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Abstract

As droughts become more frequent and more severe under anthropogenic climate change, 

water stress due to diminished subsurface supplies may threaten the health and function of semi-

arid riparian woodlands, which are assumed to be largely groundwater dependent. To better 

support the management of riparian woodlands under changing climatic conditions, it is essential 

to understand the sensitivity of riparian woodlands to depth to groundwater (DTG) across space 

and time. In this study, we examined six stands of riparian woodland along 28 km of the Santa 

Clara River in southern California. Combining remote sensing data of fractional land cover, 

based on spectral mixture analysis, with historical groundwater data, we assessed changes in 

riparian woodland health in response to DTG during the unprecedented 2012-2019 California 
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drought. We observed a coherent “brown wave” of tree mortality, characterized by decreases in 

healthy vegetation cover and increases in dead/woody vegetation cover, which progressed 

downstream through the Santa Clara River corridor between 2012 and 2016. We also found 

consistent, significant relationships between DTG and healthy vegetation cover, and separately 

between DTG and dead/woody vegetation cover, indicating that woodland health deteriorated in 

a predictable fashion as the water table declined at different sites and different times. Based on 

these findings, we conclude that the brown wave of vegetation dieback was likely caused by 

local changes in DTG associated with the propagation of precipitation deficits into a depleted 

shallow alluvial aquifer. These factors suggest that semi-arid riparian woodlands are strongly 

dependent on shallow groundwater availability, which is in turn sensitive to climate forcing.

1. Introduction

Riparian trees often rely on shallow groundwater to meet their water needs, so water table 

declines during increasingly frequent and severe drought conditions threaten the health and 

function of riparian woodlands (Diffenbaugh et al., 2015; Meixner et al., 2016; Rohde et al., 

2017; Williams et al., 2020). Though many studies have examined the sensitivity of individual 

species to drought and local groundwater availability (e.g., Stromberg et al., 1996; Singer et al., 

2014; Sargeant and Singer, 2016; Petit et al., 2018; Skiadaresis et al., 2021), few studies have 

considered the landscape-scale responses of riparian woodlands to drought across space and 

time, and even fewer in relation to direct groundwater measurements (but see Rohde et al., 

2021). These knowledge gaps are relevant to dryland watersheds around the globe, where 

convergent pressures on water resources from agriculture, urban development, and climate 

change are increasing (Taylor et al., 2013; Rohde et al., 2017; Rateb et al., 2020).
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Riparian woodlands are ecologically important plant communities that provide habitat for 

sensitive animal species (Kus, 1998; Merritt and Bateman, 2012; Bateman and Merritt, 2020), 

promote plant biodiversity (Stromberg et al., 1996; Stromberg and Merritt, 2016), and contain a 

disproportionately large amount of the biomass in dryland watersheds (Swetnam et al., 2017; 

Matzek et al., 2018; Dybala et al., 2019). They form in convergent topographic zones, which 

serve as hydrologic refugia and are somewhat buffered from normal climatic variability (Brooks 

et al., 2015; Hoylman et al., 2019). Riparian tree species are typically phreatophytes, which have 

taproot systems that extend up to 5 m down to the capillary fringe above perennial water tables 

(Stromberg, 2013; Rohde et al., 2017). Phreatophytes are extremely sensitive to water 

availability at all life stages (Mahoney and Rood, 1998; Stella and Battles, 2010; Singer et al., 

2013). If their root systems lose contact with the alluvial water table, phreatophytes commonly 

exhibit stomatal closure, leaf abscission, branch dieback, and xylem cavitation (Scott et al., 1999; 

Leffler et al., 2000; Rood et al., 2000). Prolonged water table declines, for example during 

extreme drought conditions, can lead to whole-plant mortality if a tree’s hydraulic system cannot 

maintain a favorable water balance as groundwater supply declines (Scott et al., 1999; Cooper et 

al., 2003).

From 2012 to 2019, California experienced the most severe drought in its paleoclimate 

record (Robeson et al., 2015). Meteorological drought conditions first emerged in northern 

California around January 2012 and then spread southward (U.S. Drought Monitor, 2021). The 

meteorological drought propagated into hydrological (Van Loon, 2015) and ecological (Kovach 

et al., 2019; Munson et al., 2020) droughts in dryland regions throughout southern California 

(Okin et al., 2018; Dong et al., 2019; Warter et al., 2020). Record low precipitation and record 

high temperatures (Diffenbaugh et al., 2015) substantially reduced soil moisture (Warter et al., 
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2020), streamflow (Konrad, 2019), groundwater storage (Thomas et al., 2017), and upland 

canopy water content (Asner et al., 2016) throughout the region. While the drought is known to 

have generated mass die-off of upland trees (e.g., Goulden and Bales, 2019), there is a notable 

lack of quantitative assessments of drought-induced mortality of lowland riparian phreatophytes, 

particularly within dryland regions.  Documenting large-scale ecological die-offs, particularly in 

ecosystems that are buffered from climate impacts by their hydrogeomorphic setting, is 

important for identifying global signals of forests being pushed past their tolerance for 

environmental change (Allen et al., 2010; Anderegg et al., 2013; Allen et al., 2015; McDowell et 

al., 2016). 

Remote sensing is a powerful tool for analyzing the sensitivity of vegetation health to 

changes in the water availability, but few remote sensing studies have quantified the sensitivity 

of groundwater-dependent ecosystems to water table declines (e.g., Barron et al., 2014; 

Huntington et al., 2016). In this study, we combined time series remote sensing imagery with 

data from groundwater monitoring wells to investigate the fate and trajectory of riparian 

woodlands in southern California during the unprecedented 2012-2019 California drought. We 

used spectral mixture analysis to discriminate between healthy and dead vegetation cover in 

remote sensing imagery. We then analyzed the relationship between vegetation cover and depth 

to groundwater (DTG) in a range of woodland stands that represent a gradient of groundwater 

availability. These data enabled us to characterize the trajectory and the spatial progression of 

drought impacts across an ecologically and economically important river corridor, and to 

monitor the initial drought recovery in the riparian woodlands.
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2. Methods

2.1 Study Area

The Santa Clara River flows 132 km from the Mojave Desert to the Pacific Ocean and 

has a catchment covering 4,200 km2 in Ventura and Los Angeles Counties, California (Beller et 

al., 2016). Mean annual precipitation ranges from 200–800 mm, with the wettest regions at high 

elevations (catchment relief 2,700 m) and near the coast (Downs et al., 2013). The basin has a 

Mediterranean climate with cool, wet winters and warm, dry summers, and many reaches of the 

Santa Clara River are ephemeral (i.e., flowing only part of most years). Winter rainfall produces 

flashy flows, and more than half of the annual discharge occurs during a small number of 

precipitation events (Downs et al., 2013; Beller et al., 2016). The river corridor has been subject 

to extensive urban and agricultural development over the last century, but the main stem of the 

river has not been severely controlled by engineering structures, making it the largest river in 

southern California that is mostly free flowing (Downs et al., 2013; Beller et al., 2016). 

The native riparian woodlands along the Santa Clara River are discontinuous, existing at 

locations where groundwater is close to the surface under normal conditions (Beller et al., 2016). 

The riparian woodlands are dominated by phreatophytic tree and shrub species, including 

Populus fremontii, P. trichocarpa, Salix laevigata, S. lasiolepis, and S. exigua. The roots for 

these species are typically concentrated in the top 2 m of the soil profile (Table 1; TNC, 2021), 

although phreatophytes exhibit a considerable degree of plasticity in rooting depth in response to 

local groundwater conditions (Shafroth et al., 2000; Rood et al., 2011). 
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Table 1: Rooting depths for tree and shrub species that are prevalent in riparian woodlands in the Santa 
Clara River floodplain.

Species Rooting Depth (m) Source
Populus fremontii 1.4 (max) Shafroth et al. (2000)a

Populus fremontii 2.1+ (max) Zimmerman (1969)
Populus fremontii 0.8 (max) Rood et al. (2011)
Populus trichocarpa 0.65 (max) Rood et al. (2011)
Salix laevigata 1+ (max) Stover et al. (2018)
Salix exigua 0.51 (min) USDA (2021)
Baccharis salicifolia 0.3 (min) USDA (2021)
Baccharis salicifolia 0.6 (max) Gary (1963); Stromberg (2013)
a Study that measured three-year-old saplings

2.2 Study Sites

We identified six stands of Populus-Salix riparian woodlands in the lower Santa Clara 

River floodplain that are thought to be supported by perennial shallow aquifers (Figure 1; Beller 

et al., 2016). The woodlands range in area from 7-120 ha, and they represent the most substantial 

woodlands that were present before the 2012-2019 drought (Beller et al., 2016). The study sites 

are distinguished by transitions in hydrology or river management that facilitate shallow 

groundwater depths. Site boundaries were manually digitized in GIS software using 2012 aerial 

imagery acquired by the National Agricultural Imagery Program (USDA, 2012). 
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Figure 1. Location of the study sites in the floodplain of the Santa Clara River, California, USA. The 
river flows from east to west.

2.3 Depth to Groundwater

We calculated DTG at each of the study sites using measurements from nearby wells 

acquired from the California Department of Water Resources 

(https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer), United Water Conservation 

District, and the County of Ventura. We also used unpublished data from shallow monitoring 

wells that were installed by members of our team at two of the study sites (Tables S1-S2; Figures 

S1-S4). The shallow wells are ~3 m deep and were installed between 2015 and 2020. They are 

manually measured twice per month. We used two different protocols to calculate DTG at the 

study sites, depending on the well data availability for each site (see supplementary material). 

2.4 Remote Sensing Data Acquisition and Processing

Spectral mixture analysis (SMA) was used to map the fractional cover of green 

vegetation (GV), non-photosynthetic vegetation (NPV; i.e., dead and woody plant material), and 
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soil in the Santa Clara River floodplain (Smith et al., 1990; Roberts et al., 1998). The SMA 

model was calibrated using data from the Airborne Visible/Infrared Imaging Spectrometer 

(Green et al., 1998) and in situ spectra (see supplementary material). We analyzed Landsat 

images (spatial resolution of 30 m) acquired every June between 2011 and 2018. The June 2011 

image provides a pre-drought baseline (U.S. Drought Monitor, 2021). The June 2012-2018 

images capture all of the growing seasons during the drought. Data from 2012 were omitted 

because of the scan line corrector failure on Landsat 7 (Markham et al., 2004). The SMA model 

generated estimates of the fractional cover of GV, NPV, and soil within each pixel for each 

image. While the SMA method did not classify species cover, qualitative observations of species 

cover were made during field visits to the sites between 2017 and 2021, and by manually 

examining high resolution aerial imagery captured before, during, and after the drought.

2.5 Analysis of Drought Effects on Vegetation

The fractional cover data and the groundwater data were used to conduct two analyses. 

First, the GV and NPV fractions were used to examine the spatial and temporal trends of 

woodland mortality along the river corridor. Mortality was indicated by a decrease in GV 

fractions and an increase in NPV fractions (Huang et al., 2019). Significant differences in land 

cover fractions for each study site across time were identified using a Kruskal-Wallis test and a 

post-hoc Dunn’s test with a Holm adjustment (α = 0.05). 

Second, we quantified the sensitivity of GV and NPV fractions to DTG. The median GV 

and NPV fractions were calculated for each study site and each year. We used the DTG 

measurements that were closest in time to the Landsat image acquisition dates. The difference 

between the well measurement dates and the image acquisition dates ranged from 0 days to 36 

days with a median of 13 days. The sensitivity analyses were divided into two distinct time 
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spans. The first time span was limited to data from 2011 to 2016, representing the period when 

the drought became progressively more severe, as evidenced by increasing DTG, below-average 

soil moisture (Warter et al., 2020), and decreasing SPEI. The 2011-2016 observations were 

pooled across sites and years, and mixed effect logistic-binomial regression (Gelman and Hill, 

2006) was used to determine if DTG is a significant predictor of GV and NPV fractions. Site was 

included as a random effect in the models to account for local influences on the vegetation 

unrelated to groundwater (see supplementary material). 

The second time span was limited to data from 2017 and 2018, which represents a period 

of early drought recovery in the riparian woodlands. Substantial rainfall in the winter of 2016-

2017 reduced DTG and increased soil moisture in the region (Warter et al., 2020). As a result, 

the ecological drought began to subside, even though meteorological drought conditions 

persisted until 2019. The sensitivity of an ecological response to an environmental driver often 

differs based on the direction of the change. Differing sensitivities during decline and recovery 

phases can result in hysteresis in ecological systems (Beisner et al., 2003; Andersen et al., 2009). 

The 2017-2018 data were used to determine if there were differences in the sensitivity to DTG 

during the early stages of drought recovery as compared to the drought onset years of 2011-2016. 

The observed land cover fractions from 2017 and 2018 were compared to the values predicted by 

the regression model that was calibrated using data from 2011-2016. This indicated whether 

sensitivity to DTG differed during the two phases. Mean absolute error (MAE) was used to 

quantify the difference between the observed and predicted values during the two phases.
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3. Results

3.1 Drought Timeline

The Santa Clara River watershed experienced moderate drought conditions throughout 

much of 2012 and consistently experienced severe drought conditions starting in June 2013 

(Figure 2; U.S. Drought Monitor, 2021). Rainfall in the winter of 2016-2017 provided some 

drought relief, but severe drought conditions returned in 2018 (U.S. Drought Monitor, 2021). 

Persistent rainfall from a series of atmospheric rivers (Sumargo et al., 2021) ended the drought in 

the winter of 2018-2019. Standardized Precipitation Evaporation Index (Vincente-Serrano et al., 

2010) values generally remained positive after February 2019, and the U.S. Drought Monitor, a 

composite drought index, also indicated that the drought ended in February 2019.

Figure 2. Mean monthly precipitation (black bars) and 12-month Standardized Precipitation Evaporation 
Index (SPEI; red line) in the Santa Clara River watershed (Abatzoglou, 2013; Huntington et al., 2017). 
The red shading indicates periods of drought according to the U.S. Drought Monitor (2021). The date 
labels indicate January 1 of each year.

3.2 Groundwater Level Changes During and After Drought

In 2011, maximum DTG at the six study sites ranged from 1.1 to 4.4 m. The DTG 

increased (i.e., the water table declined) at all six study sites between 2011 and 2016, but there 

was substantial spatial and temporal variability in DTG along the river corridor (Figure 3; Table 

S3). The changes in DTG were mediated by the interaction between climatic forcings and basin 

geomorphology. The Fillmore Ciénega site sits at the boundary of the Piru and Filmore 

groundwater subbasins (Figure 1), where the deposits of permeable alluvium become 
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11

substantially narrower and shallower and force groundwater to the surface (Mann, 1958; 

Reichard et al., 1999). Surface flow between the Piru and Fillmore subbasins decreased between 

2011 and 2013 and stopped between 2014 and 2016 (UWCD, 2017). As a result, shallow lateral 

recharge of the Fillmore subbasin was likely reduced or eliminated during the peak of the 

drought. Maximum DTG at Fillmore Ciénega and Sespe Confluence increased by 11.9 m and 

12.7 m, respectively, between 2011 and 2016 as groundwater in the Fillmore subbasin was 

depleted. At the downstream end of the Fillmore subbasin, groundwater elevations were more 

stable. The East Grove site sits at the boundary of the Fillmore and Santa Paula subbasins, where 

constrictions in the deposits of unconsolidated alluvium again force groundwater to the surface 

(Reichard et al., 1999). Maximum DTG at the East Grove site only increased by 0.9 m between 

2011 and 2016. Surface flow at the boundary between the Fillmore and Santa Paula subbasins 

did not approach zero until 2016 (UWCD, 2017). The Hanson, Freeman Upstream, and Freeman 

Downstream sites are located in the Santa Paula subbasin, where the shallow aquifer sits on top 

of impermeable deposits that prevent groundwater from percolating into deeper aquifers 

(Reichard et al., 1999; Hanson et al., 2003).  Groundwater elevations in the Santa Paula subbasin 

remained relatively stable throughout the drought. At Hanson, Freeman Upstream, and Freeman 

Downstream, maximum DTG increased by 3.5 m, 3.0 m, and 5.0 m (respectively) between 2011 

and 2016. In 2016, maximum DTG at the six sites ranged from 2.0 to 17.1 m. Substantial rainfall 

in the winter of 2016-2017 reversed groundwater trends and caused DTG to decrease (i.e., the 

water table rose) at all study sites, but some sites did not approach pre-drought DTG until 2019.
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12

Figure 3. Mean DTG from 2011 to 2020 for each study site. The vertical bars represent the interquartile 
range of DTG for sites where DTG was measured by a single shallow well (see supplementary material). 
The dashed vertical lines indicate the remote sensing image acquisition dates. The date labels indicate 
January 1 of each year.

3.3 Vegetation Cover Change During Drought

Several riparian woodlands exhibited large decreases in GV cover and large increases in 

NPV cover from 2011 to 2016, indicating widespread drought-induced mortality (Figure 4, 
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Tables S4-S6). Fillmore Ciénega and Sespe Confluence exhibited the largest decreases in GV 

fractions and the largest increases in NPV fractions. Sites farther downstream were less affected 

by the drought and experienced smaller changes in land cover. 

Figure 4. Box plots of green vegetation (GV) fractions and non-photosynthetic vegetation (NPV) 
fractions for each study site from 2011 to 2018. Note that 2012 data are omitted (see text). 

There was a distinct spatial pattern and temporal trend of woodland mortality that 

occurred both within and across study sites in the Fillmore subbasin (Figure 5). Widespread 

mortality first occurred in 2013 at the most upstream study site, Fillmore Ciénega (Figure S5). A 

wave of mortality then traveled 13 km west (downstream) across the Fillmore subbasin between 

2013 and 2016. The wave of mortality can be seen within and across individual study sites, and it 

is especially distinct within the Fillmore Ciénega site. By 2015, the wave of mortality reached 

the area immediately upstream of the East Grove site (Figure S6). By 2016, all three areas had 

experienced widespread mortality, and the Fillmore Ciénega and Sespe Confluence sites 

experienced near-complete mortality of their riparian woodlands. Sites in the downstream Santa 

Paula subbasin were relatively stable throughout the drought, and no distinct spatial pattern of 

woodland mortality in the Santa Paula subbasin was observed (Figure S7).
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Figure 5. Remote sensing model outputs of floodplain land cover in the Fillmore subbasin from 2011 to 
2016. The study sites are outlined in white, and the white arrows indicate areas experiencing notable 
dieback in particular years. The river flows from right to left. A comparable figure for the Hanson, 
Freeman Upstream, and Freeman Downstream sites is included in the supplementary material (Figure 
S7).
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3.4 Groundwater Declines and Plant Health

DTG was significant predictor of the GV and NPV fractions for 2011-2016 (Table 2). 

There was a significant negative relationship between DTG and the GV fractions (p < 0.001; 

Figure 6a), indicating that green vegetation decreased as the water table declined. There was also 

a significant positive relationship between DTG and the NPV fractions (p < 0.001; Figure 6b), 

indicating that dead and woody plant cover increased as the water table declined. Taken together, 

these remote sensing metrics indicate leaf shedding, increased litter, exposed branches, and, in 

some cases, complete mortality as the drought progressed (Adams et al., 1995).

Table 2: Mixed effect logistic-binomial regression results for models assessing the relationship between 
DTG and GV fractions and between DTG and NPV fractions from 2011 to 2016. Site was included as a 
random effect in the models. The values in parentheses indicate the standard errors of the regression 
coefficients.

GV NPV
FIXED EFFECTS   
Intercept 1.02 *** -2.09 ***

(0.16) (0.28)
DTG -0.24 *** 0.33 ***

(0.01) (0.01)

RANDOM EFFECTS   
Std. Dev Std. Dev

Site (Intercept) 0.38 0.68

MODEL   
N 30 30
N (site) 6 6
Pseudo-R2 (fixed) 0.16 0.24
Pseudo-R2 (total) 0.19 0.33
  *** p < 0.001
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Figure 6. Scatterplots of mean DTG and median GV fractions (a) or median NPV fractions (b) from 2011 
to 2016. The lines represent the modeled fixed effect of DTG on GV fractions (a,c) and NPV fractions 
(b,c).

3.5 Site-based Differences in Early Drought Recovery

We also compared the 2017-2018 GV fractions to the values that were predicted by the 

regression model, which was calibrated using data from 2011-2016. This revealed whether the 

sensitivity to DTG differed during the decline and recovery phases. The 2017-2018 GV fractions 

for Fillmore Ciénega deviated substantially from the values predicted by the model (decline 

MAE = 0.08; recovery MAE = 0.28). Fillmore Ciénega demonstrated a clear hysteresis signal, 

whereby groundwater rose by over 7 m (i.e., a reduced DTG), but there was only a modest 

increase in GV fractions (Figure 7). The lack of response to rising groundwater can be explained 

by dead vegetation covering the site. The DTG at Sespe Confluence remained relatively deep in 

2017 and 2018, and the GV fractions did not deviate substantially from the values predicted by 
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the model (decline MAE = 0.05; recovery MAE = 0.02). The modest increase in GV fractions is 

likely due to the invasion of Arundo donax after the widespread mortality of native 

phreatophytes, which is a common consequence of drought conditions affecting native plants 

(e.g., Merritt and Poff, 2010). Field observations indicate that A. donax now dominates the site 

(Figure S8). The other sites, where the native woodlands remained largely intact (e.g., Figure 

S9), exhibited consistent sensitivity to DTG during the decline (MAE = 0.02-0.07) and recovery 

(MAE = 0.03-0.09) phases. 

Figure 7. Scatterplot of DTG and median GV fractions from 2011 to 2018. The line segments connect 
observations from consecutive years. The observations from 2011 are generally in the upper left and the 
observations from 2018 are generally in the lower right. Observations from 2012 are omitted (see text). 
The dashed line represents the modeled fixed effect of DTG on GV fractions for data from 2011-2016.

4. Discussion

During the 2012-2019 California drought, riparian woodland mortality in the Santa Clara 

River floodplain followed a coherent spatial pattern and temporal trend that occurred across the 

river corridor and mirrored the apparent trend in DTG. Mortality first occurred at the upstream 

side of the Fillmore Ciénega site as flow between the Piru and Fillmore subbasins decreased 
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around 2013. A distinct “brown wave” of mortality then traveled west (i.e., upstream to 

downstream) between 2013 and 2016 as groundwater in the Fillmore subbasin was progressively 

depleted. The brown wave stopped just upstream of the East Grove site, where groundwater 

elevations were relatively stable and surface flow was maintained throughout most of the 

drought (UWCD, 2017). The brown wave reveals that riparian phreatophytes are extremely 

sensitive to DTG over both space and time, and that localized DTG trends play an important role 

in determining the fate of riparian woodlands during extreme drought conditions. Few studies 

have quantified the sensitivity of groundwater-dependent ecosystems to DTG (e.g., Lite and 

Stromberg, 2005), and only recently has it become possible to conduct spatially and temporally 

extensive analyses at a corridor scale (e.g., Huntington et al., 2016). Such analyses were 

historically limited by the available remote sensing data, which were too expensive (e.g., Zhu et 

al., 2019) or too coarse to resolve narrow stands of riparian woodlands (Dufour et al., 2012). 

Likewise, groundwater records have only recently been aggregated and made available in 

comprehensive data sets. 

Groundwater serves as a crucial link in the chain of drought propagation from 

meteorological drying to plant responses by riparian phreatophytes. The 2012-2019 California 

drought was caused by record low precipitation and record high temperatures, which reduced 

water inputs to ecosystems and increased evaporative demand (Diffenbaugh et al., 2015; Warter 

et al., 2020). The drought generally reduced groundwater recharge (Harlow and Hagedorn, 2018) 

and caused groundwater elevations to decline, but subsurface water fluxes are spatially variable 

and are mediated by several factors including agricultural water use and runoff, river regulation, 

soil texture, and bedrock geology. During drought conditions, the hydrological drivers of 

groundwater elevation interact with meteorological trends to produce distinct spatial patterns and 
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temporal trends of groundwater change (Jensco and McGlynn, 2011; Harlow and Hagedorn, 

2018).

The spatiotemporal variability in groundwater elevation caused varying physiological 

responses in the riparian woodlands in the Santa Clara River floodplain. When water tables 

decline by several meters, the root systems of riparian trees can lose access to groundwater 

(Stromberg, 2013). Riparian tree species are poorly adapted to drought and can experience 

catastrophic xylem cavitation at relatively high (i.e., close to zero) vapor pressure deficits (Fichot 

et al., 2015). To mitigate and prevent this often-irreversible change, trees undergo a series of 

physiological changes to maintain a favorable water balance in the face of declining water supply 

(Rood et al., 2003). Within minutes, they can regulate stomatal conductance to limit 

transpirational water loss (Horton et al., 2001; Amlin and Rood, 2003; Pivovaroff et al., 2018). 

Leaf abscission and branch dieback, though detrimental to woody plants in the short term, can 

serve as long-term survival strategies that help trees reduce water demand and prevent the loss of 

xylem water conductance (Scott et al., 1999; Rood et al., 2000; Cooper et al., 2003). These 

physiological responses may not be adequate to mitigate water stress from large and sudden 

water table declines, which often cause hydraulic failure and whole-plant mortality (Scott et al., 

1999; Lite and Stromberg, 2005; Tai et al., 2018). 

The brown wave is likely an emergent property of individual plants responding to 

localized changes in DTG, as evidenced by the fine-scale changes in plant health and the strong 

statistical relationships between the land cover fractions and DTG. Few studies have examined 

the spatial evolution of riparian woodland responses to water table declines (but see Stromberg et 

al., 1996; Scott et al., 1999, 2000; Tai et al., 2018). The current understanding of phreatophyte 

sensitivity to DTG is largely derived from field measurements (e.g., Horton et al., 2001; Rood et 
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al., 2011), laboratory experiments (e.g., Leffler et al., 2000; Stella et al., 2010), and models based 

on phreatophyte physiology (e.g., Tai et al., 2018). These data have resulted in a conceptual 

model that suggests that there is a highly non-linear relationship between DTG and plant health, 

whereby plant health degrades rapidly when DTG increases beyond some critical threshold (e.g., 

Shafroth et al., 2000; Horton et al., 2001; Lite and Stromberg, 2005). In contrast with previous 

studies, our observations indicate that there is a mostly linear relationship between DTG and 

plant health at a stand scale when DTG is less than 10 m (i.e., Figure 6c). The difference in the 

shape of the observed relationships may indicate a scale dependence of the analysis. While many 

field and laboratory-based studies examine individual plants belonging to selected species, 

remote sensing data detects many plants belonging to many species within a pixel (Kibler et al., 

2019). The observed plants that compose riparian woodlands likely have varying structures, life 

histories, and tolerances for groundwater decline (Stromberg et al., 1996; Stromberg and Merritt, 

2016). Nonetheless, the observed sensitivity to absolute DTG and DTG change (Table S3) were 

generally consistent with previously reported values. At Fillmore Ciénega and Sespe Confluence, 

vegetation cover stopped changing as a function of DTG between 2015 and 2016, which may 

indicate a fundamental limit beyond which phreatophytes experience complete mortality and the 

health of the surviving non-phreatophytic vegetation becomes decoupled from DTG. The 

recovery of phreatophytes at these sites depends on the water table returning to shallow depths 

and seed sources for the germination of new seedlings (Stella et al., 2006).

5. Conclusion

The statistical analyses presented here provide some of the first robust estimates of the 

sensitivity of riparian woodlands to DTG. Our findings also reveal that DTG trends can be highly 
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variable during extreme drought conditions, even within the same river corridor, which can result 

in distinct spatial patterns and temporal trends of plant mortality in riparian woodlands. 

Quantifying the sensitivity of riparian ecosystems to groundwater change will become 

increasingly important as anthropogenic climate change increases the frequency and severity of 

drought conditions across the western United States (Diffenbaugh et al., 2015; Rohde et al., 

2017; Williams et al., 2020). The widespread mortality observed during the brown wave mirrors 

the dynamics of mass die-offs that have occurred in upland forest ecosystems (e.g., Allen et al., 

2010; Goulden and Bales, 2019). Anthropogenic climate change, shifts in water availability, and 

other environmental forcings are overwhelming the resiliency of ecosystems that are typically 

buffered from climatic variability (Allen et al., 2015). Quantifying the sensitivity of both upland 

and lowland forests to hydroclimatic change will improve our ability to predict critical shifts in 

ecosystem structure and function in the coming decades.
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