual is approximated by the first-order Euler method, i.e., ∂S

∂t ≈
Sn−Sn−1

4t .
Thus, using different timestep sizes yields different artificial viscosity. The accuracy of the residual computation can
be enhanced by incorporating the second-order approximation such as backward differentiation formula, but this is
out of the scope of the paper.

5.4. Euler equations: shock problems

Exponential-DG methods are now tested for shock problems by considering benchmark examples in [78].

20Using high-order exponential integrators does not improve the solution quality unlike the isentropic vortex example in Figure 3.
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(a) EPI2 with 4tRK4 × 100

(b) EPI2 with 4tRK4 × 8

(c) RK4

Figure 11. Kelvin–Helmholtz instability: evolution of temperature for (a) EPI2 with dt = 0.5(= 4tRK4×100), (b) EPI2 with 4t = 0.04(= 4tRK4×8)
and (c) RK4 with 4t = 0.005(=: 4tRK4) at t = (50, 100) on a uniform mesh with Ne = 722 and k = 6. The temperature ranges from 0.49 to 1.01.

5.4.1. Riemann problem: case #4
This example develops four shocks. The initial condition with γ = 1.4 is defined to be

ρ = 1.1, u = 0, v = 0, p = 1.1 x > 0.5, y > 0.5,
ρ = 0.5065, u = 0.8939, v = 0, p = 0.35 x ≤ 0.5, y > 0.5,
ρ = 1.1, u = 0.8939, v = 0.8939, p = 1.1 x ≤ 0.5, y ≤ 0.5,
ρ = 0.5065, u = 0, v = 0.8939, p = 0.35 x > 0.5, y ≤ 0.5

on Ω = (0, 1)2. The control parameters of the entropy viscosity are cmax = 0.1 and cE = 1.
We conduct the numerical simulation with EPI2 and RK4 methods for t ∈ [0, 0.24] with k = 3 and Ne = 5000 in

Figure 12. We take 4tRK4 = 0.0004 for RK4 and 4t = 0.004(= 4tRK4 × 10) for EPI2. In general, EPI2 solution is
comparable with RK4 counterpart. With 10 times larger time stepsize, EPI2 (taking 324s) is 4 times faster than RK4
(taking 1366s).
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Figure 12. Riemann problem: case #4: density field of (a) EPI2 with 4t = 0.002(= 4tRK4 × 10) and (b) RK4 with 4tRK4 = 0.0002 at t = 0.25 on a
uniform mesh with Ne = 5000 and k = 3. The density ranges from 0.5 to 1.9.

5.4.2. Riemann problem: case #12
This example develops two contact waves and two shocks. The initial condition with γ = 1.4 is given as

ρ = 0.5313, u = 0, v = 0, p = 0.4 x > 0.5, y > 0.5,
ρ = 1.0, u = 0.7276, v = 0, p = 1 x ≤ 0.5, y > 0.5,
ρ = 0.8, u = 0, v = 0, p = 1 x ≤ 0.5, y ≤ 0.5,
ρ = 1.0, u = 0, v = 0.7276, p = 1 x > 0.5, y ≤ 0.5

on Ω = (0, 1)2. The control parameters of the entropy viscosity are cmax = 0.05 and cE = 0.5.
We conduct the numerical simulation for t ∈ [0, 0.24] with k = 3 and Ne = 5000 in Figure 13. We take 4tRK4 =

0.0004 for RK4 and 4t = 0.004(= 4tRK4×10 for EPI2. The wallclock times of RK4 and EPI2 are 1051.0s and 327.5s,
respectively. EPI2, with 10 times larger time stepsize, is about 3 times faster than RK4, and produces the comparable
solution to RK4 counterpart.

Figure 14 shows the viscosity fields of EPI2 and RK4. As mentioned in [62], the viscosity becomes strong in the
shocks, whereas weak in the rest including contact discontinuities. As expected, we also see that the magnitude of
the viscosities for EPI2 and RK4 are different due to the approximation of the entropy residual. Also, the entropy
viscosity method does not completely remove the Gibbs phenomenon associated with high-order spatial discretizaton
for shock problems. A further study is needed to handle the issue by incorporating several limiters.

6. Conclusions

In this paper, we have developed a Exponential DG framework. This is done by splitting the governing differential
operator into linear and nonlinear parts to which we apply DG spatial discretization. In particular, we construct the
linear part by linearization aiming to absorb the stiffness in the system. Since the linear-nonlinear decomposition
is done on continuous level, we can avoid taking derivatives of nonsmooth functions possibly resulting from both
spatial and time discretizations. The resulting semi-discrete system is then intetegrated with exponential integrators.
Our proposed approach aims to i) circumvent the stringent timestep size arising from explicit integrators; ii) support
high-order accuracy in both space and time; iii) outperform over IMEX DG methods with no preconditioner; iv) be
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Figure 13. Riemann problem: case #12: density field of (a) EPI2 with 4t = 0.004(= 4tRK4 × 10) and (b) RK4 with 4tRK4 = 0.0004 at t = 0.24 on
a uniform mesh with Ne = 5000 and k = 3. The density ranges from 0.5 to 1.7.
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Figure 14. Riemann problem: case #12: viscosity field of (a) EPI2 with 4t = 0.004(= 4tRK4 × 10) and (b) RK4 with 4tRK4 = 0.0004 at t = 0.24
on a uniform mesh with Ne = 5000 and k = 3. The viscosity ranges from 0 to 0.0035.

comparable to explicit RKDG methods for stiff problems; v) be scalable in a modern massively parallel computing
architecture. We present a detailed stability and convergence analyses for the Burgers equation using the exponential
Euler DG scheme.

Numerical results (for Burgers equation and Euler equations) have shown that while explicit RKDG methods
suffer from restricted timestep sizes due to numerical stability, Exponential DG framework supports a wide range of
Courant numbers. We numerically observe that the proposed methods achieve the high-order temporal and spatial
convergence rates. We also see that Exponential DG is more economical than IMEX DG in the isentropic vortex

30



S. Kang and T. Bui-Thanh / Computer Methods in Applied Mechanics and Engineering 00 (2021) 1–33 31

example on both uniform and non-uniform meshes. For the Euler systems on the non-uniform mesh, Exponential
DG is comparable to explicit RKDG. Moreover, for the shock problems, EPI2 solutions become 3 times faster than
RK4 solutions when artificial viscosity is employed. This is because the diffusion term becomes a dominant source
to restrict the timestep size of the explicit methods in the shock problems. For all cases, if relaxing the accuracy is
allowed, while time stepsize beyond the maximum stable time stepsize for explicit RKDG is needed, Exponential DG
can be faster than the explicit RKDG.

As have been demonstrated, our proposed framework can exploit current and future parallel computing systems to
solve large scale problems. The key explored in the proposed methods do not require a linear solve matrix-free Krylov-
based matrix exponential computations and the DG compact communication stencil. Indeed, we have numerically
shown that Exponential DG methods have favorable strong scaling up to 40K cores and weak scaling for 16K cores for
the Euler isentropic vortex example. Ongoing work is to extend the approach to various partial differential equations
and to scale it beyond hundreds of thousands cores.

Appendix A. Local discontinuous Galerkin methods for viscous Burgers equation

We have seen that suboptimal convergence rates for odd orders in Table 1, Table 2 and Table 4. This is related to
the use of central fluxes in the diffusion term. To improve a spatial convergence rate, we employ local discontinuous
Galerkin methods (LDG) [72]. That is, we define the numerical flux u∗∗ in (11a) and q∗∗ in (12a) by

u∗∗ = {{u}} − [[u]] β, q∗∗ = {{q}} +
[[
q
]]
β,

where we take β = 0.5. 21 Indeed, we numerically observe that the spatial convergence rates increase to k + 1 for
odd orders in the case with the time-independent smooth solution as shown in Table A.12. We also see that the spatial
convergence rates for odd orders are improved up to 0.45 compared with central flux for time-dependent problems in
Table A.13 and Table A.14. The spatial convergence results are encouraging, thus, we will consider to incorporate
LDG methods for developing Naiver–Stokes models in the future.
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Table 6. Isentropic vortex translation in two dimensions: time convergence study on a nonuniform mesh. The computational domain is discretized
with Ne = 256 and k = 16. The error is measured at T = 1.

k = 16 Cr
ρ ρu ρE wc [s]error order error order error order

RK2
0.45 6.126E-11 - 1.378E-10 - 3.539E-11 - 1491.5
0.30 6.127E-11 -0.000 1.368E-10 0.018 3.533E-11 0.004 2213.5
0.15 6.127E-11 0.000 1.366E-10 0.002 3.531E-11 0.001 4457.2

RK3 0.75 6.127E-11 - 1.366E-10 - 3.530E-11 - 1044.9
0.37 6.127E-11 0.000 1.366E-10 0.000 3.530E-11 0.000 2033.4

RK4 1.50 6.127E-11 - 1.366E-10 - 3.530E-11 - 655.7
1.12 6.127E-11 0.000 1.366E-10 0.000 3.530E-11 0.000 873.2

EPI2

299.42 8.115E-08 - 9.834E-08 - 2.858E-07 - 277.3
149.71 2.031E-08 1.998 2.437E-08 2.013 7.153E-08 1.998 285.3
74.85 5.079E-09 2.000 6.080E-09 2.003 1.788E-08 2.000 287.4
29.94 8.093E-10 2.004 1.068E-09 1.898 2.840E-09 2.008 289.3
14.97 2.035E-10 1.992 7.288E-10 0.551 6.848E-10 2.052 327.7
7.49 8.002E-11 1.347 1.495E-10 2.285 1.823E-10 1.909 438.2
2.99 6.188E-11 0.281 1.369E-10 0.096 4.527E-11 1.520 1086.7
1.50 6.132E-11 0.013 1.366E-10 0.003 3.596E-11 0.332 2174.3

EXPRB32

299.42 6.324E-10 - 9.584E-10 - 2.218E-09 - 586.5
149.71 9.847E-11 2.683 1.865E-10 2.361 2.733E-10 3.021 572.8
74.85 6.206E-11 0.666 2.220E-10 -0.251 5.044E-11 2.438 588.4
29.94 6.129E-11 0.014 4.297E-10 -0.721 4.666E-11 0.085 599.2
14.97 6.133E-11 -0.001 8.731E-10 -1.023 7.249E-11 -0.636 656.4
7.49 6.127E-11 0.001 1.366E-10 2.676 3.530E-11 1.038 870.0

EXPRB42

299.42 9.660E-11 - 1.735E-10 - 2.707E-10 - 480.6
149.71 6.142E-11 0.653 1.505E-10 0.205 3.940E-11 2.780 481.6
74.85 6.127E-11 0.004 2.662E-10 -0.823 3.946E-11 -0.002 496.9
29.94 6.128E-11 -0.000 4.534E-10 -0.581 4.786E-11 -0.211 491.3
14.97 6.133E-11 -0.001 9.018E-10 -0.992 7.430E-11 -0.635 534.8

ARS232

299.42 1.806E-08 - 1.920E-06 - 1.503E-07 - 3931.8
149.71 4.127E-09 2.130 4.803E-07 1.999 3.718E-08 2.015 1889.8
74.85 1.005E-09 2.038 1.201E-07 2.000 9.266E-09 2.005 1234.8
29.94 1.707E-10 1.935 1.922E-08 2.000 1.481E-09 2.001 1092.3
14.97 7.321E-11 1.221 4.806E-09 2.000 3.707E-10 1.998 1256.3
7.49 6.214E-11 0.237 1.209E-09 1.991 9.790E-11 1.921 1751.2

ARS443

299.42 1.049E-08 - 1.183E-07 - 3.750E-08 - 28140.8
149.71 1.302E-09 3.010 1.484E-08 2.995 4.702E-09 2.996 11017.5
74.85 1.714E-10 2.925 1.863E-09 2.994 5.787E-10 3.022 5219.5
29.94 6.235E-11 1.104 1.812E-10 2.543 5.088E-11 2.653 3327.1
14.97 6.131E-11 0.024 1.374E-10 0.399 3.562E-11 0.514 3319.0

34



S. Kang and T. Bui-Thanh / Computer Methods in Applied Mechanics and Engineering 00 (2021) 1–33 35

Table 7. Isentropic vortex translation in two dimensions: time convergence study on a nonuniform mesh. The computational domain is discretized
with Ne = 256 and k = 8. The error is measured at t = 1.

k = 8 Cr
ρ ρu ρE wc [s]error order error order error order

RK2 0.63 1.533E-06 - 2.884E-06 - 7.851E-07 - 155.8
0.33 1.533E-06 0.000 2.884E-06 0.000 7.851E-07 0.000 306.7

RK3 0.81 1.533E-06 - 2.884E-06 - 7.851E-07 - 150.0
0.41 1.533E-06 0.000 2.884E-06 0.000 7.851E-07 0.000 294.3

RK4
1.36 1.533E-06 - 2.884E-06 - 7.851E-07 - 101.9
0.90 1.533E-06 0.000 2.884E-06 0.000 7.851E-07 0.000 152.5
0.45 1.533E-06 0.000 2.884E-06 0.000 7.851E-07 0.000 307.7

EPI2

90.42 1.536E-06 - 2.887E-06 - 8.365E-07 - 45.2
45.21 1.533E-06 0.003 2.885E-06 0.001 7.907E-07 0.081 49.2
22.60 1.534E-06 -0.001 2.893E-06 -0.004 7.938E-07 -0.006 52.6
9.04 1.533E-06 0.001 2.884E-06 0.003 7.849E-07 0.012 59.9
4.52 1.533E-06 0.000 2.884E-06 0.000 7.851E-07 -0.000 113.3

EXPRB32

90.42 1.533E-06 - 2.884E-06 - 7.862E-07 - 91.4
45.21 1.533E-06 0.000 2.884E-06 0.000 7.862E-07 0.000 94.9
22.60 1.533E-06 0.000 2.884E-06 0.000 7.866E-07 -0.001 99.5
9.04 1.533E-06 0.000 2.884E-06 0.000 7.849E-07 0.002 111.0
4.52 1.533E-06 0.000 2.884E-06 0.000 7.851E-07 -0.000 221.3

EXPRB42

90.42 1.533E-06 - 2.884E-06 - 7.861E-07 - 77.9
45.21 1.533E-06 0.000 2.884E-06 0.000 7.859E-07 0.000 75.7
22.60 1.533E-06 0.000 2.884E-06 0.000 7.870E-07 -0.002 81.4
9.04 1.533E-06 0.000 2.884E-06 0.000 7.849E-07 0.003 110.9
4.52 1.533E-06 0.000 2.884E-06 0.000 7.851E-07 -0.000 221.1

ARS232

90.42 1.515E-06 - 3.469E-06 - 7.177E-07 - 343.7
45.21 1.530E-06 -0.014 2.925E-06 0.246 7.612E-07 -0.085 248.6
22.60 1.533E-06 -0.003 2.887E-06 0.019 7.803E-07 -0.036 205.9
9.04 1.533E-06 0.000 2.884E-06 0.001 7.852E-07 -0.007 226.1
4.52 1.533E-06 0.000 2.884E-06 0.000 7.851E-07 0.000 317.7

ARS443

90.42 1.512E-06 - 2.882E-06 - 6.233E-07 - 1616.1
45.21 1.526E-06 -0.013 2.881E-06 0.001 6.762E-07 -0.118 1050.9
22.60 1.531E-06 -0.005 2.883E-06 -0.001 7.490E-07 -0.148 765.3
9.04 1.533E-06 -0.001 2.884E-06 -0.000 7.816E-07 -0.046 684.7
4.52 1.533E-06 0.000 2.884E-06 0.000 7.846E-07 -0.006 797.5
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Table 8. Spatial convergence for the isentropic vortex translation in two dimensions. We use a sequence of nested meshes with Ne =

{256, 1024, 4096, 16384} for k = {1, 2, 3, 4}. We use EXPRB42 scheme with 4t = 0.01 and measure the errors at t = 1.

h
ρ ρu ρE

error order error order error order

k = 1

1.00 9.942E-04 - 7.389E-03 - 1.595E-03 -
0.50 7.662E-04 0.376 1.999E-03 1.886 5.181E-04 1.622
0.25 4.344E-04 0.819 5.312E-04 1.912 2.049E-04 1.338
0.12 2.312E-04 0.910 1.383E-04 1.941 8.571E-05 1.257

k = 2

1.00 2.909E-04 - 7.382E-04 - 4.423E-04 -
0.50 1.201E-04 1.276 1.418E-04 2.380 4.965E-05 3.155
0.25 3.235E-05 1.892 1.570E-05 3.175 7.084E-06 2.809
0.12 5.787E-06 2.483 2.084E-06 2.913 1.257E-06 2.495

k = 3

1.00 1.286E-04 - 2.343E-04 - 6.979E-05 -
0.50 1.972E-05 2.705 1.541E-05 3.926 5.605E-06 3.638
0.25 2.123E-06 3.215 9.655E-07 3.996 4.450E-07 3.655
0.12 2.112E-07 3.329 6.849E-08 3.817 4.386E-08 3.343

k = 4

1.00 2.686E-05 - 3.180E-05 - 1.311E-05 -
0.50 2.067E-06 3.700 1.283E-06 4.631 4.381E-07 4.903
0.25 9.543E-08 4.437 4.294E-08 4.901 1.333E-08 5.039
0.12 4.540E-09 4.394 1.458E-09 4.880 5.294E-10 4.654

Table 9. Isentropic vortex translation in three dimensions: strong scaling results for EPI2 with Cr = 16.49 (4t = 0.125) and Cr = 32.98 (4t = 0.25)
are performed with Ne = 51200 and k = 6 up to t = 1.

#cores Ne/core
4t = 0.125 4t = 0.25

Wallclock [s] Efficiency Wallclock [s] Efficiency
32 1600 2346 100 4151 100
64 800 1199 97.8 2121 97.9

128 400 607.7 96.5 1255 82.7
256 200 306.9 95.6 605.7 85.7
512 100 237.3 61.8 419.1 61.9

1024 50 122.7 59.7 219.1 59.2
2048 25 61.33 59.5 118.0 55.0
4096 12.5 33.72 54.4 63.12 51.4
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Table 10. Weak scaling study with fixed Courant numbers for the isentropic vortex translation with three dimensional Euler equations. The
exponential DG approach consists of EPI2, Ne = {1, 8, 64, 512, 4096} × 100, and k = 8. Each curve presents the wallclock time per timestep for
various number of degrees-of-freedom with a fixed Courant number. The numbers on each of the curves are the number of cores.

Cr Ne 4t Final time Wallclock [s] NKrylov

5.59

4 0.2 0.8 15.3 103
32 0.1 0.4 17.8 90
256 0.05 0.2 24.4 81

2048 0.025 0.1 27.8 81
16384 0.0125 0.05 29.3 82

22.4

4 0.2 0.8 50.4 397
32 0.1 0.4 89.9 381

256 0.05 0.2 85.8 355
2048 0.025 0.1 86.9 348

16384 0.0125 0.05 93.1 358

55.9

4 0.2 0.8 130.9 1024
32 0.1 0.4 240.4 1023

256 0.05 0.2 246.2 1024
2048 0.025 0.1 248.8 1024

16384 0.0125 0.05 342.2 1408

Table 11. Weak scaling study with fixed dt for the isentropic vortex translation with three dimensional Euler equations. The exponential DG
approach uses EPI2, Ne = {100, 800, 6400, 51200}, and k = 8.The corresponding number of processors are np = {4, 32, 256, 2048}, respectively, so
that each processor has 25 elements for each case.

4t
Ne = 100 Ne = 800 Ne = 6400 Ne = 51200

Cr NKrylov Cr NKrylov Cr NKrylov Cr NKrylov

0.025 0.7 40 1.4 40 2.8 45 5.6 81
0.25 7.0 128 14.0 233 27.9. 448 55.9 1024
2.5 69.8 1536 139.7 3072 279.32 5120 558.7 10112
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Table A.12. A time-independent manufactured solution for the viscous Burgers equation: a spatial convergence study using Ne = {20, 40, 80, 160}
elements is conducted with central (C) flux and local discontinous Galkerin (LDG) flux for diffusion term. Lax-Friedrich (LF) flux is used for
advective term. EXPRB32 scheme with 4t = 5 × 10−5 is used as the time integrator.

h
LF (C) LF (LDG)

error order error order

k = 1

1/20 4.093E-04 − 4.415E-04 −

1/40 1.223E-04 1.743 1.112E-04 1.990
1/80 4.494E-05 1.445 2.782E-05 1.998

1/160 1.937E-05 1.214 6.959E-06 1.999

k = 2

1/20 2.630E-06 − 3.586E-06 −

1/40 3.210E-07 3.034 4.635E-07 2.952
1/80 3.966E-08 3.017 5.847E-08 2.987

1/160 4.916E-09 3.012 7.364E-09 2.989

k = 3

1/20 1.431E-07 − 6.185E-08 −

1/40 1.709E-08 3.066 3.713E-09 4.058
1/80 2.003E-09 3.093 2.270E-10 4.032

1/160 2.251E-10 3.154 1.404E-11 4.015

k = 4

1/20 5.946E-10 − 8.475E-10 −

1/40 1.827E-11 5.024 2.593E-11 5.030
1/80 5.626E-13 5.021 8.027E-13 5.014

1/160 1.730E-14 5.023 2.498E-14 5.006
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Table A.13. A smooth solution for the viscous Burgers equation: a spatial convergence study using Ne = {20, 40, 80, 160} elements is conducted
with central (C) flux and local discontinous Galkerin (LDG) flux for diffusion term. Lax-Friedrich (LF) flux is used for advective term. EXPRB32
scheme with 4t = 5 × 10−5 as the time integrator.

h
LF (C) LF (LDG)

error order error order

k = 1

1/20 7.061E-03 − 7.234E-03 −

1/40 2.080E-03 1.764 1.901E-03 1.928
1/80 6.731E-04 1.627 4.928E-04 1.948

1/160 2.432E-04 1.469 1.297E-04 1.926

k = 2

1/20 2.511E-04 − 3.203E-04 −

1/40 2.741E-05 3.196 4.035E-05 2.989
1/80 3.317E-06 3.047 5.065E-06 2.994

1/160 4.112E-07 3.012 6.346E-07 2.997

k = 3

1/20 2.574E-05 − 2.508E-05 −

1/40 2.883E-06 3.158 2.321E-06 3.434
1/80 3.414E-07 3.078 2.172E-07 3.417

1/160 4.108E-08 3.055 2.002E-08 3.439

k = 4

1/20 9.225E-07 − 1.494E-06 −

1/40 2.529E-08 5.189 8.022E-08 4.219
1/80 7.135E-10 5.147 4.164E-09 4.268

1/160 2.188E-11 5.027 1.990E-10 4.387

Table A.14. A shock solution to the viscous Burgers equation with a spatial convergence study using Ne = {40, 80, 160} elements is conducted
with central (C) flux and local discontinous Galkerin (LDG) flux for diffusion term. Lax-Friedrich (LF) flux is used for advective term. EXPRB32
scheme with 4t = 5 × 10−5 as the time integrator. We take the RK4 solution (with 4t = 5 × 10−7, k = 10, and Ne = 160) as a reference solution to
measure the L2 error at t = 1.

h
LF (C) LF (LDG)

error order error order

k = 1
1/40 1.295E-02 − 1.517E-02 −

1/80 5.558E-03 1.221 5.960E-03 1.347
1/160 2.001E-03 1.474 1.838E-03 1.698

k = 2
1/40 4.223E-03 − 4.273E-03 −

1/80 6.722E-04 2.651 7.225E-04 2.564
1/160 9.852E-05 2.770 1.029E-04 2.812

k = 3
1/40 9.976E-04 − 1.159E-03 −

1/80 1.435E-04 2.797 1.672E-04 2.793
1/160 1.224E-05 3.551 1.065E-05 3.972

k = 4
1/40 3.606E-04 − 4.442E-04 −

1/80 2.728E-05 3.724 2.256E-05 4.299
1/160 8.084E-07 5.077 7.304E-07 4.949
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