

CC ’21, March 2ś3, 2021, Virtual, Republic of Korea M.Á. Abella-González, P. Carollo-Fernández, L.-N. Pouchet, F. Rastello, and G. Rodríguez

input data values. This includes numerous dense linear alge-
bra methods (e.g., matrix product, tensor contractions), dy-
namic programming, stencil computations for image process-
ing or physics simulation, and equation solvers. Polyhedral
programs can be represented at compile-time using affine
functions and integer lattices, enabling exact array dataflow
analysis to be computed [11]. Consequently, it is possible to
design highly advanced automatic optimizing compilation
algorithms for polyhedral programs, where aggressive re-
structuring including loop parallelization and tiling can be
seamlessly implemented, e.g. [4, 12, 21, 23, 27]. Production
compilers like GCC [26] and LLVM [17] integrate already
polyhedral optimizers, as well as numerous research tools
such as Pluto [4] or ISL [32].

We introduce PolyBench/Python, a self-contained bench-
marking suite made of 30 numerical polyhedral kernels, for
which polyhedral compilers can be designed and evaluated.
PolyBench/Python is on purpose an exact mirror of the 30
kernels in PolyBench/C 4.2 [28] in terms of computation per-
formed, problem sizes and data types. This feature is key to
enable fair side-by-side comparison of Python-based imple-
mentations with clean, native C implementations optimized
with state-of-the-art optimizing compilers.

PolyBench/C provides a single reference implementation
for each kernel, and a variety of schemes to allocate data
along with mechanisms to ensure reproducible evaluations.
PolyBench/Python offers similar features, but it also includes
three Python implementations for each benchmark: a simple,
C-like implementation using multidimensional arrays; an-
other simple C-like implementation using linearized arrays;
and a NumPy [31] implementation. As we demonstrate in
this paper, different types of implementation may deliver the
best performance, depending on the benchmark and execu-
tion environment.

We developed an automated polyhedral optimizer for Poly-
Bench/Python, automatically extracting the polyhedral rep-
resentation of the kernel, and optimizing it with off-the-shelf
polyhedral compilers. We present extensive experimental
studies of the impact of several classical polyhedral loop
transformations when applied to PolyBench/Python, includ-
ing complex loop fusion to improve data reuse (using the
Pluto algorithm [4]), and loop permutations to further expose
parallel inner loops. We make the following contributions:

• We introduce PolyBench/Python, a suite of 30 numeri-
cal kernels, for the purpose of benchmarking Python
runtime environments and (just-in-time) Python com-
pilers.1

1PolyBench/Python is free software, available at https://github.com/UDC-
GAC/polybench-python.

• We developed an automated polyhedral compilation
flow for PolyBench/Python, and present extensive ex-
periments on the profitability (or lack thereof) of im-
plementing loop transformations for improved data
reuse for these benchmarks.

• We present extensive experimental results character-
izing PolyBench kernels, contrasting their execution
profile in native C with their Python equivalent, to
characterize the profitability and overhead of using
Python for such numerical computations.

• We present several insights on Python programming
styles and good practice to expose solid performance
for Python-based implementations of numerical ker-
nels.

The rest of the paper is organized as follows. Section 2
motivates the work. Section 3 introduces PolyBench/Python.
Section 4 presents extensive experimental results. Section 5
presents related work, before concluding in Sec. 6.

2 Implementing Numerical Kernels in
Python

The Python Ecosystem. Python is a high-level, object-
oriented programming language that is well established with
a very large community in both academia and industry. It
is a general-purpose language which is extremely easy to
learn due to its very clean syntax and great readability. One
of the best characteristics of Python is its productivity. It is a
dynamically (but strongly!) typed and interpreted language,
with elegant syntax that makes it a very good option for
scripting and rapid application development.
NumPy [31] includes both a C array-like storage format,

and high performance operations on arrays for Python. Nowa-
days, many Python codes are efficient enough for produc-
tion use. However, due to Python’s interpreted nature and
the lackluster performance of łpure Pythonž (i.e., not using
NumPy or external libraries) codes in the reference CPython
interpreter, part of the community dismisses Python as a low
performance language in itself.

Execution Profiles with Different Implementations.

Figure 1 illustrates the wide ranging performance profiles
that can be obtained with various types of dense numerical
kernels. It presents the normalized performance, in CPU exe-
cution cycles, achieved by different C and Python versions of
five selected PolyBench kernels with and without polyhedral
optimizations using the Pluto algorithm [4]2

We observe that Python implementationsmay end up com-
peting with native C implementations (e.g., gramschmidt,
seidel-2d and syr2k); but may also massively degrade per-
formance, e.g., by nearly 10x for the Python versions of

2Additional and/or different polyhedral optimizations may provide higher

performance gain than reported here, no tuning of these optimizations was

implemented: we limit here to evaluating the benefit of loop fusion/distribu-

tion (possibly including loop skewing/shifting to make the fusion possible).

60

CC ’21, March 2ś3, 2021, Virtual, Republic of Korea M.Á. Abella-González, P. Carollo-Fernández, L.-N. Pouchet, F. Rastello, and G. Rodríguez

Table 1. 30 kernels in PolyBench

Benchmark Reuse Description
2mm 𝑂 (𝑁) 2 Matrix Mult. (𝛼𝐴𝐵𝐶 + 𝛽𝐷)

3mm 𝑂 (𝑁) 3 Matrix Mult. ((𝐴𝐵) (𝐶𝐷))

adi 𝑂 (𝑇) Alternating Direction Implicit solver

atax 𝑂 (1) Matrix transpose and vector mult.

bicg 𝑂 (1) BiCG sub-kernel of BiCGStab solver

cholesky 𝑂 (𝑁) Cholesky decomposition

correlation 𝑂 (𝑁) Correlation computation

covariance 𝑂 (𝑁) Covariance computation

deriche 𝑂 (1) Edge detection filter

doitgen 𝑂 (𝑁) Multi-res. analysis kernel (MADNESS)

durbin 𝑂 (𝑁) Toeplitz system solver

fdtd-2d 𝑂 (𝑇) 2-D Dinite Diff. Time Domain kernel

floyd-warshall 𝑂 (𝑁) Graph shortest path length

gemm 𝑂 (𝑁) Matrix-multiply (𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶)

gemver 𝑂 (1) Vector mult. and matrix add.

gesummv 𝑂 (1) Scalar, vector and matrix mult.

gramschmidt 𝑂 (𝑁) Gram-Schmidt decomposition

head-3d 𝑂 (𝑇) Heat equation over 3D data domain

jacobi-1D 𝑂 (𝑇) 1-D Jacobi stencil computation

jacobi-2D 𝑂 (𝑇) 2-D Jacobi stencil computation

lu 𝑂 (𝑁) LU decomposition

ludcmp 𝑂 (𝑁) LU decomposition + Forward Subst.

mvt 𝑂 (1) Matrix Vector product and Transpose

nussinov 𝑂 (𝑁) Dyn. programming for seq. alignment

seidel 𝑂 (𝑇) 2-D seidel stencil computation

symm 𝑂 (𝑁) Symmetric matrix-mult.

syr2k 𝑂 (𝑁) Symmetric rank-2k update

syrk 𝑂 (𝑁) Symmetric rank-k update

trisolv 𝑂 (1) Triangular solver

trmm 𝑂 (𝑁) Triangular matrix-mult.

define the abstract methods in Fig. 2. These implement the ac-
tual benchmark functionality, including array initialization,
the kernel code itself, and printing the results in a standard-
ized format which is readily compatible with the outputs
produced by PolyBench/C, allowing for cross-language vali-
dation. The run_benchmark() method is similar to main()

in C codes. It is in charge of defining the input and output
structures of the benchmark, and initializing them and run-
ning the kernel via calls to the appropriate abstract methods.

def initialize_array(self, *args, **kwargs): ...

def print_array_custom(self, array: list, dump_message: str = ''): ...

def kernel(self, *args, **kwargs): ...

def run_benchmark(self) -> list[tuple]: ...

Figure 2. Abstract functions to be implemented by a Poly-
Bench/Python benchmark.

PolyBench/Python provides two different ways to mea-
sure performance. The first is to measure the execution time
of the kernel using the Timestamp Counter (TSC register). Its
contents are directly accessed using assembly code executed

through the inlineasm library. The second way is to mea-
sure performance counters using the PAPI library [24, 25]
through the python_papi module.

3.2.1 Available Implementations. The process of trans-
lating PolyBench/C to Python requires a number of design
decisions to deal with the intrinsic differences between both
languages. One of the critical differences is related to data rep-
resentation. Polyhedral codes in general, and the PolyBench
benchmarks in particular, manipulate arrays and scalar vari-
ables of basic types. In C, these are stored sequentially in
memory in row-major order. There is no equivalent repre-
sentation in pure Python, where everything is an object and
there are no basic datatypes, in contrast to other interpreted
languages, such as Java, where both concepts coexist. Since
everything is an object, lists of int values are not a collec-
tion of contiguously stored 32- or 64-bit basic values, but
rather a collection of contiguously stored 64-bit pointers to
int objects. This creates an additional level of indirection
which degrades performance when traversing the array.

Furthermore, when considering multidimensional struc-
tures, there is a choice between implementing them as a
sequence of nested lists, similar to how a cascade of point-
ers to pointers would work in C, or flattening the structure
and linearizing the accesses, as automatically done by C
compilers with multidimensional array allocations. One can
envision how the flattening should be more efficient, in the
same way that in C using cascaded pointers introduces an
additional level of indirection for each dimension in the data
structure, degrading memory performance.
One additional alternative for array implementation is

to directly use NumPy arrays [31]. This looks like a good
design alternative, since NumPy arrays are, by design, C-like
objects, with homogeneously-typed data, and contiguous
in memory. This has the potential to greatly improve the
memory behavior, and therefore performance, but it comes
with its own performance pitfalls that need to be carefully
studied.
In PolyBench/Python, the abstract PolyBench class that

all benchmarks must extend implements all these different
strategies for array allocation, exemplified in Fig. 3. The
user must select the desired implementation using runtime
knobs. These alternatives will be studied and compared in
the experimental analysis in Sec. 4.

3.2.2 Control Structures. The PolyBench/C benchmarks
prominently feature two control structures: if statements
and for loops. The conditionals have a direct translation to
Python, with no semantic and minimal syntactic variations.
However, for loops in Python are foreach style loops that
traverse a collection of objects. In order to implement them
efficiently, a C for loop is translated to a Python for travers-
ing a range expression. This is a special type of collection

62

PolyBench/Python: Benchmarking Python Environments with Polyhedral Optimizations CC ’21, March 2ś3, 2021, Virtual, Republic of Korea

for i in range(0, self.NI):

for j in range(0, self.NJ):

C[i][j] *= beta

for k in range(0, self.NK):

for j in range(0, self.NJ):

C[i][j] += alpha * A[i][k]

* B[k][j]

(a) List

C *= beta

C += alpha * np.dot(A, B)

(b) NumPy

for i in range(0, self.NI):

for j in range(0, self.NJ):

C[self.NJ * i + j] *= beta

for k in range(0, self.NK):

for j in range(0, self.NJ):

C[self.NJ * i + j] += alpha * A[self.NK * i + k]

* B[self.NJ * k + j]

(c) Flattened List

Figure 3. List, flattened list, and NumPy alternative array
implementations for the gemm kernel.

spawned by a Python generator object. This kind of collec-
tions are populated on demand, one object at a time, avoiding
the memory overhead of instantiating the full collection.

3.3 Support for Polyhedral Optimizations

We have implemented an analysis and translation layer capa-
ble of reading Python kernels and generating their ScopLib
[8] representation, as well as back-generating Python codes
from the ScopLib. The input to this tool is not the Python
source code, but the bytecode generated by CPython. This
allows the optimizations to be performed in a just-in-time
fashion, upon execution of the code, although this approach
has not been used in the current work. However, no search
or isolation of the static control part (SCoP) is performed at
this time. The tool receives a Python function and assumes
its entire body to be a valid SCoP.

3.4 Python Interpreters

Similar to using different compilers for C codes, a collection
of different interpreters exist for Python. CPython [13] is
developed by the Python Software Foundation. Its goal is not
to achieve high performance, but to provide a multi-platform
environment that serves as the reference interpreter for other
projects.

PyPy [29] is a performance-oriented interpreter developed
using the RPython [2] tool-chain. The Python code is trans-
lated to RPython, which is then translated to flow graphs,
and then to C. The RPython layer includes a tracing just-
in-time layer including an optimizer and a back-end that
generates machine code.

Intel Distribution for Python [7] is designed to make Intel
libraries such as the Math Kernel Library [33] and the Data
Analytics Acceleration Library [6] usable from Python. It
does not intend to provide fast pure Python code, but to
bridge the technological gap between Python libraries such
as NumPy and Intel products.

The performance of these interpreters will be compared
in the next section.

4 Experimental Results

Experiments with the 30 PolyBench kernels were executed
on an Intel Core i7 8700K with 64 GB of RAM memory. The
CPU frequency was fixed at the base frequency of 3.7 GHz to
prevent thermal constraints affecting experimental variabil-
ity. We first analyze the performance of the Python version
of the benchmarks, comparing different interpreters and us-
ing both nested lists and flattened lists to implement arrays.
Afterwards, we focus on PyPy and flattened lists to assess the
relative performance of Python and C codes. Then, we study
the performance impact of basic polyhedral optimization on
both C and Python codes. Finally, we study the potential
performance improvements to be gained from using NumPy
on CPython.

Our experimental study analyzes the performance of Poly-
Bench/C 4.2.1-beta and PolyBench/Python. The tool-chain
includes GCC 10.2.0, PoCC 1.5.0-beta, CPython 3.9.1, PyPy
7.3.2, and NumPy 1.19.4. All benchmarks are configured to
use the default data types and dataset sizes, that is, the LARGE
dataset size in PolyBench [28], where problem sizes typically
far exceed L2 cache size. For each benchmark-configuration
pair, selected PAPI hardware performance counters are col-
lected during execution of the kernel, including those mea-
suring hits and misses to each level of the memory hierarchy,
execution cycles, total instructions executed, and stalled cy-
cles. Instruction count is further broken down into several
different instruction types, including memory instructions,
branches, and floating point operations. For all experiments,
we report the average of 5 runs. In all figures, performance
counters are plotted relative to a baseline for simplicity and
space. Complete experimental data, including absolute values
for all measurements in the plots, are available as auxiliary
material.

4.1 Relative Performance of Scalar Pure Python

Implementations

We first focus on pure Python codes, and more specifically
on evaluating the performance of the different Python in-
terpreters considered in our experimental setup. We found
that for pure Python (i.e., not NumPy codes, which will be
covered later), the performance metrics for PyPy are an or-
der of magnitude better than those of CPython and the Intel
Distribution for Python. This includes memory performance,
CPU stalls, and branches and branch mispredictions. The
average speedup over the full PolyBench/Python suite is 20x.
For the sake of space saving, we do not report these results,
and in the following we default to PyPy unless otherwise
noted.

63

CC ’21, March 2ś3, 2021, Virtual, Republic of Korea M.Á. Abella-González, P. Carollo-Fernández, L.-N. Pouchet, F. Rastello, and G. Rodríguez

The reasons for these performance differences are varied.
In the case of heat-3d, jacobi-2d and other similar sten-
cil codes, the problem lies within the memory management
performed by NumPy. Upon vectorizing a stencil operation,
NumPywill replicate the data in the original buffer to achieve
efficient operation. For large matrices, this might cause a
significant degradation of their memory performance. For
example, for jacobi-1d, a 3-point stencil, the number of L1
misses is increased by 20.4x. However, since its footprint com-
fortably fits L3, this increase does not scale to lower levels of
the hierarchy and the large reduction in total number of in-
structions (1.64x), driven by the use of 256-bit packed floating
point operations, achieves a net 1.2 speedup. When working
with larger stencils this behavior degrades. For jacobi-2d,
a 5-point stencil illustrated in Fig. 13, the number of L3
misses increases by 4.6x, and for heat-3d, a 9-point stencil,
it increases by 10x. This seems to indicate that NumPy is
replicating the original buffer for each of the shifted matrices
in the stencil computation, causing slowdowns of 1.1 and
1.6, respectively. However, the total number of instructions
executed decreases by a factor of 4.2x for jacobi-1d, and
1.8x for heat-3d. In both cases, all floating-point operations
are executed using 256-bit packed SIMD instructions.

for t in range(self.TSTEPS):

B[1:self.N-1, 1:self.N-1] = 0.2 * (A[1:self.N-1, 1:self.N-1]

+ A[1:self.N-1, 0:self.N-2]

+ A[1:self.N-1, 2:self.N]

+ A[2:self.N, 1:self.N-1]

+ A[0:self.N-2, 1:self.N-1])

A[1:self.N-1, 1:self.N-1] = 0.2 * (B[1:self.N-1, 1:self.N-1]

+ B[1:self.N-1, 0:self.N-2]

+ B[1:self.N-1, 2:self.N]

+ B[2:self.N, 1:self.N-1]

+ B[0:self.N-2, 1:self.N-1])

Figure 13. NumPy version of jacobi-2d.

Other benchmarks require special code transformations to
be vectorized, as they present loop-carried dependences. For
instance, it is necessary to perform loop interchanges in or-
der to vectorize the innermost loop of adi and deriche. For
other benchmarks with more complex dependences, such as
seidel-2d or nussinov, index-set splitting [16] may be em-
ployed to expose parallelism. These transformations modify
the original sequential memory access of the kernels, con-
sequently damaging both temporal and spatial locality, and
may even cause performance to degrade with respect to the
non-vectorized PyPy version. They are, however, fundamen-
tal to achieving performance with NumPy. For example, if
non-vectorized, adiwill execute 135x more instructions, 50%
of them loads and stores. The memory behavior is improved
at the L2 level, as array traversals are in row-major order.
However, the final performance is degraded by a factor of
80 with respect to the vectorized version. For benchmarks
which can be vectorized without hindering locality, and that
do not operate on a large number of array views at the same
time, the performance of NumPy matches, or even beats, the
performance of the best C version.

5 Related Work

There is an immense body of work relating to Python per-
formance measurement and optimizations, we limit below
to highlighting several key software and publications, and
their differences with the present work.

Python Benchmarking Suites. There is a plethora of
benchmarking suites written for Python, including specifi-
cally to evaluate the quality and performance of interpreters.
The Python Performance Benchmarking Suite [34] integrates
numerous applications and kernels, including (some syn-
thetic) kernels to measure float and integer-heavy opera-
tions. However, nearly none of the algorithms implemented
in PolyBench kernels are available. The PyPy benchmarking
suite [9] similarly includes a high number of applications and
some numerical computation programs, but does not provide
the type of implementations we offer in PolyBench/Python.
The Pythran project released Numpy-style implementations
of numerous scientific kernels [19], several also available in
PolyBench. While these benchmark suites tend to focus on
full applications, PolyBench/Python has been designed to
specifically cover a spectrum of regular numerical kernels
that are amenable to polyhedral optimizations and systemat-
ically provide 3 implementation flavors for each benchmark,
including Numpy-style.

Python Environments and Compilers. Similar as to us-
ing different compilers for C codes, a collection of different
interpreters exist for Python. CPython [13] is developed by
the Python Software Foundation. The Intel Distribution for
Python [7] is designed to make Intel libraries such as the
Math Kernel Library [33] and the Data Analytics Accelera-
tion Library [6] usable from Python. Its aim is to bridge the
technological gap between Python libraries such as NumPy
and Intel products. PyPy [29] is a performance-oriented in-
terpreter developed using the RPython [2] tool-chain. The
Python code is translated to RPython, which is then trans-
lated to flow graphs, and then to C. The RPython layer in-
cludes a tracing just-in-time layer including an optimizer
and a back-end that generates machine code.
The Pythran compiler [18, 20] is a powerful optimizing

compilation flow for (a subset of) Python that compiles pro-
grams into a C++ implementation for subsequent native ex-
ecution. Pythran is an ahead-of-time compilation approach,
which supports a variety of Python and Numpy concepts. It
supports multi-threading.

6 Concluding Remarks

This paper introduced PolyBench/Python, a polyhedral bench-
marking suite for Python environments, and presented exten-
sive experimental analysis. Our experiments show that the
performance of PyPy is usually an order of magnitude better
than that of CPython. In fact, PyPy provides performance of
the same order of magnitude than C for most kernels, when

68

PolyBench/Python: Benchmarking Python Environments with Polyhedral Optimizations CC ’21, March 2ś3, 2021, Virtual, Republic of Korea

disabling static compiler optimizations (i.e., using -O0). We
observed high correlation between the relative performance
of Python codes and the IPC of the C baselines. When the
IPC is low, the slack available to the Python VM to execute
each instruction is larger, and the effect on total execution
time of the interpreting overhead is hidden, bringing Python
performance closer to C. Besides the overhead introduced
by the interpreting process itself, another important factor
to explain the relative performance of Python and C codes is
the absence of static or dynamic optimizations in the Python
execution stack. Even though scientific-oriented interpreters,
such as PyPy, perform high amounts of JIT optimizations,
these usually target type inference and reducing the number
of calls to the Python interpreter. Very few high-level code
optimization is performed, specially given that most Python
interpreters, including CPython and PyPy, are stack-based.
While this reduces the complexity of the interpreter, which
can just execute isolated pieces of code, it complicates the
introduction of even very simple optimizations such as loop-
invariant code motion or load elimination. Our results have
shown how these very simple optimizations have potential
to significantly improve the performance of Python codes,
and suggest that these could be implemented in modern
interpreters in a just-in-time fashion. For instance, load elim-
ination could be implemented by detecting that the same
array position is being repeatedly loaded from memory in-
side a loop, and dynamically enabling its lowering to a scalar
during runtime. SIMDization is another optimization that
could be dynamically enabled in a speculative fashion, by
detecting floating point operations to consecutive positions
of an array at runtime and fusing them together after a given
number of iterations. By adding advanced SIMDization ca-
pabilities to performance-oriented Python interpreters such
as PyPy, we can expect a substantial performance increase.
The vectorization itself compounds with the reduction in the
number of issued instructions to be interpreted, fundamen-
tally in the number of memory accesses and branches.

We have also shown howNumPy can achieve performance
superior to that of native C codes, provided that no locality
tradeoffs are required in order to vectorize the code. These
tradeoffs manifest when loop-carried dependences prevent
row-order vectorization, requiring column or evenwavefront
traversals of the data.

Acknowledgments

This research was supported in part by the Ministry of Sci-
ence and Innovation of Spain (PID2019-104184RB-I00 / AEI
/ 10.13039/501100011033), and by the U.S. National Science
Foundation (award CCF-1750399). CITIC is funded by Xunta
de Galicia and FEDER funds of the EU (Centro de Investi-
gación de Galicia accreditation, grant ED431G 2019/01).

References
[1] [n.d.]. PLUTO - An automatic parallelizer and locality optimizer for

multicores. http://pluto-compiler.sourceforge.net

[2] D. Ancona, M. Ancona, A. Cuni, and N.D. Matsakis. 2007. RPython:

a step towards reconciling dynamically and statically typed OO lan-

guages. In Proceedings of the 2007 Symposium on Dynamic Languages

(DLS’07). 53ś64.

[3] S. Beyer. 2020. Efficient cycle detection on a partially reference counted

heap. Master’s thesis. Technische Universität Wien.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 2008.

A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.

In Proceedings of the ACM SIGPLAN 2008 Conference on Programming

Language Design and Implementation, PLDI. 101ś113.

[5] Brad Chapman and Jeffrey Chang. 2000. Biopython: Python tools for

computational biology. ACM Sigbio Newsletter 20, 2 (2000), 15ś19.

[6] Intel Corporation. [n.d.]. Intel Data Analytics Acceleration Li-

brary. https://software.intel.com/content/www/us/en/develop/tools/
data-analytics-acceleration-library.html

[7] Intel Corporation. [n.d.]. Intel Distribution for Python. https:
//software.intel.com/content/www/us/en/develop/tools/distribution-
for-python.html

[8] Louis-Noel Pouchet et al. [n.d.]. PoCC, the Polyhedral Compiler Col-

lection 1.5. http://pocc.sourceforge.net.
[9] Maciej Fijalkowski et al. 2020. PyPy Performance Benchmarks. https:

//foss.heptapod.net/pypy/benchmarks.
[10] Inc. Facebook. [n.d.]. PyTorch, an open source machine learning

framework. https://pytorch.org.
[11] Paul Feautrier. 1991. Dataflow analysis of array and scalar references.

International Journal of Parallel Programming 20, 1 (1991), 23ś53.

[12] P. Feautrier. 1992. Some efficient solutions to the affine scheduling

problem, part II: multidimensional time. International Journal of Par-

allel Programming 21, 6 (1992), 389ś420.

[13] Python Software Foundation. [n.d.]. The Python programming language.

https://github.com/python/cpython
[14] Python Software Foundation. 2020. Sunsetting Python 2. https://www.

python.org/doc/sunset-python-2/
[15] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David

Parello, Marc Sigler, and Olivier Temam. 2006. Semi-Automatic Com-

position of Loop Transformations. International Journal of Parallel

Programming 34, 3 (June 2006), 261ś317.

[16] Martin Griebl, Paul Feautrier, and Christian Lengauer. 2000. Index set

splitting. International Journal of Parallel Programming 28, 6 (2000),

607ś631.

[17] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012.

PollyÐperforming polyhedral optimizations on a low-level intermedi-

ate representation. Parallel Processing Letters 22, 04 (2012), 1250010.

[18] Serge Guelton. 2018. Pythran: Crossing the Python Frontier. Comput-

ing in Science & Engineering 20, 2 (2018), 83ś89.

[19] Serge Guelton. 2020. Pythran Numpy Benchmarks. https://github.
com/serge-sans-paille/numpy-benchmarks/.

[20] Serge Guelton, Pierrick Brunet, Mehdi Amini, Adrien Merlini, Xavier

Corbillon, and Alan Raynaud. 2015. Pythran: Enabling static optimiza-

tion of scientific python programs. Computational Science & Discovery

8, 1 (2015), 014001.

[21] François Irigoin and Rémi Triolet. 1988. Supernode partitioning. In

Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages. 319ś329.

[22] Nikhil Ketkar. 2017. Introduction to pytorch. In Deep learning with

python. Springer, 195ś208.

[23] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-

Noël Pouchet, and Ponnuswamy Sadayappan. 2013. When polyhedral

transformations meet SIMD code generation. In Proceedings of the

34th ACM SIGPLAN conference on Programming language design and

implementation. 127ś138.

[24] P.J. Mucci, S. Browne, C. Deane, and G. Ho. 1999. PAPI: A Portable

Interface to Hardware Performance Counters. In Proceedings of the

69

CC ’21, March 2ś3, 2021, Virtual, Republic of Korea M.Á. Abella-González, P. Carollo-Fernández, L.-N. Pouchet, F. Rastello, and G. Rodríguez

department of defense HPCMP users group conference, Vol. 710.

[25] P. Mucci and The ICL Group. [n.d.]. Performance Application Pro-

gramming Interface. http://icl.cs.utk.edu/papi/people/index.html..

[26] Sébastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Geogres-

André Silber, and Nicolas Vasilache. 2006. GRAPHITE: Loop optimiza-

tions based on the polyhedral model for GCC. In Proc. of the 4þ GCC

Developper’s Summit.

[27] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen,

J. Ramanujam, P. Sadayappan, and Nicolas Vasilache. 2011. Loop

Transformations: Convexity, Pruning and Optimization. In Proceedings

of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Austin, Texas, USA) (POPL ’11). ACM, New

York, NY, USA, 549ś562. https://doi.org/10.1145/1926385.1926449
[28] Louis-Noel Pouchet and Tomofumi Yuki. [n.d.]. PolyBench/C 4.2.1.

http://polybench.sourceforge.net.

[29] The PyPy Team. [n.d.]. PyPy. https://www.pypy.org
[30] The PyPy Team. 2012. PyPy 1.8 release notes. https://doc.pypy.org/en/

latest/release-1.8.0.html
[31] S. van der Walt, S.C. Colbert, and G. Varoquax. 2011. The NumPy

array: a structure for efficient numerical computation. Computing in

Science & Engineering 13, 2 (2011), 22ś30.

[32] Sven Verdoolaege. 2010. ISL: An integer set library for the polyhedral

model. In The 3rd International Congress on Mathematical Software

(ICMS’10). Springer.

[33] E. Wang, Q. Zhang, B. Shen amd G. Zhang, X. Lu, Q. Wu, and Y. Wang.

2014. Intel Math Kernel Library. Springer International Publishing,

167ś188.

[34] Collin Winter and Jeffrey Yasskin. 2020. The Python Performance

Benchmark Suite. https://pyperformance.readthedocs.io.

70

	Abstract
	1 Introduction
	2 Implementing Numerical Kernels in Python
	3 PolyBench/Python
	3.1 PolyBench
	3.2 PolyBench/Python: General design
	3.3 Support for Polyhedral Optimizations
	3.4 Python Interpreters

	4 Experimental Results
	4.1 Relative Performance of Scalar Pure Python Implementations
	4.2 C vs Python
	4.3 Polyhedral Optimizations
	4.4 NumPy: Loop-based vs. Vectorized Operation

	5 Related Work
	6 Concluding Remarks
	Acknowledgments
	References

