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ABSTRACT:  With the rapid growth of visible-light photocatalysis, many experimental strategies for conducting photoreactions 
have emerged. Several commercial photoreactors have been suggested as potential standards, but their adoption may be limited by 
high cost. Herein, we report the development of a versatile, open-source photoreactor platform that may prove to be suitable for 
general adoption. The "Wisconsin Photoreactor Platform" (WPP) utilizes inexpensive components in a 3D-printed enclosure and 
employs widely available high-intensity LEDs as the photon source. Physical dimensions and other features of WPP reactors can be 
readily varied to accommodate specific experimental goals, and new designs can be easily shared to facilitate transferability among 
laboratories. WPP performance is evaluated using six previously described transformations driven by light of disparate wavelengths. 

Modern photocatalytic methods allow for formation of oth-
erwise inaccessible products under mild conditions.1 This capa-
bility has generated significant interest in the field of visible-
light photocatalysis2 and led many labs to explore incorporation 
of photocatalysis into their work.  

Photochemical transformations can be significantly affected 
by small changes in experimental configuration.3 The number 
of photons absorbed by the reaction mixture depends, in part, 
on the intensity and emission profile of the light source as well 
as the physical surroundings of the reaction vessel.4 These fac-
tors make careful apparatus design and documentation essential 
for reproducible photoreaction outcomes and reliable reaction 
discovery. 

A variety of approaches have been used to deliver photons to 
reaction vessels, but no single, standardized approach has seen 
widespread adoption to date.4 Operational variation can hinder 
the reproduction of reported transformations, the description of 
which may include only minimal characterization of light 
source or description of experimental setup.4,5 Entry of new re-
searchers into this field and introduction of photoreactions into 
the chemistry curriculum should be facilitated by photoreactor 
platforms that enable accurate reproduction of the apparatus 
employed in a published study, facilitate apparatus customiza-
tion for new applications in photocatalysis, and streamline the 
documentation of apparatus modifications. The work reported 
here is intended to achieve these goals. 

Over the past few years, several commercial photoreactors 
designed to address problems outlined above have been re-
ported.3,5,6 More recently, an open-access 3D-printed enclosure 
for temperature-controlled photoreactions utilizing expensive 
commercial light emitting diode (LED) lamps was detailed by 
Schiel and coworkers.7 These reactors integrate a rigid enclo-
sure and exchangeable, high-power photon sources to improve 
reproducibility and reliability relative to ad hoc experimental 
setups. However, the adoption of these reactors as standards 
may be limited by their high cost. This problem is compounded 
by the significant cost of acquiring multiple proprietary photon 
sources when different emission profiles are required.8 

Here we describe the Wisconsin Photoreactor Platform 
(WPP), an economical source of high-performance photoreac-
tors that can be easily fabricated, readily modified and precisely 
documented (Figure 1). This platform provides reactors con-
structed from commercial components in a 3D-printed enclo-
sure. The WPP is designed around inexpensive surface-mount 
LEDs as the light source. All design files are open-source to 
maximize transferability. A specific reactor with bespoke phys-
ical parameters can be fabricated by an experimentalist with no 
prior experience in less than a day (instruction in supporting in-
formation). The WPP is modular and allows photoreactor capa-
bilities to be expanded by use of a well-established array of 
compatible electronic peripherals. These factors combine to 
provide a versatile architecture that could contribute to the 



 

standardization of photochemical protocols and enhance the 
discovery and optimization of new photochemical reactivity. 

 
Figure 1. 3D Cutaway view of the Wisconsin Photoreactor Plat-
form architecture with labeled components. Estimated component 
cost is in US dollars as of 2021. 

We viewed the photon source as the most important compo-
nent of the WPP. An ideal source would be limited to the wave-
length range necessary to drive an intended transformation. 
Sources that emit light in a narrow wavelength range minimize 
undesired heating and side reactions.9 Therefore, we were 
drawn to single-color LEDs rather than broadly emitting light 
sources, such as compact fluorescent lights (CFL) (Figure 2A). 
High-intensity LEDs with narrow emission profiles across the 
visible range are available in inexpensive commercial packages 
(Figure 2B-C). Access to defined but diverse photon sources is 
important for new reaction discovery, as demonstrated by re-
cent reports of red and near-infrared (NIR) light photocata-
lysts.10,11 Commercial high-intensity LEDs have seen use in 
several recent studies of photocatalysis.12 

Figure 2. (A) Comparison of emission spectra of 450 nm Cree, Inc. 
XT-E Royal Blue LED and ALZO Digital full spectrum CFL bulb. 
(B) Industry-standard LED star mounted with 450 nm Cree, Inc. 
XT-E LEDs. (C) Emission spectra of commercial LEDs purchased 
from manufacturers Cree, Inc., Luxeon and Inolux. 

A 3D-printed enclosure was designed to house a LED star 
and multiple reaction vials (Figure 3A). As shown in Figure 1, 
this enclosure is composed of a compact base, a reaction cham-
ber and a vial holder. These three components fit together rig-
idly, which ensures reproducibility of reaction vessel placement 
relative to the photon source. Chambers and vial holders with 
different physical parameters can be designed, printed and ex-
changed with one another, which allows the experimentalist to 
use a variety of vessels. These designs can be documented in 
research publications to facilitate transferability to other labor-
atories. We provide printable modules for various common re-
action vessels in the supporting information.  

Figure 3. (A) Assembled WPP device. B) Single and multiple re-
action configurations of a WPP device fitted with a 4 mL vial 
holder and reaction chamber module. (D) Illustration of WPP ex-
pandability using optional driver circuit boards. 

The vial holders we have designed can illuminate several vi-
als equally, for rapid screening of experimental variables, or a 
single vial, for greatest light exposure (Figure 3B). The photo-
reactor incorporates a commercial aluminum heatsink and low-
profile computer fan to cool the LED and reaction vessels. 
Standard lab stir plates can be used with the small-footprint 
WPP architecture. 

To support kinetics studies or screening of reaction condi-
tions, we designed a custom driver board to control operation 
of multiple WPP devices simultaneously. Reactors fitted with 
these boards can be connected in-series to a single power source 
and control unit (Figure 3C). The control unit can then "super-
vise" the light intensity and fan speed of each WPR via I2C, a 
commonly used protocol for communication among digital in-
tegrated circuits.13 If extended functionality is needed, any I2C-
compatible peripherals could be connected to the driver board 
for use with the WPP architecture. Many I2C-compatible de-
vices and sensors are commercially available, including ther-
mocouple adapters for temperature monitoring.14 For work not 
requiring such control and expandability, a standard 1000 mA 
LED driver can be used. A driver board offering control over 
light intensity using a simple potentiometer is described in the 
supporting information.  

Our intention is to make the WPP architecture suitable as an 
open standard, with specific reactors easily producible by any 
chemist. Toward that end, we have included our enclosure and 
electronics design files as well as detailed component sourcing  
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Figure 4. Time studies of six literature photochemical reactions illustrating performance of WPP platform relative to typical experimental 
setups. All reactions were conducted in 4 mL vials with ca. 1 to 2.5 mL of reaction volume. For exact conditions and procedures, see the 
supporting information. Yields were determined by 1H or 19F NMR analysis of crude reaction mixtures using mesitylene or trifluorotoluene 
as an internal standard. (*) The “WPP – 450 nm – Single Reaction” benchmark was conducted in a 4 °C refrigerator at 90% light intensity. 

and fabrication instructions in the supporting information. A 
“living” online repository to which users can contribute cus-
tom WPP modules is provided.15 3D-printers and 3D-printing 
services are readily available. We have found that the enclo-
sure can be fabricated using a variety of affordable 3D-print-
ers. Commercial small-scale printed circuit board fabrication 
is inexpensive and widely available. Our driver boards can be 
assembled quickly without specialized tools. These features 
should encourage adoption of the WPP. 

To establish the versatility and reliability of the WPP archi-
tecture relative to typical experimental setups, we applied this 
approach to six reactions from the recent photocatalysis liter-
ature that are driven by light of disparate wavelengths. Photo-
reaction apparatuses used for comparison were derived from 
setups reported in the literature (see supporting information). 
WPP device performance across both the single reaction and 
multiple reaction configurations shown in Figure 3B was eval-
uated. 

In presenting the results in Figures 4 and 5, we do not mean 
to imply that the WPP is the best way to conduct any particular 
photochemical reaction. Instead, we offer these data to 

suggest that use of the WPP platform is likely to provide good 
results for a wide range of photochemical transformations.  In 
addition, because the specifics of a WPP device can be easily 
varied and documented, results achieved with this approach 
can be readily reproduced in other laboratories. These features 
may be particularly useful for researchers seeking to initiate 
studies in this important field. 

The first "benchmark" process was the C-N cross-coupling 
of 4-bromobenzotrifluoroide and morpholine via the photoex-
citation of nickel-amine complexes with ultraviolet A (UVA) 
light, as described by Miyake et al. (Figure 4A).12a In both sin-
gle- and multiple-reaction configurations, a WPP device fitted 
with a 365 nm LED star decreased reaction time relative to a 
more conventional apparatus fashioned from a commercial 
UV light curing chamber.16 With the WPP approach, reaction 
completion was reached in 2 or 4 hours with 96% yield for the 
single- or multi-reaction configuration, respectively. The UV 
chamber achieved only 53% yield after 4 hours of illumina-
tion. 

Synthesis of 3,4-benzocoumarin using violet light and the 
vitamin photocatalysis strategy detailed by Gilmour et al. was 
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examined next (Figure 4B).12b Using a standard 400 nm LED 
strip reactor, based on the design of Stephenson et al.,17 we 
obtained < 5% yield after 8 hours of continuous illumination. 
In contrast, a WPP device with a 395 nm light source provided 
75% yield across single- and multi-reaction configurations af-
ter 8 hours, indicating the robust performance of the WPP ar-
chitecture in this transformation. The single-reaction configu-
ration achieved 72% yield after only 2 hours. 

Inspired by the recent report of Rovis et al. on the develop-
ment of NIR photocatalysts,11 we examined their Os-photo-
catalyzed trifluoromethylation of N-methyl-2-pyridone using 
a WPP device with a 730 nm LED star (Figure 4C). Both WPP 
configurations provided faster product formation than did a 
630 nm LED strip photoreactor, despite stronger absorption 
of the Os(tpy)2(PF6)2 photocatalyst at 630 nm.11 The trifluoro-
methylated product was generated in 48% yield with both 
WPP configurations after 2 hours of illumination, while the 
LED strip reactor provided 35% yield. 

We explored reactor efficacy with three blue light photore-
actions previously used by MacMillan et al. to benchmark a 
commercial photoreactor.3 We first tested our platform’s per-
formance in catalyzing the trifluoromethylation of 1,3,5-tri-
methoxybenzene using the method reported by Li and 
coworkers (Figured 4D).18 A WPP device with 450 nm LEDs 
yielded product faster and in higher yield than did conven-
tional experimental setups involving a Kessil A160WE LED 
lamp, a 450 nm LED strip reactor or a CFL bulb. Six reactions 
of this type simultaneously carried out using a WPP device in 
the multiple reaction configuration exhibited a consistent re-
action profile, indicating the reliability of the WPP architec-
ture (Figure S22 in supporting information). The same trend 
was observed when the protocol of Stephenson et al. for tri-
fluoromethylation of 2-acetyl-N-Boc pyrrole was evaluated 
(Figure 4E).19 Finally, the metallophotoredox-catalyzed C-N 
cross coupling of bromobenzotrifluoride and morpholine of 
MacMillan et al. revealed a similar trend (Figure 4F).20 Across 
all three blue-light reactions, both WPP configurations offered 
superior performance relative to the conventional experi-
mental setups tested.  

Figure 5. Results of scale-up trials. Reactions conducted at indi-
cated scales using listed reaction vessel sizes. Yields were deter-
mined by 19F NMR analysis of crude reaction mixtures using tri-
fluorotoluene as an internal standard. 

As an additional test of architecture generality, we evalu-
ated WPP performance across a series of typical laboratory 
reaction scales (Figure 5). Using the photocatalytic trifluoro-
methylation of N-methyl-2-pyridone as a testbed, we con-
ducted reactions at 0.1, 0.3, 1.0 and 2.0 mmol scale in a WPP 
device fitted with a 730 nm LED star. Enclosure modules for 
each scale were designed to standardize reaction vessel place-
ment across all trials. In all cases, product was generated in 
ca. 50% yield after 2 hours. Increases in reaction scale up to 
20-fold relative to the initial 0.1 mmol trial reaction were ac-
commodated without loss of performance. 

We have developed an open-source photoreactor platform 
that enables rapid progress in cutting-edge photocatalysis re-
search and has a low barrier for adoption. The Wisconsin Pho-
toreactor Platform is inexpensive, adaptable and highly fea-
tured; therefore, the WPP should foster standardized experi-
mental protocols and reproducibility. We have demonstrated 
the favorable performance of WPP devices across a series of 
benchmark photoreactions using UVA, violet, NIR and blue 
light as well as in reaction scale-up. The WPP architecture 
meets the need for a standardized approach to experimental 
apparatus that is versatile, reliable, can be precisely docu-
mented and easily reproduced, and is economically accessible 
to a broad community of researchers. 
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