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Abstract
Studies have shown that melt-pool characteristics such as melt-pool size and shape are highly correlated with the formation of
porosity and defects in parts built with the laser powder bed fusion (L-PBF) additive manufacturing (AM) processes. Hence,
optimizing process parameters to maintain a constant melt-pool size during the build process could potentially improve the
build quality of the final part. This paper considers the optimal control of laser power, while keeping other process parameters
fixed, to achieve a constant melt-pool size during the laser scanning of a multi-track build under L-PBF. First, Gaussian
process regression (GPR) is applied to model the dynamic evolution of the melt-pool size as a function of laser power and
thermal history, which are defined as the input features of the GPR model. Then a constrained finite-horizon optimal control
problem is formulated, with a quadratic cost function defined to minimize the difference between the controlled melt-pool
size and its reference value. A projected gradient descent algorithm is applied to compute the optimal sequence of laser
power in the proposed control problem. The GPR modeling is demonstrated using simulated data sets, a mix of simulated
and experimental data sets, or pure experimental data sets. Numerical verification of the control design of laser power is
performed on a commercial AM software, Autodesk’s Netfabb Simulation. Simulation results demonstrate the effectiveness
of the proposed GPR modeling and model-based optimal control in regulating the melt-pool size during the scanning of
multi-tracks using L-PBF.
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Introduction

Additive manufacturing (AM) has significantly broadened
the design space for fabrication of components with complex
geometries in comparison to conventional manufacturing
technologies (Jiang et al. 2021). Laser powder bed fusion
(L-PBF) AM processes are one subcategory of metal AM
processes for manufacturing complex parts with a high geo-
metric resolution and robust mechanical properties, with
wide applications in medical, aerospace, and automotive
industries (Levy et al. 2003; Kruth et al. 2007).

There are many process parameters that could affect the
quality of build (Druzgalski et al. 2020), among which the
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most commonly modulated parameters include laser power,
scan speed, and laser beam diameter. Especially, laser power
is often considered as themost convenient knob to control the
melt-pool dimensions. If the laser power (and the resulting
energy density) is too low, it will result in a small melt-pool
and lack of fusion. On the other hand, if the laser power is
too high, it will result in overmelting and keyholing. The
latter is observed more frequently at laser turnarounds dur-
ing scanning a multi-hatch build with switching laser travel
directions, where the returning end of the track gets heated
repeatedly, indicating the need of online control of laser
power during the build process. Studies have shown that the
melt-pool size is highly correlated with the development of
porosity and part defects (Dilip et al. 2017;Kumar et al. 2019;
Ning et al. 2020). Hence, in order to reduce or eliminate
either lack-of-fusion or keyhole-induced porosity to achieve
a better build quality, one possible solution is to design a
model-based laser power control to regulate the melt-pool
size during the build process, which is the objective of this
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paper. To achieve this objective, a model that can enable the
model-based process control is needed.

One line of the existing literature on model-based control
of process parameters for L-PBF AM relied on transfer-
function models derived from system identification (Craeghs
et al. 2010; Wang et al. 2019). For example, in Craeghs et al.
(2010), transfer-function models were identified based on
the experimental data on laser power and the resulting melt-
pool surface areameasuredwith photodiode signals. InWang
et al. (2019), a first-order transfer function was identified to
model the dynamics from the laser power tomelt-pool width,
where simulated data from finite-element-analysis (FEA)
models were used for the system identification. Analytical
lumped-parameter models, in the form of ordinary differ-
ential equations, were also developed and used to derive
the control of laser power to regulate the melt-pool size in
the build process of multi-tracks (Wang 2019; Wang et al.
2020). Finite difference equations on the isotherm positions
were defined and used to design a linear state feedback con-
troller for laser power to regulate the melt-pool size (Devesse
et al. 2014, 2016) or to design a feed-forward controller to
regulate the melt-pool width (Dillkötter and Mönnigmann
2019). A computation framework was established in Druz-
galski et al. (2020) for part-scale process optimization under
L-PBF, where a feature extraction was first used to identify
scan vectors that require process parameter adaptation and
then a simulation-based feed-forward control was applied to
optimize the complex geometries.

Note that transfer functions are limited to modeling
linear systems. The lumped-parameter models reviewed
above are restricted by over-simplified assumptions on
temperature-independent material properties, linear heat
equations, andmany others. Simulation-based part-scale pro-
cess optimization and the resulting feed-forward control
impose a high computational cost and require running on
the high-performance computing platforms (Druzgalski et al.
2020). On the other hand, machine learning (ML) could be
integrated with process physics to develop physics-informed
ML models, offering a complementary modeling approach
that might achieve a higher modeling accuracy than the
transfer-function models or lumped-parameter models. In
addition, ML models, once trained, would enable faster pre-
dictions on the testing samples than FEA.

Machine learning has been applied inmany aspects of AM
research. A large number of studies focused on leveraging
ML’s powerful capacity in image recognition for classifica-
tion of build quality and defect detection, e.g., applying ML
to the melt-pool, layer, or part images either in an ad hoc
fashion or during the build process (Gobert et al. 2018; Yuan
et al. 2018; Yang et al. 2019; Scime and Beuth 2018, 2019;
Gaikwad et al. 2020; Aminzadeh and Kurfess 2019; Zhang
et al. 2018), where variousMLmodels such as support vector
machine, (deep) neural networks, and multifractal analysis

were developed. Machine learning has also been applied
to the design for AM, material design, characterization of
microstructure, and many other aspects of AM research and
industry practice, see the recent review papers (Razvi et al.
2019; Meng et al. 2020) and references therein.

What is the next step after part defects are detected from
the melt-pool, layer, or part images? One natural question
would be how to control the laser process parameters to
improve the build quality, which requires the development of
a process model that characterizes how process parameters
would affect the build quality. Applying ML techniques to
the modeling of AM processes is still limited. For a directed
energy deposition (DED) system, a back propagation net-
work with adaptive learning rate and a least-square support
vector machine were trained to map the process parame-
ters to the depositing height by Lu et al. (2010). Recurrent
neural networks were developed to predict the thermal his-
tory and temperature field (Mozaffar et al. 2018; Ren et al.
2020) forDEDprocesses. For selective laser sintering, neural
networks and genetic algorithms were applied to search the
optimal layer thickness, hatch spacing, laser power, speed,
and work surrounding temperature that can yield the mini-
mum shrinkage ratio (Rong-Ji et al. 2009). Back propagation
neural networks were developed to model the spreading pro-
cess (Zhang et al. 2017). A random forest network model
was applied to use morphology of pore distribution to pre-
dict fraction porosity, median pore diameter and pore spacing
in L-PBF (Kappes et al. 2018).

Several studies also developedMLmodels to predictmelt-
pool size, surface area, or an individual dimension (e.g.,
melt-pool width or depth) for L-PBF processes, but restricted
to single-track builds (Yang et al. 2018; Tapia et al. 2018;
Gaikwad et al. 2020; Meng and Zhang 2020). A dynamic
meta-modeling method using kriging covariance matrices
was applied to predict the melt-pool width and then genetic
algorithms were applied to optimize the process parameters
(Yang et al. 2018). In Tapia et al. (2018), Gaussian pro-
cesses were used to construct a surrogate response surface
model to predict the melt-pool depth as a function of process
parameters consisting of the laser power and laser scanning
speed. The Gaussian-process based model was trained and
validated on experimental data of single-track deposits of
316L stainless steel. In addition, the study by Tapia et al.
(2018) also demonstrated that the Gaussian-process based
surrogate model can be trained using simulated data sets
from the powder-scale simulation model (Khairallah et al.
2016), and the resulting model can then serve as an approx-
imation of the high-fidelity simulation to identify process
windows keeping the melt pool away from the keyhole
mode. A similar Gaussian process-based model was devel-
oped in Meng and Zhang (2020) to predict the remelted
depth of single tracks of stainless steel as a function of
laser power and scan speed, using simulated and experi-
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mental data. A sequential-decision-analysis neural network
model was developed in Gaikwad et al. (2020), where mea-
surement data from pyrometer and high-speed video camera
were used to train the proposed neural networks to predict
themelt-poolmeanwidth (and the associated standard devia-
tion) as well as the continuity of single-tracks as a function of
laser power and speed. However, as acknowledged in Tapia
et al. (2018), the afore-mentioned ML models for single-
hatch builds only considered the melt-pools in steady state
and were not applicable to multi-hatch parts, as the models
cannot accommodate the scan pattern and the resulting ther-
mal history during the build process for multi-hatch builds.

In Ren et al. (2019), for multi-tracks built with L-PBF, a
two-levelMLmodeling architecturewas proposed,where the
lower-level model was trained to learn the pre-scan tempera-
ture (a proxy for thermal history) and the upper-level model
was trained to predict the melt-pool size using the output of
the lower-level and process conditions. However, similar to
the afore-mentionedMLmodels on single-tracks (Yang et al.
2018;Tapia et al. 2018;Gaikwadet al. 2020;MengandZhang
2020), theMLmodel inRen et al. (2019), although applicable
to multi-tracks, still suffered from the limitation that the ML
modelwas built to learn a static processmap from the process
parameters to an output of interest, where “static” heremeans
no dynamics during the build process being accounted. As
a result, these afore-mentioned ML models were often used
with genetic algorithms to identify the optimal but constant
values for process parameters. However, what are the opti-
mal values for process parameters may change during the
build process. For example, if one layer becomes too hot, the
next layer may need to be scanned at a lower energy den-
sity. For multi-track scanning where the laser switches the
scan direction, the area around laser turnarounds often gets
overheated and thus requires reducing the laser power, i.e.,
varying laser process parameters are needed to respond to
the dynamic evolution of melt-pool size or dimension along
the laser scanning during the build process.

This paper investigates the use ofGaussian process regres-
sion (GPR) tomodel the dynamic evolution ofmelt-pool size,
with the objective of designing GPR model-based control of
laser power to regulate the melt-pool size during the build
process to improve the build quality.

GPR defines a normal distribution over functions, and has
been widely used in modeling unknown physical processes
and dynamics inmany areas (Rasmussen andWilliams 2006;
Beckers et al. 2019). First, this paper trains the GPR tomodel
the discrete dynamic equation that governs the evolution of a
melt-pool geometric variable. Appropriate input features are
identified based on physical-domain knowledge of the melt-
pool dynamics by including the thermal history to enable the
derivedmodel applicable tomulti-hatch parts.Melt-pool vol-
ume is used as the representative geometric variable in this
study, but the modeling approach is applicable to any melt-

pool geometric variables such as the melt-pool dimensions,
surface area, or cross-sectional area. In addition to the con-
tribution to modeling, a GPR-model based optimal control is
designed to regulate the melt-pool volume during the build
process, where a gradient (steepest descent) based controller
on laser power is derived to optimize a cost function that
minimizes the difference of the controlled melt-pool volume
and its reference value.

In this paper, a commercial FEA software on the thermo-
mechanical simulation of metal AM processes, Autodesk’s
Netfabb Simulation, is used to generate simulated data sets.
There is increasing interest in developingMLmodels to learn
from FEA simulations such that the resulting ML models
could be potentially used to replace the FEA models when
rapid predictions are needed (Baturynska et al. 2018). FEA
models for computing the melt-pool size accounted for heat
conduction in a solid, but not fluid mechanics or vaporization
that is critical in characterizing and prediction of keyhole-
induced porosity. Nevertheless, as long as the laser power
(or energy density) is controlled appropriately to maintain
the melt-pool in the regime where no keyholing will appear,
it is reasonable to consider that the assumption of heat con-
duction holds. In this paper, the proposed GPR modeling is
demonstrated using pure simulated data sets (Sect. 5.1), a
mix of simulated and experimental data sets, or pure exper-
imental data sets (Sect. 6). Numerical verification of the
GPR-based optimal control is performed on the Netfabb
Simulation as well. Preliminary results of this paper were
presented at the 2020 ASME Dynamic Systems and Control
Conference (Ren and Wang 2020). In this paper, significant
new results have been added in terms of both methodologies
and datasets. Newly added methods include: (1) computing
standard deviation of the GPR predicted mean on melt-pool
size by the covariance function ofGPR; and (2) a newmethod
for training over a mixed set of simulated and experimen-
tal data and subsequent prediction. Newly added data sets
include: (1) experimental data sets and the corresponding
training/prediction results; and (2) numerical verification of
the control design onNetfabb for 6-track cases, whereas only
verification of 2-track cases was presented in the conference
paper. All figures and Tables on results in Sect. 5 and Sect. 6
of this paper are new (not published in the conference paper).

Preliminaries on Gaussian process
regression

Gaussian process regression (GPR) models can be inter-
preted as defining a distribution over functions, which are
assumed to be random. The predictions from a GPR model
take the formof a predictive distribution,which is completely
specified by its mean function and covariance function.
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Consider a set of n noisy observationsO = {(xi , yi )|yi =
f (xi )+ν, i = 1, . . . , n}, drawing random functions from the
training data, where xi denotes an input vector of dimension
d and yi denotes a scalar output or target value. The noise
ν is assumed to follow a zero-mean Gaussian distribution
with variance σ 2

n , i.e., ν ∼ N (0, σ 2
n ). Assume that the ran-

dom function f (x) has a zero mean with covariance function
k(x, x′) = cov( f (x), f (x′)). The covariance function is also
referred to as the kernel function of a GPR model, which is
often chosen based on the applications. A commonly used
squared exponential kernel function is defined as

k(x, x′) = σ 2
f e

− 1
2 (x−x′)T

∑−1(x−x′) (1)

where
∑ = diag([σ 2

x1 . . . σ 2
xd ]), and {σ f , σx1 , . . . , σxd } is

referred to as the set of hyperparameters of the GPR model.
Let X denote the design matrix that aggregates the

column-vector inputs xi and let y denote the vector of all
target values yi , i = 1, . . . , n. Further let K (X , X) denote
the n × n matrix of the covariances evaluated at all pairs of
xi . Then the covariance on the noisy observations becomes
cov(y, y′) = k(x, x′) + σ 2

n δyy′ , where δyy′ denotes a Kro-
necker delta which equals one if y = y′ and zero otherwise.
Consequently, the covariancematrix on the noisy observation
pairs becomes cov(y) = K (y, y) = K (X , X) + σ 2

n I.
If there are n∗ testing data points, let K (X , X∗) denote

the n × n∗ matrix of the covariances of all pairs of training
and testing points. Further define K (X∗, X) and K (X∗, X∗)
accordingly. Then the prediction of the GPR on the testing
locations (X∗) conditionedon the training data (X ,y) satisfies
the following (Rasmussen and Williams 2006):

f∗|X , y, X∗ ∼ N (̂f∗, cov(f∗)) (2)

where the predictedmean function of the testing data is given
by

f̂∗ = K (X∗, X)[K (X , X) + σ 2
n I]−1y (3)

and the predicted covariance function of the testing data is
given by

cov(f∗) = K (X∗, X∗) − K (X∗, X) ·
[K (X , X) + σ 2

n I]−1 · K (X , X∗) (4)

Essentially the trained GPR model enables the prediction
of the mean function of a given testing location and also
provides the confidence intervals (variance) of the predicted
mean function, quantifying the uncertainty bound.

Fig. 1 Case study of a multi-track, single-layer part, where the laser
switches the scan direction from track to track. All tracks have the same
track length and hatch spacing

Modeling

This paper considers a multi-track as an illustrative example
for the proposed GPR modeling and optimal control design.
As shown in Fig. 1, the multi-track, single-layer part has a
constant track length and an equal hatch spacing; the laser
scans from track to track with a switching direction.

Gaussian process model onmelt-pool dynamics

This section first introduces the general functional form that
governs the dynamic evolution of the melt-pool geometric
variables. Melt-pool volume is considered as the representa-
tive geometric variable in this study. In addition, consider that
laser power is the single varying process parameter, with a
constant laser scan speed and other process parameters fixed.

For each track i (i = 1, 2, . . .) in a multi-track build, let
s = 0, 1, . . . , N . denote the discretized sequence of laser-
travelled distance from the start of the track i , along the laser
scanning direction, till the end of the track. Consider a step
size of �s for the discretized distance sequence and let L
denote the track length, then N�s = L . Inspired by our
prior lumped-parameter model on the dynamics of melt-pool
volume (Wang 2019; Wang et al. 2020), it is proposed that,
for track i , the dynamic evolution of melt-pool volume with
respect to the space coordinate s is governed by a nonlinear
system f (·) defined as follows:

V (s+1) = f (V (s), Q(s); Tinit (s)), s = 0, . . . , N−1 (5)

where a superscript i denoting track i for all variables is omit-
ted here for notation simplicity; V (s) denotes the melt-pool
volume at distance s, Q(s) denotes the laser power applied
at s, and Tinit (s) denotes the initial (or pre-scan) temperature
of the selected-to-scan point at s before laser hits it (Wang
et al. 2020, 2021) (see Appendix A for further details).

Remark 1 The authors’ prior lumped-parameter model
(Wang 2019; Wang et al. 2020) derived the explicit math-
ematical expression of the nonlinear function f (·) in terms
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of the melt-pool volume, varying laser power, any given con-
stant laser scanning speed, and the initial temperature, based
on the melt-pool energy balance. The lumped-parameter
model on melt-pool dynamics indicates that during the scan-
ning of amulti-track, the variation ofmelt-pool volume along
s not only depends on the laser power but also depends on
thermal accumulation from the scanning of all past tracks,
represented by the initial temperature Tinit (s). As shown in
Appendix A, when the laser scans the first track (i = 1), the
initial temperature Tinit (s) equals to the ambient temperature
Ta for all s. However, when i > 1, the computation of the
initial temperature Tinit (s) accounts for the temperature con-
tributions from all past tracks being scanned. Including the
initial temperature Tinit (s) as one input feature in (5) makes
the GPR model physics-informed.

Remark 2 It should be noted that the laser scan path (build
plan) is not explicitly included as an input in the function
f (·) since the computation of the initial temperature Tinit
in terms of temperature contributions from the past tracks
has already taken into account the laser scan path, as well
as the inter-hatch skywriting time and any additional dwell
time (Wang et al. 2020).

In this paper, rather than deriving the nonlinear func-
tion f (·) in (5) explicitly based on first principles as in
Wang (2019), Wang et al. (2020), which suffered from
many simplifications and approximations, f (·) is learned
by a Gaussian process regression model from data. For a
given s, consider that the input-feature vector of the func-
tion f (·) consists of the melt-pool volume V (s), laser power
being applied Q(s), and the initial temperature Tinit (s). Thus
define ξ(s) ∈ R

3+, with ξ(s) = [V (s), Q(s), Tinit (s)]T ,
s = 0, . . . , N − 1. to denote the vector of input features
for the function f (·). By applying a GPR on the nonlinear
function f (ξ), f (ξ) ∼ GP( f̂ (ξ), cov(ξ )), where f̂ (ξ) and
cov(ξ) denote the predicted mean function and covariance
function of f (ξ), respectively.

Furthermore, a multi-step prediction by the GPR using
the recursive method is applied here to update the predicted
mean of the nonlinear system f (·) in (5), i.e., the prediction
of V (s + 1) (V̂ (s + 1)) depends on the predicted sequence
V̂ (s), V̂ (s − 1), . . ., with only V0 drawn from the measure-
ment. Consequently, consider that the estimated melt-pool
volume satisfies the following discretized system:

V̂ (s+1) = f̂ (V̂ (s), Q(s); Tinit (s)), s = 0, . . . , N−1 (6)

where V̂ (s) denotes the predicted melt-pool volume at s, and
f̂ (·) represents the GPR predicted mean function of f (·).
In this paper, only the predicted mean function f̂ (ξ) of the
GPR model is considered in the recursive prediction used
for control design. Noting that the nonlinear iteration of a
Gaussian distribution does not ensure a Gaussian distribution

anymore, the propagation of the entire Gaussian distribution
for the recursive prediction and the subsequent control design
might be pursued in the future work and are beyond the scope
of this paper.

Recursive evaluation of GPR Prediction

The discrete melt-pool dynamic equation in (6) requires
recursively predicting the melt-pool volume from the GPR
model. Consider (3) and define w = [K (X,X) + σ 2

n I]−1y,
which is of dimension n × 1 and computed in terms of the
training dataX. By the covariance matrix of the noisy obser-
vations K (y, y) = K (X,X) + σ 2

n I, w = K−1(y, y)y. Note
that σ 2

n denotes the variance of the observation noise. When
the simulated data sets are obtained fromfinite-element simu-
lations, they can be considered to be noise free. Nevertheless,
a small value of σ 2

n should be assigned in order to ensure that
K (y, y) is nonsingular and positive definite so that its inverse
can be computed.

Afterw is computed using the training data, for each track,
by following (3), the iteration of theGPR-predicted state vari-
able (melt-pool volume) along the sequence of the discretized
sampling steps in (6) is derived as follows:

V̂ (1) = K (ξ(0),X)w, (7)

V̂ (2) = K (̂ξ(1),X)w, (8)

· · ·
V̂ (N ) = K (̂ξ N−1,X)w. (9)

with

ξ(0) = [V (0), Q(0), Tinit (0)]T ,

ξ̂(1) = [V̂ (1), Q(1), Tinit (1)]T ,

· · ·
ξ̂(N − 1) = [V̂ (N − 1), Q(N − 1), Tinit (N − 1)]T .

Note that ξ(0), ξ̂(1), . . ., ξ̂(N − 1) here correspond to
the testing locations X∗ in (3), with n∗ = 1 that makes each
K (X∗, X) = K (̂ξ(s),X)(s = 0, . . . , N − 1) a matrix of
dimension 1 × n.

Consider a squared exponential covariance function as fol-
lows,

k(ξ , ξ ′) = σ 2
f e

− 1
2 [(ξ1−ξ ′

1)
2/σ 2

l1+(ξ2−ξ ′
2)

2/σ 2
l2+(ξ3−ξ ′

3)
2/σ 2

l3] (10)

where the hyper-parameters include σ f , σl1, σl2, σl3. Then
the GPR predicted melt-pool states in (7) - (9) can be com-
puted accordingly, and the explicit expressions in terms of
the squared exponential covariance function are given in
Appendix B.
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Table 1 Process parameters andmaterial properties used in simulation;
∗: constant thermal conductivity and thermal diffusivity are used in
computing the initial temperatures in eq. (28) of Appendix A

Parameter Value

Hatch space (mm) 0.1

Laser beam diameter (mm) 0.075

Laser scan speed (mm/s) 600

Dwell time (s) 2.0 × 10−4

Laser absorption efficiency 0.4

Convection coefficient (W/mm2K ) 2.5 × 10−5

Material density (kg/mm3) 8.44 × 10−6

Melting temperature (oC) 1295

Latent heat of fusion (J/kg) 287000

Thermal conductivity* (W/mm K) 0.0258

Thermal diffusivity* (mm2/s) 5.5488

Data acquisition for model training and testing

In this study, the proposed modeling is first demonstrated
using simulated data sets, which are generated from
Autodesk’sNetfabb Simulation, a commercial finite-element
software on thermal-mechanical analysis of metal AM sys-
tems. Later in the paper, Sec. 6 illustrates how the model
training and validation can be performed using a mixed set
of simulated and experimental data, or pure experimental
data sets.

To generate the training data fromNetfabb, the scanning of
a 6-track of Inconel 625, as shown in Fig. 1, is simulated with
a constant laser scan speed, v = 600 mm/s, and a constant
laser power taking one of the five different levels: 100W, 150
W, 200 W, 250 W, and 300 W. Each track has a track length
of 10 mm. The multi tracks are built on top of a substrate of
Inconel 625 with a dimension of 20.15 mm × 10.65 mm ×
4.04 mm. Process parameter values used in the simulations
are summarized in Table 1, where the hatch space denotes
the distance between two adjacent tracks. The temperature-
dependent material properties of Inconel 625 are given in
Table 2.

Normalization of system variables

System variables are normalized before model training.
Specifically, the input features and the target value are nor-
malized into a range of 0-1 using their respective maximum
and minimum values. For example, the laser power Q(s) is
normalized as follows:

Q(s) = Q(s) − Qmin

Qmax − Qmin
,∀s = 0, . . . , N − 1. (11)

Table 2 Temperature-dependent thermal conductivity and specific heat
used in the Netfabb FEA simulations

T Thermal conductivity k Specific heat Cp
(◦C) (W/mm K) (J/kg K)

25 10.0e−3 405

200 12.5e−3 460

300 14.0e−3 480

400 15.0e−3 500

500 16.0e−3 525

600 18.0e−3 550

800 22.0e−3 600

900 24.0e−3 630

1000 25.0e−3 650

1200 25.5e−3 680

1290 102e−3

Table 3 Maximum andminimumvalues of the input features and target
value used in normalization

Variable Minimum Maximum

V (s) (mm3) 0 0.0096

Q(s) (W) 100 300

Tinit (s) (oC) 25 1200

As a result, Qmin = 0 and Qmax = 1. The normalization
procedure is similar for other input features and the tar-
get value, with their corresponding maximum and minimum
values given in Table 3. For the sake of simple illustration,
notations of the input features and the target value are abused
by continuing to use the symbols Q(s), Tinit (s), and V (s) to
represent their respective normalized variables in the remain-
der of the paper.

Optimal control of melt-pool geometry

Formulation of a constrained finite-horizon optimal
control problem

As demonstrated in our prior work (Wang 2019; Wang et al.
2020), when there is only a single track, applying constant
process parameters is sufficient to maintain the melt-pool
volume to be constant except during the short transient time
at the beginning of the track. However, when more than one
track is built, the melt-pool size at laser turnarounds gets sig-
nificantly larger as the returning end of the track gets heated
repeatedly. As a result, the melt-pool size will not stay con-
stant from track to track even under the constant process
parameters, indicating that starting from the second track,
process parameters need to be adjusted to regulate the melt-
pool size during the build process.
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This study considers the laser power to be the single
control variable while maintaining other process parameters
fixed. For each track i (i > 1) in the multi-track, the objec-
tive of the control design is to adjust the laser power such
that the melt-pool volume remains at a constant reference
value during the scanning of track i . Such control is applied
in a track-by-track fashion. Also note that the laser power
used in the L-PBF machine has a physical lower and upper
bound. Hence, the optimal control problem for each track i
(i > 1) can be formulated as follows (where the subscript
i for all variables is omitted here for the sake of notational
simplicity):

min
{Q(s)}N−1

s=0

J =
N−1∑

s=0

(V̂ (s + 1) − Vre f )
2 (12)

s.t. V̂ (s + 1) = f̂ (̂ξ(s)) (13)

Qmin ≤ Q(s) ≤ Qmax (14)

V̂0 = V0 (15)

where ξ̂(s) = [V̂ (s), Q(s), Tinit (s)]T , s = 0, . . . , N−1; the
quadratic cost function is defined in terms of the difference
between the predicted melt-pool size and its reference value;
{Q(s)}N−1

s=0 denotes the sequence of the laser power values;
Qmin and Qmax denote the minimum and maximum laser
power allowed by the L-PBF machine; and V0 denotes the
initial melt-pool volume at s = 0. The equality constraint in
(13) is non-convex since the Gaussian kernel is non-convex.
Hence, the optimization problem is non-convex.

Optimal control with a projected gradient descent

Recall that the iteration of the GPR-predicted melt-pool vol-
ume along the sequence of the discretized sampling steps
in (13) can be derived recursively by following (7) - (9).
Also note that a squared exponential covariance function
(10) is differentiable. To solve the optimal control prob-
lem in (12) - (15), a projected gradient descent method is
applied to derive the update rule of the control sequence
Q(s), s = 0, . . . , N − 1. Let U(k) denote the kth iteration
of the control sequence, i.e.,

U(k) =
[
Q(k)(0) · · · Q(k)(N − 1)

]T
(16)

Then the iterative update rule of the control sequence is
given as follows:

U(k + 1) = �Q
{
U(k) − η · ∇U J

}
(17)

where Q is the feasible domain of U such that its elements
are subject to the box constraint in (14); η denotes the learn-
ing rate; and ∇U J denotes the gradient of the cost function,

which can be derived in terms of the differentiation of the
squared exponential kernel function.Without considering the
box constraints on the normalized laser power, the gradient
of the cost function in (12) is computed as follows:

∇U J = ∂ J

∂U
= 2DṼ (18)

where the N × N matrix D takes the following form

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ V̂ (1)
∂Q(0)

∂ V̂ (2)
∂Q(0) . . .

∂ V̂ (N )
∂Q(0)

0 ∂ V̂ (2)
∂Q(1) . . .

∂ V̂ (N )
∂Q(1)

...
...

. . .
...

0 0 . . .
∂ V̂ (N )

∂Q(N−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (19)

and

Ṽ = [
(V̂ (1) − Vref ) · · · (V̂ (N ) − Vref )

]T
(20)

The off-diagonal elements in matrix D can be computed

in terms of the chain rule, e.g., ∂ V̂ (2)
∂Q(0) = ∂ V̂ (2)

∂ V̂ (1)
· ∂ V̂ (1)

∂Q(0) .
Consequently, the nonzero elements in D can be computed
iteratively in a certain order, e.g., from left to right for each
row, and then from the top row to the bottom row, utilizing
the explicit expressions of the estimated state V̂ (s + 1) and
its partial derivatives with respect to V̂ (s) or Q(s), which are
given in (30) - (32) of Appendix B.

Simulation results and discussions

Modeling performance

As described in Sect. 3.3, simulated data sets were gener-
ated by running Autodesk’s Netfabb to simulate the scanning
of 6 tracks with the track length L = 10 mm, under the
laser scan speed of v = 600 mm/s and each of the five dif-
ferent levels of laser power (100 W, 150W, 200W, 250W,
and 300W). Among the total of 8010 simulated data points,
200 data points were randomly selected as the training data,
and the rest were used as the testing data. Further increasing
the number of training data points did not show significant
improvement in prediction performance on the testing sam-
ples. The hyperparameters of the GPR were initialized as
σ 2
l1 = σ 2

l2 = σ 2
l3 = σ 2

f = 1. The noise variance is set as σ 2
n =

1×10−4. Then a gradient descent method with backtracking
line search was performed to optimize the hyperparameters
byminimizing the log-marginal likelihood loss function ε(θ)
1 (Rasmussen and Williams 2006), where θ denotes the vec-
tor of hyperparameters θ = {σ f , σl1, σl2, σl3}. The resulting
1 ε(θ) = − 1

2 ln(|K (y, y)|) − 1
2y

T [K (y, y)]−1y − N
2 ln(2π)
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Fig. 2 Scatter plot of GPR’s one-step prediction of melt-pool volumes
on the testing samples versus Netfabb simulated melt-pool volumes
(ground truth); L = 10 mm

hyperparameters obtained from the training are σ 2
f = 0.352,

σ 2
l1 = 10.359, σ 2

l2 = 8.938, and σ 2
l3 = 2.171.

One-step prediction

Evaluations were first conducted for one-step predictions on
the testing data, i.e., computing ŷ� = K (X�,X)w, with X�

denoting the designmatrix of the testing data. Figure 2 shows
the predicted melt-pool volumes versus the ground truth val-
ues, which demonstrates a good predictive performance of
the GPR model on the testing data. The coefficient of deter-
mination (R2) was computed to further assess the goodness
of prediction, where R2 = 0.9992. Since the testing samples
were randomly selected, the results showed no over-fitting.

Recursive prediction

Note that solving the optimization problem in (12) requires
recursively evaluating the state equation in (13). For the
laser power of 250 W and the scan speed of 600 mm/s, Fig.
3a shows the recursive prediction of the melt-pool volumes
versus the ground truth values along the (cumulative laser-
travelled) distance for the six-track with the track length L =
10 mm, where the distance 0–10 mm is for track 1, . . ., dis-
tance 50–60 mm is for track 6. The red solid line represents
the recursively predictedmean for themelt-pool volume, and
the shaded area represents two times standard deviation 2σ .
The σ is computed from the GPR predicted variance of the
recursively predicted mean, by applying (4) on the testing
locations ξ(0), ξ̂(1), . . ., ξ̂(N − 1).

Without knowing V0 of each track ahead of time, V0 = 0
was used for each track in conducting the recursive predic-
tions. Figure 3a shows that the recursive predictions of the
GPR model have a reasonable agreement with the ground
truth values for the first four tracks, but afterwards the pre-

diction error grows with the increase of the track number,
which is expected. The resulting root mean squared error
(RMSE) between the recursively predicted melt-pool vol-
ume (red solid line) and the ground truth is 0.000266 mm3,
and the average error is 9.4%.The average error e%is defined
as follows:

e% = 1

ns

ns∑

i=1

|V̂ (i) − Vg(i)|
Vg(i)

× 100% (21)

where Vg denotes the ground truth value of the melt-
pool volume, and ns denotes the total number of samples.
The accumulation of prediction errors could be potentially
reduced by including more training data under various pro-
cess conditions, or by improving accuracy in computing the
initial temperatures.

The predictive performance of the GPR model is further
evaluated on the 6-track with track length L = 20 mm under
the same process conditions, as shown in Fig. 3b. Under the
same sample step size �s, the prediction for track length
L = 20 mm takes double the iterations required in the
recursive prediction for L = 10 mm for each track, i.e.,
s = 0, . . . , 2N − 1 in (6). The calculation of the initial tem-
perature will need to be updated for L = 20 mm as well,
but using the same analytical expressions. For L = 20 mm,
the RMSE between the recursive prediction and the ground
truth is 0.000197 mm3 and the average error is 8%. It is
worth pointing out that for a shorter track length, the effect
of thermal buildup on the melt-pool size at laser turnarounds
is more substantial. As a result, the gradient of melt-pool size
with respect to the distance for L = 10 mm is larger than that
for L = 20 mm and more prone to iterative modeling errors,
which may explain why the recursive prediction for the case
of L = 20mm shows a reduced prediction error than the case
of L = 10 mm in Fig. 3.

Control performance

For the first track, a constant laser power of 250 W (a nom-
inal value used in the L-PBF) was applied. The steady-state
value of the resulting melt-pool volume of the first track was
then set as the the reference value to regulate the melt-pool
volume for the second and subsequent tracks. Under the laser
power of 250 W and the laser scan speed of 600 mm/s, the
reference melt-pool volume Vref = 1.24 × 10−3 mm3. To
obtain the laser power sequence for the second and subse-
quent tracks, the optimal control problem in (12) - (15) was
solved. Specifically, the initial laser power sequence U(0)
was set to be 250 W for all Qs(0), s = 0, . . . , N − 1. Then
the projected gradient descent algorithm in (17) was applied
to update U(k), where the learning rate η was determined
through a backtracking line search in each iteration.
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Fig. 3 Recursively predicted
melt-pool volumes versus the
ground-truth values for the
six-track with respect to the
(cumulative laser-travelled)
distance, under the laser power
of 250 W and scan speed of 600
mm/s. The red solid line
represents the GPR predicted
mean volume, and the shaded
area represents two times the
standard deviation (2σ ), where
σ is computed from the GPR
predicted variance of the
predicted mean. The
ground-truth values are
generated from Netfabb

Figure 4 shows the evolution of the cost function J with
respect to the number of iterations in searching the optimal
laser power sequence. The iteration was deemed to converge
to a (local) minimum 2 when the improvement of the cost
function at each successive iteration was less than 0.1%; the
iteration would terminate at 50 if otherwise.

The control sequence for the laser power (Q(s), s =
0, . . . , N −1.) resulted at the end of the iterations for each of
the second and subsequent tracks was then fed into the Net-
fabb to compute the corresponding melt-pool volumes, used
for numerical evaluation of the control performance. Figure
5 shows the control performance for the six-track with L =
10 mm under the laser scan speed of 600 mm/s. Specifically,
Fig. 5a shows the controlled laser power trajectory versus
the nominal laser power of 250 W (uncontrolled), and Fig.

2 Noting that the optimization problem is nonconvex, the convergence
to a global minimum is not guaranteed.

Fig. 4 Iteration of cost function during the gradient descent

5b shows the comparison among the uncontrolled melt-pool
volume, the GPR prediction of melt-pool volume under the
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Fig. 5 Control performance for a six-track with L = 10 mm under the laser scan speed of 600 mm/s

controlled laser power trajectory, and the Netfabb FEA simu-
lation of melt-pool volume under the controlled laser power
trajectory. Figure 5c and d show the FEA simulated melt-
pool cross sections at 1 mm from the track end without and
with control, respectively. With control, the melt-pool cross-
section contours aremuchmore evenly distributed, indicating
relatively constantmelt-pool cross-sectional areas, compared
to the melt-pool cross-section contours without control. The
control results of the six-track with L = 20 mm (under the
same laser scan speed of 600 mm/s) are shown in Fig. 6.

Both Figs. 5 and 6 show that under the constant laser
power of 250W(uncontrolled), at the beginningof the second
and each subsequent track (laser turnarounds), the melt-pool
volume had a large overshoot due to heat accumulation. In
contrast, such overshoot was almost flattened out under the
controlled case by significantly reducing the laser power at
the beginning of the second and each subsequent track. It was
noted that the laser power jumped high at the first sample
right after finishing each track to compensate for the cooling
during the inter-hatch dwell (skywriting) time.

Table 4 summarizes theRMSE and error rate of the uncon-
trolled or controlled melt-pool volume with respect to its

reference value. Compared to applying the nominal value
(250 W) for laser power (uncontrolled), applying the opti-
mal control for laser power (controlled FEA) has reduced
the RMSE by 74% − 78% and e% by 73% − 80%.

Computation cost

In this study, it took 54.8 seconds to compute the GPR based
optimal control for the entire track 2–6 with 10 mm track
length, and it took 145 seconds to compute the GPR based
optimal control for the case of 20 mm track length, on a
machine with Intel� Core i7-3632QM CPU, 2.20 GHz. In
average, it took 11 seconds to compute the control for each
10mm track and 29 seconds for each 20mm track. As shown
in Fig. 4, the gradient descent algorithm roughly converges
within three iterations in average. A subsequent study was
conducted to record the computation cost for running only
three iterations for each track. The resulting computation
time for each 10 mm track was less than 5 seconds, and
was less than 13 seconds for each 20 mm track. Note that the
proposed GPR control is applied track wise. For builds that
require (inter-track) dwell time at the order of several sec-
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Fig. 6 Control performance for a six-track with L = 20 mm under the laser scan speed of 600 mm/s

onds, one plausible way for implementation is to compute
and load the control sequence during the (inter-track) dwell
time, or during the inter-layer dwell time when it is applied
to multi-layer builds. Another possible use of the proposed
GPR control is to implement the control trajectory as a feed-
forward control, in a similar way as the experimental study
conducted in Wang et al. (2020).

Training over amixed set of simulated and
experimental data

Note that using simulated data sets from high-fidelity FEA
models as training data could introduce bias and approxima-
tions originated from the governing physics and parameter
values used in the FEA models. Hence, it is important to
include experimental data for model training and valida-
tion. Considering that simulated data sets are often easy and
cheap to obtain whereas the experimental data sets could be
less accessible, this section proposes a method for model
training using a mixed set of simulated and experimental
data (where the number of available experimental data sets
is much smaller than that of the simulated data sets) and

conducts a numerical evaluation with respect to the relative
confidence in the quality of the simulated versus experimen-
tal data.

Experimental data sets onmelt-pool cross-sectional
area

The simulated data sets generated from the Netfabb are on
melt-pool volumes. However, it might be difficult to directly
measure melt-pool volumes experimentally. This section
utilizes the experimental measurements of the melt-pool
cross-sectional areas obtained from our prior study (Wang
et al. 2020). In Wang et al. (2020), a number of 1-track,
2-track, and 5-track bead-on-plate samples of Inconel 625,
with track length of 10 mm, were built with a constant laser
power of 250 W and a laser scan speed of 600 mm/s on
an EOSINT M280 L-PBF system. As indicated in Ghosh
et al. (2018), Heigel and Lane (2018), laser-powder inter-
action could cause significant errors in the measurements
of melt-pool dimensions and thus the experimental study in
Wang et al. (2020) chose to measure the melt-pool cross-
sectional areas in the no-powder case for proof of concept.
For each configuration (number of tracks in each sample),
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Table 4 Evaluation of control
performance: RMSE and error
rate of uncontrolled and
controlled melt-pool volume
with respect to the reference
value

L = 10 mm L = 20 mm

RMSE (mm3) e% RMSE (mm3) e%

Uncontrolled (FEA) 10.96 ×10−4 67.8 6.88 ×10−4 40.3

Controlled (GPR) 8.17 ×10−5 1.6 6.00 ×10−5 1.1

Controlled (FEA) 2.36 ×10−4 13.8 1.81 ×10−4 11.0

four samples were repeated to account for experimental ran-
domness. After the samples were built, cross-section cuts
were performed at 1 mm from each end of the tracks, and
then image processing was performed to measure the corre-
sponding melt-pool cross-sectional areas (Wang et al. 2020).
There are a total of 64 experimental data sets. The measured
melt-pool cross-sectional areas with respect to the (cumula-
tive laser-travelled) distance are plotted in Fig. 7. Note that it
is very difficult, if not impossible, to takemore cross-sections
for the 10-mm track, as cross-sectioning and polishing result
in a significant loss of material per cut, around 0.5–1.5 mm
depending on the thickness of the cutting blade. This is where
it is meaningful to consider model training using a mixed set
of simulated and experimental data.

Conversion of simulated data sets

To be compatible with the experimental data on the melt-
pool cross-sectional area for model training, the simulated
data sets on melt-pool volumes for the six-track, with L = 10
mm under the laser power of 250 W and laser scan speed of
600mm/s, are converted intomelt-pool cross-sectional areas.
Assuming that the melt-pool takes the shape of a half ellip-
soid, the melt-pool area-to-volume ratio can be calculated as:

γ = A

V
= 3

2l
(22)

where l denotes the melt-pool length. Then the ratio γ is
searched by solving the following minimization problem:

γ∗ = argmin
γ

‖γVsim − Aexp‖22 (23)

where ‖ · ‖2 denotes the 2-norm; Vsim denotes the column
vector of simulated melt-pool volumes and Aexp denotes
the column vector of experimentally measured melt-pool
cross-sectional areas, where the respective elements of Vsim

and Aexp at the same row correspond to the same (cumula-
tive laser-travelled) distance, i.e., same location in the track.
Using the afore-mentioned simulated and experimental data
sets (L = 10 mm, laser power = 250 W, scan speed = 600
mm/s), the melt-pool area-to-volume ratio is obtained as
γ∗ = 8.3527 m−1, by which the simulated data sets on
the melt-pool volume are converted to the melt-pool cross-
sectional area, as shown in Fig. 7.

Fig. 7 A mixed set of simulated and experimental data on the melt-
pool cross-sectional area with respect to the (cumulative laser-travelled)
distance for a six-track; L = 10mm, laser power = 250W, and laser scan
speed = 600 mm/s. Some experimental samples (partially) overlapped
on each other

Training and prediction

For GPR model training using a mix of simulated and
experimental data sets, define a log-marginal likelihood loss
function εα as a convex combination of the loss function εexp
in terms of the experimental data setsDexp and εsim in terms
of the simulated data sets Dsim , i.e.,

εα(θ) = αεexp(θ) + (1 − α)εsim(θ) (24)

where α ∈ [0, 1], and θ denotes the vector of hyperparam-
eters with θ = {σ f , σl1, σl2, σl3}. The weight α reflects the
confidence in the quality of the experimental data sets versus
that of the simulated data sets, towards model training. For a
given α, the optimized hyperparameters θ∗ are obtained by
minimizing the weighted log-marginal likelihood function
εα(θ).

It is assumed that the predictions on the testing samples
follow a distribution that is a convex combination of the
predictive Gaussian distributions from the experimental and
simulated data sets. Then, the one-step predictions at testing
samples X∗ are computed as the convex combination of the
predictions ŷexp based on the experimental training data and
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the predictions ŷsim based on the simulated training data:

ŷ = αŷexp + (1 − α)̂ysim (25)

where ŷexp = K (X∗,Xexp)wexp,wexp = [K (Xexp,Xexp)+
σ 2
n,exp]−1yexp, withXexp denoting the design matrix formed

from experimental training inputs, yexp denoting vector of
experimental training outputs, and σ 2

n,exp denoting the cor-
responding variance. Similar notations are defined for those
of the simulated training data.

For the recursive prediction, the recursively predicted
mean on the cross-sectional area Â(s), (s = 1, . . . , N ), is
computed as follows:

Â(s) = α Âexp(s) + (1 − α) Âsim(s) (26)

where the computation of the recursive prediction of Âexp

and Âsim follows a similar procedure as defined in (7) -
(9) (noting that a fixed area-volume ratio γ is used to con-
vert the predicted mean on melt-pool volume to that on the
melt-pool cross-sectional area), using the experimental and
simulated training sets, respectively. Bymixture distribution,
the variance σ 2( Â) of the recursively predicted mean Â is
then computed as:

σ 2( Â(s)) = ασ 2( Âexp(s)) + (1 − α)σ 2( Âsim(s))

+α Â2
exp(s) + (1 − α) Â2

sim(s) − Â2(s) (27)

To form the simulated training set Dsim , same as in Sect.
5.1, 200 data points are randomly selected from the total of
8010 simulated data sets, and the rest 7810 data points are
used for testing. To form the experimental training set Dexp,
50 data points are randomly selected from the total of 64
experimental data sets, and the rest 14 data points are used
for testing. Four choices of α are examined to evaluate the
effect of theweighting parameter α on themodel training and
prediction: (i) α = 0.2; (ii) α = 0.5; (iii) α = 0.8; and (iv) α =
1.0. The first three cases correspond to a higher, equal, and
lower confidence in the quality (fidelity) of the simulated data
sets compared to the quality of the experimental data sets. In
the fourth case, only the experimental data sets are used for
training.

The hyperparameters are initialized as σ 2
l1 = σ 2

l2 = σ 2
l3 =

σ 2
f = 1 before training. For all choices of α, the noise vari-

ances for the simulated and experimental data are set as
σ 2
n,sim = 1× 10−4 and σ 2

n,exp = 4× 10−4. Table 5 presents
the hyperparameters obtained from training under the differ-
ent values of α.

Figure 8 shows the scatter plots of the one-step pre-
dictions versus the ground truth values of the melt-pool
cross-sectional area on the testing samples consisting of 7810
simulated data sets and 14 experimental data sets. The corre-
sponding coefficients of determination R2

sim and R2
exp with

Table 5 Hyperparameters from training with the mix of simulated and
experimental data sets

σ 2
l1 σ 2

l2 σ 2
l3 σ 2

f

α = 0.2 9.8066 9.3180 1.0237 0.2092

α = 0.5 7.6949 8.6376 0.7231 0.1750

α = 0.8 9.5031 9.2285 0.9781 0.2047

α = 1.0 1.0 6.1424 0.2027 0.0768

respect to the simulated and experimental testing data are
given in Table 6. With the increase of the weighting param-
eter α, R2

sim decreases whereas R2
exp increases, but overall

the one-step predictions have reasonable agreement with the
ground truth. For α = 1.0, predictions made by the model
trained with experimental data are tested with experimental
data (14 data points) only. For one-step prediction, the model
trained with the limited experimental data performs really
wellwith respect to the testing data sets,with R2

exp = 0.9999.
Figure 9 shows the recursive prediction on melt-pool

cross-sectional area with respect to the cumulative laser-
travelled distance for the six-track, under different α values.
With the increase of the α value from 0.2 to 0.8, the con-
tribution of the simulated training sets to model prediction
gets less whereas the influence of the experimental training
sets gets higher, which renders the prediction to deviate away
from the simulated ground truth but get closer to the experi-
mental ground truth. The corresponding RMSE and average
error rate of the recursive prediction with respect to the sim-
ulated or experimental ground truth are given in Table 6.
Noting that sample variances exist in the experimental mea-
surements, only the mean of the experimental measurements
at each distance location is used in computing the RMSE
and error rate with respect to the experimental ground truth.
Consistent with the observations from Fig. 9, Table 6 shows
that when α increases from 0.2 to 0.8, the recursive pre-
diction with respect to the experimental testing samples has
improved, with 36% reduction in RMSE and 23% reduc-
tion in the average error rate. For α = 1.0, it appears that
the number of experimental data sets used for training is not
large enough towarrant a decent recursive prediction, and the
resulting prediction has the worst agreement with the exper-
imental data sets among all cases of α values. This indicates
that when there is not sufficient experimental data available
for training, it would help improve themodel performance by
training over a mix of experimental and simulated data sets,
as the high-fidelity simulated data sets, although subject to
errors, at least capture the right trend of the real data. Future
work will evaluate experimentally how the resulting mod-
els under different α values would affect the model-based
control performance.
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Fig. 8 Scatter plots of one-step
prediction versus the ground
truth of melt-pool
cross-sectional area on
simulated and experimental
testing samples. For α = 1, only
experimental data are used for
model training and thus
comparison with respect to only
experimental ground truth is
shown

(a) (b)

(c) (d)

Conclusions

This paper considered modeling and control of melt-pool
dynamics for multi-tracks built with L-PBF AM processes.
First a physics-informed Gaussian process regression (GPR)
model was developed to model the dynamic evolution of
melt-pool size along the laser scanning distance during the
build process. Then, based on the predictions of the GPR
model, a (sub)optimal control of laser power, derived using a
projected gradient descent algorithm, was applied to regulate
themelt-pool size to a constant reference value. The proposed
GPR modeling was demonstrated using pure simulated data
sets, a mix of simulated and experimental data sets, or pure

experimental data sets. The GPR-model-based control was
evaluated through a commercial finite-element based AM
software. Simulation studies of multi-track laser process-
ing demonstrated good modeling and control performance.
Results from this study indicated that the proposed GPR
machine-learningmodeling and control could be a promising
tool in regulating the melt-pool size during the build process,
and thus could potentially be used to improve build quality
for components fabricated with L-PBF AM processes. This
study also shows that when there is not sufficient experimen-
tal data available for model training, it would help improve
themodel performance by training over amixed set of experi-
mental and high-fidelity simulated data sets. Futureworkwill

Table 6 Prediction performance
under different weighting
parameter α

One-step Prediction Recursive Prediction
R2
sim R2

exp RMSEsim (mm2) esim% RMSEexp (mm2) eexp%

α = 0.2 0.9969 0.9687 0.0027 10.35 0.0076 43.09

α = 0.5 0.9916 0.9867 0.0038 10.31 0.0056 37.00

α = 0.8 0.9906 0.9971 0.0060 14.65 0.0049 33.25

α = 1.0 – 0.9999 – – 0.0095 87.74
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Fig. 9 Recursive prediction on
melt-pool cross-sectional area
with respect to the (cumulative
laser-travelled) distance for the
six-track; L = 10 mm, laser
power = 250 W, and scan speed
= 600 mm/s. The shaded area
represents 2σ of the recursively
predicted mean (red solid line)

(a)

(b)

(c)

(d)
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extend the proposed model to include a more extensive set
of process parameters. In addition, future work will include
model prediction of othermelt-pool geometric variables such
as melt-pool width or depth.
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A. Computation of initial temperature

Consider themulti-track shown in Fig. 1. Define a fixed coor-
dinate system with the origin at the starting point of the first
track, x-axis pointing to the laser scanning direction of the
first track, and y-axis pointing to the direction where sub-
sequent tracks will be scanned. Without loss of generality,
consider that the laser is melting the i th track and it is going
to scan a point with coordinates p = [x; y] on this track.
Noting that amulti-track single-layer is considered here, thus
2-dim coordinates are sufficient to describe any point in the
build plane.

When the laser scans the first track (i = 1), the initial
temperature Tinit equals to the ambient temperature Ta , i.e.,
Tinit = Ta . When i > 1, to account for the temperature con-
tribution of each past track j ( j = 1, . . . , i − 1) to the point
p, a virtual heat source j is assigned to replace the original
laser heat source as soon as it finishes scanning track j . The
virtual heat source continues to travel along the same direc-
tion at the same scanning speed v j and with the same power
value (Q j ) as the physical laser heat source at the end of
track j . A pair of virtual heat source and heat sink could be
defined to better characterize the temperature cooling after
the physical laser heat source finishes scanning the track j ,
but the temperature difference between using a pair of vir-
tual heat source/sink and using a single virtual heat source
is negligible in this study, and hence the latter is used for
simplicity.

Let p j = [x j ; y j ] denote the coordinates of the virtual
heat source j . Computation of such coordinates could easily
account for the build plan and inter-hatch dwell time (includ-
ing skywriting time and any additional dwell), during which
the virtual heat source keeps traveling. Let q j denote the net
power of the virtual heat source of track j , which equals to
the product of laser power Q j and the laser absorption effi-

ciency. Then the initial temperature at point p on the i th track
is computed as the summation of the ambient temperature
and temperature contributions from all virtual heat sources
j , j = 1, . . . , i − 1, given as follows:

Tinit (p) = Ta +
i−1∑

j=1

q j

2πk‖p − p j‖2 e
− v j (w j+‖p−p j ‖2)

2a (28)

with each term in the summation representing theRosenthal’s
solution (Rosenthal 1946) due to a virtual heat source j . In
(28), w j = x − x j , ‖ · ‖2 denotes the 2-norm. Constant
values of the thermal conductivity k and thermal diffusivity
a for Inconel 625 listed in Table 1 are used here, in contrast to
temperature-dependent material properties used in FEA. For
the i th track, to compute Tinit (s) using (28), the coordinates
p = [x; y] can be easily computed as follows: x = s for
an odd-number track and x = L − s for an even-number
track; y = (i − 1) · h with h denoting the hatch space. Our
prior study showed that this analytical computation has a
good agreement, to a certain extent, with FEA simulations
(Li et al. 2017).

B. Computation of GPR estimated melt-pool
volumes and partial derivatives

Consider that the design matrix X consists of n training
data, i.e., X = [x1, · · · , x j , · · · , xn] where each training
data x j = [Vj , Q j , Tinit, j ]T consists of three elements
x j (1) = Vj , x j (2) = Q j , and x j (3) = Tinit, j . By the
squared exponential covariance function in (10), the matrix
K (̂ξ(s),X) of dimension 1 × n is given in (29) below. For
w = [w1, · · · , w j , · · · , wn]T , the estimated states V̂ (s + 1)
in (7) - (9) and their partial derivatives are given in (30) - (32)
below.

K (̂ξ(s),X) = σ 2
f ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e− 1
2 [(V̂ (s)−x1 (1))2 /σ 2

l1+(Q(s)−x1 (2))2 /σ 2
l2+(Tinit (s)−x1 (3))2 /σ 2

l3 ]

.

.

.

e− 1
2 [(V̂ (s)−x j (1))2 /σ 2

l1+(Q(s)−x j (2))2 /σ 2
l2+(Tinit (s)−x j (3))2 /σ 2

l3 ]

.

.

.

e− 1
2 [(V̂ (s)−xn (1))2 /σ 2

l1+(Q(s)−xn (2))2 /σ 2
l2+(Tinit (s)−xn (3))2 /σ 2

l3 ]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

(29)

V̂ (s + 1) =
n∑

j=1

w j σ
2
f · e− 1

2 [(V̂ (s)−x j (1))2 /σ 2
l1+(Q(s)−x j (2))2 /σ 2

l2+(Tinit (s)−x j (3))2 /σ 2
l3 ] (30)

∂ V̂ (s + 1)

∂ V̂ (s)
= −

n∑

j=1

w j σ
2
f · V̂ (s) − x j (1)

σ 2
l1

· e− 1
2 [(V̂ (s)−x j (1))2 /σ 2

l1+(Q(s)−x j (2))2 /σ 2
l2+(Tinit (s)−x j (3))2 /σ 2

l3 ] (31)

∂ V̂ (s + 1)

∂Q(s)
= −

n∑

j=1

w j σ
2
f · Q(s) − x j (2)

σ 2
l2

· e− 1
2 [(V̂ (s)−x j (1))2 /σ 2

l1+(Q(s)−x j (2))2 /σ 2
l2+(Tinit (s)−x j (3))2 /σ 2

l3 ] (32)
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