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Abstract. Localized collocation methods based on radial basis functions (RBFs) for elliptic
problems appear to be nonrobust in the presence of Neumann boundary conditions. In this paper,
we overcome this issue by formulating the RBF-generated finite difference method in a discrete
least squares setting instead. This allows us to prove high-order convergence under node refinement
and to numerically verify that the least squares formulation is more accurate and robust than the
collocation formulation. The implementation effort for the modified algorithm is comparable to that
for the collocation method.
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1. Introduction. Radial basis function—generated finite difference methods
(RBF-FD) generalize classical finite difference methods (FD) to scattered node set-
tings. However, while FD uses tensor products of one-dimensional (1D) derivative
approximations, RBF-FD directly computes multivariate approximations, which is
advantageous when differentiation is not aligned with a coordinate direction [14]. In
this paper, we generalize RBF-FD to a least squares setting (RBF-FD-LS), which
improves stability and accuracy.

RBF-FD is a meshfree method, which provides flexibility with respect to the ge-
ometry. In contrast to FD methods where an entire coordinate dimension is affected by
adaptive refinement, RBF-FD allows for coordinate independent local adaptivity [19].

The RBF-FD method was first introduced by Tolstykh in 2000 [30], and other
early papers include [28, 35]. The method is based on the idea that given scattered
nodes x; € R?, j = 1,...,n, in the neighborhood of a point z, we can create a
localized RBF approximation of the function u(z) using these “stencil points,”

n

> il — ;) = 3 eios(a),

j=1

(L1) e

where h is a measure of the internodal distance, ¢(r) is an RBF, and ¢; are unknown
coefficients. The interpolation conditions up(z;) = u(x;) lead to the linear system
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A

If we let ¢ = (c1,...,¢,)7 and uw = (u(xy),...,u(x,))?, we have that ¢ = A7 u. A
benefit of using RBF's is that for commonly used radial functions ¢(r) the matrix A is
guaranteed to be nonsingular for distinct node points [25, 18]. We can then proceed
to apply an operator to the approximation:

Lup(x) = Z c;Loj(x)

(1.3) = (Lo1(2),...,Lon(2)) c=a“ A7 u= (L (2),. .., LY, (2))u = whu,

al

where {1;(z)}}_, forms a cardinal basis for the local interpolant, i.e., ¥;(x;) = d;,
and w” are the stencil weights used for approximating the operator at the point .

In the early work on RBF-FD, infinitely smooth RBFs as the Gaussian RBF with
#(r) = exp(—7r?) or the multiquadric RBF with ¢(r) = v/1 + r2 were used. Lately,
there has been an increasing interest in using piecewise smooth polyharmonic splines
(PHS) with ¢(r) = |r|?*~%, k > 1. These are conditionally positive definite functions.
It was shown in [18] that by adding a polynomial basis of a degree corresponding to
the order of conditional positive definiteness and constraining the RBF coefficients
¢ to be orthogonal to this basis, we can guarantee strict positive definiteness of the
quadratic form ¢’ A¢, which is important when proving optimality results. The RBF
approximation then takes the form

n n

(1.4) up(r) = Zq%(l’) + Zujpj(fﬂ% chpk(ﬂfj) =0,

where the second equation is the constraint. The dimension m of the polynomial
space is given by the degree p of the polynomial as m = (p ;d), where d is the number
of spatial dimensions. In the Ph.D. thesis [2], and the subsequent papers [11, 12, 5, 4],
it was shown that it is beneficial to append a polynomial of a higher degree p than
strictly required. First, the convergence order of the method depends on p [3]. Second,
the behavior near boundaries is improved compared with classical polynomial-based
FD [4]. It was suggested in [12] that for a 2D problem, using a stencil size n = 2m
leads to a robust method. We use this strategy in this paper.

The interpolation relation corresponding to (1.2) for the polynomially augmented
case becomes

(1.5) wG) B (8) ’

where P;; = pj(z;) and p = (p1,...,pm)”. Similarly to (1.3), using (1.5) for the
coefficient vectors, we get the differentiation relation
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I

Lup(x) = (a£ pc) (C)

bL

(1.6) s (3)  BEA = (L1 (2) - Lo () = 0,

where p© = (Lpi(z),...,Lpm(z)). The PHS + polynomial RBF-FD method works
well, but there is some sensitivity to the node layout, e.g., P can become rank defi-
cient for Cartesian node layouts. Several authors have developed algorithms for high
quality scattered node generation [13, 27, 29, 32]. Another issue that we have encoun-
tered, and that was also noted in [17], is that errors become large at boundaries with
Neumann boundary conditions.

In this paper, we propose to improve the performance of the PHS + polynomial
RBF-FD method by introducing least squares approximation (oversampling) at the
PDE level. The least squares approach is also applicable to RBF-FD with other
types of basis functions. A related study is [15], where least squares approximation
is introduced in an RBF partition of unity method (RBF-PUM). It was shown that
least squares RBF-PUM is numerically stable under patch refinement, which is not
the case for collocation RBF-PUM. In [24] it is shown under quite general conditions
that given enough oversampling, a broad class of discretizations is uniformly stable.

A recent paper [10] analyzes a least squares RBF-FD method formulated over a
closed manifold. The formulation of the method is different from ours in that node
points and evaluation points are the same; the oversampling is determined by the
stencil size, and the theoretical analysis is performed using other strategies. Another
recent paper is [20], where RBF-FD and RBF-PUM are combined to construct a
method that is related but uses a different approximation strategy. Least squares
approximation has been used together with RBF-FD by other authors to address some
specific problems. In [17], an overdetermined linear system is formed by enforcing
both the PDE and the Dirichlet boundary conditions on the boundary, to improve
the stability of the method. In [22] the context is the closest point method applied
to a problem with a moving boundary in combination with RBF-FD. Enforcement of
both the PDE and the constant-along-a-normal property of the closest point solution
leads to an overdetermined system and a robust method.

The main contributions of this paper are

e the RBF-FD-LS algorithm that performs better than collocation-based RBF-
FD in terms of efficiency and stability for the tested PDE problems,
e error estimates that have been validated numerically for RBF-FD-LS approx-
imations when using the PHS + polynomial basis,
e a better understanding of the properties of RBF-FD approximations in terms
of a piecewise continuous trial space.
The outline of this paper is as follows. In section 2, we define a Poisson problem with
Dirichlet and Neumann boundary conditions. Then in section 3, we derive the RBF-
FD-LS method. Section 4 focuses on the properties of the RBF-FD trial space, and
then convergence and error estimates are derived in section 5. Numerical experiments
that validate the theoretical results are shown in section 6. The paper ends with final
remarks on the method and results in section 7.

2. The model problem. We build our understanding on a model problem, the
Poisson equation with Dirichlet and Neumann boundary data:
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Lou(y) = Au(y) = fa(y), yeQ,
(2.1) Lou(y) = u(y) = foly), y€o,
Liu(y) = Vu(y)-n = fily), ye€i.

We also use the notation €2; for the domain associated with £;. When working with
the PDE problem, it is practical to have a unified formulation. We reformulate the
system above as

(2.2) D(y)u(y) = F(y),

where the specific operator D(y) = L£; and right-hand-side function F(y) = f;(y)
depend on the location of y.

The regularity of the problem depends on the geometry of the domain €2 in combi-
nation with the given right-hand-side functions. In the problems that we solve in this
paper, the domain is either smooth or convex, and the data is chosen such that the
solution has bounded and continuous second derivatives. This ensures that the PDE
problem (2.1) is well-defined pointwise. In order to achieve high-order convergence,
we require the solution to have additional smoothness. We define the Lo-norm over a
domain {2 as ||u||%2(9) = Jo u(y)? dy and use the notation ||ul|r, ) = [lul|q for brevity.
We require u € WZ(Q) € WET(Q) = {u] || Dl|,) < oo, |a] < p+ 1}, where
p > 2 is the degree of the polynomial basis added to the PHS approximation (1.4)
that we use in the numerical method.

Since we solve the discretized problem in the least squares sense, it is convenient
for the theoretical results derived in section 5 to state also the continuous problem in
least squares form. We require @ € V C W2(Q) for the least squares solution, where
the subspace V is determined by the selected representation of the solution. Since
we only use the continuous problem at a conceptual level, we are not specifying the
subspace further. The squared Ls-norm of the residual of the PDE problem for a
function v € V is given by

()12, = /8 (Eools) = fo)* + /8 (Lyo(y) — f()* + /Q (Lav(y) — Fo(y)?

Q1

(23) = /8  (Eofo =) dy + /8 L)yt / (Lav —u))* dy,

Q

where f; = L;u was used in the second equality. If we introduce the bilinear form

ou Qv
2.4 a(u,v :/ uv dy + ——dy—&—/ AulAv dy,
24 (u:0) o o0, On on Q

and note that ||r(v)||%2(m = a(v — u,v — u), the least squares solution of (2.1) is

(2.5) 4 = argmina(v — u,v — u).
veV

Alternatively, using that the residual is a-orthogonal to V', we can write
(2.6) a(i—u,v)=0 Yoel.

When v € V, the least squares problem solves the PDE problem exactly, but in
general for a numerical approximation, u and @ reside in different subspaces, leading
to a nonzero residual.
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Fi1G. 1. The black curve represents the domain boundary 0S2. The pale-red dots distributed over
Q are the points in the node set X. The black dots are in each case the node points belonging to
the stencil centered at the red point. The evaluation points in the node set Y are shown in the right
subfigure as blue dots. Square markers indicate which evaluation points select this particular stencil
for evaluating uyp, .

3. Formulation of RBF-FD-LS in practice. We start with generating a node
set X = {z;}2_, that covers the domain 2, on which we solve the PDE problem (2.2).
It is beneficial for the approximation quality if the node distance is nearly uniform
or varies smoothly over the domain. We associate each xj with a stencil and denote
the n points (including xj) in the local neighborhood of xj that contribute to the
stencil by Xx. An example of a global node set and a stencil is given in the left part
of Figure 1.

To evaluate the RBF-FD approximation at a point y € , we need a stencil
selection method. In our algorithm we choose the stencil associated with the point
x) that is closest to y. That is,

(3.1) k(y) = argmin [y — z].

A practical issue is that there are always points that are equally close to two or
more stencils. Therefore we also need to break the tie, such that each y is uniquely
associated with one stencil. We then use (1.6) to write down the global RBF-FD
approximation to the solution of the PDE problem evaluated at the point y as

(3.2)  un(y) = (bf”ﬁ,:l)m un(Xe) = (V5 W), - 0EW)) un(Xi) = wiPun(Xy),

where the subscript or superscript k& = k(y) indicates quantities computed in the
stencil associated with x and where up,(X%) is a column vector with uj evaluated at
the local node set. The expression for the action of a differential operator D(y) on
the global RBF approximation uy, evaluated at the point y, follows from (3.2):

(3.3) D(y)un(y) = (D@)EEW), - ... DW)VE®Y)) un(Xi) = wp P un(X5,).-

We note that the local matrices A, can be reused for all points y that select the same
stencil, and for all operators.

To solve the PDE problem (2.2), we sample the approximation (3.3) and the PDE
data F(y) at a global node set Y = {y;}}, that has to contain nodes in €, at 9,
and at 99;. An example of an evaluation node set Y is shown in the right part of
Figure 1. We construct a sparse global linear system

(3.4) Du(Y, X)un(X) = F(Y),
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where row i contains the equation for D(y;)un(y;) = F(y;) and the corresponding
weights from (3.3) are entered into the columns corresponding to the global indices
of the nodes in Xj. In the same way, we form the relation

(3.5) un(Y) = Ep(Y, X)un(X),

using weights from (3.2). If the number of evaluation points M > N, both Dy (Y, X)
and Fj (Y, X) are rectangular M x N matrices. In [31] we provide MATLAB code to
generate rectangular RBF-FD matrices such as Ep (Y, X) or Dy (Y, X).

In the discretized PDE problem, uy(X) is the vector of unknowns, and we formally
write the least squares solution of the linear system as

(3.6) un(X) = D (V. X) F(Y),

where the N x M matrix D} (Y, X) = (DI D},) "' DT is the pseudoinverse of Dy (Y, X).
To evaluate the solution at Y we add the step (3.5) to get

(3.7) un(Y) = Ep(Y,X) Dy (Y, X) F(Y).

The overdetermined linear system (3.4) can also be formulated as a discrete residual
minimization problem. We define the residual

(3.5) H(Y) = DalY; X)un (X) — F(Y).
Then the solution (3.6) minimizes ||r(Y)||3, and it also holds that
(3.9) DE (Y. X)r(Y) = 0,

due to the orthogonality property of the least squares residual.

The collocation RBF-FD method, where Y = X, is a special case of the derivation
above, where the stencil selected for v, = xj is always k, D:L'(X,X) = D;l(X,X),
and Ep(X, X) = I. This leads to

(3.10)
r(X) = Dp(X, X)un(X) — F(X) = Di(X, X)(D; 1 (X, X)F (X)) - F(X) = 0.

In the discrete minimization of the residual (3.8), each equation has the same
weight. This may cause problems with convergence to the PDE solution under node
refinement. We start by introducing a weighted discrete fo-norm that corresponds to
the continuous Lo-norm with the integral replaced by a discrete quadrature formula.
The error in this approximation is further discussed in subsection 4.4. We leave place
holders §; for additional balancing of the different parts of the residual and discuss
these further in subsection 5.4. Let a domain ) be discretized by M points y;,
i=1,...,M. Then

M
1]
(3.11) (1, 0) gy (1) = Z vi)y  ullZ, ) = (uw)e @),

where |Q| = [, 1dy. We denote the number of evaluation points that discretize the
operator £; in (2.1) by M; and note that if the evaluation points are quasi uniform
with node distance h,, then for d > 1

|0Q0| 7 09| T 1
12 = -
(3 ) hy = co ( My “a M, - Mo ’

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/20/21 to 134.88.252.51. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

A LEAST SQUARES RBF-FD METHOD A1447
where ¢y ~ ¢; ~ co ~ 1. Scaling the evaluation matrix as Ej, = (%)%Eh leads to

2] . -
(3.13)  lunly o = S lan(O)IE = | B (I3 = wn (X)7 B Bawn (X).

For Dy, we scale according to the location of y such that D, = diag(3(Y))Dj,, where

N[

d—1
(52D 80 ~ hy7 B, ye o,

d—1
(3.14) B =g (52) 5 ~ m7 B, yeow,
() 8 ~ hig yeo

\
2
and, similarly, we let F(y) = B(y)F(y). For the scaled residual #(Y), noting that

D (Y, X)un(X) = D(Y)up(Y) and F(Y) = D(Y)u(Y), we get

N

N[

173 = 1 Da(Y, X)un(X) = FY)[I3 = [B(Y)DY)(un(Y) — u(Y))l3
(3.15) =Bl Lo(un — w7, 00, + BiIL1(un — w700, + B3I1L2(un — w7, q)-

Comparing with the residual of the continuous problem (2.3) and the continuous
bilinear form (2.4), we introduce the discrete bilinear form

Ou Ov
(3.16) an(u,v) = B2 () 1, 000) T B3 ( ) + B2 (Au, Av)y, (o) -
(90

on’ On
So far, we have assumed that the Dirichlet boundary conditions are enforced in the
least squares sense. It has been noted, e.g., in [23], that when Dirichlet conditions
are imposed strongly, the overall accuracy is improved. Assuming that there are node
points Xpn, C X that discretize the Dirichlet boundary, we let X=X \ Xaq, and
up(Xo0a,) = 0. Then we rewrite the discretized least squares PDE problem (3.4) as

(817)  Da(Y,X)un(X) = F(Y) — Du(Y, Xon, Jul(Xoa,) = F(Y),

where u9 (Xaq,) = fo(Xaq,) is a subset of the Dirichlet boundary data. Note that uy,
is in general nonzero at the Dirichlet boundary between the data points. We denote
the trial space containing all functions of the form (3.2) by V}, and we denote the
subspace with zero Dirichlet data by V,’. The solution to the original problem is
given by uy, + ul) € Vj,, where uj, € V). Similarly to (2.5), we write the least squares
problem on the form

(3.18) up, = argminay, (v, + uf, — u, vy +uf) — u),
vp eV

where V}, is the RBF-FD trial space. We have the orthogonality property
(3.19) ap (up +up —u,vp) =0 Vo, € V).

To see how this relates to the matrix-based description of the discrete least squares
problem, we introduce a (nonorthogonal) basis for V},. For each evaluation point y
there is a unique representation of uj in terms of the local cardinal functions (3.2).
We define global cardinal functions as

Wk, =z e Xy,
(3.20) V;(y) = { 0, :z:j ¢ Xk,
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where k = k(y) is the stencil selected for the evaluation point y, and i(5) is the local
index 4 in X of x; € X. We represent a nonhomogeneous function u, € Vj, as

N
(3.21) un(y) = Y un () ¥ o).

We note that Dy (y;, ;) = D(y;)¥;(y;) and Ep(yi, ;) = U, (y;). If we insert (3.21)
in (3.19) and let v, = U;, we get

N
(3.22) > an (W5, W)y (z;) = an(u, ¥y),
j=1

where aj,(V;, ¥;) is an element of the matrix Dy (Y, X)T Dy (Y, X), and ap(u, ¥;) is
an element of the right-hand-side vector Dy (Y, X)TF(Y) in the weighted normal
equations. The specific properties of the trial space and the cardinal basis functions
are further discussed in the following section.

4. The discontinuous trial space. The trial space V}, is a piecewise space.
The stencil selection algorithm that we use for the evaluation points results in the
domain being divided into Voronoi regions Vy around each stencil center point x; € X.
For an illustration of the Voronoi regions in two dimensions, see Figure 3. Locally we
have uj, € W2 (V) C WZ(Vk) due to the smoothness of the at least cubic PHS basis.

THEOREM 4.1. Assume that for each stencil underlying the trial space approzi-
mation, the node set Xy is unisolvent with respect to polynomials of degree p. Then
uply, = 0 if and only if up(Xy) = 0, and uplq = 0 if and only if up(X) = 0.

Proof. The results follow from the uniqueness of the local interpolation
problems. ]

A scattered node set is quantified by its fill distance h, measuring the radius of
the largest ball empty of nodes in €2, and its separation distance ¢, defined by

1
(4.1) h ilelgxrjr_leug(ﬂx zjllz 2 g =75 min ;- 2kl
zj,rEEX

The quality of a node set is related to ¢, = g/h < 1. The trial space approximation
improves with increasing node quality. In the following subsections, we derive the
results that we need for the error estimates in section 5, in terms of the fill distance
h of X, the fill distance h, of Y, and the node quality c,.

4.1. Interpolation errors. We define the interpolant Ij(u) € V}, of a function
u as Ip(u) = Z;V=1 u(z;)¥;. For a function u € WEZH(Q) that allows Taylor series
expansion around xj € Vi, we can assess the local interpolation error ey = Ij,(u) — u
and its derivatives using a result from [3]. When h is small enough, we have that

(4.2) i (In(u(y) = w®) | < ardh? ™ ulyriig,), v € Vi,

where £; is a differential operator of order i, [ulws ) = > a1z [D%ullL. (), and
oy, ; are constants that depend on the degree p of the polynomial basis, and on the
node quality ¢, of the stencil node set Xj. If the node layout is nonuniform, indicated
by a small value of ¢,, the interpolation problem has a large Lebesgue constant [26],
and consequently a larger interpolation error. The error is also larger for skewed
stencils that are evaluated close to their support boundary.
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Fic. 2. Left: A cardinal function generated with RBF-FD on a uniform node set in one dimen-
sion with stencil size n = 7. Right: A close-up to illustrate the discontinuities at the intersections
of the Voronoi regions.

When we use the interpolation error in the global error estimate, we take a norm
over the domain. If we let o; = || maxy, a5, we have

(4.3) 1£i(In(u) = w)lley() < Qi fulyp .

At the edge of a Voronoi region I, (u) takes slightly different values from each side.
That is, if u is not represented exactly in V3, the interpolant I;,(u) has a discontinuity
proportional to APT!, that goes to zero as the space is refined, along the edges of the
Voronoi regions. This means that the cardinal basis functions also have discontinuities
between Voronoi regions; see Figure 2.

4.2. Derivatives and norms in the trial space. We want to reuse the results
that we derive here also for the smoothed trial space defined in subsection 4.3. There-
fore, we define the local stencil-based functions vf (y) that together form vy, (cf. (3.2))
over the domains V,‘g D Vg, which represent an extension of the Voronoi regions Vi
with at most distance dh/2 in any direction, where § < 1. We have

n

(4.4) vh(y) =Y _uF()on(af), yeVy,

=1

where z¥ is the ith element of X;. When discussing bounds, we also use the following
explicit form derived in [3]:

(4.5) Vi (y) = va(Xi)T (I = WP)A™ 6 (y) + vn(Xi) " Wp(y),

where W = A~!P(PTA=1P)~1, the PHS vector ¢(y) = (¢¥(y), ..., o5 (y))T, and the
polynomial vector p(y) = (p1(y),...,pm(y))T.
THEOREM 4.2. Assume that we use cubic splines, that Theorem 4.1 holds, and

that the node quality cq, of X has a lower bound cwin, within each stencil node set, for

a sequence of discretizations with different fill distances h. We define § = y/h and

oF =" DR on(@h), where PF () = E(y), and we define a scaled Voronoi region

V). such that A V), when YyE V. Let Vi, =V, NQ; C R% and let f)k,i be the scaled
counterpart. Then

s, k k d;—|s|— s~k ~k
(4'6) (Dyvh’Dzvh)la(Vk,i) =h o)1l (Dﬂvh’D%Uh)Lz(f/k,i)

= hdﬁls‘7‘t‘vh(Xk)T¢’Z’f;Uh(Xk)’ Is], [t] <3,
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where \I/,“(q, r) = (D5, Dk thk) - Furthermore for |s|, [t],]q| < 3,

LoV i
S,k t
(47) max (D 'UhuDk'Uh)lQ(Vk i) < hd —d+2q—|s |—|t|Kstz k= ].,...,N,
on(Xi)[l2 > 0 1D 12, (v

HDqu'Lz(Vk)>O

where Kg’t’i is an upper bound for the largest eigenvalue Kpa.x of the generalized
eigenproblem \i’ZZ’U = K\TIZ:%U in the subspace of eigenvectors v € R™ that are in the

range of \TIIZ’%. Apart from s, t, and q, the bound K3* only depends on the lower
bound on the node quality cmin, the dimension d, the stencil size n, the polynomial
degree p, and the dimension of the polynomial space m.

Proof. For the scaling of the derivatives, we have Dswk( ) = Dstzk(y/h) =
h_ngﬁf(gj). The integration relation is ka y)dy = fv ~4 djj. For integration
along a boundary intersecting Vi, we instead get h%~!. To understand which factors
influence the bounds, we introduce the matrices A; and P;, which correspond to a
scaling of the nodes such that h = 1, and note that A = h3A4; and P = P, H, where
H is a diagonal matrix with elements h;; = hl*il, where p;(z) = 2%. Combining (4.5)
and the scaled matrices leads to

(4.8) WD uf (y) = vp(X3) T (I = Wi P AT D36 () + vn(Xx) " W1 DEp(§).

We note the right-hand side of (4.8) is scale invariant. The smallest eigenvalue of
the symmetric matrix A; can be bounded in terms of the separation distance g of
the stencil node set [34, Corollary 12.7]. When the nodes are scaled such that h = 1,
we have ¢ = ¢;,. That is, by choosing ¢ = cpin for the bound, it holds for all
discretizations in the sequence. All other matrices and vectors can be bounded in
terms of the stencil size n, the dimension of the polynomial basis m, the polynomial
degree p, and the derivative s. The bounds are larger for skewed stencils and grow with
p. An upper bound for the numerator of (4.7) can be obtained by directly bounding
the matrices and vectors in (4.8). The denominator is a mass matrix/stiffness matrix
for the local scaled cardinal functions. The lower bound is attained for the (non-
zero differentiated) cardinal function that has the smallest amount of mass in V.
The mass is smaller for skewed stencils as well as small Voronoi regions. The same
parameters, cyin, 1, M, p, determine the behavior. The local trial space functions are
twice continuously differentiable, while the third derivatives exist at all points, but
are piecewise continuous. 0

To investigate the relations between the discrete and continuous norms (cf. sub-
section 4.4), and the smoothed and discontinuous trial spaces (cf. subsection 4.3), we
introduce a semidiscrete bilinear form a*(v,v) using the norm

(’U v L*(Q)iz\/
ViNQ;

For a function v € W3 ||L;v|lLs) = [[£Liv]lLy), ¢ < 2, while for the trial space
functions, the semidiscrete norm eliminates the derivatives of the jumps.

(4.9) vl

4.3. The smoothed trial space. We introduce a smoothing operator S3 :
VY VO where VO = {v € WZ(Q)|v(y)|aa, = 0}, and let v = S9(v;). We never
construct the smoothed trial space function v in practice, but we use it as a tool
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in the error analysis (cf. section 5). First we define a set of overlapping patches by
extending each Voronoi region Vi a distance 6h/2, § < 1, in the normal direction at
each interior edge/face. To handle the Dirichlet boundary, we imagine a mirrored set
of Voronoi regions outside the boundary and let these extend dh into the domain. The
Voronoi regions along the inside of the Dirichlet boundary are assumed to conform to
the domain boundary where it intersects the region. As in the previous subsection,
we denote the extended Voronoi regions by V,‘g.

Then we construct a set of nonnegative, compactly supported, partition of unity
weight functions {wk}ivle ° where the extra Ny weight functions belong to the regions
outside the Dirichlet boundary. We let w;, € W2 () be supported on Vj. That is, the
weight functions overlap with a distance ¢h at all shared edges. Let V, % denote the
interior part of the Voronoi region, and let T'? =V, \ Vi 3. For the weight functions

it holds that ZkN;lNO wp=1LyeQ w(y)=1y¢€ Vk_é, Déwi(y) =0,y € Vk_g, and

(4.10) Dl < TEL s <3 pevi\v
where Gy = 1. The second derivatives of the weight functions are continuous, while
the third derivatives exist but are only piecewise continuous. For further details on
the construction of weight functions and their properties, see [33, 15].

We connect the exterior weight functions with zero functions, i.e., v}’f =0,k>N.
Then we combine the local interpolants and weight functions to get

N N
v=S(w) = wilvi () = D> wiWviy), yEW,
j=1 JEJK

where Jj contains the indices of the patches that overlap with V.

THEOREM 4.3. Assume that Theorem 4.2 holds, that § < 1 is fized for all dis-
cretizations, and that v = S3(vy,) for v, € V. Then the following relations hold:

(4.11) [onlZ ) < (1 +m0)10]17, 05

(4.12) a(v,v) < (14 nq)a* (vp,vp),

where the bounds ng and n, depend on §, the node quality cyin, the dimension d, the
stencil size n, the polynomial degree p, and the dimension of the polynomial space m.

Proof. 1f [lvp||L,vyy > 0, then [[v]|z,,) > 0 and HU||L2(V;5) > 0, and we use
Theorem 4.2 to bound the ratio

2 2 -
||”h||L2(rg) _ HU’L”LQ(rg) Uh(Xk)T‘I’i’f;vh(Xk)

2 - 2 = =71 >
La(Vvg?) ”vh”LQ(v;f‘) Uh(Xk)T‘I’k,—avh(Xk)

(4.13) k.0

[[o]

where the subscript k, +§ denotes integration over 1"2 and V, 9. Due to the size ratio of
the domains, 7y, o is approximately proportional to /(1 —J). The other dependencies
come from the basis functions (cf. Theorem 4.2). We sum the local results to get

N N
ol = D Ionl2, s + el gy < S+ mo)l0l2, o)
k=1 k=1

(4.14) < m]?X(l + 77k,0)||v||2L2(Q)-
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Setting 79 = maxy(1 + nx,0) gives the result (4.11). For the bilinear form, we start
from the restriction to a Voronoi region. We have

(4.15) ar(v,v) = a(v,v)|y, = ak(v,v)\vga + ak(v,v)|ps

= ak(vﬁ,v,ﬁ)\vga + ap Z wjvi;, Z wjvfl

JE€EJk J€Jk rs
k ok i j
= ak (v, vp)ly-s + > ar(wivh, Wivy)lrs vsavs
i€Jy jeJ)
< k k ayd T
< an(wf. o) + Q Y an(wyu wiv)lry v

J€Jk

where @ ~ 2¢ is the largest number of extended Voronoi regions that overlap at any
given point. We note that wk|v;§maﬂo = 0, we introduce the notation 1"27]. =T9N VJ‘»S

and Fi.j,l =In VJ‘? N 0y, and we use (4.10) to estimate one term in the sum in
(4.15) as

o - 4 ,
ak(wjvfﬂwjviﬂrgd = ||A(WJU2)HL2(FQJ) + ||8(iji)/an”L2(rgﬁjwl)

<2 (HAU;LH?L?(FZJ) + 2G§hf2||w;;||§2(rid) + G3h74||v;||§2(ri’j))
(4.16) +2 (100 /onl2 s )+ GIR 202 0 ) -

Then, we consider the quotient of the overlap terms in V) and the bilinear form
evaluated over the stencils surrounding and including Vy. We use Theorem 4.2 to
write the norms in (4.16) on scale invariant form:

j j T AA AV =11
Zje]k ak(WjUiijUiﬂrgJ < 2 ZjeJk Uh(Xj)T (qjk,j + 2G%\Pk,j + G%Wk,j) on(X;)
Yien W) T Y en(X)T (@JAA +hBEe 4 hsxizj.;g) un(X;)
T L1,L1 T 1,1
2h ZjeJk ”h(Xj)T (‘I’j,k,1 + G%‘I’j,k,l) o (X;)

(4.17) + 7 (FA.A < L1, 37 1,1
> e, vn(X5) (\Ijj7 +hSy +h\l’j,7o)”h(Xj)

b

where we extended the notation for ¥ to allow integration over I'; 5 as in (4.16) and
to include composite scalar operators, when the order is the same in each term. The
denominator is zero if the bilinear form is zero over all involved stencils. However,
with the PHS and polynomial basis functions that we use, this implies that the data is
sampled from a polynomial of degree < p in the nullspace of the Laplacian operator.
Due to the overlap of the stencils and polynomial unisolvency, the data is consistent
across stencils. The polynomial is represented exactly on all stencils and we have
ar(v,v) = ai(vF,vF). If the denominator is positive, similarly as in Theorem 4.2,
we can find an upper bound through the generalized eigenproblem on the extended
domain involving a Voronoi region and its neighbors. We denote the specific bound
for Vi by 1y, and combine (4.15) and (4.17), resulting in

N N
a(v,v) = Zak(v,v) < Z ar (v, vf) + 2Qnk.q Z a; (v}, o) | < (14 na)a” (vn, vn),
k=1 k=1 jE€Tk
where 7, = 2Q maxy, 1y o|Ji| provides the result (4.12). 1]
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4.4. Discrete norm errors. The discrete norm || - [|s,(q) on the set of nodes
Y = {y;}}, is an approximation of the continuous norm || - ||, («), and for the global
error estimate, we need to quantify the difference. We start from a generic integral:

|Q| M
(4.18) 7= [ s =553 1)+ ) =T+ ).
i=1

We want to use this relation for nontrivial domains, which means that we need to
consider scattered nodes. Even if the nodes are regular in parts of the domain, they
need to be somewhat irregular near the boundary. A very general error estimate for
scattered node quadrature is given by

(4.19) (N < Du(Y)V (S, ),

where Djs(Y) is the star discrepancy of the node set and V(f, ) is the Hardy—Krause
variation of f [1]. This has been shown for general domains and piecewise smooth
functions in [7, 8]. Both of the factors in (4.19) are hard to quantify in general.
However, the standard deviation of the error for an arbitrary node layout (Monte Carlo
integration) in practical cases decreases as O(1/v/M), and for a low discrepancy (quasi
random) node layout, it decreases as O((log M)?/M). Furthermore, for a (piecewise)
differentiable function, the total variation can be measured as V(f,Q) = [, |V f|dy.
Assuming that the evaluation node set Y is quasi uniform and that d is small enough
for (log M)? to be viewed as almost constant, we can estimate the error in the squared
norm of a function v € W3 as

(1.20) 191 0y = IOl | < Cote [ 19Ny,

where d; is the dimensionality of 2;. To apply this estimate to the trial space function
it is easiest to apply it locally to each Voronoi region. The number of points in each
region is then small, but we get a statistical averaging through the sum.

THEOREM 4.4. If Theorem 4.2 holds and hy is chosen according to (4.26) for a
relative integration error tolerance T < 1, then

(4.21) v (Y)lley0) < (1 + 7)lonll o)

(4.22) a”(vp,vp) <

an(vn,vp).

(1-7)
Proof. We use Theorem 4.2 for the gradients

(4.23)
| 19Uk ldy = 207 Laekl, Cavklv,, = B2 o (6T HT M, ()
Vi,i

and then again for the relative errors when |[vp|z,(v,) > 0 and aj ,(v,v) > 0 to get

o lonll2, ) = 0w ()2, 0

hd
20 lK|VMI|7
lonlZ, 0, R
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2
. S (12wl o, — 1£0 D)1, )]
: 2
Zi:o Hﬂcz‘vhH%z(Vmi)

pe on(X0)T (BT AHA g tn BT s BT v (X

B h U}L(Xk)T (\i/kA’A + h\i/ill’ﬂl + h3\i/£:é) U}L(Xk)

hd
<20, (}Z/KlAVA,A S NG hz_lthAvu,o) .

The first coefficient is the critical one, so if we choose

Th
(4.26) hy < ,
20 max (KI\TVLIU’ K\AVAI,IAI)
then the relative error is in both cases bounded by 7 locally and globally. 0

5. Convergence and error estimates for RBF-FD-LS. In this section, we
derive stability, convergence, and error estimates for the RBF-FD-LS method. When
solving the least squares problem numerically in the form (3.6), we have not expe-
rienced practical problems with well-posedness. However, from the theoretical per-
spective it simplifies the analysis to have the Dirichlet boundary conditions imposed
strongly as in (3.17), which means that the error is zero at the node set Xpq,. When
performing the analysis, we assume that the weights 8; = 1, i« = 0, 1, 2, in (3.14).
Scaling is discussed separately in subsection 5.4. Before stating the global error esti-
mate, we prove coercivity for the continuous bilinear form in a homogeneous space,
and then relate the discrete bilinear form to the continuous bilinear form.

5.1. Coercivity of the continuous bilinear form in a homogeneous space.
We investigate the coercivity of the continuous bilinear form (2.4) for functions v €
VO = {v e Wi(Q)|v(y)|sn,—oy- Given the smoothness assumptions on the domain
Q and the function v, a Poincaré—Friedrich inequality holds with the boundary data
given on some part of the boundary [6]. This can be seen if the inequality is shown
using integration along paths from points on the Dirichlet boundary to points in the
domain.

(5.1) Il < CF (Ivli3a, +IVolld) = CRIVUE,  ve Wy (Q).
We also need a trace inequality that relates the solution on (any part of) the bound-

ary to the solution in the interior. The following inequality [9, Theorem 1.6.6], [16,
Theorem A.4] holds for domains with Lipschitz or smooth boundary:

1
(5:2) [lvl3e, < Crllvla (WG + IVol§)* < CTCpy/CR+ 1V, v e Wy (Q),

where (5.1) was used for the second inequality. Then we have Green’s first identity
that can be derived from the divergence theorem

(5.3) /Vu~Vv:/ u@*/UAU, ueWy(Q), veWi(Q),
Q oo On Q
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leading to

IVoll§ < lvllags |0v/0nllag, + [v]lae, 10v/0nllaq, + vlalAvlle
(5-4) = [[vlloe, 10v/0n[lae, + [[v]ellAvlle,

where we separated the boundary integral into two parts due to the structure of our
specific problem and used that functions in V° vanish on 9€.

To show coercivity, we start from (5.4), then use the trace inequality (5.2) on the
first term, and use the Poincaré inequality (5.1) on the second term.

IVullg < llvlloe, 10v/0n]lae, + [lvllallAv]a

(5.5) < CrV/Cp {/C + 11|V0]lalldv/on]lon, + CrlVollallAv]i.

Dividing through by the gradient norm, squaring the result, and using (a + b)? <
2a? + 2b? leads to

(5.6) IVollg < 207:Cpy/ Cp + 1]10v/9nll50, + 20| Avljg.
Let C? = 2C2C%, /1 + 0—112; and C3 = 2C%. Using (5.1) one more time, we have

(5.7) vl < CRIVolE, < C3max(CF, C3)(|0v/0nl[3q, + | Av]?).
If we finally let C? = C'% max(C%, C3), we have the coercivity result
(5.8) C%a(v,v) > |Jvl|3, ve V.

5.2. Coercivity of the discrete bilinear form in a homogeneous space.

THEOREM 5.1. If Theorems 4.2 and 4.3 hold, h, is chosen according to Theo-
rem 4.4, and the continuous bilinear form is coercive, then the discrete bilinear form
is coercive for v, € V0 such that

(1+7)(1+n0)(1 +n4)
(1-7)

(5.9) [0n ey () < C° an(vn, vn) = Cran(vp, v).

Proof. Since v = S9 € WZ(2) the continuous coercivity property holds for v,
showing that a(v,v) > 0 and hence a*(vp,vr) > 0, and we can use (4.21), (4.11),
(5.8), (4.12), and (4.22) in sequence. |

5.3. The global error estimate.

THEOREM 5.2. Consider the least squares problem (3.17) with properties (3.18)
and (3.19). If Theorems 4.2 and 4.3 hold, h, is chosen according to Theorem 4.4,
and Theorem 5.1 holds for the trial space error e, = up, + ul) — In(u) € V;, then the
error € = up, + ul) — u satisfies

6510 leley < 0 (EDEEMOEIN T B0 G 4 lerlino

where ey = Ip,(u) — w is the interpolation error.
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Proof. The error e = uy, +u$) —u does not lie in the trial space unless u lies in the
trial space. Also, up + u% does not in general interpolate u. We use the interpolant
I (u) € Vi as an auxiliary function to write e = uj, +u) —u = (up, + v — In(u)) +
(In(u) — u) = ep + er. The first term ej, has nodal values e(X) and e, € V), since
the Dirichlet condition is imposed strongly. The second term e; is the interpolation
error, which is not in the trial space. We split the error to get

(5.11) lelle,) = llen + erlle,@) < llenlley@) + lerlle@)-

For the trial space error, we start from Theorem 5.1, and then use (3.19), together
with |y (u,v)| < fan(u,u) + ax(v,v), and (3.18)

1
@Ilehl\?z(g) < an(en,en) = an(e — er,en) = an(—er, en) = an(—er,e — er)
h

= ap(—ez,¢e) +an(er,er) < 0.5a5(e, e) + L5ap(er, er)
(5.12) < 2ay(er,er),

leading to

(513) Hehng(Q) § Ch\/2ah(€],€]). O

Combining (5.11) and (5.13) provides the final result (5.10).

5.4. The details of the global error estimate including scaling. The com-
ponents of the global error estimate are now in place, and we can discuss their prop-
erties as well as the question about scaling of the different terms in the bilinear form.
Equation (4.3) for the interpolation error ey = Iy (u) — u yields

1
(5.14) ||€[||g2(Q) < Ozohp+ |u|W§)+1(Q)7
and for the bilinear form applied to the interpolation error we have

(5.15) anler,er) < ((aph?™™)? + (a1 h?)? + (axh?™1)?) |u|$/vopo+1(m.

Noting that a? +b% +--- < (a+ b+ ---)? for positive numbers, we insert all terms in
the global error estimate (5.10), to get

(5.16)

1
L+7) (L +n0)(1+n2)\2 . B
||e|e2<ms¢§c(( )((1_”3( ”)) (GohP + aah? + k) [ulyy st

where @y = ap(1 + \/Qlch)' The error estimate tells us that h should be chosen to

resolve the solution function, while h, < h should be chosen to resolve the integrals
of the trial space error and its derivatives.

The error expression (5.16) indicates that the error may be somewhat improved,
by adjusting the scale factors 3; in (3.14). The three terms in the sum change directly
with the scale factors, while the stability constant depends on the worst case, leading
to

CT ,4/ ]. + % 1
(5.17) Cp = V2C% max V% = Cp max (Cl 02) .

B B B’ Bz
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Choosing the scaling such that Cy/8; = Cy/f2 can in principle reduce the overall
scaled error estimate. However, since we do not know the constants a priori, we use
B1 = P2 = 1 in the numerical experiments.

The scaling 5y of the Dirichlet condition does not affect the stability constant,
but it can be beneficial to increase 3y to reduce the errors near the boundary. The
largest scaling such that the order of the Dirichlet term does not dominate the order
of the Neumann term is By = O(h~1). This scaling strategy is evaluated numerically
in section 6 and is shown to perform well.

6. Numerical study. In this section, we investigate the convergence, stability,
and efficiency of least squares—based RBF-FD, compared with collocation-based RBF-
FD. The two methods are tested in two flavors: with additional ghost points (RBF-
FD-LS-Ghost, RBF-FD-C-Ghost) and without ghost points (RBF-FD-LS, RBF-FD-
C). We solve the PDE problem (2.1) using the scaling (3.14) with 3y = h™1, 81 = 1,
and B2 = 1 on a domain with an outer boundary defined in polar coordinates as
r(#) = 1+ 15 (sin(70) +sin(#)), 6 € [—m, ), and with the Dirichlet boundary 9
defined by r(0), 0 € [-7,0), and the Neumann boundary 9 defined by (), 6 €
[0, 7). The node sets X and Y are generated using DistMesh [21]. However, in order
to enforce X C Y, we modify the Y node set such that for each x; € X we find the
closest point g; in the initial node set Y, and then let y; = o in the final node set Y.
The Dirichlet boundary conditions are enforced exactly at Xaq, according to (3.17).

The domain 2, an example of the spatial error distribution, the node sets X and
Y, and the Voronoi diagram corresponding to the node set X are shown in Figure 3.
All experiments were run in MATLAB on a laptop with an Intel i7-7500U processor
and 16 GB of RAM. The code that was used to generate the rectangular and square
RBF-FD matrices is available in [31].

In the numerical study, we focus on the three main method parameters: the node
distance h, the oversampling parameter ¢ = % = (h/hy)?, which determines h,, and
the polynomial degree p. When nothing else is stated, we use the default value ¢ = 3
for the oversampling. When applicable, the ghost points are added to the node set X

-‘§\\U i ﬂm\\\l f //;/.;'

S ‘.-?7//@

(a)

Fic. 3. (a) A contour plot of the absolute error distribution over the domain Q) for the truncated
nonanalytic solution function (6.4) when h =0.02, p =3, ¢ = 3. The outward normals indicate the
locations where the Neumann condition is enforced. (b) The X node set (large blue markers) and
the Y node set (small red markers) are shown together with the Voronoi diagram for the X node
set. Fach Voronoi cell contains on average three Y node points.
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as an additional layer outside €. The layer is generated by projecting every boundary
point a distance h in the normal direction. The matrix D;, and the right-hand-side
vector F are then modified such that the Laplacian is also sampled on 9€2. In the
RBF-FD-LS case, the size of Dy, then grows from M x N to (M + Ny) x (N + N)
and in the RBF-FD-C case from N x N to (N + Ny) x (N + Ny), where N, is the
number of ghost points equal to the number of X points at the boundary. The stencil
size in all experiments is n = 2m, where m is the dimension of the polynomial space.
In the convergence experiments, we measure the relative £o-error

[[un(Y) — u(Y)lles @)
[u(Y)llez (o)

We also investigate the stability norm by defining it as the ratio of the largest sin-
gular value of E,(Y,X) and the smallest singular value of Dj,(Y, X). The stability
norm provides a numerical value for the coercivity constant C} in the global error
estimate (5.10). Using (3.17) for the interior solution, we have

(6.1) le()lea) =

lun () lea() = 1Ea(Y, X) w(X)ll2 = || En Dy F(Y)]2

Umax(Eh) ad
—————||F(Y)]|2.
Urrlirl(D}L) || ( )”2

6.1. Errors and convergence tests for different functions. Three solution
functions which are different in nature are used to compute the right-hand-side data
of (2.1). The purpose of this test is to show the differences in the error behavior and
to pick one solution function for which the method is later on tested more extensively.
Additionally, we solve the PDE problem with only Dirichlet boundary data. The
following functions are considered:

(6.3)  wilz,y) =vVat+y?

5
(6.4) us(z,y) = Ze*\/?k (cos(2Fz) + cos(2¥y)) ,
k=0

(6.2) <N Enll2 I DF 12 [F(Y)]l2 =

sin (2(y — 0.5)2)*
14 222 4 y?

(6.5) us(z,y) = sin (2(z — 0.1)?) cos ((z — 0.3)%) + ,
which are referred to by the names distance, truncated nonanalytic, and rational
sine, respectively. The polynomial degree p = 5 is used for computing the local
interpolation matrices. The error under refinement of h is displayed in Figure 4.

The accuracy of RBF-FD-LS is better than that of RBF-FD-C for all solution
functions when both the Neumann and Dirichlet conditions are present. The conver-
gence rates for the truncated nonanalytic and rational sine functions are k = 4.9 and
k = 4.8, respectively, which agrees with the error estimate (5.16) since k > p—1 = 4.
When ghost points are utilized, the accuracy is better compared to when no ghost
points are utilized. Comparing RBF-FD-LS-Ghost with RBF-FD-C-Ghost we see
that the accuracy of the former is generally better compared with the accuracy of the
latter. Next, comparing RBF-FD-C-Ghost to RBF-FD-LS we see that RBF-FD-LS
is, in this test, overall more accurate, but the gap is smaller compared with the gap
between RBF-FD-LS and RBF-FD-C. The convergence rate for the distance function
is k = 0.8 < 4}, but that is expected since it is a C° function.

When only the Dirichlet condition is imposed, the accuracy of RBF-FD-LS is
better for the distance and rational sine functions. This is also the case for the
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FiG. 4. The errors of RBF-FD-LS and RBF-FD-C as a function of the inverse node distance for
the three different solution functions defined in subsection 6.1. The first row of plots corresponds to
solving (2.1) and the second row corresponds to solving the same problem with the Dirichlet condition
on the whole boundary. The polynomial degree used to construct the interpolation matrices is p =5
and the oversampling parameter ¢ = 3. The number of node points in X ranges from N = 500 to
N = 64000.

truncated nonanalytic function, when h is small enough. The difference in error
between RBF-FD-LS and RBF-FD-C is not as large as when both the Neumann and
Dirichlet conditions are imposed. In this case the convergence rates for the truncated
nonanalytic function and rational sine function are k > p — 1 = 4, similarly to the
mixed conditions case. Ghost points in this case do not play a significant role in
improving accuracy.

In the following subsections further experiments are made with the truncated
nonanalytic solution function, which, due to its fine scale variation, is challenging to
approximate.

6.2. Approximation properties under node refinement. We refine h (this
increases the number of nodes N) and measure the approximation properties for
different polynomial degrees in the local interpolation matrices (1.5). We denote this
by h-refinement. The convergence as a function of the node distance is shown in
Figure 5. We observe that the accuracy of RBF-FD-LS is better for each tested
p compared with RBF-FD-C. The overall difference in the errors is larger for p = 5
compared with when p = 3 and 4. The convergence trend k of RBF-FD-LSis k > p—1
for every p. It is hard to evaluate the convergence trend of RBF-FD-C since the error
behavior is unpredictable. The accuracy of RBF-FD-LS-Ghost is overall better for
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Fic. 5. The RBF-FD-LS and RBF-FD-C methods are compared. The relative error as a
Jfunction of the inverse node distance 1/h for a fized oversampling parameter ¢ = 3 and different
polynomial degrees p used to form the local interpolation matrices is shown.
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Fi1g. 6. The RBF-FD-LS and RBF-FD-C methods are compared. The relative error as a
Sfunction of the initialization runtime (R1) measured in seconds for a fized oversampling parameter
q = 3 and different polynomial degrees p used to form the local interpolation matrices.

all p compared with RBF-FD-C-Ghost. The gap between RBF-FD-LS and RBF-C-
Ghost is smaller compared with the gap between RBF-FD-LS and RBF-FD-C, and
in some points, RBF-FD-C-Ghost is more accurate than RBF-FD-LS.

Next, the relation between the error and the computational time (runtime) is
investigated. It is important to note that a method with a smaller error/runtime
ratio is more efficient. The runtime is divided into two steps shown in Figures 6
and 7:

Ry : The closest neighbor search, forming and inverting the local interpolation
matrices (1.5), and forming the evaluation and differentiation weights (3.3).
Rs : Assembly of the PDE operator (3.4), and solution of the system of equations
using midivide() in MATLAB.
The node generation is considered as a preprocessing step and is therefore not included
in the measurement.

We observe that the efficiency of RBF-FD-LS is better than that of RBF-FD-C
for all considered p and both efficiency measurements: R, and R,. When p = 5, the
difference in the efficiency is larger. The oversampling parameter g does not have a
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Fic. 7. The RBF-FD-LS and RBF-FD-C methods are compared. The relative error as a
function of the solving runtime (R2) measured in seconds for a fixed oversampling parameter ¢ = 3
and different polynomial degrees p used to form the local interpolation matrices.
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Fia. 8. The stability norm (6.2) as a function of 1/h when the oversampling parameter is ¢ = 3
for different polynomial degrees p.

decisive role when it comes to efficiency. We expect the runtime to be dominated by
the solution of the overdetermined linear system. For a dense matrix, the cost grows
linearly with M = ¢N for a fixed N. We expect a similar behavior for our sparse
system. The added cost is compensated for by the improved accuracy. Figure 10
shows the error improvement with q.

RBF-FD-C-Ghost behaves similarly to RBF-FD-LS and RBF-FD-LS-Ghost con-
cerning the efficiency R;. In the Rs case, RBF-FD-C-Ghost outperforms all other
methods; however, the magnitude of the runtime in Ry is at least one order smaller
compared with R;. By observing the efficiency as a function of the total runtime
Ry + R,, the result of R; is dominating. Thus, the three methods overall behave
similarly in terms of efficiency.

The stability norm (6.2) as a function of 1/h is studied in Figure 8. We observe
that the stability norm of RBF-FD-LS is almost constant for all polynomial degrees
p which we considered. This corresponds with the error estimate (5.16). When

hy = h/\/q, the integration error 7 goes to zero as h/q, and the factor \/jvi': in the
stability constant C}, approaches 1. The stability norm of the RBF-FD collocation

method does not follow a pattern for the given PDE, parameters, and node sets. Here
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Fi1G. 9. Left: The condition number of the PDE matriz D, as a function of the inverse node
distance when the polynomial degree used for representing the trial space is p = 3. Right: The
condition number of the evaluation matriz Ey, when the polynomial degrees used for representing the
trial space are p =3, 4, and 5.

we emphasize that this behavior is not caused by the RBF-FD trial space but rather
by the collocation formulation in which the PDE is solved. An interesting behavior is
observed in the RBF-FD-C-Ghost case, where the stability norm is constant. While
it is possible to attribute that to the imposition of ghost points, we argue that this
occurs only due to the imposition of the extra Laplacian condition on the boundary
points, which in turn introduces a stronger control over ||Auplle,: a key factor when
it comes to the invertibility of Dj and thus the stability norm. To confirm this
claim, we made a side experiment. The extra Laplacian condition was enforced at the
boundary points, but no ghost points were used and no oversampling was employed.
The resulting system of equations was rectangular only due to the imposition of the
extra Laplacian conditions. The stability norm remained constant.

The condition number of a rectangular or square matrix A is defined by x(A) =
lAll2 |AT |l2 = omaz(A)/omin(A). In Figure 9 we show the condition numbers for the
two matrices involved in RBF-FD-LS: Dy, and Ej,. We observe that x(Dj,) grows with
% for p = 3. The results are almost identical for p = 4 and 5. This is an expected
(optimal) growth, since Dy, is a numerical second-order differentiation operator, which
has an inverse quadratic dependence on h when the stencil size is kept constant. On
the other hand k(F}) is constant with respect to h for all p, which is also an expected
result, since F}, is a numerical interpolation operator, which does not by itself yield a
dependence on h when the stencil size is kept constant.

6.3. Approximation properties as the oversampling is increased. In this
section we build an understanding of the error and stability behavior for different
choices of h, = h/,/q, when h is fixed at h = 0.08 (underresolved case) and at
h = 0.02 (well-resolved case). Three polynomial degrees p = 3, 4, and 5 are used for
the local interpolation matrices (1.5). The exact solution is chosen to be the truncated
nonanalytic function (6.4). The convergence study for RBF-FD-LS is displayed in
Figure 10. For both the underresolved and well-resolved cases, the error decays and
then levels out as h, becomes small enough. This behavior matches the error estimate

1
(5.16) for the case when h is fixed. As hy, — 0 the term (1£)* — 1 from a larger
value, and therefore |le||s,(q) levels out. The stability norm behavior is shown in

Figure 11, from which we observe that in both the well-resolved and underresolved
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Fi1c. 10. The error against 1/hy which is the average distance in the Y node set for different
choices of the polynomial degree p used to form the trial space. The average internodal distance in
the node set X was for the left plot fized at h = 0.08 and for the right plot fized and h = 0.02. The
values of hy were computed from q = (1.1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, 3.7, 4, 5, 6, 7, 8, 9, 10, 11).
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Fi1G. 11. Both plots show the stability norm (6.2) as a function of 1/hy, the average inverse
node distance in the point set Y. Different choices of the polynomial degree p were used to form
the trial space. The average internodal distance h in the node set X was for the left plot fixed at
h = 0.08 and for the right plot fixed at h = 0.02, illustrating the underresolved and the well-resolved
case. The values of hy were computed from ¢ = (1.1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, 3.7,4, 5,6, 7, 8, 9,
10, 11).

cases, the norm first rapidly decays and then flattens out when h, is small enough.
The approximate point when the stability norm starts to flatten out is at 1/h, ~ 28
(corresponding to ¢ = 3.7) for the underresolved case and at 1/h, ~ 70 (¢ = 3.3) for
the well-resolved case.

6.4. Eigenvalue spectrum as the oversampling is increased. In the case of
the least squares matrices, we use the relation u(Y) = E,u(X) to arrive at E; u(Y) =

u(X), which is then used in the discretized PDE D,u(X) = F(Y) to arrive at
DpEfu(Y) = F(Y).

We then investigate the eigenvalues of the square M x M matrix DhE,‘f. Both matrices
Dy, and E}, are rectangular of size M x N, thus the rank of each is at most N. The
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FIG. 12. Eigenvalues of EDT as the oversampling parameter q is increased, where D discretizes
the Poisson equation with Dirichlet and Neumann boundary conditions imposed on two disjoint parts
of the boundary of the domain. In this test the number of nodes is N = 1000 and the polynomial
degree used to construct the local approrimations is p = 4.

rank of DhE;[ can then not be larger than N, implying that there will always exist a
nullspace of size M — N. This is not a problem when we use the method for solving
PDEs as we always solve for the unique N-dimensional least squares solution.

In Figure 12, we display the eigenvalue spectrum of the PDE matrix for N =
1000 and an increasing oversampling parameter q. We observe that the real part of
the spectra in the least squares case shrinks as ¢ is increased. The spectra of the
collocation matrices have a larger negative real part compared to the spectra of the
least squares matrices. In addition, in Figure 13, we also display the eigenvalue spectra
of the discretized first order operator —g - Vu, where g = [0,1]. We only impose the
Dirichlet boundary condition at the location of the polar angle § € [0,7]. In this
case, the least squares cases have less distinct behavior. However, we can observe
that the negative and positive real parts of the spectrum are moving slightly toward
the imaginary axis as the oversampling is increased. The increase in oversampling
improves the eigenvalue spectra of the rectangular differentiation matrices in both
eigenvalue examples.

6.5. Approximation properties as the polynomial degree is increased.
Here we increase the number of points per stencil, together with increasing the poly-
nomial degree p used to form the stencil-based interpolant (1.5), while the distance h
between the stencil points is kept the same. This is denoted by p-refinement. We con-
sider polynomial degrees up to p = 12 in order to test the limits of the method. Two
different solution functions are considered, the truncated nonanalytic function (6.4)
and the rational sine function (6.5). The methods RBF-FD-LS, RBF-FD-LS-Ghost,
RBF-FD-C, and RBF-FD-C-Ghost are compared when h is fixed at h = 0.08 (un-
derresolved case) and at h = 0.02 (well-resolved case). In Figure 14, we see that the
error for both resolutions and both manufactured solutions is smaller for RBF-FD-LS
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FiG. 13. Eigenvalues of ED% as the oversampling parameter q is increased, where D discretizes
the advection equation with Dirichlet boundary condition at the inflow boundary of a domain Q. In
this test the number of nodes is N = 1000 and the polynomial degree used to construct the local
approzimations is p = 4.
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Fic. 14. The relative error in the p-refinement mode: the polynomial degree used to form the
stencil-based interpolation matriz (1.5) is increased, while the internodal distance between the stencil
points is fixed at h = 0.08 and h = 0.02.
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compared with RBF-FD-C. For the underresolved case (h = 0.08)), there is some
improvement of the error when increasing p for the rational sine function. The re-
sults are worse for the truncated nonanalytic function that has large derivatives and
requires higher resolution. In this case, the error increases for p > 4. In the well-
resolved case (h = 0.02), we observe convergence with p in all cases except RBF-FD-C
for the nonanalytic function. For p > 8, round-off errors prevent further convergence
for RBF-FD-LS. The convergence trend for RBF-FD-C levels out earlier than for
RBF-FD-LS. Comparing RBF-FD-LS-Ghost with RBF-FD-C-Ghost we can see that
RBF-FD-LS-Ghost is more accurate in the case that we are considering.

The stability norm as a function of p is shown in Figure 15. It has an increasing
trend for all methods. Based on (4.8) and Theorem 4.2, we expect the bounds to
grow with the stencil size, which depends on p. In the ideal case, the maximum
value for any cardinal function is one, but here, there is an exponential growth of
these functions with p, especially for cardinal functions close to the boundary. The
largest weight for p = 12 has |w| & 3.2. Cardinal functions for different values of p are
illustrated in Figure 16. The condition numbers of the local interpolation matrices Ay,
also grow exponentially with p, and for p 2 12 prevent accurate numerical evaluation
of the weights. The results also show that both methods with ghost points have a
smaller growth in the stability norm for an increasing p, compared to the methods
which do not use ghost points. Since all of the stencils around the boundary are less
skewed when using ghost points, it is expected that the stability improves.
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Fic. 15. The stability norm in the p-refinement mode: the polynomial degree used to form
the stencil-based interpolation matriz (1.5) is increased, while the internodal distance between the
stencil points h is fized at h = 0.08 and h = 0.02.
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F1a. 16. Ezample of two cardinal functions placed on the boundary of Q2 and in the interior of
Q forp =3 (left) and p = 12 (right). For both cases the internodal distance is h = 0.06.
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6.6. Approximation properties under node refinement in three dimen-
sions. In this section we solve the PDE problem (2.1) in the same way as in the
previous sections, but now in three dimensions. We compare RBF-FD-LS and RBF-
FD-C with ghost points and without ghost points. The stencil sizes are in all cases
n = 2m, where m is the dimension of the polynomial space.

The norm scaling for the least squares methods is in the 3D case chosen as § =
hf/ ? for the Laplacian equations and 3 = h, for both boundary conditions, according
to the relation (3.14). The equation scaling Sy, S1, and 5 for the Dirichlet boundary,
the Neumann boundary, and the Laplacian condition is given by Sy = 1/h, f1 = 1,
B2 = 1, which is the same scaling as used in the 2D cases.

The 3D domain in spherical coordinates is given by

(6, ¢) = (1 + sin(2sin(¢) sin(#))? sin(2sin(¢) cos(0))? sin(2 COS<¢))2)% ,

where 6 is the longitude angle 6 € [—7,7) and ¢ is a latitude angle ¢ € [-F, 5). The

right-hand sides of the PDE (2.1) are computed based on a solution function:
u=sin(3rzyz).
The coordinates (x,y, z) of the mixed boundary conditions are given by

(l’,y,2)|390 = {(m,y,z)|39 | z < 07}7 (xayvz)bfh = {(x,y,z)bg | z2z 07}7

where the first set corresponds to the location of the Dirichlet boundary condition
and the second to the location of the Neumann boundary condition.

In the previous experiments in two dimensions we mostly used the oversampling
parameter ¢ = 3. An equivalent sampling in three dimensions is motivated by knowing
that 10 points in one dimension sample a fixed domain [Q]! equivalently well as 100
points sample [©]? in two dimensions and 1000 points sample [©2]? in three dimensions.
It follows that the relation g3 = g2,/g2 holds, where g3 is a sampling in two dimensions
and ¢3 is an equivalent sampling in three dimensions. All of our 3D computations
are therefore based on a choice of an oversampling parameter ¢ = [3v/3] = 6. An
instance of a solution function, together with a relative absolute error in the loga-
rithmic scale, is given in Figure 17. We can observe that the largest errors appear
close to the boundary 0€);, where the Neumann condition is imposed. The error at

¢

1 -1

-10

Fia. 17. Solution function (left) and spatial distribution of the relative absolute error in the
logarithmic scale (right) when h is chosen such that it corresponds to N = 24000 points placed over
Q. The polynomial degree chosen to construct local approximations is p = 5 and the oversampling
parameter is ¢ = 6.
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F1a. 18. Error under nodal refinement in a 3D case for polynomial degrees p = 3, 4, and 5.
The oversampling parameter is ¢ = 6 and the chosen 1/h corresponds to N = 1000, 2000, 4000,
6000, 8000, 12000, and 24000 points spread over a 3D domain.
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Fic. 19. Stability norm under nodal refinement in a 3D case for polynomial degrees p = 3, 4,
and 5. The oversampling parameter is ¢ = 6 and the chosen 1/h corresponds to N = 1000, 2000,
4000, 6000, 8000, 12000, and 24000 points in a 3D domain.

the locations of the Dirichlet boundary 02y is very small in some points, since those
are the points where this condition is enforced exactly. The error in other points
at the same boundary is larger, since in those points the Dirichlet condition is not
satisfied exactly. In Figure 18 we compute the error as the internodal distance h is
decreased and the polynomial degrees p = 2, 3, and 4 are used to construct the local
approximations. Our numerical results show that RBF-FD-LS, RBF-FD-LS-Ghost,
and RBF-FD-C-Ghost methods share a similar accuracy, while RBF-FD-C behaves
unpredictably.

A study related to the stability norm in three dimensions is given in Figure 19.
The experiment confirms that the numerical (and theoretical) observations in two
dimensions generalize to three dimensions as well, since the stability norm of RBF-
FD-LS does not have unpredictable behavior.

7. Final remarks. In this paper we introduced an enhancement of the colloca-
tion-based RBF-FD method where we instead use a least squares approach. The main
method parameters are the node distance h, the evaluation node distance h,, and
the polynomial degree p used to form the stencil approximations. The least squares
formulation led us to characterize the RBF-FD trial space as a piecewise continuous
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space with jumps that vanish together with the local approximation error, and to
understand that DgDhu = Dg f reproduces the Ly inner-products of the continuous
least squares problem up to an error governed by h,. This allowed us to prove well-
posedness (stability) of RBF-FD-LS for an elliptic problem when h,, is small enough
in relation to h. We also derived an error estimate in terms of the node distance,
where the error decays with no less than order p — 1 for the Poisson problem with
Dirichlet and Neumann boundary conditions.

The experiments confirmed the theoretical observations in terms of the conver-
gence trend as a sequence of h gets increasingly small. We also confirmed that as h is
fixed at a small value, the stability norm and the error are improved as h, — 0, until
both level out. This happens when the effect of the numerical integration becomes
negligible.

An experimental comparison of RBF-FD-LS and RBF-FD-C with ghost points
revealed that both methods are comparable in robustness. However, we believe that
RBF-FD-LS has an advantage due to a better theoretical understanding (at least at
the present moment) compared to RBF-FD-C with ghost points.

Overall, the numerical experiments indicated that RBF-FD-LS (no ghost points)
for our model problem performs better than RBF-FD-C (no ghost points) in terms of
e the error against the exact solution for p-refinement and A-refinement,

e the stability properties,

e the efficiency.
The most important strength of the least squares formulation is the robustness of
the numerical solution as h is decreased, which, according to our experience, is often
lacking in the collocation formulation, especially in the presence of Neumann boundary
conditions.
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