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On groups with S? Bowditch boundary
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Abstract. We prove that a relatively hyperbolic pair (G, P) has Bowditch boundary a
2-sphere if and only if it is a 3-dimensional Poincaré duality pair. We prove this by studying
the relationship between the Bowditch and Dahmani boundaries of relatively hyperbolic
groups.
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1. Duality for groups with Bowditch boundary S 2

The goal of this paper is to study the duality properties of relatively hyperbolic
pairs (G, P). This builds on work of Bestvina and Mess [4], who show that the
duality properties of a hyperbolic group G are encoded in its Gromov boundary
d G; for example, a hyperbolic group G with Gromov boundary 3 G ~ S"~! is
a PD(n) group. By analogy, one might hope for a similar result for relatively
hyperbolic pairs (G,P) with the Gromov boundary replaced by the Bowditch
boundary dp(G,P). This would follow immediately from [4] if the Bowditch
boundary gave a Z-set compactification of G, but unfortunately this is not the case,
and [4] does not imply that (G, P) is a duality pair whenever 93 (G, P) ~ S"~!.
Instead we work with the Dahmani boundary dp (G, P) (see §2), which does give
a Z-set compactification. Our main theorem determines the Dahmani boundary
when 03(G, P) ~ S2.

Theorem 1.1. A relatively hyperbolic group (G,?P) with Bowditch boundary
05(G,P) ~ S? has Dahmani boundary dp (G, P) ~ § a Sierpiriski carpet.

As a corollary, we find that if d5(G, P) is a 2-sphere then the same is true for
the Dahmani boundary of the double of G along P (see §4.1 for the definition).

Corollary 1.2. Let (G, P) be a relatively hyperbolic pair, and let Gg denote the
double of G along P. If 3g(G,P) ~ S2, then dp(Gs,P) ~ S2.
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From Corollary 1.2 we obtain the following corollary, which is our main
application. A finitely presented group G is an oriented Poincaré duality group
of dimension n (a PD(n) group) if for each G-module A there are isomorphisms
H!(G;A) — H,_;(G; A) for each i, induced by cap product with a generator
of H,(G;Z). A relative version of this definition was introduced by Bieri and
Eckmann [5]. We will only need a special case: a group pair (G, P) is a PD(3)
pair if each P € P is the fundamental group of a closed surface and the double of
G along P is a PD(3) group; c.f. [5, Corollary 8.5].

Corollary 1.3. Let (G, P) be a torsion-free relatively hyperbolic pair such that
05(G,P) ~ S2. Then (G, P) is a PD(3) pair.

The converse is also true.

Theorem 1.4. Let (G, P) be a relatively hyperbolic pair. If (G, P) is a PD(3) pair,
then 9g(G,P) ~ S2.

Remark. As a motivating example of Corollary 1.3, suppose G is the funda-
mental group of a hyperbolic 3-manifold M with k cusps and £ totally geodesic
boundary components. Then (G, P) is a relatively hyperbolic, where P consists of
conjugates of the boundary and cusp subgroups { Py, ..., Px4+¢}. On the one hand,
(G, P) is a PD(3) pair because M is a K(G, 1) and manifolds satisfy Poincaré du-
ality. (Alternatively, remove neighborhoods of the cusps and take the double.)
On the other hand, Corollary 1.3 gives a geometric-group-theoretic proof since
dp(G,P) ~ S? (seee.g.[28, 31]). A different, homological proof of Corollary 1.2
and Theorem 1.4 is given in Manning and Wang [24, Corollary 4.3].

Relation to the Wall and Cannon conjectures. The Wall conjecture [32] posits
(in dimension 3) that any PD(3) group is the fundamental group of a closed
aspherical 3-manifold. Similarly, one would conjecture that if (G, P) is a PD(3)
pair, then G is the fundamental group of an aspherical 3-manifold with boundary,
where P is the collection of conjugacy classes of the boundary subgroups.

Conjecture 1.5 (relative Cannon conjecture). Let (G, P) be a relatively hyperbolic
group pair with G torsion-free. If dg(G,P) ~ S?, then G is the fundamental
group of a finite volume hyperbolic 3-manifold M. Furthermore, the peripheral
groups are the fundamental groups of the cusps and totally geodesic boundary
components of M.

Theorem 1.6. If the Wall conjecture is true, then the relative Cannon conjecture
is true.
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Compare with [22], which is similar. A slightly different theorem that the
Cannon conjecture implies the relative Cannon conjecture when the peripheral
subgroups are 72, is given in [17] with a completely different proof. Our version
follows from Theorem 1.1, Corollary 1.2, and a result of Kapovich and Kleiner on
the uniqueness of peripheral structures [23, Theorem 1.5]. Martin and Skora [25]
conjecture that convergence groups can be realized as Kleinian groups, which
encompasses the Cannon and relative Cannon conjectures.

We now explain the rough outline for Theorem 1.1.

(1) In general there is a continuous surjection c:dp(G,P) — dp(G,P). We
collect some facts about the topology on dp (G, P) and this map in Proposi-
tion 2.7. In the case of Theorem 1.1, we have a map c: dp (G, P) — S? such
that ¢~!(z) is either a single point or a circle for each z € §2.

(2) InLemma 3.1 we identify conditions on a map X — S? that are sufficient to
conclude that X is a Sierpifiski carpet. This gives a characterization of the
Sierpinski carpet, which may be of independent interest.

(3) We verify that the conditions of Lemma 3.1 are satisfied for the map
c:9p(G,?P) — S2. One of the difficult parts is to show thatif dg (G, P) ~ S2,
then if dp (G, P)p is the quotient of dp (G, P) obtained by collapsing all but
one of the peripheral circles to points, then dp (G, P)p is homeomorphic to
the closed disk.

Remark. It would be interesting to know a version of Theorem 1.1 when
08(G,P) ~ S*"!forn > 3, i.e.thatin this case dp (G, P) is an (n—2)-dimensional
Sierpinski carpet. The methods of this paper show that this is true if one knows
that each P € P admits a Z-boundary d P ~ S"~2. When n = 3 this is automatic
because the peripheral subgroups are always surface groups.

Section outline. In §2 we collect some facts about the Bowditch and Dahmani
boundaries of a relatively hyperbolic group and their relation. In §3 we prove
Theorem 1.1, and in §4 we prove Corollaries 1.2 and 1.3 and Theorems 1.4 and 1.6.

Acknowledgements. The authors thank Francois Dahmani for helpful conversa-
tions about his work, and thank Craig Guilbault for help with Z-structures. The au-
thors are grateful to the referee for carefully reading the paper, catching errors, and
offering helpful observations that significantly improved the paper. The authors
also acknowledge support from NSF grants DMS 1502794 and DMS 1709964,
respectively.
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2. Relatively hyperbolic groups and their boundaries

We will assume throughout that G is finitely generated and thus so are the periph-
eral subgroups [27].

There are different notions of boundary for a relatively hyperbolic group. The
most general definition is due to Bowditch [8]. Another boundary was defined by
Dahmani [11] in the case when each peripheral subgroup admits a boundary, i.e.
for each P € P there is a space d P so that P U d P is compact, metrizable,
and P C P UJP is dense. In this section we describe the Bowditch and
Dahmani boundaries. Our description of Dahmani’s boundary differs slightly
from that in [11] because we use the coned-off Cayley graph instead of the
collapsed Cayley graph. This is required in order to allow P to contain more
than one conjugacy class, as discussed in [11, §6]. Everything in this section
will be done for general relatively hyperbolic groups, although the case with one
conjugacy class of peripheral subgroups is the most rigorous case in [11]. In the
next section we will specialize to the case dg(G,P) ~ S2.

2.1. Relatively hyperbolic groups and the Bowditch boundary. Below G is a
group and P is a collection of subgroups of G that consists of a finite number of
conjugacy classes of G. Some authors use P to refer to a collection of conjugacy
representatives, but we do not use this convention. This causes a minor notational
conflict since the notion of PD(n) pair (as discussed in the previous section) is
reserved for a group with respect to a finite collection of subgroups. However, this
should not cause any confusion as we can pick any set { P1, ..., P;} of conjugacy
class representatives to be this finite collection.

For a subgroup P < G and a € G, we denote “P := aPa~! for the (left)
action of G by conjugation.

The coned—off Cayley graph. Fix a relatively hyperbolic group (G, P), and
let Pq,..., P; be representatives for the conjugacy classes in P. Let S be a
generating set for G that contains generating sets S; for each P;. Then the Cayley
graph I'(G) = I'(G, S) naturally contains the Cayley graphs I'(P;, S;) for each
i=1,....,d. f P € Pand P = aP;a™", then we denote by I'(P) C T'(G) the
subgraph a I'(P;, S;); note that I'(P) is isomorphic to a Cayley graph for P since
F(“ i,”S ) ~ I'(P;, S;) ~ a T'(P;,Si). We form the coned off Cayley graph
[ =1(G2,S8) by adding a vertex xp for each P € P and adding edges of length
1/2 from *p to each vertex of I'(P) C I'(G).

An oriented path y in [ is said to penetrate P € P if it passes through the cone
point xp; its entering and exiting vertices are the vertices immediately before and
after xp on y. The path is without backtracking if once it penetrates P € P, it
does not penetrate P again.
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Definition 2.1. The triple (G, P, S) is said to have bounded coset penetration if
for each A > 1, there is a constant @ = a(A) such that if y and y’ are (A,0)
quasi-geodesics without backtracking in I' and with the same endpoints, then

(i) if y penetrates some P € P, but y’ does not, then the distance between the
entering and exiting vertices of y in I'(P) is at most a; and

(ii) if y and y’ both penetrate P, then the distance between the entering vertices
of y and y’ in T'(P) is at most @, and similarly for the exiting vertices.

Relative hyperbolicity and Bowditch boundary. The pair (G, P) is called rela-
tively hyperbolic when f‘(G, P, S) is hyperbolic and satisfies bounded coset pen-
etration [15]. To equip (G, P) with a boundary, Bowditch [8] used an equiva-
lent definition: (G, P) is relatively hyperbolic if there exists a fine §-hyperbolic
graph K with a G-action so that there are finitely many orbits of edges and P
is the set of infinite vertex stabilizers. A graph is fine if each edge is in finitely
many cycles of length n, for each n. Then the Bowditch boundary is defined as
(G, P) := d KU Vs (K), where Vo (K) C V(K) is the set of vertices of K with
infinite valence. If the G-action on K is geometric, then P = & and this recovers
the Gromov boundary of a hyperbolic group d G = 9 K.

An alternate definition of relatively hyperbolic is that G acts geometrically
finitely on a proper geodesic metric space [8, Definition 1]. In particular, this im-
plies that for each P € P, the action of P on dg(G,P) \ {*p} is properly discon-
tinuous and cocompact. For the many equivalent notions of relative hyperbolicity,
see [19].

If (G, ?P) is relatively hyperbolic, then the coned-off Cayley graph [ is a fine
hyperbolic graph [10]. In this case Voo (I') ~ P, so we can describe 93(G, P) as

35(G,P) = AT U (Upepi*pr)). (D

Topology on the Bowditch boundary. For a finite subset A C V(f) and
vedlu V(f‘), let M(v, A) denote the collection of points w in dp(G, P) so
that there exists a geodesic from v to w that avoids A. This forms a basis for the
topology on dp (G, P), see [8, Section 8]. In particular, a subset U C dp(G,P) is
open if for each v € U, there exists a finite set A C V(f‘) so that M(v, A) C U.
A different basis for the topology is the collection of the sets M(; (v, A) of points
connected to v by a (A, ¢) quasi-geodesic that avoids A (see [8] and [31, §3]).

2.2. Z-structures on groups. Before we discuss the Dahmani boundary it will
be useful to have the notion of a Z-structure on a group [3]. This concept
generalizes both (i) a CAT(0)-metric space with its visual boundary, and (ii) the
Rips complex of a hyperbolic group with its Gromov boundary [4]. See [1] for
more about Z-structures.
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Definition 2.2 ([3]). A Z-structure on a torsion-free group I is a pair of spaces
(X, Z) such that

(1) the space X is a Euclidean retract, i.e. X is compact, metrizable, finite
dimensional, contractible, and locally contractible;

(2) the subspace Z C X isa Z-set, i.e. for all €, there existsamap f,: X — X\ Z
that is € close to the identity;

(3) the space X \ Z admits a proper, cocompact I' action;

(4) for any compact K in X \ Z, and any open cover U of X, each translate gK
is contained in some U, € U for all but finitely many g € I.

If (X, Z) is a Z-structure on T, then the space Z is called a Z-boundary of T.
In general, a Z-boundary is not unique; however, the following theorem gives a
uniqueness result for the Z-boundary of a PD(n) group when n < 3.

Theorem 2.3 ([4]). Let G be a torsion-free group that admits a Z-structure (X, Z).
Then G is a PD(2) or a PD(3) group, respectively, exactly when Z ~ S, or
Z ~ S§2, respectively.

Theorem 2.3 follows directly from the proof of [4, Corollary 1.3], together with
the fact that a homology manifold that is a homology k-sphere is homeomorphic
to Sk when k < 2 [3, Remark 2.9]. See also [3, Theorem 2.8] for a generalization.

2.3. The Dahmani boundary and its topology. Fix a relatively hyperbolic
group (G,?P). Assume that each P € P admits a Z-boundary d P. As a set,
the Dahmani boundary is

Ip(G,P) =T U (Upep d P). 2)

If P actsondP foreach P € Pandif 0 P = 9 P’ whenever P and P’ are
conjugate, then G naturally acts on | Jpp d P, and so G acts on dp (G, P).

There is a natural map c¢: dp (G, P) — dp(G, P) that is the identity on 0 I and
sends d P to xp. This map is studied more in §2.4 and will be important in §3.

Topology on the Dahmani boundary. The topology on dp (G, P) has a basis
consisting of two types of open sets (3) and (4) below. The first type is a neighbor-
hood basis {U, } of points x in d [. Forx € 3T, and for an openset Uy C dp(G,P)
containing x, define U, C dp(G, P) by

Ul :(Uxﬂaf‘)U(U*PeUx&P). (3)

The second type is a neighborhood basis about points x € d P. To describe it we
first introduce some terminology.
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Definition 2.4. For P € P and a vertex v € T'(P) C I'(G), the shadow of v
with respect to P, denoted Sh(v, P), is the set of endpoints in d L UT of (non-
backtracking) geodesic arcs and rays beginning at v that immediately leave I'(P)
(and do not pass through xp).

We define Shp (v, P) as the intersection of Sh(v, P) with dz(G,P) c 9T UT,
and we define Shp (v, P) C dp (G, P) as the preimage of Shp (v, P) under c. Note
that by definition, Shg (v, P) C dp(G,P) \ {*p}.

Observation 2.5. Foreach P € P,

Uvercp) Sha(v, P) = 3p(G,P) \ {xp}
and so

Uvercpy Sho (v, P) = dp(G) \  P.

We now define a neighborhood basis {U,} for x € d P. Forx € d P and a
neighborhood Uy of x in P U d P, define U, C dp(G,P) by

U, = Uy NIP)U (UveUx Shp (v, P)) “)

We recap the above discussion.

Definition 2.6 ([11, Definition 3.3]). Let (G, ?P) be a relatively hyperbolic group.
Assuming each P € P admits a boundary the Dahmani boundary, dp (G, P) is the
set (2) with topology generated by open sets of the form (3) and (4).

Dahmani [11, Theorem 3.1] proves that dp (G, P) is compact and metrizable.

Remark. There is a slight difference between our definition of the topology on
dp (G, P) and the definition in [11]. Instead of using endpoints of geodesics (as in
our definition of Sh(v, P)), Dahmani uses endpoints of quasi-geodesics that are
geodesics outside of a compact set. However, these give the same topology. One
way to see this is to note that Shp (v, P) has the form M (v, A) (c.f. §2.1) where
A is the finite set of vertices in I'(P) U {*p} that are adjacent to v. (Note that the
distance between any two vertices in P is 1 in f‘.) Bowditch [8, §8] proves that
this gives a basis for the topology on dp(G, P). Furthermore, Bowditch shows
that this is equivalent to the topology on dp(G,P) defined using M, ) (v, A),
defined above. It follows that the topology we defined is equivalent to Dahmani’s
definition.

2.4. Comparing the Bowditch and Dahmani boundaries. Consider the col-
lapsing map
¢:9p(G,P) — 98(G.P) ®)

that sends each peripheral boundary 9 P to the corresponding point *p and is the
identity on 0 I'.
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Proposition 2.7. Let (G, P) be a relatively hyperbolic group. Assume that each
P € P admits a boundary 0 P.

(i) For P € P, the inclusion 0 P — dp (G, P) is an embedding.

(ii) The subset\pep d P C 0p(G,P) is dense, and {0P: P € P} is a null family
(i.e. for each r > 0 there are finitely many P € P with diameter greater
than r).

(iii) The collapsing map c is continuous and c|y is an embedding (i.e. a home-
omorphism onto its image).

Proof. Both (i) and (ii) follow from the definition of the topology on dp (G, P).
The subspace topology on d P C dp(G, P) agrees with the standard topology on
d P by definition of the open sets (4). Also, | Jpcp 0 P is dense because each of
the open sets (3) and (4) generating the topology on dp (G, P) contain points of
some peripheral boundary. Finally, {d P: P € P} is a null family. This is because
for r > 0, we can cover dp (G, P) by open sets V1, ..., Vi of the form (3) or (4),
each with diameter at most r, by compactness. Note that by definition for each
V; there is at most one peripheral circle that intersects V; nontrivially but is not
contained in V;. It follows that there are at most £ peripheral circles with diameter
>r.

Next we prove (iii). To show that ¢ is continuous, we fix an open set U C
dp(G,P) and show ¢~1(U) is open. By definition of the topology, we can write
Uas U = Uyey M(x,Ax). Since each M(x, Ay) is an open set containing
x, the preimage ¢~ '(M(x, Ay)) is of the form (3) and hence is open. Thus
¢ U) = Uyey ¢ ' (M(x, Ay)) is open, which implies that ¢ is continuous.
To see that c|, is an embedding, it suffices to show that [, is a closed map.
This follows from the fact that ¢ is a closed map, which is true for any continuous
map between compact metric spaces. O

3. Proof of Theorem 1.1 (3p (G, P) = S when d3(G,P) = S?)

Throughout this section we assume dg(G,P) ~ S2. Our goal is to show that
this implies that dp (G, P) is a Sierpiriski carpet. Recall the outline of the proof
of Theorem 1.1 given in the introduction. In the previous section we completed
Step 1; in §3.2 and §3.3 we complete Steps 2 and 3, respectively. Before these
steps, we explain why the Dahmani boundary is always defined when dp (G, P) ~
S2,i.e. why the peripheral subgroups admit boundaries.

3.1. Boundaries for peripheral subgroups. Fix P € P. To define a boundary
d P on P, consider the action of P on

Q:=0p(G,P)\ {xp},

which is cocompact and properly discontinuous. Bowditch [6, Section 2] defines
a metric dg on 2 that makes the action of P on Q geometric. Then K =
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ker[P — Isom(£2)] is finite, and P/K contains a finite-index subgroup P’ that
is a closed surface group (in particular P’ is torsion free); this was observed in
[13, Theorem 0.3].1 It follows that P acts geometrically on a model space X,
either E? or H2. Define d P := 9 X as the CAT(0) boundary.

Next we topologize Q := Q U d P. By the classification of surfaces, there is a
P’-equivariant homeomorphism € — X. This extends to a map Q — X, and we
topologize Q so that this map is a homeomorphism.

The pair (X, d X) is the standard Z-structure on P. It turns out that (2,9 P)
is an alternate description of this Z-structure. Axioms 1-3 of a Z-structure are
immediate. Axiom 4 follows from Proposition 3.4 and Observation 2.5 that the
shawdows cover 2. See also the proof of Theorem 3.3. Alternatively, one can
use a very general “boundary swapping” argument [18, Theorem 1.3] to conclude
that Q can be topologized so that (Q, d P) is a Z-structure on P. We will use our
concrete description of the topology on Q in what follows.

For later use, we choose a quasi-isometry P — 2 by taking the orbit of a
point. Specifically, choose a geodesic ray yg in I" that starts at xp, goes through
the identity vertex e € I'(P), and ends at some point 0 € d ' C Q. (Recall that the
boundary of a hyperbolic space consists of equivalence classes of geodesic rays,
so here yy is a representative for 0 € 9 T'.) Then we identify P with the orbit P.0.
For g € P, g.0 is the endpoint of the geodesic gy, in r starting at *p and going
through the vertex of g in I'(P).

3.2. Identifying a Sierpinski carpet. The following lemma gives a criterion
that will allow us to identify dp (G, P) as a Sierpiniski carpet.

Lemma 3.1. Let X be a compact metric space. Assume that there exists a
continuous surjection w: X — S? such that

(i) there exists a countable dense subset Z = {z1,z5,...} C S? so that the
restriction of w to 1~V (S? \ Z) is injective, and

(ii) for each k, the space Xy obtained from X by collapsing each C; to a point
fori # k is homeomorphic to a closed disk D?.

Then X is homeomorphic to a Sierpiniski carpet.
We remark that assumption (i) implies that 7|: 771 (S?\ Z) — S?\ Z is a
homeomorphism. Indeed | is a continuous bijection, and since x is a continuous

map between compact metric spaces, 7 (and hence 7|) is a closed map. Note also
that (ii) implies that

(iii) for each k, the preimage Cy := 7~ (zx) is an embedded circle.

1 According to the MathSciNet review of [13], the print version of this paper has an error.
This has been fixed in an updated version arXiv:math/0401059 [math.GR]. The fact we are using
is independent of this issue.
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Example 3.2. We illustrate the theorem with a non-example. Consider X =
[0,1]2 \ U?; D;, where D; is a dense countable collection of open disks, with
pairwise disjoint closures, that includes the collection of disks pictured in Figure 1.
The space X is not homeomorphic to the Sierpifiski carpet because the disks
pictured in Figure 1 have diameter bounded from below, so {D;} is not a null
family. Nevertheless, X satisfies conditions (i) and (iii) above: the set X \Ufil D;
is homeomorphic to S? \ Z, where Z C S§? is countable and dense, and by
collapsing each 3 D; to a point we obtain a continuous surjection X — §2
satisfying (i) and (iii). Note however that condition (ii) from Lemma 3.1 is not
satisfied. Indeed the space X obtained from collapsing all the D; except the outer
disk is not Hausdorff, and hence not homeomorphic to the closed disk.

Figure 1. A collection of disjoint disks with diameter bounded from below.

Proof of Lemma 3.1. First observe that the Sierpifiski carpet X = § satisfies
the assumptions (i)—(iii) with 7:§ — S? the map the collapses each peripheral
circle to a point. Condition (ii) follows from Moore’s theorem about upper
semicontinuous decompositions of the plane [14, p. 3].

To prove the lemma, it suffices to show that any two compact metric spaces
X, X’ with surjections to S? that satisfy (i)—(iii) are homeomorphic. For k > 0,
let X(k) be the space obtained by collapsing each circle C; to a point for i > k
(i.e. we collapse all but the first k circles). There are maps py: X (k) — X(k — 1),
and X = lim X (k) is the inverse limit. Similarly, we express X’ = lim X’ (k). To
show X is homeomorphic to X', we’ll show that the inverse systems {X(k), px}
and {X'(k), p; } are isomorphic.

First we describe the topology of X(k). By (ii), each X} is homeomorphic
to D2, or equivalently S? \ D, where D is an open disk. From this, it’s not hard

to see that X (k) ~ §2\ U]f D;, where D; are open embedded disks with disjoint
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closures. For example, in the case k = 2, consider the following diagrams:
X2 X2

/\ /\
\/ \/

X(0)

12

Assumption (i) implies that X(2) — X(0) is a homeomorphism away from
C1 U C3, and so X(2) \ (C; U C,) is homeomorphic to an open annulus S! x
(0,1). Furthermore, by assumption (ii), X(2) — X; is a homeomorphism in a
neighborhood of Cj, so it follows that X(2) is homeomorphic to an annulus.

Note also that the restriction pgiq|: X(k + 1)\ Cry1 — X(k) \ {zx+1} is a
homeomorphism. This follows from the definitions and assumption (i).

We construct compatible homeomorphisms ¢ : X(k) — X'(k) inductively.
For k = 0,let Z = {z}and Z' = {z/} C S? be the countable dense
subsets associated to X, X’. By [2, Theorem 3] there exists a homeomorphism
$o: X(0) ~ S? — §2 ~ X'(0) so that ¢o(Z) = Z’. Without loss of generality, we
assume that ¢y(z;) = z/ for each i. For the induction step, suppose we’re given a
homeomorphism ¢y: X (k) — X’(k) and a commutative diagram

X -2 xw

| .

X(0) N X'(0)

By the choice of ¢y, it follows that ¢y (zx41) = z; +1- Then ¢y restricts to a
homeomorphism ¢ [: X(k+1)\Cg+1 — X'(k+1)\Cr,,. Since X (k) is compact,
¢x is uniformly continuous, so ¢ | extends uniquely to a homeomorphism

Pk Xk +1) > X'(k + 1)

such that ¢g 11 © pr+1 = ppiq © ¢k+1. This shows that the inverse systems
{X(k), pr} and {X'(k), p; } are isomorphic, so then the inverse limits X, X" are
homeomorphic. |

3.3. Collapsing the Dahmani boundary to a disk. In this section we show
that dp(G,P) and the collapse map c:dp(G,P) — 0dp(G,P) ~ S? satisfy
the assumptions of Lemma 3.1, which allows us to conclude that dp (G, P) is a
Sierpinski carpet. The main result is as follows.

Theorem 3.3. Let (G, P) be relatively hyperbolic with dg(G, P) ~ S?. Fix P € P,
and let dp(G,P)p be the quotient of dp(G,P) obtained by collapsing d Q to a
point for each Q € P\ {P}. Then dp(G,P)p is P-equivariantly homeomorphic
to the disk Q (c.f §3.1).
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Remark. An analogous theorem to Theorem 3.3 holds more generally for rel-
atively hyperbolic groups with dp (G, P) ~ S" whose peripheral subgroups have
Z-boundaries (so 2 has a natural Z-set compactification) with a similar proof.

The proof of Theorem 3.3 will rely on the Proposition 3.4 below, which is a
general fact about the shadow of points in the Bowditch boundary. The proof of
Proposition 3.4 is technical, so we postpone it to the end of the section.

Proposition 3.4. Let (G, P) be a relatively hyperbolic group such that each P € P
admits a boundary d P. For each P € P, and v € T'(P) C T, the shadow
Shg (v, P) C Q is bounded in the Bowditch metric on Q.

We note that since P acts isometrically on €2 and Shg(g-v, P) = g-Shp(v, P),
in fact Shp (v, P) is bounded uniformly for v € I'(P).

Proof of Theorem 3.3. There is a homeomorphism
H:0p(G,P)p\ (0 P) —> dp(G,P)\ {xp},

since, by definition, the domain and codomain are equal as sets, and the identity
map is a homeomorphism by Proposition 2.7. Set Q := dp(G,?P) \ {*p} and
Q:=QUJP ~D?asin§3.1. Then H extends (via the identity mapd P — d P)
to a bijection H:dp (G,P)p — Q, which is equivariant. To prove the theorem,
we need only show that H is a homeomorphism.

Since dp (G, P)p is compact and Q is Hausdorff, it suffices to show that H
is continuous; furthermore, since H is a homeomorphism, we only need to show
continuity of H ateach &£ € d P. Fixing &£ € 9 P, it suffices to show that for every
neighborhood U of £ in Q, there exists a neighborhood W of £ € dp (G, P) so that
HW)cCU.

Since Shp (v, P) C Q is bounded for each v € I'(P) (by Proposition 3.4), there
is a neighborhood £ € V. C P U d P such that if v € V, then Shp(v, P) C U.
Indeed let V consist of the vertices vg in P such that the endpoint of g.yy is
in U, and far enough from the frontier of U such that the shadow Shpg (v, P)
fits in U. Then V is the interior of the closure of V in P U 3 P. Now the
set Wo = (VN3 P)U (Uyey Sho (v, P)) is open in dp(G,P) (c.f. (4)), and
it is saturated with respect to fp, so W := fp(Wp) is open in dp(G,P)p and
H(W) C U. This completes the proof. O

In summary, we have proved Theorem 1.1, modulo a proof of Proposi-
tion 3.4. To see this, suppose that dg(G,P) ~ S2. Then there is a surjection
dp(G,P) — S? which satisfies the assumptions of Lemma 3.1 by Proposition 2.7
and Theorem 3.3. Then by Lemma 3.1, dp (G, P) is homeomorphic to the Sier-
piniski carpet S.

We remark that our understanding of the shadows allows us to prove that the
complement of a point in the Bowdtich boundary admits an equivariant Z-set
compactification (when the peripheral groups admit an equivariant Z-set com-
pactification.)
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3.4. Shadows in the Bowditch boundary (Proof of Proposition 3.4). Before
we begin the proof we need some additional notions and notations from [8]. When
(G, ?P) is relatively hyperbolic group pair, there exists a proper hyperbolic metric
space X on which G acts geometrically finitely. There are many models for such
a space X, e.g. [8, §3] or [16], and the existence of such an X is one definition of
a relatively hyperbolic group pair. The main fact we will need is that the nerve of
a system of horoballs in X is quasi-isometric to T.

From X one can obtain a fine hyperbolic graph K = K(X) by considering
the nerve of an appropriate collection of horoballs { H(P)}pep in X [8, §7]. The
graph K has vertex set V(K) >~ P.

Lemma 3.5. The graph K is quasi-isometric to r.

Proof. First we claim that T is quasi-isometric to the graph A that has vertex set
{*p: P € P} and an edge between * p and * p- if there exists an arc (i.e. a path with
distinct vertices) between them in I of length at most 2 such that the intermediate
vertices are in I'(G) C I'. The definition of A is a special instance of the “K (A4, n)”
construction in [8, §2]. To define a quasi-isometry A — f‘, note thatboth A and T
are quasi-isometric to the subset {+xp: P € P} in each with the associated metrics,
since every vertex of I is within distance 1/2 of some *p. Then by composing,
there is a map

¢: A —T (6)

that is the identity on {xp: P € P}. This is a quasi-isometry because
da(xpy, *py) < dp(xpy, *p,) < 2dA(*py, *P,).

Notice that for any edge in f, it either meets an element of V., goes between
two vertices at distance 1/2 from the same element of V,,, or goes between two
vertices which are at distance 1/2 from two different elements of V.

For any X on which (G, P) acts geometrically finitely, A and K = K(X) are
quasi-isometric because both are connected graphs with vertex set P and with a
cocompact G action; c.f. [8, Lemma 4.2]. O

It will be useful to choose a quasi-isometry
[ — K. (7)

For this, it suffices to choose a coarse inverse : [ — A to the map ¢ in (6) (then
we can compose with any quasi-isometry A — K that is the identity on vertices).
To define ¥, we choose for each v € I'(G) an element P, € P so that v is adjacent
to xp,. If we fix P € P, then we can define P, as the unique subgroup (with *p,
adjacent to v) that’s conjugate to P. Then v is equivariant.
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There is a homeomorphism dp (G, P) — 9 X [8, §9]. Furthermore, if we label
the parabolic fixed points IT in d X by the peripheral group P € P which fixes it,
then the homeomorphism from dp (G, P) = d U Ve (f‘) to dX is the identity on
Voo(T'). Since the fixed points of the conjugates of any peripheral subgroup are
dense in d.X, it follows that once we fix the image of some *p (that is, label one of
the peripheral fixed points of 0.X) there is exactly one equivariant homeomorphism
between dp (G, P) and 0X. This allows us to canonically identify 2 = 90X \ {xp}
with dg(G,P) \ {*p}.

Bowditch [6, Section 2] puts a metric dg on Q that makes the P action
geometric. If two points x,y € Q are close in this metric, the center z € X
of the ideal triangle in X with vertices x, y and *p is “close to” €2, which means
that there is a horofunction 4: X — R about *p with i(z) < 0.

Proof of Proposition 3.4. Recall from §3.1 that we’ve chosen P <—  as the P-
orbit of the endpoint 0 € Q2 of a given geodesic ray y,. We take the space X with
horoballs/horospheres H(P), S(P), and the fine hyperbolic graph K = K(X) as
discussed in the preceding paragraphs.

Step 1: from geodesics in T to geodesics in X. Suppose, for a contradiction,
that the shadow of e € I'(P) is unbounded. Then there exist geodesics y, in
[ from #p through e € I'(P) with endpoints &, € Q C dp(G,P) such that
dQ (O’ En) — Q. ~

The image m(y,) under the quasi-isometry 7:I' — K in (7) is a quasi-
geodesic. Each m(y,) can be described as a sequence of horoballs H(Py,1),
H(Pyp2),...in X, where P,; = P and adjacent horoballs in this sequence are
distinct.

Claim. After passing to a subsequence we can assume H(Pn2) = H(Pp) is
constant.

Proof of Claim. We show there are only finitely many possibilities for the first
vertex of m(y,) that differs from *p. Recall that = sends a vertex v € I'(G)
to one of the adjacent cone vertices *p, € [ (such P, is conjugate to P), and
is the identity on the cone vertices. Enumerate the vertices along the path y,
as (Vn,1,Vn.2,...). By assumption v,; = *p and v,» = e. By definition
7T(Un,1) = 7(vn,2) = *p.

The first vertex of w(y,) that differs from *p will be 7 (v, 3). There are two
possibilities: either (a) v, 3 is a cone point * p, or (b) v, 3 is a vertex of the Cayley
graph I'(G). In case (a), w(vs,3) = *p,, and since *p, is adjacent to e, there
are finitely many such choices. In case (b), 7 (v, 3) is the cone point adjacent to
vn,3 Whose stabilizer is conjugate to P. Since v, 3 is adjacent to e and there are
finitely many such vertices in I'(G) (as G is finitely generated), this shows there
are finitely many possibilities for 7 (v, 3). |
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From 7 (y,), we can construct a quasi-geodesic in X as follows. Let H(Py.1),
H(Py ), ...bethe sequence of horoballs along 7 (y,) as defined above. Fori > 1,
choose a geodesic arc «,,; between H(P,;) and H(P, ;+1) that has endpoints
on the horospheres S(P, ;) and S(P,,;+1). Then choose a geodesic arc B, ;
between the endpoint of ¢, ; and the starting point of o, ;+1. The concatenation
On,1% PBn,1 %0y 2% Bpo*--- is a quasi-geodesic with constants depending only on
the quasi-geodesic constants for y, [8, Lemma 7.3,7.6]. Since the y,, have uniform
constants, the quasi-geodesic o1 * 85,1 * - -+ is a bounded distance (with bound
uniform in n) from a geodesic y, in X. If y, represents a point &, € 0 f‘, then
y;, represents the same point on d X, with respect to the natural homeomorphism
0p(G,P) — 0 X that takes *p to itself.

Since the quasi-geodesics w(yy) all have the same first three vertices, there
is a bounded subset of the horosphere S(P) that contains y, N S(P) for each n.
This is because the quasi-geodesic in X corresponding to 7 (yy,), described above,
contains a geodesic segment connecting the horoballs H(P) and H(P,), and any
two geodesics between a pair of horoballs lie within a bounded distance from one
another, c.f. [8, §9].

Step 2: centers of ideal triangles. Let (&,) be the sequence of endpoints of
the y, in Q. Since dq(0,&,) — oo by assumption, and the P-action on € is
cocompact, we can chose p, € P (with distance from e in I'(P) going to infinity)
sothat dg (0, p,(&,)) is bounded. Then by passing to a subsequence we can assume
that p, (&,) converge in €2, and in particular form a Cauchy sequence. By choosing
N sufficiently large, we can ensure that if n,m > N, then dg (pn(&r), pm(Em)) is
small enough to ensure that if z, ,, € X is the center of the ideal triangle formed
by the triple xp, pn(&s), Pm(Em), then z, ,, is disjoint from H(P).

For each n,m > N, we define two quasi-geodesics ny, ,, and ny,, between *p
and z, ,,. Each is a union of two geodesic segments: for i = n,m, the quasi-
geodesic UZ,m follows p;y/ until it nears z, ,, and then follows a geodesic to z, .
Note that n, ,,, is a (1, 2¢}, ,,,)-quasi-geodesic, where ¢, , is the distance from p; y;
to z,,m. The constant c,",’m is bounded in terms of the hyperbolicity constant, so
the collection of quasi-geodesics n;, ,, and ny',, for all n,m > N are all (1, ¢)-
quasi-geodesics for some c.

Since z,,;m ¢ H(P), the quasi-geodesics 1, ,,, and 17;, ,,, exit H(P)fori =n,m.
Furthermore, the distance between the sets 1 ,, NS(P) and n’,, NS (P) is roughly
comparable to the distance between p, and p,, in I'(P). This is because y, and y,,
intersect S(P) in a bounded region, the intersection of nﬁ,,m with S(P) is within
the p; translate of this bounded region, and the P action on the horosphere defines
a quasi-isometry between the word metric on I'(P) and the horospherical metric
on S(P), ct.[6, §1].

Step 3: intrinsic and extrinsic distance in the horosphere S(P). In this step
we’ll fix k, £ > N and consider the quasi-geodesics n’,; ¢, and ”i, ¢- On the one hand,
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n’,ﬁ . and ni , are a bounded distance from one another, so must exit the horoball
at a bounded distance. On the other hand, the distance between ni ¢ N S(P)and

nil N S(P) is comparable to the distance between p; and p, in I'(P), which
we can make as large as we want by choosing £ > k. This tension leads to a
contradiction, as we now make precise.

There is a constant R so that if y is a geodesic and y’ is a (1, ¢)-quasi-geodesic
with the same endpoints, then the Hausdorff distance between y, y’ is less than R.
Similarly, any two (1, ¢)-quasi-geodesics y’, y” with the same endpoints as y are
contained in a 2R neighborhood of one another. It follows that at each time ¢ the
distance between y’(¢) and y”(¢) is less than R’ := 4R + c.

According to [6, §1], the distance in (X, p) between two points in S(P) is
comparable to the intrinsic metric o on S(P): there are constants K, C, w so that
o(x,y) < KoP®Y) 4C. Since (S(P), o) and I'(P) are quasi-isometric, it follows
that we can find D > 0 so that if p, ¢ have distance at least »® in I'(P), and
x € S(P), then p(px,gx) > R’.

Choose k > N and £ > k so that the distance between pj and p, in I'(P) is
greater than w® (this is possible because the sequence p,, is unbounded in I'(P)).
Consider the (1, ¢)-quasi-geodesics r]’,g’ ¢, and ni’ , between *p and zg ¢. On the one

hand, the distance between nf ¢ N S(P)and ni ¢ N S(P) is less than R’ because
n’,; ¢, and ”i, ¢ are (1, c)-quasi-geodesics with the same endpoints. On the other
hand, the distance between ni ;,NS(P)and ni ;N S(P) is greater than R’ because

Pk, pe have distance greater than w®? in T'(P). This contradiction implies that the
shadow of a point is bounded. |

4. Corollaries to Theorem 1.1

4.1. Dahmani boundary of the double (Proof of Corollary 1.2). First we recall
the definition of the double Gs of G along its peripheral subgroups. We use
notation similar to [22].

Definition 4.1. Let (G, P) be a relatively hyperbolic pair, and let Py,..., P; be
representatives for the conjugacy classes in P. Define a graph of groups D(G, P)
as follows: the underlying graph has two vertices with n edges connecting them.
The vertices are labeled by G, the i-th edge is labeled by P;, and the edge
homomorphisms are the inclusions P; < G. The fundamental group of the graph
of groups D(G, P) is called the double of G along P, denoted Gs.

Note that if G is torsion-free, so is Gg.

Proof of Corollary 1.2. Assume that (G, P) is a torsion-free relatively hyperbolic
group pair with 3(G, P) ~ S2. First we remark that (Gs, P) is relatively hyper-
bolic by work of Dahmani [12, Theorem 0.1]. Furthermore, [12, §2] describes
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the Bowditch boundary for graphs of groups: the result is a tree of metric spaces
where the edge spaces are the limit sets of the amalgamating subgroups. (Dahmani
doesn’t use this terminology—see instead Swiatkowski [30, Definition 1.B.1].) In
the case of Gg with dp(G,P) = S2, dp(Gs, P) is a “tree of 2-spheres,” where each
2-sphere has a countable dense collection of points along which other 2-spheres
are glued as in the figure below. The Dahmani boundary inherits the structure

Figure 2. The Bowditch boundary dg(Gs, P) is a “tree of 2-spheres.”

of a tree of metric spaces from the tree structure on dp(Gs, P) via the collapsing
map (5) applied to Gs. Each vertex space is a copy of dp (G, P), which is a Sier-
piniski carpet by Theorem 1.1. The edge spaces that meet a given vertex space
are the peripheral circles 0 P for P € P. An important part of the definition of
a tree of metric spaces is that the edges spaces that meet a given vertex space
must form a null family. This holds generally for the peripheral boundaries of a
Dahmani boundary (Proposition 2.7); it also holds in our specific case because
the peripheral circles of a Sierpifiski carpet are a null family [9, 33]. It follows
from [30, Lemma 1.D.2.1] that dp(Gs,P) ~ S2. This completes the proof of
Corollary 1.2. |

4.2. Duality and the Bowditch boundary (Corollary 1.3 and its converse)

Proof of Corollary 1.3. By a criterion of Bieri—-Eckmann [5, Corollary 8.5], to
show that (G, P) is a PD(3) pair, it is enough to show that the double Gs is a
PD(3) group and that the peripheral subgroups P € P are PD(2) groups. The



808 B. Tshishiku and G. Walsh

latter is true because the peripheral subgroups act properly and cocompactly on
dp(G,P) \ {xp} ~ R?, c.f. [13, Theorem 0.3] and the assumption that our group
is torsion-free. To see Gg is a PD(3) group, we use Corollary 1.2 to conclude
dp(Gs,P) ~ S2. Since dp (Gg, P) is a Z-boundary for Gg [11, Theorem 0.2], and
Gs is torsion free, it follows that G5 is a PD(3) group by the argument of Bestvina
and Mess [4, Corollary 1.3 (b,c)]. (See Theorem 2.3 above.) O

Proof of Theorem 1.4. Let (G,?P) be a relatively hyperbolic group pair which
is also a PD(3) pair. It follows that G is torsion-free and again by [5, Corol-
lary 8.5], the subgroups in P are surface groups, and the double of G along P is
a PD(3) group. By [12, Theorem 0.1] (Gg, P) is relatively hyperbolic, so Gs ad-
mits a Z-structure with Z-boundary dp (Gg, P) by Dahmani [11]. It follows that
dp(Gs,P) ~ S2, c.f. Theorem 2.3. By Proposition 2.7, there is a dense collec-
tion of embedded circles in dp(Gg, P) such that when we form the quotient by
collapsing these circles, we obtain dg(Gg,P). As each embedded circle in S?
bounds a disk on either side, the result is a tree of 2-spheres glued along points.
By [6, Theorem 0.1] and [7, Theorem 9.2], each of these cut points correspond
to a peripheral splitting. Furthermore, by the description of the boundary of an
amalgamated product given in [12, Section 2], this tree of two-spheres is formed
by gluing the Bowditch boundaries of the vertex groups along the limit sets of the
amalgamating groups, which are the fixed points of the peripheral subgroups in
this case. Thus, the Bowditch boundary of each vertex group (relative to P) is S2,
hence 93 (G, P) ~ S2. O

4.3. The Wall and relative Cannon conjectures (Proof of Theorem 1.6). Let
(G, P) be a relatively hyperbolic group pair with G torsion-free and dp(G, P) =~
S2. We may assume P is non-empty. Choose representatives of the conjugacy
classes of the peripheral subgroups Pi,..., P; and denote our group pair by
(G,{P;}). Corollary 1.3 implies that the double Gs is PD(3) group. Assuming
the Wall conjecture, we conclude that Gg = m1(M) for some closed aspherical
3-manifold.

Let M’ — M be the cover corresponding to G < Ggs. Since G is finitely
generated, by Scott’s compact core theorem [29], there is a compact submanifold
N C M’ such that the inclusion induces an isomorphism 71 (N) >~ 7, (M') ~ G.
Let Ny be N without its torus boundary components. To prove the theorem,
we explain why Ny admits a complete hyperbolic metric with totally geodesic
boundary, and that the boundary subgroups and cusp subgroups are exactly the
peripheral subgroups of (G, P).

Claim. (i) Any Z x Z subgroup of 71(N) is conjugate into one of the boundary
subgroups. (ii) The boundary subgroups are malnormal, i.e., if P; N8 P; # {1}
for any two boundary subgroups P; and P;, then P; = Pj and g € P;.
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To prove the claim, first note that any Z x Z subgroup of a relatively hyperbolic
group is contained in one of the peripheral subgroups. To see this, consider a
geometrically finite action of G on a hyperbolic space, and use the classification
of isometries [21, Proposition 4.1]. Now the claim follows once we explain that
the boundary subgroups of N and the peripheral subgroups P, ..., P, are the
same, up to conjugacy. (This justifies our notation in (ii).) This follows from
the uniqueness of the PD(3)-pair structure for pairs (G,{ P41, ..., P,}), where the
subgroups Py, ..., P, do not coarsely separate G [23, Theorem 1.5]. In our case
P; < G does not coarsely separate because d P; C dp (G, P) does not separate as
the peripheral circles of a Sierpiniski carpet do not separate; they are exactly the
non-separating circles. Malnormality of the peripheral subgroups in torsion-free
relatively hyperbolic groups is exactly [27, Proposition 2.37]. This finishes the
proof of the claim.

Since every Z x Z subgroup is peripheral, Ny admits a complete hyperbolic
metric. To see this, observe that if Ny has no higher genus boundary components,
this is Thurston’s hyperbolization [26, Theorem B]. Suppose Ny has higher genus
boundary components. Then there are no essential annuli since this would yield
a free homotopy between two curves on the boundary, impling that the group
elements are conjugate. Malnormality implies that this conjugation can be done
in the surface group, so the annulus is not essential. Thus the double of Ny along
the higher genus boundary components is hyperbolic [26, Theorem B], and the
involution of the double fixes the boundary components of Ny. Since this is
realized by an isometry [20, Theorem 1.44], Ny admits a hyperbolic metric with
totally geodesic boundary components.

References

[1] F.D. Ancel and C. R. Guilbault, Z-compactifications of open manifolds. Topology 38
(1999), no. 6, 1265-1280. Zbl 0951.57011 MR 1690157

[2] R. Bennett, Countable dense homogeneous spaces. Fund. Math. 74 (1972), no. 3,
189-194. Zbl 0207.21102 Zbl 0227.54020 MR 0301711

[3] M. Bestvina, Local homology properties of boundaries of groups. Michigan Math. J.
43 (1996), no. 1, 123-139. Zbl 0872.57005 MR 1381603

[4] M. Bestvina and G. Mess, The boundary of negatively curved groups. J. Amer. Math.
Soc. 4 (1991), no. 3, 469—-481. Zbl 0767.20014 MR 1096169

[5] R. Bieri and B. Eckmann, Relative homology and Poincaré duality for group pairs.
J. Pure Appl. Algebra 13 (1978), no. 3, 277-319. Zbl 0392.20032 MR 509165

[6] B.H.Bowditch, Boundaries of geometrically finite groups. Math. Z. 230 (1999), no. 3,
509-527. Zbl 0926.20027 MR 1680044

[7]1 B. H. Bowditch, Peripheral splittings of groups. Trans. Amer. Math. Soc. 353 (2001),
no. 10, 4057-4082. Zbl 1037.20041 MR 1837220



810

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

B. Tshishiku and G. Walsh

B. H. Bowditch, Relatively hyperbolic groups. Internat. J. Algebra Comput. 22
(2012), no. 3, 1250016, 66 pp. Zbl 1259.20052 MR 2922380

J. W. Cannon, A positional characterization of the (n — 1)-dimensional Sierpiriski
curve in S”(n # 4). Fund. Math. 79 (1973), no. 2, 107-112. Zbl 0262.54038
MR 0319203

F. Dahmani, Les groups relativement hyperboliques et leurs bords. Thesése de Doc-
torat. Université Louis Pasteur, Strasbourg, 2003.

F. Dahmani, Classifying spaces and boundaries for relatively hyperbolic groups. Proc.
London Math. Soc. (3) 86 (2003), no. 3, 666—684. Zbl 1031.20039 MR 1974394

F. Dahmani, Combination of convergence groups. Geom. Topol. 7 (2003), 933-963.
Zbl 1037.20042 MR 2026551

F. Dahmani, Parabolic groups acting on one-dimensional compact spaces. Internat. J.
Algebra Comput. 15 (2005), no. 5-6, 893-906. Zbl 1095.20022 MR 2197813 Updated
version: arXiv:math/0401059 [math.GR]

R. Daverman, Decompositions of manifolds. Reprint of the 1986 original. AMS
Chelsea Publishing, Providence, R.1., 2007. Zbl 2341468 MR 2341468

B. Farb, Relatively hyperbolic groups. Geom. Funct. Anal. 8 (1998), no. 5, 810-840.
Zbl 0985.20027 MR 1650094

D. Groves and J. Manning, Dehn filling in relatively hyperbolic groups. Israel J. Math.
168 (2008), 317-429. Zbl 1211.20038 MR 2448064

D. Groves, J. Manning, and A. Sisto, Boundaries of Dehn fillings. Geom. Topol. 23
(2019), no. 6, 2929-3002. Zbl 07142692 MR 4039183

C. Guilbault and M. Moran, Proper homotopy types and Z-boundaries of spaces
admitting geometric group actions. Expo. Math. 37 (2019), no. 3, 292-313.
7Zbl 07127661 MR 4007577

G. C. Hruska, Relative hyperbolicity and relative quasiconvexity for countable
groups. Algebr. Geom. Topol. 10 (2010), no. 3, 1807-1856. Zbl 1202.20046
MR 2684983

M. Kapovich, Hyperbolic manifolds and discrete groups. Progress in Mathematics,
183. Birkhaduser Boston, Boston, MA, 2001. Zbl 0958.57001 MR 1792613

I. Kapovich and N. Benakli, Boundaries of hyperbolic groups. In S. Cleary,
R. Gilman, A. G. Myasnikov and V. Shpilrain (eds.), Combinatorial and geomet-
ric group theory. (New York, 2000 and in Hoboken, N.J., 2001.) Contemporary
Mathematics, 296. American Mathematical Society, Providence, R.I., 2002, 39-93.
Zbl 1044.20028 MR 1921706

M. Kapovich and B. Kleiner, Hyperbolic groups with low-dimensional bound-
ary. Ann. Sci. Ecole Norm. Sup. (4) 33 (2000), no. 5, 647-669. Zbl 0989.20031
MR 1834498

M. Kapovich and B. Kleiner, Coarse Alexander duality and duality groups. J. Differ-
ential Geom. 69 (2005), no. 2, 279-352. Zbl 1086.57019 MR 2168506



(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

On groups with S? Bowditch boundary 811

J. Manning and O. Wang, Cohomology and the Bowditch boundary. Michigan
Math. J. 69 (2020), no. 3, 633-669. MR 4132607

G. J. Martin and R. K. Skora, Group actions of the 2-sphere. Amer. J. Math. 111
(1989), no. 3, 387-402. Zbl 0691.57020 MR 1002005

J. W. Morgan, On Thurston’s uniformization theorem for three-dimensional mani-
folds. In J. W. Morgan and H. Bass (eds.), The Smith conjecture. (New York, 1979.)
Pure and Applied Mathematics, 112. Academic Press, Orlando, FL, 1984, 37-125.
Zbl 0599.57002 MR 758464

D. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and
algorithmic problems. Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100pp.
Zbl 1093.20025 MR 2182268

K. Ruane, CAT(0) boundaries of truncated hyperbolic space. Topology Proc. 29
(2005), no. 1, 317-331. Spring Topology and Dynamical Systems Conference.
Zbl 1090.53040 MR 2182938

G. P. Scott, Compact submanifolds of 3-manifolds. J. London Math. Soc. (2) 7 (1973),
246-250. Zbl 0266.57001 MR 0326737

J. Swiatkowski, Trees of metric compacta and trees of manifolds. Preprint, 2013.
arXiv:1304.5064 [math.GT]

H. C. Tran, Relations between various boundaries of relatively hyperbolic groups.
Internat. J. Algebra Comput. 23 (2013), no. 7, 1551-1572. Zbl 1292.20048
MR 3143594

C. T. C. Wall (ed.), List of problems. In C. T. C. Wall (ed.), Homological group the-
ory. (Durham, 1977.) London Mathematical Society Lecture Note Series, 36. Cam-
bridge University Press, Cambridge and New York, 1979, 369-394. Zbl 0426.20039
MR 564438

G. T. Whyburn, Topological characterization of the Sierpifiski curve. Fund. Math. 45
(1958), 320-324. Zbl 0081.16904 MR 0099638

Received June 1, 2018

Bena Tshishiku, Department of Mathematics, Harvard University, 1 Oxford Street,
Cambridge, Ma 02138, USA

e-mail: tshishikub@ gmail.com

Genevieve Walsh, Department of Mathematics, Tufts University, 503 Boston Avenue,
Medford, Ma 02155, USA

e-mail: genevieve.walsh@tufts.edu

e-mail: genevieve.walsh@gmail.com



