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Abstract. We prove that a relatively hyperbolic pair .G;P/ has Bowditch boundary a

2-sphere if and only if it is a 3-dimensional Poincaré duality pair. We prove this by studying

the relationship between the Bowditch and Dahmani boundaries of relatively hyperbolic

groups.
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1. Duality for groups with Bowditch boundary S 2

The goal of this paper is to study the duality properties of relatively hyperbolic

pairs .G;P/. This builds on work of Bestvina and Mess [4], who show that the

duality properties of a hyperbolic group G are encoded in its Gromov boundary

@G; for example, a hyperbolic group G with Gromov boundary @G ' Sn�1 is

a PD.n/ group. By analogy, one might hope for a similar result for relatively

hyperbolic pairs .G;P/ with the Gromov boundary replaced by the Bowditch

boundary @B.G;P/. This would follow immediately from [4] if the Bowditch

boundary gave a Z-set compactification ofG, but unfortunately this is not the case,

and [4] does not imply that .G;P/ is a duality pair whenever @B.G;P/ ' Sn�1.

Instead we work with the Dahmani boundary @D.G;P/ (see §2), which does give

a Z-set compactification. Our main theorem determines the Dahmani boundary

when @B.G;P/ ' S2.

Theorem 1.1. A relatively hyperbolic group .G;P/ with Bowditch boundary
@B.G;P/ ' S2 has Dahmani boundary @D.G;P/ ' � a Sierpiński carpet.

As a corollary, we find that if @B.G;P/ is a 2-sphere then the same is true for

the Dahmani boundary of the double of G along P (see §4.1 for the definition).

Corollary 1.2. Let .G;P/ be a relatively hyperbolic pair, and let Gı denote the
double of G along P. If @B.G;P/ ' S2, then @D.Gı ;P/ ' S2.
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From Corollary 1.2 we obtain the following corollary, which is our main

application. A finitely presented group G is an oriented Poincaré duality group
of dimension n (a PD.n/ group) if for each G-module A there are isomorphisms

H i .GIA/ ! Hn�i.GIA/ for each i , induced by cap product with a generator

of Hn.GIZ/. A relative version of this definition was introduced by Bieri and

Eckmann [5]. We will only need a special case: a group pair .G;P/ is a PD.3/

pair if each P 2 P is the fundamental group of a closed surface and the double of

G along P is a PD.3/ group; c.f. [5, Corollary 8.5].

Corollary 1.3. Let .G;P/ be a torsion-free relatively hyperbolic pair such that
@B.G;P/ ' S2. Then .G;P/ is a PD.3/ pair.

The converse is also true.

Theorem 1.4. Let .G;P/ be a relatively hyperbolic pair. If .G;P/ is a PD.3/ pair,
then @B.G;P/ ' S2.

Remark. As a motivating example of Corollary 1.3, suppose G is the funda-

mental group of a hyperbolic 3-manifold M with k cusps and ` totally geodesic

boundary components. Then .G;P/ is a relatively hyperbolic, where P consists of

conjugates of the boundary and cusp subgroups ¹P1; : : : ; PkC`º. On the one hand,

.G;P/ is a PD(3) pair becauseM is a K.G; 1/ and manifolds satisfy Poincaré du-

ality. (Alternatively, remove neighborhoods of the cusps and take the double.)

On the other hand, Corollary 1.3 gives a geometric-group-theoretic proof since

@B.G;P/ ' S2 (see e.g. [28, 31]). A different, homological proof of Corollary 1.2

and Theorem 1.4 is given in Manning and Wang [24, Corollary 4.3].

Relation to the Wall and Cannon conjectures. The Wall conjecture [32] posits

(in dimension 3) that any PD.3/ group is the fundamental group of a closed

aspherical 3-manifold. Similarly, one would conjecture that if .G;P/ is a PD.3/

pair, then G is the fundamental group of an aspherical 3-manifold with boundary,

where P is the collection of conjugacy classes of the boundary subgroups.

Conjecture 1.5 (relative Cannon conjecture). Let .G;P/ be a relatively hyperbolic
group pair with G torsion-free. If @B.G;P/ ' S2, then G is the fundamental
group of a finite volume hyperbolic 3-manifold M . Furthermore, the peripheral
groups are the fundamental groups of the cusps and totally geodesic boundary
components of M .

Theorem 1.6. If the Wall conjecture is true, then the relative Cannon conjecture
is true.
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Compare with [22], which is similar. A slightly different theorem that the

Cannon conjecture implies the relative Cannon conjecture when the peripheral

subgroups are Z
2, is given in [17] with a completely different proof. Our version

follows from Theorem 1.1, Corollary 1.2, and a result of Kapovich and Kleiner on

the uniqueness of peripheral structures [23, Theorem 1.5]. Martin and Skora [25]

conjecture that convergence groups can be realized as Kleinian groups, which

encompasses the Cannon and relative Cannon conjectures.

We now explain the rough outline for Theorem 1.1.

(1) In general there is a continuous surjection cW @D.G;P/ ! @B.G;P/. We

collect some facts about the topology on @D.G;P/ and this map in Proposi-

tion 2.7. In the case of Theorem 1.1, we have a map cW @D.G;P/ ! S2 such

that c�1.z/ is either a single point or a circle for each z 2 S2.

(2) In Lemma 3.1 we identify conditions on a map X ! S2 that are sufficient to

conclude that X is a Sierpiński carpet. This gives a characterization of the

Sierpiński carpet, which may be of independent interest.

(3) We verify that the conditions of Lemma 3.1 are satisfied for the map

cW @D.G;P/ ! S2. One of the difficult parts is to show that if @B.G;P/ ' S2,

then if @D.G;P/P is the quotient of @D.G;P/ obtained by collapsing all but

one of the peripheral circles to points, then @D.G;P/P is homeomorphic to

the closed disk.

Remark. It would be interesting to know a version of Theorem 1.1 when

@B.G;P/ ' Sn�1 for n > 3, i.e. that in this case @D.G;P/ is an .n�2/-dimensional

Sierpiński carpet. The methods of this paper show that this is true if one knows

that each P 2 P admits a Z-boundary @P ' Sn�2. When n D 3 this is automatic

because the peripheral subgroups are always surface groups.

Section outline. In §2 we collect some facts about the Bowditch and Dahmani

boundaries of a relatively hyperbolic group and their relation. In §3 we prove

Theorem 1.1, and in §4 we prove Corollaries 1.2 and 1.3 and Theorems 1.4 and 1.6.
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thors are grateful to the referee for carefully reading the paper, catching errors, and
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also acknowledge support from NSF grants DMS 1502794 and DMS 1709964,

respectively.



794 B. Tshishiku and G. Walsh

2. Relatively hyperbolic groups and their boundaries

We will assume throughout that G is finitely generated and thus so are the periph-

eral subgroups [27].

There are different notions of boundary for a relatively hyperbolic group. The

most general definition is due to Bowditch [8]. Another boundary was defined by

Dahmani [11] in the case when each peripheral subgroup admits a boundary, i.e.

for each P 2 P there is a space @P so that P [ @P is compact, metrizable,

and P � P [ @P is dense. In this section we describe the Bowditch and

Dahmani boundaries. Our description of Dahmani’s boundary differs slightly

from that in [11] because we use the coned-off Cayley graph instead of the

collapsed Cayley graph. This is required in order to allow P to contain more

than one conjugacy class, as discussed in [11, §6]. Everything in this section

will be done for general relatively hyperbolic groups, although the case with one

conjugacy class of peripheral subgroups is the most rigorous case in [11]. In the

next section we will specialize to the case @B.G;P/ ' S2.

2.1. Relatively hyperbolic groups and the Bowditch boundary. Below G is a

group and P is a collection of subgroups of G that consists of a finite number of

conjugacy classes of G. Some authors use P to refer to a collection of conjugacy

representatives, but we do not use this convention. This causes a minor notational

conflict since the notion of PD(n) pair (as discussed in the previous section) is

reserved for a group with respect to a finite collection of subgroups. However, this

should not cause any confusion as we can pick any set ¹P1; : : : ; Pdº of conjugacy

class representatives to be this finite collection.

For a subgroup P < G and a 2 G, we denote aP WD aPa�1 for the (left)

action of G by conjugation.

The coned–off Cayley graph. Fix a relatively hyperbolic group .G;P/, and

let P1; : : : ; Pd be representatives for the conjugacy classes in P. Let S be a

generating set for G that contains generating sets Si for each Pi . Then the Cayley

graph �.G/ D �.G; S/ naturally contains the Cayley graphs �.Pi ; Si/ for each

i D 1; : : : ; d . If P 2 P and P D aPia
�1, then we denote by �.P / � �.G/ the

subgraph a �.Pi ; Si/; note that �.P / is isomorphic to a Cayley graph for P since

�.aPi ;
aSi / ' �.Pi ; Si/ ' a �.Pi ; Si/. We form the coned off Cayley graph

y� D y�.G;P; S/ by adding a vertex �P for each P 2 P and adding edges of length

1=2 from �P to each vertex of �.P / � �.G/.

An oriented path 
 in y� is said to penetrateP 2 P if it passes through the cone

point �P ; its entering and exiting vertices are the vertices immediately before and

after �P on 
 . The path is without backtracking if once it penetrates P 2 P, it

does not penetrate P again.
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Definition 2.1. The triple .G;P; S/ is said to have bounded coset penetration if

for each � � 1, there is a constant a D a.�/ such that if 
 and 
 0 are .�; 0/

quasi-geodesics without backtracking in y� and with the same endpoints, then

(i) if 
 penetrates some P 2 P, but 
 0 does not, then the distance between the

entering and exiting vertices of 
 in �.P / is at most a; and

(ii) if 
 and 
 0 both penetrate P , then the distance between the entering vertices

of 
 and 
 0 in �.P / is at most a, and similarly for the exiting vertices.

Relative hyperbolicity and Bowditch boundary. The pair .G;P/ is called rela-
tively hyperbolic when y�.G;P; S/ is hyperbolic and satisfies bounded coset pen-

etration [15]. To equip .G;P/ with a boundary, Bowditch [8] used an equiva-

lent definition: .G;P/ is relatively hyperbolic if there exists a fine ı-hyperbolic

graph K with a G-action so that there are finitely many orbits of edges and P

is the set of infinite vertex stabilizers. A graph is fine if each edge is in finitely

many cycles of length n, for each n. Then the Bowditch boundary is defined as

@B.G;P/ WD @K[V1.K/, where V1.K/ � V.K/ is the set of vertices ofK with

infinite valence. If the G-action on K is geometric, then P D ¿ and this recovers

the Gromov boundary of a hyperbolic group @G D @K.

An alternate definition of relatively hyperbolic is that G acts geometrically

finitely on a proper geodesic metric space [8, Definition 1]. In particular, this im-

plies that for each P 2 P, the action of P on @B.G;P/ n ¹�P º is properly discon-

tinuous and cocompact. For the many equivalent notions of relative hyperbolicity,

see [19].

If .G;P/ is relatively hyperbolic, then the coned-off Cayley graph y� is a fine

hyperbolic graph [10]. In this case V1.y�/ ' P, so we can describe @B.G;P/ as

@B.G;P/ D @ y� [
�

S

P 2P¹�P º
�

: (1)

Topology on the Bowditch boundary. For a finite subset A � V.y�/ and

v 2 @ y� [ V.y�/, let M.v; A/ denote the collection of points w in @B.G;P/ so

that there exists a geodesic from v to w that avoids A. This forms a basis for the

topology on @B.G;P/, see [8, Section 8]. In particular, a subset U � @B.G;P/ is

open if for each v 2 U , there exists a finite set A � V.y�/ so that M.v; A/ � U .

A different basis for the topology is the collection of the setsM.�;c/.v; A/ of points

connected to v by a .�; c/ quasi-geodesic that avoids A (see [8] and [31, §3]).

2.2. Z-structures on groups. Before we discuss the Dahmani boundary it will

be useful to have the notion of a Z-structure on a group [3]. This concept

generalizes both (i) a CAT.0/-metric space with its visual boundary, and (ii) the

Rips complex of a hyperbolic group with its Gromov boundary [4]. See [1] for

more about Z-structures.
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Definition 2.2 ([3]). A Z-structure on a torsion-free group � is a pair of spaces

. xX;Z/ such that

(1) the space xX is a Euclidean retract, i.e. xX is compact, metrizable, finite

dimensional, contractible, and locally contractible;

(2) the subspaceZ � xX is a Z-set, i.e. for all �, there exists a map f�W xX ! xX nZ

that is � close to the identity;

(3) the space xX nZ admits a proper, cocompact � action;

(4) for any compact K in xX n Z, and any open cover U of xX , each translate gK

is contained in some Ug 2 U for all but finitely many g 2 �.

If . xX;Z/ is a Z-structure on �, then the space Z is called a Z-boundary of �.

In general, a Z-boundary is not unique; however, the following theorem gives a

uniqueness result for the Z-boundary of a PD.n/ group when n � 3.

Theorem 2.3 ([4]). LetG be a torsion-free group that admits aZ-structure . xX;Z/.
Then G is a PD.2/ or a PD.3/ group, respectively, exactly when Z ' S1, or
Z ' S2, respectively.

Theorem 2.3 follows directly from the proof of [4, Corollary 1.3], together with

the fact that a homology manifold that is a homology k-sphere is homeomorphic

to Sk when k � 2 [3, Remark 2.9]. See also [3, Theorem 2.8] for a generalization.

2.3. The Dahmani boundary and its topology. Fix a relatively hyperbolic

group .G;P/. Assume that each P 2 P admits a Z-boundary @P . As a set,

the Dahmani boundary is

@D.G;P/ D @ y� [
�

S

P 2P @P
�

: (2)

If P acts on @P for each P 2 P and if @P D @P 0 whenever P and P 0 are

conjugate, then G naturally acts on
S

P 2P @P , and so G acts on @D.G;P/.

There is a natural map cW @D.G;P/ ! @B.G;P/ that is the identity on @ y� and

sends @P to �P . This map is studied more in §2.4 and will be important in §3.

Topology on the Dahmani boundary. The topology on @D.G;P/ has a basis

consisting of two types of open sets (3) and (4) below. The first type is a neighbor-

hood basis ¹U 0
xº of points x in @ y�. For x 2 @ y�, and for an open setUx � @B.G;P/

containing x, define U 0
x � @D.G;P/ by

U 0
x D .Ux \ @ y�/ [

�
S

�P 2Ux
@P

�

: (3)

The second type is a neighborhood basis about points x 2 @P . To describe it we

first introduce some terminology.
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Definition 2.4. For P 2 P and a vertex v 2 �.P / � �.G/, the shadow of v
with respect to P , denoted Sh.v; P /, is the set of endpoints in @ y� [ y� of (non-

backtracking) geodesic arcs and rays beginning at v that immediately leave �.P /

(and do not pass through �P ).

We define ShB.v; P / as the intersection of Sh.v; P /with @B.G;P/ � @ y� [ y�,

and we define ShD.v; P / � @D.G;P/ as the preimage of ShB.v; P / under c. Note

that by definition, ShB.v; P / � @B.G;P/ n ¹�P º.

Observation 2.5. For each P 2 P,
S

v2�.P / ShB.v; P / D @B.G;P/ n ¹�P º

and so
S

v2�.P / ShD.v; P / D @D.G/ n @P:

We now define a neighborhood basis ¹U 0
xº for x 2 @P . For x 2 @P and a

neighborhood Ux of x in P [ @P , define U 0
x � @D.G;P/ by

U 0
x D .Ux \ @P / [

�
S

v2Ux
ShD.v; P /

�

(4)

We recap the above discussion.

Definition 2.6 ([11, Definition 3.3]). Let .G;P/ be a relatively hyperbolic group.

Assuming eachP 2 P admits a boundary the Dahmani boundary, @D.G;P/ is the

set (2) with topology generated by open sets of the form (3) and (4).

Dahmani [11, Theorem 3.1] proves that @D.G;P/ is compact and metrizable.

Remark. There is a slight difference between our definition of the topology on

@D.G;P/ and the definition in [11]. Instead of using endpoints of geodesics (as in

our definition of Sh.v; P /), Dahmani uses endpoints of quasi-geodesics that are

geodesics outside of a compact set. However, these give the same topology. One

way to see this is to note that ShB.v; P / has the form M.v; A/ (c.f. §2.1) where

A is the finite set of vertices in �.P /[ ¹�P º that are adjacent to v. (Note that the

distance between any two vertices in P is 1 in y�.) Bowditch [8, §8] proves that

this gives a basis for the topology on @B.G;P/. Furthermore, Bowditch shows

that this is equivalent to the topology on @B.G;P/ defined using M.�;c/.v; A/,

defined above. It follows that the topology we defined is equivalent to Dahmani’s

definition.

2.4. Comparing the Bowditch and Dahmani boundaries. Consider the col-
lapsing map

cW @D.G;P/ �! @B.G;P/ (5)

that sends each peripheral boundary @P to the corresponding point �P and is the

identity on @ y�.
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Proposition 2.7. Let .G;P/ be a relatively hyperbolic group. Assume that each
P 2 P admits a boundary @P .

(i) For P 2 P, the inclusion @P ,! @D.G;P/ is an embedding.

(ii) The subset
S

P 2P @P � @D.G;P/ is dense, and ¹@P WP 2 Pº is a null family
(i.e. for each r > 0 there are finitely many P 2 P with diameter greater
than r).

(iii) The collapsing map c is continuous and cj
@ y�

is an embedding (i.e. a home-
omorphism onto its image).

Proof. Both (i) and (ii) follow from the definition of the topology on @D.G;P/.

The subspace topology on @P � @D.G;P/ agrees with the standard topology on

@P by definition of the open sets (4). Also,
S

P 2P @P is dense because each of

the open sets (3) and (4) generating the topology on @D.G;P/ contain points of

some peripheral boundary. Finally, ¹@P WP 2 Pº is a null family. This is because

for r > 0, we can cover @D.G;P/ by open sets V1; : : : ; Vk of the form (3) or (4),

each with diameter at most r , by compactness. Note that by definition for each

Vi there is at most one peripheral circle that intersects Vi nontrivially but is not

contained in Vi . It follows that there are at most k peripheral circles with diameter

� r .

Next we prove (iii). To show that c is continuous, we fix an open set U �

@B.G;P/ and show c�1.U / is open. By definition of the topology, we can write

U as U D
S

x2U M.x;Ax/. Since each M.x;Ax/ is an open set containing

x, the preimage c�1.M.x; Ax// is of the form (3) and hence is open. Thus

c�1.U / D
S

x2U c�1.M.x; Ax// is open, which implies that c is continuous.

To see that cj
@ y�

is an embedding, it suffices to show that cj
@ y�

is a closed map.

This follows from the fact that c is a closed map, which is true for any continuous

map between compact metric spaces. �

3. Proof of Theorem 1.1 (@D.G;P/ D � when @B.G;P/ D S 2)

Throughout this section we assume @B.G;P/ ' S2. Our goal is to show that

this implies that @D.G;P/ is a Sierpiński carpet. Recall the outline of the proof

of Theorem 1.1 given in the introduction. In the previous section we completed

Step 1; in §3.2 and §3.3 we complete Steps 2 and 3, respectively. Before these

steps, we explain why the Dahmani boundary is always defined when @B.G;P/'

S2, i.e. why the peripheral subgroups admit boundaries.

3.1. Boundaries for peripheral subgroups. Fix P 2 P. To define a boundary

@P on P , consider the action of P on

� WD @B.G;P/ n ¹�P º;

which is cocompact and properly discontinuous. Bowditch [6, Section 2] defines

a metric d� on � that makes the action of P on � geometric. Then K D
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kerŒP ! Isom.�/� is finite, and P=K contains a finite-index subgroup P 0 that

is a closed surface group (in particular P 0 is torsion free); this was observed in

[13, Theorem 0.3].1 It follows that P acts geometrically on a model space X ,

either E2 or H2. Define @P WD @X as the CAT(0) boundary.

Next we topologize x� WD �[ @P . By the classification of surfaces, there is a

P 0-equivariant homeomorphism � ! X . This extends to a map x� ! xX , and we

topologize x� so that this map is a homeomorphism.

The pair . xX; @X/ is the standard Z-structure on P . It turns out that .x�; @P /
is an alternate description of this Z-structure. Axioms 1–3 of a Z-structure are

immediate. Axiom 4 follows from Proposition 3.4 and Observation 2.5 that the

shawdows cover �. See also the proof of Theorem 3.3. Alternatively, one can

use a very general “boundary swapping” argument [18, Theorem 1.3] to conclude

that x� can be topologized so that .x�; @P / is a Z-structure on P . We will use our

concrete description of the topology on x� in what follows.

For later use, we choose a quasi-isometry P ! � by taking the orbit of a

point. Specifically, choose a geodesic ray 
0 in y� that starts at �P , goes through

the identity vertex e 2 �.P /, and ends at some point 0 2 @ y� � �. (Recall that the

boundary of a hyperbolic space consists of equivalence classes of geodesic rays,

so here 
0 is a representative for 0 2 @ y�.) Then we identify P with the orbit P:0.

For g 2 P , g:0 is the endpoint of the geodesic g
0 in y� starting at �P and going

through the vertex of g in �.P /.

3.2. Identifying a Sierpiński carpet. The following lemma gives a criterion

that will allow us to identify @D.G;P/ as a Sierpiński carpet.

Lemma 3.1. Let X be a compact metric space. Assume that there exists a
continuous surjection � WX ! S2 such that

(i) there exists a countable dense subset Z D ¹z1; z2; : : :º � S2 so that the
restriction of � to ��1.S2 nZ/ is injective, and

(ii) for each k, the space Xk obtained from X by collapsing each Ci to a point
for i ¤ k is homeomorphic to a closed disk D

2.

Then X is homeomorphic to a Sierpiński carpet.

We remark that assumption (i) implies that �jW��1.S2 n Z/ ! S2 n Z is a

homeomorphism. Indeed �j is a continuous bijection, and since � is a continuous

map between compact metric spaces, � (and hence �j) is a closed map. Note also

that (ii) implies that

(iii) for each k, the preimage Ck WD ��1.zk/ is an embedded circle.

1 According to the MathSciNet review of [13], the print version of this paper has an error.
This has been fixed in an updated version arXiv:math/0401059 [math.GR]. The fact we are using
is independent of this issue.
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Example 3.2. We illustrate the theorem with a non-example. Consider X D
Œ0; 1�2 n

S1
iD1Di , where Di is a dense countable collection of open disks, with

pairwise disjoint closures, that includes the collection of disks pictured in Figure 1.

The space X is not homeomorphic to the Sierpiński carpet because the disks

pictured in Figure 1 have diameter bounded from below, so ¹Diº is not a null

family. Nevertheless,X satisfies conditions (i) and (iii) above: the setXn
S1

iD1Di

is homeomorphic to S2 n Z, where Z � S2 is countable and dense, and by

collapsing each @Di to a point we obtain a continuous surjection X ! S2

satisfying (i) and (iii). Note however that condition (ii) from Lemma 3.1 is not

satisfied. Indeed the spaceX1 obtained from collapsing all theDi except the outer

disk is not Hausdorff, and hence not homeomorphic to the closed disk.

x

Figure 1. A collection of disjoint disks with diameter bounded from below.

Proof of Lemma 3.1. First observe that the Sierpiński carpet X D � satisfies

the assumptions (i)–(iii) with � W � ! S2 the map the collapses each peripheral

circle to a point. Condition (ii) follows from Moore’s theorem about upper

semicontinuous decompositions of the plane [14, p. 3].

To prove the lemma, it suffices to show that any two compact metric spaces

X;X 0 with surjections to S2 that satisfy (i)–(iii) are homeomorphic. For k � 0,

let X.k/ be the space obtained by collapsing each circle Ci to a point for i > k

(i.e. we collapse all but the first k circles). There are maps pk WX.k/ ! X.k � 1/,
and X D limX.k/ is the inverse limit. Similarly, we express X 0 D limX 0.k/. To

show X is homeomorphic to X 0, we’ll show that the inverse systems ¹X.k/; pkº
and ¹X 0.k/; p0

k
º are isomorphic.

First we describe the topology of X.k/. By (ii), each Xk is homeomorphic

to D
2, or equivalently S2 nD, where D is an open disk. From this, it’s not hard

to see that X.k/ ' S2 n
Sk

1 Di , where Di are open embedded disks with disjoint
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closures. For example, in the case k D 2, consider the following diagrams:

X.2/

X1 X2

X.0/

��⑧⑧
⑧⑧

��
❄❄

❄❄

��
❄❄

❄❄

��⑧⑧
⑧⑧

X.2/

D
2

D
2

S2

'
��⑧⑧
⑧⑧

��
❄❄

❄❄

��
❄❄

❄❄

��⑧⑧
⑧⑧

Assumption (i) implies that X.2/ ! X.0/ is a homeomorphism away from

C1 [ C2, and so X.2/ n .C1 [ C2/ is homeomorphic to an open annulus S1 �
.0; 1/. Furthermore, by assumption (ii), X.2/ ! Xi is a homeomorphism in a

neighborhood of Ci , so it follows that X.2/ is homeomorphic to an annulus.

Note also that the restriction pkC1jWX.k C 1/ n CkC1 ! X.k/ n ¹zkC1º is a

homeomorphism. This follows from the definitions and assumption (i).

We construct compatible homeomorphisms �k WX.k/ ! X 0.k/ inductively.

For k D 0, let Z D ¹ziº and Z0 D ¹z0
iº � S2 be the countable dense

subsets associated to X;X 0. By [2, Theorem 3] there exists a homeomorphism

�0WX.0/ ' S2 ! S2 ' X 0.0/ so that �0.Z/ D Z0. Without loss of generality, we

assume that �0.zi/ D z0
i for each i . For the induction step, suppose we’re given a

homeomorphism �kWX.k/ ! X 0.k/ and a commutative diagram

X.k/ X 0.k/

X.0/ X 0.0/

//
�k

�� ��
//

�0

By the choice of �0, it follows that �k.zkC1/ D z0
kC1

. Then �k restricts to a

homeomorphism �kjWX.kC1/nCkC1 ! X 0.kC1/nC 0
kC1

. SinceX.k/ is compact,

�k is uniformly continuous, so �k j extends uniquely to a homeomorphism

�kC1WX.k C 1/ ! X 0.k C 1/

such that �kC1 ı pkC1 D p0
kC1

ı �kC1. This shows that the inverse systems

¹X.k/; pkº and ¹X 0.k/; p0
k
º are isomorphic, so then the inverse limits X;X 0 are

homeomorphic. �

3.3. Collapsing the Dahmani boundary to a disk. In this section we show

that @D.G;P/ and the collapse map cW @D.G;P/ ! @B.G;P/ ' S2 satisfy

the assumptions of Lemma 3.1, which allows us to conclude that @D.G;P/ is a

Sierpiński carpet. The main result is as follows.

Theorem 3.3. Let .G;P/ be relatively hyperbolic with @B.G;P/ ' S2. FixP 2 P,
and let @D.G;P/P be the quotient of @D.G;P/ obtained by collapsing @Q to a
point for each Q 2 P n ¹P º. Then @D.G;P/P is P -equivariantly homeomorphic
to the disk x� (c.f. §3.1).
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Remark. An analogous theorem to Theorem 3.3 holds more generally for rel-

atively hyperbolic groups with @B.G;P/ ' Sn whose peripheral subgroups have

Z-boundaries (so � has a natural Z-set compactification) with a similar proof.

The proof of Theorem 3.3 will rely on the Proposition 3.4 below, which is a

general fact about the shadow of points in the Bowditch boundary. The proof of

Proposition 3.4 is technical, so we postpone it to the end of the section.

Proposition 3.4. Let .G;P/ be a relatively hyperbolic group such that eachP 2 P

admits a boundary @P . For each P 2 P, and v 2 �.P / � y� , the shadow
ShB.v; P / � � is bounded in the Bowditch metric on �.

We note that sinceP acts isometrically on� and ShB.g �v; P / D g �ShB.v; P /,

in fact ShB.v; P / is bounded uniformly for v 2 �.P /.

Proof of Theorem 3.3. There is a homeomorphism

H W @D.G;P/P n .@ P / �! @B.G;P/ n ¹�P º;

since, by definition, the domain and codomain are equal as sets, and the identity

map is a homeomorphism by Proposition 2.7. Set � WD @B.G;P/ n ¹�P º and
x� WD �[@P ' D

2 as in §3.1. ThenH extends (via the identity map @P ! @P )

to a bijection xH W @D.G;P/P ! x�, which is equivariant. To prove the theorem,

we need only show that xH is a homeomorphism.

Since @D.G;P/P is compact and x� is Hausdorff, it suffices to show that H

is continuous; furthermore, since H is a homeomorphism, we only need to show

continuity of xH at each � 2 @P . Fixing � 2 @P , it suffices to show that for every

neighborhoodU of � in x�, there exists a neighborhoodW of � 2 @D.G;P/ so that
xH.W / � U .

Since ShB.v; P / � � is bounded for each v 2 �.P / (by Proposition 3.4), there

is a neighborhood � 2 V � P [ @P such that if v 2 V , then ShB.v; P / � U .

Indeed let yV consist of the vertices vg in P such that the endpoint of g:
0 is

in U , and far enough from the frontier of U such that the shadow ShB.vg ; P /

fits in U . Then V is the interior of the closure of yV in P [ @P . Now the

set W0 D .V \ @P / [
�

S

v2V ShD.v; P /
�

is open in @D.G;P/ (c.f. (4)), and

it is saturated with respect to fP , so W WD fP .W0/ is open in @D.G;P/P and
xH.W / � U . This completes the proof. �

In summary, we have proved Theorem 1.1, modulo a proof of Proposi-

tion 3.4. To see this, suppose that @B.G;P/ ' S2. Then there is a surjection

@D.G;P/ ! S2 which satisfies the assumptions of Lemma 3.1 by Proposition 2.7

and Theorem 3.3. Then by Lemma 3.1, @D.G;P/ is homeomorphic to the Sier-

piński carpet � .

We remark that our understanding of the shadows allows us to prove that the

complement of a point in the Bowdtich boundary admits an equivariant Z-set

compactification (when the peripheral groups admit an equivariant Z-set com-

pactification.)
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3.4. Shadows in the Bowditch boundary (Proof of Proposition 3.4). Before

we begin the proof we need some additional notions and notations from [8]. When

.G;P/ is relatively hyperbolic group pair, there exists a proper hyperbolic metric

space X on which G acts geometrically finitely. There are many models for such

a space X , e.g. [8, §3] or [16], and the existence of such an X is one definition of

a relatively hyperbolic group pair. The main fact we will need is that the nerve of

a system of horoballs in X is quasi-isometric to y� .

From X one can obtain a fine hyperbolic graph K D K.X/ by considering

the nerve of an appropriate collection of horoballs ¹H.P /ºP 2P in X [8, §7]. The

graph K has vertex set V.K/ ' P.

Lemma 3.5. The graph K is quasi-isometric to y� .

Proof. First we claim that y� is quasi-isometric to the graph ƒ that has vertex set

¹�P WP 2 Pº and an edge between �P and �P 0 if there exists an arc (i.e. a path with

distinct vertices) between them in y� of length at most 2 such that the intermediate

vertices are in�.G/ � y�. The definition ofƒ is a special instance of the “K.A; n/”

construction in [8, §2]. To define a quasi-isometryƒ ! y�, note that bothƒ and y�
are quasi-isometric to the subset ¹�P WP 2 Pº in each with the associated metrics,

since every vertex of y� is within distance 1=2 of some �P . Then by composing,

there is a map

�Wƒ �! y� (6)

that is the identity on ¹�P WP 2 Pº. This is a quasi-isometry because

dƒ.�P1
; �P2

/ � dy�
.�P1

; �P2
/ � 2dƒ.�P1

; �P2
/:

Notice that for any edge in y�, it either meets an element of V1, goes between

two vertices at distance 1/2 from the same element of V1, or goes between two

vertices which are at distance 1=2 from two different elements of V1.

For any X on which .G;P/ acts geometrically finitely, ƒ and K D K.X/ are

quasi-isometric because both are connected graphs with vertex set P and with a

cocompact G action; c.f. [8, Lemma 4.2]. �

It will be useful to choose a quasi-isometry

� W y� �! K: (7)

For this, it suffices to choose a coarse inverse  W y� ! ƒ to the map � in (6) (then

we can compose with any quasi-isometry ƒ ! K that is the identity on vertices).

To define , we choose for each v 2 �.G/ an element Pv 2 P so that v is adjacent

to �Pv
. If we fix P 2 P, then we can define Pv as the unique subgroup (with �Pv

adjacent to v) that’s conjugate to P . Then  is equivariant.
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There is a homeomorphism @B.G;P/ ! @X [8, §9]. Furthermore, if we label

the parabolic fixed points … in @X by the peripheral group P 2 P which fixes it,

then the homeomorphism from @B.G;P/ D @ y� [ V1.y�/ to @X is the identity on

V1.y�/. Since the fixed points of the conjugates of any peripheral subgroup are

dense in @X , it follows that once we fix the image of some �P (that is, label one of

the peripheral fixed points of @X) there is exactly one equivariant homeomorphism

between @B.G;P/ and @X . This allows us to canonically identify � D @X n ¹�P º
with @B.G;P/ n ¹�P º.

Bowditch [6, Section 2] puts a metric d� on � that makes the P action

geometric. If two points x; y 2 � are close in this metric, the center z 2 X

of the ideal triangle in X with vertices x; y and �P is “close to” �, which means

that there is a horofunction hWX ! R about �P with h.z/ � 0.

Proof of Proposition 3.4. Recall from §3.1 that we’ve chosen P ,! � as the P -

orbit of the endpoint 0 2 � of a given geodesic ray 
0. We take the space X with

horoballs/horospheres H.P /; S.P /, and the fine hyperbolic graph K D K.X/ as

discussed in the preceding paragraphs.

Step 1: from geodesics in y� to geodesics in X . Suppose, for a contradiction,

that the shadow of e 2 �.P / is unbounded. Then there exist geodesics 
n in
y� from �P through e 2 �.P / with endpoints �n 2 � � @B.G;P/ such that

d�.0; �n/ ! 1.

The image �.
n/ under the quasi-isometry � W y� ! K in (7) is a quasi-

geodesic. Each �.
n/ can be described as a sequence of horoballs H.Pn;1/;

H.Pn;2/; : : : in X , where Pn;1 D P and adjacent horoballs in this sequence are

distinct.

Claim. After passing to a subsequence we can assume H.Pn;2/ D H.P2/ is
constant.

Proof of Claim. We show there are only finitely many possibilities for the first

vertex of �.
n/ that differs from �P . Recall that � sends a vertex v 2 �.G/

to one of the adjacent cone vertices �Pv
2 y� (such Pv is conjugate to P ), and

is the identity on the cone vertices. Enumerate the vertices along the path 
n

as .vn;1; vn;2; : : :/. By assumption vn;1 D �P and vn;2 D e. By definition

�.vn;1/ D �.vn;2/ D �P .

The first vertex of �.
n/ that differs from �P will be �.vn;3/. There are two

possibilities: either (a) vn;3 is a cone point �P2
or (b) vn;3 is a vertex of the Cayley

graph �.G/. In case (a), �.vn;3/ D �P2
, and since �P2

is adjacent to e, there

are finitely many such choices. In case (b), �.vn;3/ is the cone point adjacent to

vn;3 whose stabilizer is conjugate to P . Since vn;3 is adjacent to e and there are

finitely many such vertices in �.G/ (as G is finitely generated), this shows there

are finitely many possibilities for �.vn;3/. �
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From �.
n/, we can construct a quasi-geodesic in X as follows. Let H.Pn;1/;

H.Pn;2/; : : : be the sequence of horoballs along �.
n/ as defined above. For i � 1,

choose a geodesic arc ˛n;i between H.Pn;i / and H.Pn;iC1/ that has endpoints

on the horospheres S.Pn;i / and S.Pn;iC1/. Then choose a geodesic arc ˇn;i

between the endpoint of ˛n;i and the starting point of ˛n;iC1. The concatenation

˛n;1 �ˇn;1 �˛n;2 �ˇn;2 � � � � is a quasi-geodesic with constants depending only on

the quasi-geodesic constants for 
n [8, Lemma 7.3,7.6]. Since the 
n have uniform

constants, the quasi-geodesic ˛n;1 � ˇn;1 � � � � is a bounded distance (with bound

uniform in n) from a geodesic 
 0
n in X . If 
n represents a point �n 2 @ y�, then


 0
n represents the same point on @X , with respect to the natural homeomorphism

@B.G;P/ ! @X that takes �P to itself.

Since the quasi-geodesics �.
n/ all have the same first three vertices, there

is a bounded subset of the horosphere S.P / that contains 
 0
n \ S.P / for each n.

This is because the quasi-geodesic in X corresponding to �.
n/, described above,

contains a geodesic segment connecting the horoballs H.P / andH.P2/, and any

two geodesics between a pair of horoballs lie within a bounded distance from one

another, c.f. [8, §9].

Step 2: centers of ideal triangles. Let .�n/ be the sequence of endpoints of

the 
 0
n in �. Since d�.0; �n/ ! 1 by assumption, and the P -action on � is

cocompact, we can chose pn 2 P (with distance from e in �.P / going to infinity)

so that d�.0; pn.�n// is bounded. Then by passing to a subsequencewe can assume

that pn.�n/ converge in�, and in particular form a Cauchy sequence. By choosing

N sufficiently large, we can ensure that if n;m > N , then d�

�

pn.�n/; pm.�m/
�

is

small enough to ensure that if zn;m 2 X is the center of the ideal triangle formed

by the triple �P , pn.�n/, pm.�m/, then zn;m is disjoint from H.P /.

For each n;m > N , we define two quasi-geodesics �n
n;m and �m

n;m between �P

and zn;m. Each is a union of two geodesic segments: for i D n;m, the quasi-

geodesic �i
n;m follows pi


0
i until it nears zn;m and then follows a geodesic to zn;m.

Note that �i
n;m is a .1; 2ci

n;m/-quasi-geodesic, where ci
n;m is the distance from pi


0
i

to zn;m. The constant ci
n;m is bounded in terms of the hyperbolicity constant, so

the collection of quasi-geodesics �n
n;m and �m

n;m for all n;m > N are all .1; c/-

quasi-geodesics for some c.

Since zn;m … H.P /, the quasi-geodesics �i
n;m and �i

n;m exitH.P / for i D n;m.

Furthermore, the distance between the sets �n
n;m\S.P / and �m

n;m\S.P / is roughly

comparable to the distance betweenpn andpm in �.P /. This is because 
 0
n and 
 0

m

intersect S.P / in a bounded region, the intersection of �i
n;m with S.P / is within

the pi translate of this bounded region, and the P action on the horosphere defines

a quasi-isometry between the word metric on �.P / and the horospherical metric

on S.P /, c.f. [6, §1].

Step 3: intrinsic and extrinsic distance in the horosphere S.P/. In this step

we’ll fix k; ` > N and consider the quasi-geodesics �k
k;`

and �`
k;`

. On the one hand,
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�k
k;`

and �`
k;`

are a bounded distance from one another, so must exit the horoball

at a bounded distance. On the other hand, the distance between �k
k;`

\ S.P / and

�`
k;`

\ S.P / is comparable to the distance between pk and p` in �.P /, which

we can make as large as we want by choosing ` � k. This tension leads to a

contradiction, as we now make precise.

There is a constantR so that if 
 is a geodesic and 
 0 is a .1; c/-quasi-geodesic

with the same endpoints, then the Hausdorff distance between 
; 
 0 is less than R.

Similarly, any two .1; c/-quasi-geodesics 
 0; 
 00 with the same endpoints as 
 are

contained in a 2R neighborhood of one another. It follows that at each time t the

distance between 
 0.t / and 
 00.t / is less than R0 WD 4RC c.

According to [6, §1], the distance in .X; �/ between two points in S.P / is

comparable to the intrinsic metric � on S.P /: there are constants K;C; ! so that

�.x; y/ � K!�.x;y/CC . Since .S.P /; �/ and�.P / are quasi-isometric, it follows

that we can find D > 0 so that if p; q have distance at least !D in �.P /, and

x 2 S.P /, then �.px; qx/ > R0.

Choose k > N and ` � k so that the distance between pk and p` in �.P / is

greater than !D (this is possible because the sequence pn is unbounded in �.P /).

Consider the .1; c/-quasi-geodesics �k
k;`

and �`
k;`

between �P and zk;`. On the one

hand, the distance between �k
k;`

\ S.P / and �`
k;`

\ S.P / is less than R0 because

�k
k;`

and �`
k;`

are .1; c/-quasi-geodesics with the same endpoints. On the other

hand, the distance between �k
k;`

\S.P / and �`
k;`

\S.P / is greater thanR0 because

pk ; p` have distance greater than !D in �.P ). This contradiction implies that the

shadow of a point is bounded. �

4. Corollaries to Theorem 1.1

4.1. Dahmani boundary of the double (Proof of Corollary 1.2). First we recall

the definition of the double Gı of G along its peripheral subgroups. We use

notation similar to [22].

Definition 4.1. Let .G;P/ be a relatively hyperbolic pair, and let P1; : : : ; Pd be

representatives for the conjugacy classes in P. Define a graph of groups D.G;P/

as follows: the underlying graph has two vertices with n edges connecting them.

The vertices are labeled by G, the i-th edge is labeled by Pi , and the edge

homomorphisms are the inclusionsPi ,! G. The fundamental group of the graph

of groups D.G;P/ is called the double of G along P, denoted Gı .

Note that if G is torsion-free, so is Gı .

Proof of Corollary 1.2. Assume that .G;P/ is a torsion-free relatively hyperbolic

group pair with @B.G;P/ ' S2. First we remark that .Gı ;P/ is relatively hyper-

bolic by work of Dahmani [12, Theorem 0.1]. Furthermore, [12, §2] describes



On groups with S2 Bowditch boundary 807

the Bowditch boundary for graphs of groups: the result is a tree of metric spaces

where the edge spaces are the limit sets of the amalgamating subgroups. (Dahmani

doesn’t use this terminology—see instead Swiatkowski [30, Definition 1.B.1].) In

the case ofGı with @B.G;P/ D S2, @B.Gı ;P/ is a “tree of 2-spheres,” where each

2-sphere has a countable dense collection of points along which other 2-spheres

are glued as in the figure below. The Dahmani boundary inherits the structure

Figure 2. The Bowditch boundary @B.Gı;P/ is a “tree of 2-spheres.”

of a tree of metric spaces from the tree structure on @B.Gı ;P/ via the collapsing

map (5) applied to Gı . Each vertex space is a copy of @D.G;P/, which is a Sier-

piński carpet by Theorem 1.1. The edge spaces that meet a given vertex space

are the peripheral circles @P for P 2 P. An important part of the definition of

a tree of metric spaces is that the edges spaces that meet a given vertex space

must form a null family. This holds generally for the peripheral boundaries of a

Dahmani boundary (Proposition 2.7); it also holds in our specific case because

the peripheral circles of a Sierpiński carpet are a null family [9, 33]. It follows

from [30, Lemma 1.D.2.1] that @D.Gı ;P/ ' S2. This completes the proof of

Corollary 1.2. �

4.2. Duality and the Bowditch boundary (Corollary 1.3 and its converse)

Proof of Corollary 1.3. By a criterion of Bieri–Eckmann [5, Corollary 8.5], to

show that .G;P/ is a PD(3) pair, it is enough to show that the double Gı is a

PD(3) group and that the peripheral subgroups P 2 P are PD.2/ groups. The
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latter is true because the peripheral subgroups act properly and cocompactly on

@B.G;P/ n ¹�P º ' R
2, c.f. [13, Theorem 0.3] and the assumption that our group

is torsion-free. To see Gı is a PD(3) group, we use Corollary 1.2 to conclude

@D.Gı ;P/ ' S2. Since @D.Gı ;P/ is a Z-boundary for Gı [11, Theorem 0.2], and

Gı is torsion free, it follows that Gı is a PD(3) group by the argument of Bestvina

and Mess [4, Corollary 1.3 (b,c)]. (See Theorem 2.3 above.) �

Proof of Theorem 1.4. Let .G;P/ be a relatively hyperbolic group pair which

is also a PD.3/ pair. It follows that G is torsion-free and again by [5, Corol-

lary 8.5], the subgroups in P are surface groups, and the double of G along P is

a PD.3/ group. By [12, Theorem 0.1] .Gı ;P/ is relatively hyperbolic, so Gı ad-

mits a Z-structure with Z-boundary @D.Gı ;P/ by Dahmani [11]. It follows that

@D.Gı ;P/ ' S2, c.f. Theorem 2.3. By Proposition 2.7, there is a dense collec-

tion of embedded circles in @D.Gı ;P/ such that when we form the quotient by

collapsing these circles, we obtain @B.Gı ;P/. As each embedded circle in S2

bounds a disk on either side, the result is a tree of 2-spheres glued along points.

By [6, Theorem 0.1] and [7, Theorem 9.2], each of these cut points correspond

to a peripheral splitting. Furthermore, by the description of the boundary of an

amalgamated product given in [12, Section 2], this tree of two-spheres is formed

by gluing the Bowditch boundaries of the vertex groups along the limit sets of the

amalgamating groups, which are the fixed points of the peripheral subgroups in

this case. Thus, the Bowditch boundary of each vertex group (relative to P) is S2,

hence @B.G;P/ ' S2. �

4.3. The Wall and relative Cannon conjectures (Proof of Theorem 1.6). Let

.G;P/ be a relatively hyperbolic group pair with G torsion-free and @B.G;P/ '

S2. We may assume P is non-empty. Choose representatives of the conjugacy

classes of the peripheral subgroups P1; : : : ; Pd and denote our group pair by

.G; ¹Piº/. Corollary 1.3 implies that the double Gı is PD.3/ group. Assuming

the Wall conjecture, we conclude that Gı D �1.M/ for some closed aspherical

3-manifold.

Let M 0 ! M be the cover corresponding to G < Gı . Since G is finitely

generated, by Scott’s compact core theorem [29], there is a compact submanifold

N � M 0 such that the inclusion induces an isomorphism �1.N / ' �1.M
0/ ' G.

Let N0 be N without its torus boundary components. To prove the theorem,

we explain why N0 admits a complete hyperbolic metric with totally geodesic

boundary, and that the boundary subgroups and cusp subgroups are exactly the

peripheral subgroups of .G;P/.

Claim. (i) Any Z � Z subgroup of �1.N / is conjugate into one of the boundary
subgroups. (ii) The boundary subgroups are malnormal, i.e., if Pi \ gPj ¤ ¹1º
for any two boundary subgroups Pi and Pj , then Pi D Pj and g 2 Pi .
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To prove the claim, first note that any Z�Z subgroup of a relatively hyperbolic

group is contained in one of the peripheral subgroups. To see this, consider a

geometrically finite action of G on a hyperbolic space, and use the classification

of isometries [21, Proposition 4.1]. Now the claim follows once we explain that

the boundary subgroups of N and the peripheral subgroups P1; : : : ; Pn are the

same, up to conjugacy. (This justifies our notation in (ii).) This follows from

the uniqueness of the PD.3/-pair structure for pairs .G; ¹P1; : : : ; Pnº/, where the

subgroups P1; : : : ; Pn do not coarsely separate G [23, Theorem 1.5]. In our case

Pi < G does not coarsely separate because @Pi � @D.G;P/ does not separate as

the peripheral circles of a Sierpiński carpet do not separate; they are exactly the

non-separating circles. Malnormality of the peripheral subgroups in torsion-free

relatively hyperbolic groups is exactly [27, Proposition 2.37]. This finishes the

proof of the claim.

Since every Z � Z subgroup is peripheral, N0 admits a complete hyperbolic

metric. To see this, observe that if N0 has no higher genus boundary components,

this is Thurston’s hyperbolization [26, Theorem B]. SupposeN0 has higher genus

boundary components. Then there are no essential annuli since this would yield

a free homotopy between two curves on the boundary, impling that the group

elements are conjugate. Malnormality implies that this conjugation can be done

in the surface group, so the annulus is not essential. Thus the double of N0 along

the higher genus boundary components is hyperbolic [26, Theorem B], and the

involution of the double fixes the boundary components of N0. Since this is

realized by an isometry [20, Theorem 1.44], N0 admits a hyperbolic metric with

totally geodesic boundary components.
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