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Abstract. Localized collocation methods based on radial basis functions (RBFs) for elliptic
problems appear to be nonrobust in the presence of Neumann boundary conditions. In this paper,
we overcome this issue by formulating the RBF-generated finite difference method in a discrete
least squares setting instead. This allows us to prove high-order convergence under node refinement
and to numerically verify that the least squares formulation is more accurate and robust than the
collocation formulation. The implementation effort for the modified algorithm is comparable to that
for the collocation method.
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1. Introduction. Radial basis function–generated finite difference methods
(RBF-FD) generalize classical finite difference methods (FD) to scattered node set-
tings. However, while FD uses tensor products of one-dimensional (1D) derivative
approximations, RBF-FD directly computes multivariate approximations, which is
advantageous when differentiation is not aligned with a coordinate direction [14]. In
this paper, we generalize RBF-FD to a least squares setting (RBF-FD-LS), which
improves stability and accuracy.

RBF-FD is a meshfree method, which provides flexibility with respect to the ge-
ometry. In contrast to FD methods where an entire coordinate dimension is affected by
adaptive refinement, RBF-FD allows for coordinate independent local adaptivity [19].

The RBF-FD method was first introduced by Tolstykh in 2000 [30], and other
early papers include [28, 35]. The method is based on the idea that given scattered
nodes xj ∈ R

d, j = 1, . . . , n, in the neighborhood of a point x, we can create a
localized RBF approximation of the function u(x) using these “stencil points,”

uh(x) =

n∑

j=1

cjφ(‖x− xj‖) ≡
n∑

j=1

cjφj(x),(1.1)

where h is a measure of the internodal distance, φ(r) is an RBF, and cj are unknown
coefficients. The interpolation conditions uh(xi) = u(xi) lead to the linear system
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




φ1(x1) · · · φn(x1)
...

...
φ1(xn) · · · φn(xn)






︸ ︷︷ ︸

A






c1
...
cn




 =






u(x1)
...

u(xn)




 .(1.2)

If we let c = (c1, . . . , cn)
T and u = (u(x1), . . . , u(xn))

T , we have that c = A−1u. A
benefit of using RBFs is that for commonly used radial functions φ(r) the matrix A is
guaranteed to be nonsingular for distinct node points [25, 18]. We can then proceed
to apply an operator to the approximation:

Luh(x) =
n∑

j=1

cjLφj(x)

= (Lφ1(x), . . . ,Lφn(x))
︸ ︷︷ ︸

aL

c = aLA−1u ≡ (Lψ1(x), . . . ,Lψn(x))u ≡ wLu,(1.3)

where {ψj(x)}nj=1 forms a cardinal basis for the local interpolant, i.e., ψj(xi) = δij ,

and wL are the stencil weights used for approximating the operator at the point x.
In the early work on RBF-FD, infinitely smooth RBFs as the Gaussian RBF with

φ(r) = exp(−r2) or the multiquadric RBF with φ(r) =
√
1 + r2 were used. Lately,

there has been an increasing interest in using piecewise smooth polyharmonic splines
(PHS) with φ(r) = |r|2k−1, k ≥ 1. These are conditionally positive definite functions.
It was shown in [18] that by adding a polynomial basis of a degree corresponding to
the order of conditional positive definiteness and constraining the RBF coefficients
c to be orthogonal to this basis, we can guarantee strict positive definiteness of the
quadratic form cTAc, which is important when proving optimality results. The RBF
approximation then takes the form

uh(x) =

n∑

j=1

cjφj(x) +

m∑

j=1

µjpj(x),

n∑

j=1

cjpk(xj) = 0,(1.4)

where the second equation is the constraint. The dimension m of the polynomial
space is given by the degree p of the polynomial as m =

(
p+d
d

)
, where d is the number

of spatial dimensions. In the Ph.D. thesis [2], and the subsequent papers [11, 12, 5, 4],
it was shown that it is beneficial to append a polynomial of a higher degree p than
strictly required. First, the convergence order of the method depends on p [3]. Second,
the behavior near boundaries is improved compared with classical polynomial-based
FD [4]. It was suggested in [12] that for a 2D problem, using a stencil size n = 2m
leads to a robust method. We use this strategy in this paper.

The interpolation relation corresponding to (1.2) for the polynomially augmented
case becomes

(
A P
PT 0

)

︸ ︷︷ ︸

Ã

(
c
µ

)

=

(
u
0

)

,(1.5)

where Pij = pj(xi) and µ = (µ1, . . . , µm)T . Similarly to (1.3), using (1.5) for the
coefficient vectors, we get the differentiation relation
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Luh(x) =
(
aL pL

)

︸ ︷︷ ︸

bL

(
c
µ

)

= bLÃ−1

(
u
0

)

= (bLÃ−1)1:nu ≡ (Lψ1(x) · · · Lψn(x))u ≡ wLu,(1.6)

where pL = (Lp1(x), . . . ,Lpm(x)). The PHS + polynomial RBF-FD method works
well, but there is some sensitivity to the node layout, e.g., P can become rank defi-
cient for Cartesian node layouts. Several authors have developed algorithms for high
quality scattered node generation [13, 27, 29, 32]. Another issue that we have encoun-
tered, and that was also noted in [17], is that errors become large at boundaries with
Neumann boundary conditions.

In this paper, we propose to improve the performance of the PHS + polynomial
RBF-FD method by introducing least squares approximation (oversampling) at the
PDE level. The least squares approach is also applicable to RBF-FD with other
types of basis functions. A related study is [15], where least squares approximation
is introduced in an RBF partition of unity method (RBF-PUM). It was shown that
least squares RBF-PUM is numerically stable under patch refinement, which is not
the case for collocation RBF-PUM. In [24] it is shown under quite general conditions
that given enough oversampling, a broad class of discretizations is uniformly stable.

A recent paper [10] analyzes a least squares RBF-FD method formulated over a
closed manifold. The formulation of the method is different from ours in that node
points and evaluation points are the same; the oversampling is determined by the
stencil size, and the theoretical analysis is performed using other strategies. Another
recent paper is [20], where RBF-FD and RBF-PUM are combined to construct a
method that is related but uses a different approximation strategy. Least squares
approximation has been used together with RBF-FD by other authors to address some
specific problems. In [17], an overdetermined linear system is formed by enforcing
both the PDE and the Dirichlet boundary conditions on the boundary, to improve
the stability of the method. In [22] the context is the closest point method applied
to a problem with a moving boundary in combination with RBF-FD. Enforcement of
both the PDE and the constant-along-a-normal property of the closest point solution
leads to an overdetermined system and a robust method.

The main contributions of this paper are
• the RBF-FD-LS algorithm that performs better than collocation-based RBF-
FD in terms of efficiency and stability for the tested PDE problems,

• error estimates that have been validated numerically for RBF-FD-LS approx-
imations when using the PHS + polynomial basis,

• a better understanding of the properties of RBF-FD approximations in terms
of a piecewise continuous trial space.

The outline of this paper is as follows. In section 2, we define a Poisson problem with
Dirichlet and Neumann boundary conditions. Then in section 3, we derive the RBF-
FD-LS method. Section 4 focuses on the properties of the RBF-FD trial space, and
then convergence and error estimates are derived in section 5. Numerical experiments
that validate the theoretical results are shown in section 6. The paper ends with final
remarks on the method and results in section 7.

2. The model problem. We build our understanding on a model problem, the
Poisson equation with Dirichlet and Neumann boundary data:
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L2u(y) ≡ ∆u(y) = f2(y), y ∈Ω,
L0u(y) ≡ u(y) = f0(y), y ∈ ∂Ω0,
L1u(y) ≡ ∇u(y) · n = f1(y), y ∈ ∂Ω1.

(2.1)

We also use the notation Ωi for the domain associated with Li. When working with
the PDE problem, it is practical to have a unified formulation. We reformulate the
system above as

D(y)u(y) = F (y),(2.2)

where the specific operator D(y) = Li and right-hand-side function F (y) = fi(y)
depend on the location of y.

The regularity of the problem depends on the geometry of the domain Ω in combi-
nation with the given right-hand-side functions. In the problems that we solve in this
paper, the domain is either smooth or convex, and the data is chosen such that the
solution has bounded and continuous second derivatives. This ensures that the PDE
problem (2.1) is well-defined pointwise. In order to achieve high-order convergence,
we require the solution to have additional smoothness. We define the L2-norm over a
domain Ω as ‖u‖2L2(Ω) =

∫

Ω
u(y)2 dy and use the notation ‖u‖L2(Ω) = ‖u‖Ω for brevity.

We require u ∈ W p+1
∞ (Ω) ⊂ W p+1

2 (Ω) = {u | ‖Dαu‖L2(Ω) < ∞, |α| ≤ p + 1}, where
p ≥ 2 is the degree of the polynomial basis added to the PHS approximation (1.4)
that we use in the numerical method.

Since we solve the discretized problem in the least squares sense, it is convenient
for the theoretical results derived in section 5 to state also the continuous problem in
least squares form. We require ũ ∈ V ⊂W 2

2 (Ω) for the least squares solution, where
the subspace V is determined by the selected representation of the solution. Since
we only use the continuous problem at a conceptual level, we are not specifying the
subspace further. The squared L2-norm of the residual of the PDE problem for a
function v ∈ V is given by

‖r(v)‖2L2(Ω) =

∫

∂Ω0

(L0v(y)− f0(y))
2 +

∫

∂Ω1

(L1v(y)− f1(y))
2 +

∫

Ω

(L2v(y)− f2(y))
2

=

∫

∂Ω0

(L0(v − u))
2
dy +

∫

∂Ω1

(L1(v − u))
2
dy +

∫

Ω

(L2(v − u))
2
dy,(2.3)

where fi = Liu was used in the second equality. If we introduce the bilinear form

a(u, v) =

∫

∂Ω0

uv dy +

∫

∂Ω1

∂u

∂n

∂v

∂n
dy +

∫

Ω

∆u∆v dy,(2.4)

and note that ‖r(v)‖2L2(Ω) = a(v − u, v − u), the least squares solution of (2.1) is

ũ = argmin
v∈V

a(v − u, v − u).(2.5)

Alternatively, using that the residual is a-orthogonal to V , we can write

a(ũ− u, v) = 0 ∀v ∈ V.(2.6)

When u ∈ V , the least squares problem solves the PDE problem exactly, but in
general for a numerical approximation, u and ũ reside in different subspaces, leading
to a nonzero residual.
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where row i contains the equation for D(yi)uh(yi) = F (yi) and the corresponding
weights from (3.3) are entered into the columns corresponding to the global indices
of the nodes in Xk. In the same way, we form the relation

uh(Y ) = Eh(Y,X)uh(X),(3.5)

using weights from (3.2). If the number of evaluation points M > N , both Dh(Y,X)
and Eh(Y,X) are rectangular M ×N matrices. In [31] we provide MATLAB code to
generate rectangular RBF-FD matrices such as Eh(Y,X) or Dh(Y,X).

In the discretized PDE problem, uh(X) is the vector of unknowns, and we formally
write the least squares solution of the linear system as

uh(X) = D+
h (Y,X)F (Y ),(3.6)

where the N×M matrix D+
h (Y,X) = (DT

hDh)
−1DT

h is the pseudoinverse of Dh(Y,X).
To evaluate the solution at Y we add the step (3.5) to get

uh(Y ) = Eh(Y,X)D+
h (Y,X)F (Y ).(3.7)

The overdetermined linear system (3.4) can also be formulated as a discrete residual
minimization problem. We define the residual

r(Y ) = Dh(Y,X)uh(X)− F (Y ).(3.8)

Then the solution (3.6) minimizes ‖r(Y )‖22, and it also holds that

DT
h (Y,X)r(Y ) = 0,(3.9)

due to the orthogonality property of the least squares residual.
The collocation RBF-FD method, where Y = X, is a special case of the derivation

above, where the stencil selected for yk = xk is always k, D+
h (X,X) = D−1

h (X,X),
and Eh(X,X) = Ih. This leads to

r(X) = Dh(X,X)uh(X)− F (X) = Dh(X,X)(D−1
h (X,X)F (X))− F (X) = 0.

(3.10)

In the discrete minimization of the residual (3.8), each equation has the same
weight. This may cause problems with convergence to the PDE solution under node
refinement. We start by introducing a weighted discrete `2-norm that corresponds to
the continuous L2-norm with the integral replaced by a discrete quadrature formula.
The error in this approximation is further discussed in subsection 4.4. We leave place
holders βi for additional balancing of the different parts of the residual and discuss
these further in subsection 5.4. Let a domain Ω be discretized by M points yi,
i = 1, . . . ,M . Then

(u, v)`2(Ω) =
|Ω|
M

M∑

i=1

u(yi)v(yi), ‖u‖2`2(Ω) = (u, u)`2(Ω),(3.11)

where |Ω| =
∫

Ω
1 dy. We denote the number of evaluation points that discretize the

operator Li in (2.1) by Mi and note that if the evaluation points are quasi uniform
with node distance hy, then for d > 1

hy = c0

( |∂Ω0|
M0

) 1
d−1

= c1

( |∂Ω1|
M1

) 1
d−1

= c2

( |Ω|
M2

) 1
d

,(3.12)
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where c0 ≈ c1 ≈ c2 ≈ 1. Scaling the evaluation matrix as Ēh = ( |Ω|
M )

1
2Eh leads to

‖uh‖2`2(Ω) =
|Ω|
M

‖uh(Y )‖22 = ‖Ēhuh(X)‖22 = uh(X)T ĒT
h Ēhuh(X).(3.13)

For Dh, we scale according to the location of y such that D̄h = diag(β(Y ))Dh, where

β(y) =







(
|∂Ω0|
M0

) 1
2

β0 ≈ h
d−1

2
y β0, y ∈ ∂Ω0,

(
|∂Ω1|
M1

) 1
2

β1 ≈ h
d−1

2
y β1, y ∈ ∂Ω1,

(
|Ω|
M2

) 1
2

β2 ≈ h
d
2
y β2, y ∈ Ω,

(3.14)

and, similarly, we let F̄ (y) = β(y)F (y). For the scaled residual r̄(Y ), noting that
Dh(Y,X)uh(X) = D(Y )uh(Y ) and F (Y ) = D(Y )u(Y ), we get

‖r̄(Y )‖22 = ‖D̄h(Y,X)uh(X)− F̄ (Y )‖22 = ‖β(Y )D(Y )(uh(Y )− u(Y ))‖22
= β2

0‖L0(uh − u)‖2`2(∂Ω0)
+ β2

1‖L1(uh − u)‖2`2(∂Ω1)
+ β2

2‖L2(uh − u)‖2`2(Ω).(3.15)

Comparing with the residual of the continuous problem (2.3) and the continuous
bilinear form (2.4), we introduce the discrete bilinear form

ah(u, v) = β2
0 (u, v)`2(∂Ω0)

+ β2
1

(
∂u

∂n
,
∂v

∂n

)

`2(∂Ω1)

+ β2
2 (∆u,∆v)`2(Ω) .(3.16)

So far, we have assumed that the Dirichlet boundary conditions are enforced in the
least squares sense. It has been noted, e.g., in [23], that when Dirichlet conditions
are imposed strongly, the overall accuracy is improved. Assuming that there are node
points X∂Ω0

⊂ X that discretize the Dirichlet boundary, we let X̃ = X \ X∂Ω0
and

uh(X∂Ω0
) = 0. Then we rewrite the discretized least squares PDE problem (3.4) as

D̄h(Y, X̃)uh(X̃) = F̄ (Y )− D̄h(Y,X∂Ω0
)u0h(X∂Ω0

) ≡ F̃ (Y ),(3.17)

where u0h(X∂Ω0
) = f0(X∂Ω0

) is a subset of the Dirichlet boundary data. Note that uh
is in general nonzero at the Dirichlet boundary between the data points. We denote
the trial space containing all functions of the form (3.2) by Vh and we denote the
subspace with zero Dirichlet data by V 0

h . The solution to the original problem is
given by uh + u0h ∈ Vh, where uh ∈ V 0

h . Similarly to (2.5), we write the least squares
problem on the form

uh = argmin
vh∈V 0

h

ah
(
vh + u0h − u, vh + u0h − u

)
,(3.18)

where Vh is the RBF-FD trial space. We have the orthogonality property

ah
(
uh + u0h − u, vh

)
= 0 ∀vh ∈ V 0

h .(3.19)

To see how this relates to the matrix-based description of the discrete least squares
problem, we introduce a (nonorthogonal) basis for Vh. For each evaluation point y
there is a unique representation of uh in terms of the local cardinal functions (3.2).
We define global cardinal functions as

Ψj(y) =

{
ψk
i (y), xj ∈ Xk,

0, xj 6∈ Xk,
(3.20)
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where k = k(y) is the stencil selected for the evaluation point y, and i(j) is the local
index i in Xk of xj ∈ X. We represent a nonhomogeneous function uh ∈ Vh as

uh(y) =

N∑

j=1

uh(xj)Ψj(x).(3.21)

We note that Dh(yi, xj) = D(yi)Ψj(yi) and Eh(yi, xj) = Ψj(yi). If we insert (3.21)
in (3.19) and let vh = Ψi, we get

N∑

j=1

ah(Ψj ,Ψi)uh(xj) = ah(u,Ψi),(3.22)

where ah(Ψj ,Ψi) is an element of the matrix D̄h(Y,X)T D̄h(Y,X), and ah(u,Ψi) is
an element of the right-hand-side vector D̄h(Y,X)T F̄ (Y ) in the weighted normal
equations. The specific properties of the trial space and the cardinal basis functions
are further discussed in the following section.

4. The discontinuous trial space. The trial space Vh is a piecewise space.
The stencil selection algorithm that we use for the evaluation points results in the
domain being divided into Voronoi regions Vk around each stencil center point xk ∈ X.
For an illustration of the Voronoi regions in two dimensions, see Figure 3. Locally we
have uh ∈W 2

∞(Vk) ⊂W 2
2 (Vk) due to the smoothness of the at least cubic PHS basis.

Theorem 4.1. Assume that for each stencil underlying the trial space approxi-
mation, the node set Xk is unisolvent with respect to polynomials of degree p. Then
uh|Vk

= 0 if and only if uh(Xk) = 0, and uh|Ω = 0 if and only if uh(X) = 0.

Proof. The results follow from the uniqueness of the local interpolation
problems.

A scattered node set is quantified by its fill distance h, measuring the radius of
the largest ball empty of nodes in Ω, and its separation distance q, defined by

h = sup
x∈Ω

min
xj∈X

‖x− xj‖2 ≥ q =
1

2
min
j 6=k

xj ,xk∈X

‖xj − xk‖2.(4.1)

The quality of a node set is related to cq = q/h < 1. The trial space approximation
improves with increasing node quality. In the following subsections, we derive the
results that we need for the error estimates in section 5, in terms of the fill distance
h of X, the fill distance hy of Y , and the node quality cq.

4.1. Interpolation errors. We define the interpolant Ih(u) ∈ Vh of a function

u as Ih(u) =
∑N

j=1 u(xj)Ψj . For a function u ∈ W p+1
∞ (Ω) that allows Taylor series

expansion around xk ∈ Vk, we can assess the local interpolation error eI = Ih(u)− u
and its derivatives using a result from [3]. When h is small enough, we have that

|Li (Ih(u(y))− u(y)) | ≤ αk,ih
p+1−i|u|Wp+1

∞ (Vk)
, y ∈ Vk,(4.2)

where Li is a differential operator of order i, |u|W q
∞(Ω) =

∑

|α|=q ‖Dαu‖L∞(Ω), and
αk,i are constants that depend on the degree p of the polynomial basis, and on the
node quality cq of the stencil node set Xk. If the node layout is nonuniform, indicated
by a small value of cq, the interpolation problem has a large Lebesgue constant [26],
and consequently a larger interpolation error. The error is also larger for skewed
stencils that are evaluated close to their support boundary.
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Fig. 2. Left: A cardinal function generated with RBF-FD on a uniform node set in one dimen-
sion with stencil size n = 7. Right: A close-up to illustrate the discontinuities at the intersections
of the Voronoi regions.

When we use the interpolation error in the global error estimate, we take a norm
over the domain. If we let αi = |Ω|maxk αk,i, we have

‖Li(Ih(u)− u)‖`2(Ω) ≤ αih
p+1−i|u|Wp+1

∞ (Ω).(4.3)

At the edge of a Voronoi region Ih(u) takes slightly different values from each side.
That is, if u is not represented exactly in Vh, the interpolant Ih(u) has a discontinuity
proportional to hp+1, that goes to zero as the space is refined, along the edges of the
Voronoi regions. This means that the cardinal basis functions also have discontinuities
between Voronoi regions; see Figure 2.

4.2. Derivatives and norms in the trial space. We want to reuse the results
that we derive here also for the smoothed trial space defined in subsection 4.3. There-
fore, we define the local stencil-based functions vkh(y) that together form vh (cf. (3.2))
over the domains Vδ

k ⊃ Vk, which represent an extension of the Voronoi regions Vk

with at most distance δh/2 in any direction, where δ < 1. We have

vkh(y) =

n∑

i=1

ψk
i (y)vh(x

k
i ), y ∈ Vδ

k ,(4.4)

where xki is the ith element of Xk. When discussing bounds, we also use the following
explicit form derived in [3]:

vkh(y) = vh(Xk)
T (I −WP )A−1φ(y) + vh(Xk)

TWp(y),(4.5)

where W = A−1P (PTA−1P )−1, the PHS vector φ(y) = (φk1(y), . . . , φ
k
n(y))

T , and the
polynomial vector p(y) = (p1(y), . . . , pm(y))T .

Theorem 4.2. Assume that we use cubic splines, that Theorem 4.1 holds, and
that the node quality cq of X has a lower bound cmin, within each stencil node set, for
a sequence of discretizations with different fill distances h. We define ỹ = y/h and
ṽkh =

∑n
i=1 ψ̃

k
i (ỹ)vh(x

k
i ), where ψ̃

k
i (ỹ) = ψk

i (y), and we define a scaled Voronoi region

Ṽk such that ỹ ∈ Ṽk when y ∈ Vk. Let Vk,i = Vk ∩ Ωi ⊂ R
di and let Ṽk,i be the scaled

counterpart. Then

(Ds
yv

k
h, D

t
yv

k
h)L2(Vk,i) = hdi−|s|−|t| (Ds

ỹ ṽ
k
h, D

t
ỹ ṽ

k
h

)

L2(Ṽk,i)
(4.6)

= hdi−|s|−|t|vh(Xk)
T Ψ̃s,t

k,ivh(Xk), |s|, |t| ≤ 3,
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where Ψ̃s,t
k,i(q, r) = (Ds

ỹψ̃
k
q , D

t
ỹψ̃

k
r )L2(Ṽk,i)

. Furthermore for |s|, |t|, |q| ≤ 3,

max
‖vh(Xk)‖2 > 0

‖Dqvkh‖L2(Vk)>0

(Dsvkh, D
tvkh)L2(Vk,i)

‖Dqvkh‖2L2(Vk)

≤ hdi−d+2q−|s|−|t|Ks,t,i
q , k = 1, . . . , N,(4.7)

where Ks,t,i
q is an upper bound for the largest eigenvalue Kmax of the generalized

eigenproblem Ψ̃s,t
k,iv = KΨ̃q,q

k,0v in the subspace of eigenvectors v ∈ R
n that are in the

range of Ψ̃q,q
k,0. Apart from s, t, and q, the bound Ks,t,i

q only depends on the lower
bound on the node quality cmin, the dimension d, the stencil size n, the polynomial
degree p, and the dimension of the polynomial space m.

Proof. For the scaling of the derivatives, we have Ds
yψ

k
i (y) = Ds

yψ̃
k
i (y/h) =

h−sDs
ỹψ̃

k
i (ỹ). The integration relation is

∫

Vk
v(y)dy =

∫

Ṽk
v(ỹ)h−d dỹ. For integration

along a boundary intersecting Vk, we instead get hd−1. To understand which factors
influence the bounds, we introduce the matrices A1 and P1, which correspond to a
scaling of the nodes such that h = 1, and note that A = h3A1 and P = P1H, where
H is a diagonal matrix with elements hjj = h|tj |, where pj(x) = xtj . Combining (4.5)
and the scaled matrices leads to

h|s|Dsvkh(y) = vh(Xk)
T (I −W1P

T
1 )A−1

1 Ds
ỹφ(ỹ) + vh(Xk)

TW1D
s
ỹp(ỹ).(4.8)

We note the right-hand side of (4.8) is scale invariant. The smallest eigenvalue of
the symmetric matrix A1 can be bounded in terms of the separation distance q of
the stencil node set [34, Corollary 12.7]. When the nodes are scaled such that h = 1,
we have q = cq. That is, by choosing q = cmin for the bound, it holds for all
discretizations in the sequence. All other matrices and vectors can be bounded in
terms of the stencil size n, the dimension of the polynomial basis m, the polynomial
degree p, and the derivative s. The bounds are larger for skewed stencils and grow with
p. An upper bound for the numerator of (4.7) can be obtained by directly bounding
the matrices and vectors in (4.8). The denominator is a mass matrix/stiffness matrix
for the local scaled cardinal functions. The lower bound is attained for the (non-
zero differentiated) cardinal function that has the smallest amount of mass in Vk.
The mass is smaller for skewed stencils as well as small Voronoi regions. The same
parameters, cmin, n, m, p, determine the behavior. The local trial space functions are
twice continuously differentiable, while the third derivatives exist at all points, but
are piecewise continuous.

To investigate the relations between the discrete and continuous norms (cf. sub-
section 4.4), and the smoothed and discontinuous trial spaces (cf. subsection 4.3), we
introduce a semidiscrete bilinear form a∗(v, v) using the norm

‖v‖2L∗
2(Ωi)

= (v, v)L∗
2(Ωi) =

N∑

k=1

∫

Vk∩Ωi

v(y)2 dy.(4.9)

For a function v ∈ W 2
2 ‖Liv‖L∗

2(Ω) = ‖Liv‖L2(Ω), i ≤ 2, while for the trial space
functions, the semidiscrete norm eliminates the derivatives of the jumps.

4.3. The smoothed trial space. We introduce a smoothing operator S0
2 :

V 0
h 7→ V 0, where V 0 = {v ∈ W 2

∞(Ω) | v(y)|∂Ω0
= 0}, and let v = S0

2(vh). We never
construct the smoothed trial space function v in practice, but we use it as a tool
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in the error analysis (cf. section 5). First we define a set of overlapping patches by
extending each Voronoi region Vk a distance δh/2, δ < 1, in the normal direction at
each interior edge/face. To handle the Dirichlet boundary, we imagine a mirrored set
of Voronoi regions outside the boundary and let these extend δh into the domain. The
Voronoi regions along the inside of the Dirichlet boundary are assumed to conform to
the domain boundary where it intersects the region. As in the previous subsection,
we denote the extended Voronoi regions by Vδ

k .
Then we construct a set of nonnegative, compactly supported, partition of unity

weight functions {ωk}N+N0

k=1 , where the extra N0 weight functions belong to the regions
outside the Dirichlet boundary. We let ωk ∈W 2

∞(Ω) be supported on Vδ
k . That is, the

weight functions overlap with a distance δh at all shared edges. Let V−δ
k denote the

interior part of the Voronoi region, and let Γδ
k = Vk \ V−δ

k . For the weight functions

it holds that
∑N+N0

k=1 ωk = 1, y ∈ Ω, ωk(y) = 1, y ∈ V−δ
k , Dsωk(y) = 0, y ∈ V−δ

k , and

|Dsωk| ≤
G|s|
h|s|

, |s| ≤ 3, y ∈ Vδ
k \ V−δ

k ,(4.10)

where G0 = 1. The second derivatives of the weight functions are continuous, while
the third derivatives exist but are only piecewise continuous. For further details on
the construction of weight functions and their properties, see [33, 15].

We connect the exterior weight functions with zero functions, i.e., vkh ≡ 0, k > N .
Then we combine the local interpolants and weight functions to get

v = S0
2(vh) =

N∑

j=1

ωj(y)v
j
h(y) =

N∑

j∈Jk

ωj(y)v
j
h(y), y ∈ Vk,

where Jk contains the indices of the patches that overlap with Vk.

Theorem 4.3. Assume that Theorem 4.2 holds, that δ < 1 is fixed for all dis-
cretizations, and that v = S0

2(vh) for vh ∈ V 0
h . Then the following relations hold:

‖vh‖2L2(Ω) ≤ (1 + η0)‖v‖2L2(Ω),(4.11)

a(v, v) ≤ (1 + ηa)a
∗(vh, vh),(4.12)

where the bounds η0 and ηa depend on δ, the node quality cmin, the dimension d, the
stencil size n, the polynomial degree p, and the dimension of the polynomial space m.

Proof. If ‖vh‖L2(Vk) > 0, then ‖v‖L2(Vk) > 0 and ‖v‖L2(V−δ
k

) > 0, and we use

Theorem 4.2 to bound the ratio

‖vh‖2L2(Γδ
k
)

‖v‖2
L2(V−δ

k
)

=
‖vh‖2L2(Γδ

k
)

‖vh‖2L2(V−δ
k

)

=
vh(Xk)

T Ψ̃I,I
k,δvh(Xk)

vh(Xk)T Ψ̃
I,I
k,−δvh(Xk)

≤ ηk,0,(4.13)

where the subscript k,±δ denotes integration over Γδ
k and V−δ

k . Due to the size ratio of
the domains, ηk,0 is approximately proportional to δ/(1− δ). The other dependencies
come from the basis functions (cf. Theorem 4.2). We sum the local results to get

‖vh‖2L2(Ω) =
N∑

k=1

‖vh‖2L2(V−δ
k

)
+ ‖vh‖2L2(Γδ

k
) ≤

N∑

k=1

(1 + ηk,0)‖v‖2L2(V−δ
k

)

≤ max
k

(1 + ηk,0)‖v‖2L2(Ω).(4.14)
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Setting η0 = maxk(1 + ηk,0) gives the result (4.11). For the bilinear form, we start
from the restriction to a Voronoi region. We have

ak(v, v) = a(v, v)|Vk
= ak(v, v)|V−δ

k
+ ak(v, v)|Γδ

k
(4.15)

= ak(v
k
h, v

k
h)|V−δ

k
+ ak




∑

j∈Jk

ωjv
j
h,
∑

j∈Jk

ωjv
j
h





∣
∣
∣
∣
∣
∣
Γδ
k

= ak(v
k
h, v

k
h)|V−δ

k
+
∑

i∈Jk

∑

j∈Jk

ak(ωiv
i
h, ωjv

j
h)|Γδ

k
∩Vδ

i ∩Vδ
j

≤ ak(v
k
h, v

k
h) +Q

∑

j∈Jk

ak(ωjv
j
h, ωjv

j
h)|Γδ

k
∩Vδ

j
,

where Q ≈ 2d is the largest number of extended Voronoi regions that overlap at any
given point. We note that ωk|Vδ

k
∩∂Ω0

= 0, we introduce the notation Γδ
k,j = Γδ

k ∩ Vδ
j

and Γδ
k,j,1 = Γδ

k ∩ Vδ
j ∩ ∂Ω1, and we use (4.10) to estimate one term in the sum in

(4.15) as

ak(ωjv
j
h, ωjv

j
h)|Γδ

k,j
= ‖∆(ωjv

j
h)‖2L2(Γδ

k,j
) + ‖∂(ωjv

j
h)/∂n‖2L2(Γδ

k,j,1
)

≤ 2
(

‖∆vjh‖2L2(Γδ
k,j

) + 2G2
1h

−2‖∇vjh‖2L2(Γδ
k,j

) +G2
2h

−4‖vjh‖2L2(Γδ
k,j

)

)

+2
(

‖∂vjh/∂n‖2L2(Γδ
k,j,1

) +G2
1h

−2‖vjh‖2L2(Γδ
k,j,1

)

)

.(4.16)

Then, we consider the quotient of the overlap terms in Vk and the bilinear form
evaluated over the stencils surrounding and including Vk. We use Theorem 4.2 to
write the norms in (4.16) on scale invariant form:

∑

j∈Jk
ak(ωjv

j
h, ωjv

j
h)|Γδ

k,j
∑

j∈Jk
aj(v

j
h, v

j
h)

≤
2
∑

j∈Jk
vh(Xj)

T
(

Ψ̃∆,∆
k,j + 2G2

1Ψ̃
∇,∇
k,j +G2

2Ψ̃
I,I
k,j

)

vh(Xj)

∑

j∈Jk
vh(Xj)T

(

Ψ̃∆,∆
j + hΨ̃L1,L1

j,1 + h3Ψ̃I,I
j,0

)

vh(Xj)

+
2h
∑

j∈Jk
vh(Xj)

T
(

Ψ̃L1,L1

j,k,1 +G2
1Ψ̃

I,I
j,k,1

)

vh(Xj)

∑

j∈Jk
vh(Xj)T

(

Ψ̃∆,∆
j + hΨ̃L1,L1

j,1 + h3Ψ̃I,I
j,0

)

vh(Xj)
,(4.17)

where we extended the notation for Ψ̃ to allow integration over Γj,k as in (4.16) and
to include composite scalar operators, when the order is the same in each term. The
denominator is zero if the bilinear form is zero over all involved stencils. However,
with the PHS and polynomial basis functions that we use, this implies that the data is
sampled from a polynomial of degree ≤ p in the nullspace of the Laplacian operator.
Due to the overlap of the stencils and polynomial unisolvency, the data is consistent
across stencils. The polynomial is represented exactly on all stencils and we have
ak(v, v) = ak(v

k
h, v

k
h). If the denominator is positive, similarly as in Theorem 4.2,

we can find an upper bound through the generalized eigenproblem on the extended
domain involving a Voronoi region and its neighbors. We denote the specific bound
for Vk by ηk,a and combine (4.15) and (4.17), resulting in

a(v, v) =

N
∑

k=1

ak(v, v) ≤

N
∑

k=1



ak(v
k
h, v

k
h) + 2Qηk,a

∑

j∈Jk

aj(v
h
j , v

h
j )



 ≤ (1 + ηa)a
∗(vh, vh),

where ηa = 2Qmaxk ηk,a|Jk| provides the result (4.12).
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4.4. Discrete norm errors. The discrete norm ‖ · ‖`2(Ω) on the set of nodes
Y = {yi}Mi=1 is an approximation of the continuous norm ‖ · ‖L2(Ω), and for the global
error estimate, we need to quantify the difference. We start from a generic integral:

I =

∫

Ω

f(y)dy =
|Ω|
M

M∑

i=1

f(yi) + γI(f) = Ih + γI(f).(4.18)

We want to use this relation for nontrivial domains, which means that we need to
consider scattered nodes. Even if the nodes are regular in parts of the domain, they
need to be somewhat irregular near the boundary. A very general error estimate for
scattered node quadrature is given by

|γI(f)| ≤ DM (Y )V (f,Ω),(4.19)

where DM (Y ) is the star discrepancy of the node set and V (f,Ω) is the Hardy–Krause
variation of f [1]. This has been shown for general domains and piecewise smooth
functions in [7, 8]. Both of the factors in (4.19) are hard to quantify in general.
However, the standard deviation of the error for an arbitrary node layout (Monte Carlo
integration) in practical cases decreases as O(1/

√
M), and for a low discrepancy (quasi

random) node layout, it decreases as O((logM)d/M). Furthermore, for a (piecewise)
differentiable function, the total variation can be measured as V (f,Ω) =

∫

Ω
|∇f |dy.

Assuming that the evaluation node set Y is quasi uniform and that d is small enough
for (logM)d to be viewed as almost constant, we can estimate the error in the squared
norm of a function v ∈W 1

2 as

∣
∣
∣‖v‖2L2(Ωi)

− ‖v(Y )‖2`2(Ωi)

∣
∣
∣ ≤ CIh

di
y

∫

Ωi

|∇(v2)|dy,(4.20)

where di is the dimensionality of Ωi. To apply this estimate to the trial space function
it is easiest to apply it locally to each Voronoi region. The number of points in each
region is then small, but we get a statistical averaging through the sum.

Theorem 4.4. If Theorem 4.2 holds and hy is chosen according to (4.26) for a
relative integration error tolerance τ < 1, then

‖vh(Y )‖`2(Ω) ≤ (1 + τ)‖vh‖L2(Ω),(4.21)

a∗(vh, vh) ≤
1

(1− τ)
ah(vh, vh).(4.22)

Proof. We use Theorem 4.2 for the gradients

∫

Vk,i

|∇((Liv
k
h)

2)|dy = 2(|∇Liv
k
h|, |Liv

k
h|)Vk,i

= hdi−2i−1vh(Xk)
T Ψ̃

|∇Li|,|Li|
k,i vh(Xk)

(4.23)

and then again for the relative errors when ‖vh‖L2(Vk) > 0 and a∗k,k(v, v) > 0 to get

∣
∣
∣‖vh‖2L2(Vk)

− ‖vh(Y )‖2`2(Vk)

∣
∣
∣

‖vh‖2L2(Vk)

≤ 2CI

hdy
h
K

|∇|,|I|
I ,(4.24)
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∣
∣
∣
∑2

i=0

(

‖Livh‖2L2(Vk,i)
− ‖Livh(Y )‖2`2(Vk,i)

)∣
∣
∣

∑2
i=0 ‖Livh‖2L2(Vk,i)

(4.25)

≤ 2CI

hdy
h

vh(Xk)
T
(

Ψ̃
|∇∆|,|∆|
k + h−1

y hΨ̃
|∇L1|,|L1|
k,1 + h−1

y h3Ψ̃
|∇|,|I|
k,0

)

vh(Xk)

vh(Xk)T
(

Ψ̃∆,∆
k + hΨ̃L1,L1

k,1 + h3Ψ̃I,I
k,0

)

vh(Xk)

≤ 2CI

(

hdy
h
K

|∇∆|,|∆|
∆ + hd−1

y K
|∇L1|,|L1|,1
∆ + hd−1

y h2K
|∇|,|I|,0
∆

)

.

The first coefficient is the critical one, so if we choose

hy ≤




τh

2CI max
(

K
|∇|,|I|
I ,K

|∇∆|,|∆|
∆

)





1
d

,(4.26)

then the relative error is in both cases bounded by τ locally and globally.

5. Convergence and error estimates for RBF-FD-LS. In this section, we
derive stability, convergence, and error estimates for the RBF-FD-LS method. When
solving the least squares problem numerically in the form (3.6), we have not expe-
rienced practical problems with well-posedness. However, from the theoretical per-
spective it simplifies the analysis to have the Dirichlet boundary conditions imposed
strongly as in (3.17), which means that the error is zero at the node set X∂Ω0

. When
performing the analysis, we assume that the weights βi = 1, i = 0, 1, 2, in (3.14).
Scaling is discussed separately in subsection 5.4. Before stating the global error esti-
mate, we prove coercivity for the continuous bilinear form in a homogeneous space,
and then relate the discrete bilinear form to the continuous bilinear form.

5.1. Coercivity of the continuous bilinear form in a homogeneous space.

We investigate the coercivity of the continuous bilinear form (2.4) for functions v ∈
V 0 = {v ∈ W 2

2 (Ω) | v(y)|∂Ω0=0}. Given the smoothness assumptions on the domain
Ω and the function v, a Poincaré–Friedrich inequality holds with the boundary data
given on some part of the boundary [6]. This can be seen if the inequality is shown
using integration along paths from points on the Dirichlet boundary to points in the
domain.

‖v‖2Ω ≤ C2
P

(
‖v‖2∂Ω0

+ ‖∇v‖2Ω
)
= C2

P ‖∇v‖2Ω, v ∈W 1
2 (Ω).(5.1)

We also need a trace inequality that relates the solution on (any part of) the bound-
ary to the solution in the interior. The following inequality [9, Theorem 1.6.6], [16,
Theorem A.4] holds for domains with Lipschitz or smooth boundary:

‖v‖2∂Ωi
≤ C2

T ‖v‖Ω
(
‖v‖2Ω + ‖∇v‖2Ω

) 1
2 ≤ C2

TCP

√

C2
P + 1‖∇v‖2Ω, v ∈W 1

2 (Ω),(5.2)

where (5.1) was used for the second inequality. Then we have Green’s first identity
that can be derived from the divergence theorem

∫

Ω

∇u · ∇v =

∫

∂Ω

u
∂v

∂n
−
∫

Ω

u∆v, u ∈W 1
2 (Ω), v ∈W 2

2 (Ω),(5.3)
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leading to

‖∇v‖2Ω ≤ ‖v‖∂Ω0
‖∂v/∂n‖∂Ω0

+ ‖v‖∂Ω1
‖∂v/∂n‖∂Ω1

+ ‖v‖Ω‖∆v‖Ω
= ‖v‖∂Ω1

‖∂v/∂n‖∂Ω1
+ ‖v‖Ω‖∆v‖Ω,(5.4)

where we separated the boundary integral into two parts due to the structure of our
specific problem and used that functions in V 0 vanish on ∂Ω0.

To show coercivity, we start from (5.4), then use the trace inequality (5.2) on the
first term, and use the Poincaré inequality (5.1) on the second term.

‖∇v‖2Ω ≤ ‖v‖∂Ω1
‖∂v/∂n‖∂Ω1

+ ‖v‖Ω‖∆v‖Ω
≤ CT

√

CP
4

√

C2
P + 1‖∇v‖Ω‖∂v/∂n‖∂Ω1

+ CP ‖∇v‖Ω‖∆v‖Ω.(5.5)

Dividing through by the gradient norm, squaring the result, and using (a + b)2 ≤
2a2 + 2b2 leads to

‖∇v‖2Ω ≤ 2C2
TCP

√

C2
P + 1‖∂v/∂n‖2∂Ω1

+ 2C2
P ‖∆v‖2Ω.(5.6)

Let C2
1 = 2C2

TC
2
P

√

1 + 1
C2

P

and C2
2 = 2C2

P . Using (5.1) one more time, we have

‖v‖2Ω ≤ C2
P ‖∇v‖2Ω ≤ C2

P max(C2
1 , C

2
2 )(‖∂v/∂n‖2∂Ω1

+ ‖∆v‖2Ω).(5.7)

If we finally let C2 = C2
P max(C2

1 , C
2
2 ), we have the coercivity result

C2a(v, v) ≥ ‖v‖2Ω, v ∈ V 0.(5.8)

5.2. Coercivity of the discrete bilinear form in a homogeneous space.

Theorem 5.1. If Theorems 4.2 and 4.3 hold, hy is chosen according to Theo-
rem 4.4, and the continuous bilinear form is coercive, then the discrete bilinear form
is coercive for vh ∈ V 0

h such that

‖vh‖`2(Ω) ≤ C2 (1 + τ)(1 + η0)(1 + ηa)

(1− τ)
ah(vh, vh) ≡ Chah(vh, vh).(5.9)

Proof. Since v = S0
2 ∈ W 2

2 (Ω) the continuous coercivity property holds for v,
showing that a(v, v) > 0 and hence a∗(vh, vh) > 0, and we can use (4.21), (4.11),
(5.8), (4.12), and (4.22) in sequence.

5.3. The global error estimate.

Theorem 5.2. Consider the least squares problem (3.17) with properties (3.18)
and (3.19). If Theorems 4.2 and 4.3 hold, hy is chosen according to Theorem 4.4,
and Theorem 5.1 holds for the trial space error eh = uh + u0h − Ih(u) ∈ V 0

h , then the
error e = uh + u0h − u satisfies

‖e‖`2(Ω) ≤ C

(
(1 + τ)(1 + η0)(1 + ηa)

(1− τ)

) 1
2 √

2ah(eI , eI) + ‖eI‖`2(Ω),(5.10)

where eI = Ih(u)− u is the interpolation error.
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Proof. The error e = uh+u
0
h−u does not lie in the trial space unless u lies in the

trial space. Also, uh + u0h does not in general interpolate u. We use the interpolant
Ih(u) ∈ Vh as an auxiliary function to write e = uh + u0h − u = (uh + u0h − Ih(u)) +
(Ih(u) − u) = eh + eI . The first term eh has nodal values e(X) and eh ∈ V 0

h , since
the Dirichlet condition is imposed strongly. The second term eI is the interpolation
error, which is not in the trial space. We split the error to get

‖e‖`2(Ω) = ‖eh + eI‖`2(Ω) ≤ ‖eh‖`2(Ω) + ‖eI‖`2(Ω).(5.11)

For the trial space error, we start from Theorem 5.1, and then use (3.19), together
with |ah(u, v)| ≤ 1

2ah(u, u) +
1
2ah(v, v), and (3.18)

1

C2
h

‖eh‖2`2(Ω) ≤ ah(eh, eh) = ah(e− eI , eh) = ah(−eI , eh) = ah(−eI , e− eI)

= ah(−eI , e) + ah(eI , eI) ≤ 0.5ah(e, e) + 1.5ah(eI , eI)

≤ 2ah(eI , eI),(5.12)

leading to

‖eh‖`2(Ω) ≤ Ch

√

2ah(eI , eI).(5.13)

Combining (5.11) and (5.13) provides the final result (5.10).

5.4. The details of the global error estimate including scaling. The com-
ponents of the global error estimate are now in place, and we can discuss their prop-
erties as well as the question about scaling of the different terms in the bilinear form.
Equation (4.3) for the interpolation error eI = Ih(u)− u yields

‖eI‖`2(Ω) ≤ α0h
p+1|u|Wp+1

∞ (Ω),(5.14)

and for the bilinear form applied to the interpolation error we have

ah(eI , eI) ≤
(
(α0h

p+1)2 + (α1h
p)2 + (α2h

p−1)2
)
|u|2

Wp+1
∞ (Ω)

.(5.15)

Noting that a2 + b2 + · · · ≤ (a+ b+ · · · )2 for positive numbers, we insert all terms in
the global error estimate (5.10), to get

‖e‖`2(Ω) ≤
√
2C

(
(1 + τ)(1 + η0)(1 + ηa)

(1− τ)

) 1
2 (
α̃0h

p+1 + α1h
p + α2h

p−1
)
|u|Wp+1

∞ (Ω),

(5.16)

where α̃0 = α0(1 + 1√
2Ch

). The error estimate tells us that h should be chosen to

resolve the solution function, while hy ≤ h should be chosen to resolve the integrals
of the trial space error and its derivatives.

The error expression (5.16) indicates that the error may be somewhat improved,
by adjusting the scale factors βi in (3.14). The three terms in the sum change directly
with the scale factors, while the stability constant depends on the worst case, leading
to

Cβ =
√
2C2

P max





CT
4

√

1 + 1
C2

P

β1
,
1

β2



 = CP max

(
C1

β1
,
C2

β2

)

.(5.17)

D
o
w

n
lo

ad
ed

 0
8
/2

0
/2

1
 t

o
 1

3
4
.8

8
.2

5
2
.5

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1458 IGOR TOMINEC, ELISABETH LARSSON, AND ALFA HERYUDONO

as an additional layer outside Ω. The layer is generated by projecting every boundary
point a distance h in the normal direction. The matrix D̄h and the right-hand-side
vector F̄ are then modified such that the Laplacian is also sampled on ∂Ω. In the
RBF-FD-LS case, the size of D̄h then grows from M × N to (M + Ng) × (N + Ng)
and in the RBF-FD-C case from N × N to (N + Ng) × (N + Ng), where Ng is the
number of ghost points equal to the number of X points at the boundary. The stencil
size in all experiments is n = 2m, where m is the dimension of the polynomial space.
In the convergence experiments, we measure the relative `2-error

‖e(Y )‖`2(Ω) =
‖uh(Y )− u(Y )‖`2(Ω)

‖u(Y )‖`2(Ω)
.(6.1)

We also investigate the stability norm by defining it as the ratio of the largest sin-
gular value of Ēh(Y, X̃) and the smallest singular value of D̄h(Y, X̃). The stability
norm provides a numerical value for the coercivity constant Ch in the global error
estimate (5.10). Using (3.17) for the interior solution, we have

‖uh(Y )‖`2(Ω) = ‖Ēh(Y, X̃)u(X̃)‖2 = ‖Ēh D̄
+
h F̃ (Y )‖2

≤ ‖Ēh‖2 ‖D̄+
h ‖2 ‖F̃ (Y )‖2 =

σmax(Ēh)

σmin(D̄h)
‖F̃ (Y )‖2.(6.2)

6.1. Errors and convergence tests for different functions. Three solution
functions which are different in nature are used to compute the right-hand-side data
of (2.1). The purpose of this test is to show the differences in the error behavior and
to pick one solution function for which the method is later on tested more extensively.
Additionally, we solve the PDE problem with only Dirichlet boundary data. The
following functions are considered:

u1(x, y) =
√

x2 + y2,(6.3)

u2(x, y) =

5∑

k=0

e−
√
2k
(
cos(2kx) + cos(2ky)

)
,(6.4)

u3(x, y) = sin
(
2(x− 0.1)2

)
cos
(
(x− 0.3)2

)
+

sin
(
2(y − 0.5)2

)2

1 + 2x2 + y2
,(6.5)

which are referred to by the names distance, truncated nonanalytic, and rational
sine, respectively. The polynomial degree p = 5 is used for computing the local
interpolation matrices. The error under refinement of h is displayed in Figure 4.

The accuracy of RBF-FD-LS is better than that of RBF-FD-C for all solution
functions when both the Neumann and Dirichlet conditions are present. The conver-
gence rates for the truncated nonanalytic and rational sine functions are k = 4.9 and
k = 4.8, respectively, which agrees with the error estimate (5.16) since k ≥ p− 1 = 4.
When ghost points are utilized, the accuracy is better compared to when no ghost
points are utilized. Comparing RBF-FD-LS-Ghost with RBF-FD-C-Ghost we see
that the accuracy of the former is generally better compared with the accuracy of the
latter. Next, comparing RBF-FD-C-Ghost to RBF-FD-LS we see that RBF-FD-LS
is, in this test, overall more accurate, but the gap is smaller compared with the gap
between RBF-FD-LS and RBF-FD-C. The convergence rate for the distance function
is k = 0.8 < 4}, but that is expected since it is a C0 function.

When only the Dirichlet condition is imposed, the accuracy of RBF-FD-LS is
better for the distance and rational sine functions. This is also the case for the
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Fig. 4. The errors of RBF-FD-LS and RBF-FD-C as a function of the inverse node distance for
the three different solution functions defined in subsection 6.1. The first row of plots corresponds to
solving (2.1) and the second row corresponds to solving the same problem with the Dirichlet condition
on the whole boundary. The polynomial degree used to construct the interpolation matrices is p = 5
and the oversampling parameter q = 3. The number of node points in X ranges from N = 500 to
N = 64000.

truncated nonanalytic function, when h is small enough. The difference in error
between RBF-FD-LS and RBF-FD-C is not as large as when both the Neumann and
Dirichlet conditions are imposed. In this case the convergence rates for the truncated
nonanalytic function and rational sine function are k ≥ p − 1 = 4, similarly to the
mixed conditions case. Ghost points in this case do not play a significant role in
improving accuracy.

In the following subsections further experiments are made with the truncated
nonanalytic solution function, which, due to its fine scale variation, is challenging to
approximate.

6.2. Approximation properties under node refinement. We refine h (this
increases the number of nodes N) and measure the approximation properties for
different polynomial degrees in the local interpolation matrices (1.5). We denote this
by h-refinement. The convergence as a function of the node distance is shown in
Figure 5. We observe that the accuracy of RBF-FD-LS is better for each tested
p compared with RBF-FD-C. The overall difference in the errors is larger for p = 5
compared with when p = 3 and 4. The convergence trend k of RBF-FD-LS is k ≥ p−1
for every p. It is hard to evaluate the convergence trend of RBF-FD-C since the error
behavior is unpredictable. The accuracy of RBF-FD-LS-Ghost is overall better for
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Fig. 5. The RBF-FD-LS and RBF-FD-C methods are compared. The relative error as a
function of the inverse node distance 1/h for a fixed oversampling parameter q = 3 and different
polynomial degrees p used to form the local interpolation matrices is shown.
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Fig. 6. The RBF-FD-LS and RBF-FD-C methods are compared. The relative error as a
function of the initialization runtime (R1) measured in seconds for a fixed oversampling parameter
q = 3 and different polynomial degrees p used to form the local interpolation matrices.

all p compared with RBF-FD-C-Ghost. The gap between RBF-FD-LS and RBF-C-
Ghost is smaller compared with the gap between RBF-FD-LS and RBF-FD-C, and
in some points, RBF-FD-C-Ghost is more accurate than RBF-FD-LS.

Next, the relation between the error and the computational time (runtime) is
investigated. It is important to note that a method with a smaller error/runtime
ratio is more efficient. The runtime is divided into two steps shown in Figures 6
and 7:

R1 : The closest neighbor search, forming and inverting the local interpolation
matrices (1.5), and forming the evaluation and differentiation weights (3.3).

R2 : Assembly of the PDE operator (3.4), and solution of the system of equations
using mldivide() in MATLAB.

The node generation is considered as a preprocessing step and is therefore not included
in the measurement.

We observe that the efficiency of RBF-FD-LS is better than that of RBF-FD-C
for all considered p and both efficiency measurements: R1 and R2. When p = 5, the
difference in the efficiency is larger. The oversampling parameter q does not have a
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Fig. 7. The RBF-FD-LS and RBF-FD-C methods are compared. The relative error as a
function of the solving runtime (R2) measured in seconds for a fixed oversampling parameter q = 3
and different polynomial degrees p used to form the local interpolation matrices.
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Fig. 8. The stability norm (6.2) as a function of 1/h when the oversampling parameter is q = 3
for different polynomial degrees p.

decisive role when it comes to efficiency. We expect the runtime to be dominated by
the solution of the overdetermined linear system. For a dense matrix, the cost grows
linearly with M = qN for a fixed N . We expect a similar behavior for our sparse
system. The added cost is compensated for by the improved accuracy. Figure 10
shows the error improvement with q.

RBF-FD-C-Ghost behaves similarly to RBF-FD-LS and RBF-FD-LS-Ghost con-
cerning the efficiency R1. In the R2 case, RBF-FD-C-Ghost outperforms all other
methods; however, the magnitude of the runtime in R2 is at least one order smaller
compared with R1. By observing the efficiency as a function of the total runtime
R1 + R2, the result of R1 is dominating. Thus, the three methods overall behave
similarly in terms of efficiency.

The stability norm (6.2) as a function of 1/h is studied in Figure 8. We observe
that the stability norm of RBF-FD-LS is almost constant for all polynomial degrees
p which we considered. This corresponds with the error estimate (5.16). When

hy = h/
√
q, the integration error τ goes to zero as h/q, and the factor

√
1+τ√
1−τ

in the

stability constant Ch approaches 1. The stability norm of the RBF-FD collocation
method does not follow a pattern for the given PDE, parameters, and node sets. Here
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Fig. 9. Left: The condition number of the PDE matrix D̄h as a function of the inverse node
distance when the polynomial degree used for representing the trial space is p = 3. Right: The
condition number of the evaluation matrix Eh when the polynomial degrees used for representing the
trial space are p = 3, 4, and 5.

we emphasize that this behavior is not caused by the RBF-FD trial space but rather
by the collocation formulation in which the PDE is solved. An interesting behavior is
observed in the RBF-FD-C-Ghost case, where the stability norm is constant. While
it is possible to attribute that to the imposition of ghost points, we argue that this
occurs only due to the imposition of the extra Laplacian condition on the boundary
points, which in turn introduces a stronger control over ‖∆uh‖`2 : a key factor when
it comes to the invertibility of D̄h and thus the stability norm. To confirm this
claim, we made a side experiment. The extra Laplacian condition was enforced at the
boundary points, but no ghost points were used and no oversampling was employed.
The resulting system of equations was rectangular only due to the imposition of the
extra Laplacian conditions. The stability norm remained constant.

The condition number of a rectangular or square matrix A is defined by κ(A) =
‖A‖2 ‖A+‖2 = σmax(A)/σmin(A). In Figure 9 we show the condition numbers for the
two matrices involved in RBF-FD-LS: D̄h and Eh. We observe that κ(D̄h) grows with
1
h2 for p = 3. The results are almost identical for p = 4 and 5. This is an expected
(optimal) growth, since D̄h is a numerical second-order differentiation operator, which
has an inverse quadratic dependence on h when the stencil size is kept constant. On
the other hand κ(Eh) is constant with respect to h for all p, which is also an expected
result, since Eh is a numerical interpolation operator, which does not by itself yield a
dependence on h when the stencil size is kept constant.

6.3. Approximation properties as the oversampling is increased. In this
section we build an understanding of the error and stability behavior for different
choices of hy = h/

√
q, when h is fixed at h = 0.08 (underresolved case) and at

h = 0.02 (well-resolved case). Three polynomial degrees p = 3, 4, and 5 are used for
the local interpolation matrices (1.5). The exact solution is chosen to be the truncated
nonanalytic function (6.4). The convergence study for RBF-FD-LS is displayed in
Figure 10. For both the underresolved and well-resolved cases, the error decays and
then levels out as hy becomes small enough. This behavior matches the error estimate

(5.16) for the case when h is fixed. As hy → 0 the term
(
1+τ
1−τ

) 1
2 → 1 from a larger

value, and therefore ‖e‖`2(Ω) levels out. The stability norm behavior is shown in
Figure 11, from which we observe that in both the well-resolved and underresolved
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Fig. 10. The error against 1/hy which is the average distance in the Y node set for different
choices of the polynomial degree p used to form the trial space. The average internodal distance in
the node set X was for the left plot fixed at h = 0.08 and for the right plot fixed and h = 0.02. The
values of hy were computed from q = (1.1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, 3.7, 4, 5, 6, 7, 8, 9, 10, 11).
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20 30 40 50
0.5

1

1.5

2

2.5

3

3.5
 p=3  p=4  p=5

50 100 150 200
0.5

1

1.5

2

2.5

3

3.5
 p=3  p=4  p=5

Fig. 11. Both plots show the stability norm (6.2) as a function of 1/hy, the average inverse
node distance in the point set Y . Different choices of the polynomial degree p were used to form
the trial space. The average internodal distance h in the node set X was for the left plot fixed at
h = 0.08 and for the right plot fixed at h = 0.02, illustrating the underresolved and the well-resolved
case. The values of hy were computed from q = (1.1, 1.3, 1.7, 2, 2.3, 2.7, 3, 3.3, 3.7, 4, 5, 6, 7, 8, 9,
10, 11).

cases, the norm first rapidly decays and then flattens out when hy is small enough.
The approximate point when the stability norm starts to flatten out is at 1/hy ≈ 28
(corresponding to q = 3.7) for the underresolved case and at 1/hy ≈ 70 (q = 3.3) for
the well-resolved case.

6.4. Eigenvalue spectrum as the oversampling is increased. In the case of
the least squares matrices, we use the relation u(Y ) = Ehu(X) to arrive at E+

h u(Y ) =
u(X), which is then used in the discretized PDE D̄hu(X) = F̄ (Y ) to arrive at

D̄hE
+
h u(Y ) = F̄ (Y ).

We then investigate the eigenvalues of the squareM×M matrix D̄hE
+
h . Both matrices

D̄h and Eh are rectangular of size M ×N , thus the rank of each is at most N . The
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Fig. 12. Eigenvalues of ED̄+ as the oversampling parameter q is increased, where D̄ discretizes
the Poisson equation with Dirichlet and Neumann boundary conditions imposed on two disjoint parts
of the boundary of the domain. In this test the number of nodes is N = 1000 and the polynomial
degree used to construct the local approximations is p = 4.

rank of D̄hE
+
h can then not be larger than N , implying that there will always exist a

nullspace of size M −N . This is not a problem when we use the method for solving
PDEs as we always solve for the unique N -dimensional least squares solution.

In Figure 12, we display the eigenvalue spectrum of the PDE matrix for N =
1000 and an increasing oversampling parameter q. We observe that the real part of
the spectra in the least squares case shrinks as q is increased. The spectra of the
collocation matrices have a larger negative real part compared to the spectra of the
least squares matrices. In addition, in Figure 13, we also display the eigenvalue spectra
of the discretized first order operator −g · ∇u, where g = [0, 1]. We only impose the
Dirichlet boundary condition at the location of the polar angle θ ∈ [0, π]. In this
case, the least squares cases have less distinct behavior. However, we can observe
that the negative and positive real parts of the spectrum are moving slightly toward
the imaginary axis as the oversampling is increased. The increase in oversampling
improves the eigenvalue spectra of the rectangular differentiation matrices in both
eigenvalue examples.

6.5. Approximation properties as the polynomial degree is increased.

Here we increase the number of points per stencil, together with increasing the poly-
nomial degree p used to form the stencil-based interpolant (1.5), while the distance h
between the stencil points is kept the same. This is denoted by p-refinement. We con-
sider polynomial degrees up to p = 12 in order to test the limits of the method. Two
different solution functions are considered, the truncated nonanalytic function (6.4)
and the rational sine function (6.5). The methods RBF-FD-LS, RBF-FD-LS-Ghost,
RBF-FD-C, and RBF-FD-C-Ghost are compared when h is fixed at h = 0.08 (un-
derresolved case) and at h = 0.02 (well-resolved case). In Figure 14, we see that the
error for both resolutions and both manufactured solutions is smaller for RBF-FD-LS
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Fig. 13. Eigenvalues of ED̄+ as the oversampling parameter q is increased, where D̄ discretizes
the advection equation with Dirichlet boundary condition at the inflow boundary of a domain Ω. In
this test the number of nodes is N = 1000 and the polynomial degree used to construct the local
approximations is p = 4.
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Fig. 14. The relative error in the p-refinement mode: the polynomial degree used to form the
stencil-based interpolation matrix (1.5) is increased, while the internodal distance between the stencil
points is fixed at h = 0.08 and h = 0.02.
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6.6. Approximation properties under node refinement in three dimen-

sions. In this section we solve the PDE problem (2.1) in the same way as in the
previous sections, but now in three dimensions. We compare RBF-FD-LS and RBF-
FD-C with ghost points and without ghost points. The stencil sizes are in all cases
n = 2m, where m is the dimension of the polynomial space.

The norm scaling for the least squares methods is in the 3D case chosen as β =

h
3/2
y for the Laplacian equations and β = hy for both boundary conditions, according

to the relation (3.14). The equation scaling β0, β1, and β2 for the Dirichlet boundary,
the Neumann boundary, and the Laplacian condition is given by β0 = 1/h, β1 = 1,
β2 = 1, which is the same scaling as used in the 2D cases.

The 3D domain in spherical coordinates is given by

r(θ, φ) =
(
1 + sin(2 sin(φ) sin(θ))2 sin(2 sin(φ) cos(θ))2 sin(2 cos(φ))2

) 1
2 ,

where θ is the longitude angle θ ∈ [−π, π) and φ is a latitude angle φ ∈ [−π
2 ,

π
2 ). The

right-hand sides of the PDE (2.1) are computed based on a solution function:

u = sin(3π x y z).

The coordinates (x, y, z) of the mixed boundary conditions are given by

(x, y, z)|∂Ω0
= {(x, y, z)|∂Ω | z < 0.7}, (x, y, z)|∂Ω1

= {(x, y, z)|∂Ω | z ≥ 0.7},

where the first set corresponds to the location of the Dirichlet boundary condition
and the second to the location of the Neumann boundary condition.

In the previous experiments in two dimensions we mostly used the oversampling
parameter q = 3. An equivalent sampling in three dimensions is motivated by knowing
that 10 points in one dimension sample a fixed domain [Ω]1 equivalently well as 100
points sample [Ω]2 in two dimensions and 1000 points sample [Ω]3 in three dimensions.
It follows that the relation q3 = q2

√
q2 holds, where q2 is a sampling in two dimensions

and q3 is an equivalent sampling in three dimensions. All of our 3D computations
are therefore based on a choice of an oversampling parameter q = d3

√
3e = 6. An

instance of a solution function, together with a relative absolute error in the loga-
rithmic scale, is given in Figure 17. We can observe that the largest errors appear
close to the boundary ∂Ω1, where the Neumann condition is imposed. The error at

Fig. 17. Solution function (left) and spatial distribution of the relative absolute error in the
logarithmic scale (right) when h is chosen such that it corresponds to N = 24000 points placed over
Ω. The polynomial degree chosen to construct local approximations is p = 5 and the oversampling
parameter is q = 6.
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Fig. 18. Error under nodal refinement in a 3D case for polynomial degrees p = 3, 4, and 5.
The oversampling parameter is q = 6 and the chosen 1/h corresponds to N = 1000, 2000, 4000,
6000, 8000, 12000, and 24000 points spread over a 3D domain.
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Fig. 19. Stability norm under nodal refinement in a 3D case for polynomial degrees p = 3, 4,
and 5. The oversampling parameter is q = 6 and the chosen 1/h corresponds to N = 1000, 2000,
4000, 6000, 8000, 12000, and 24000 points in a 3D domain.

the locations of the Dirichlet boundary ∂Ω0 is very small in some points, since those
are the points where this condition is enforced exactly. The error in other points
at the same boundary is larger, since in those points the Dirichlet condition is not
satisfied exactly. In Figure 18 we compute the error as the internodal distance h is
decreased and the polynomial degrees p = 2, 3, and 4 are used to construct the local
approximations. Our numerical results show that RBF-FD-LS, RBF-FD-LS-Ghost,
and RBF-FD-C-Ghost methods share a similar accuracy, while RBF-FD-C behaves
unpredictably.

A study related to the stability norm in three dimensions is given in Figure 19.
The experiment confirms that the numerical (and theoretical) observations in two
dimensions generalize to three dimensions as well, since the stability norm of RBF-
FD-LS does not have unpredictable behavior.

7. Final remarks. In this paper we introduced an enhancement of the colloca-
tion-based RBF-FD method where we instead use a least squares approach. The main
method parameters are the node distance h, the evaluation node distance hy, and
the polynomial degree p used to form the stencil approximations. The least squares
formulation led us to characterize the RBF-FD trial space as a piecewise continuous
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space with jumps that vanish together with the local approximation error, and to
understand that D̄T

h D̄hu = D̄T
h f reproduces the L2 inner-products of the continuous

least squares problem up to an error governed by hy. This allowed us to prove well-
posedness (stability) of RBF-FD-LS for an elliptic problem when hy is small enough
in relation to h. We also derived an error estimate in terms of the node distance,
where the error decays with no less than order p − 1 for the Poisson problem with
Dirichlet and Neumann boundary conditions.

The experiments confirmed the theoretical observations in terms of the conver-
gence trend as a sequence of h gets increasingly small. We also confirmed that as h is
fixed at a small value, the stability norm and the error are improved as hy → 0, until
both level out. This happens when the effect of the numerical integration becomes
negligible.

An experimental comparison of RBF-FD-LS and RBF-FD-C with ghost points
revealed that both methods are comparable in robustness. However, we believe that
RBF-FD-LS has an advantage due to a better theoretical understanding (at least at
the present moment) compared to RBF-FD-C with ghost points.

Overall, the numerical experiments indicated that RBF-FD-LS (no ghost points)
for our model problem performs better than RBF-FD-C (no ghost points) in terms of

• the error against the exact solution for p-refinement and h-refinement,
• the stability properties,
• the efficiency.

The most important strength of the least squares formulation is the robustness of
the numerical solution as h is decreased, which, according to our experience, is often
lacking in the collocation formulation, especially in the presence of Neumann boundary
conditions.
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