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Abstract— Optimal H, control theory is appealing, since it
allows for optimizing a performance index frequently arising in
practical situations. Moreover, in the state feedback case, the
resulting closed loop system has an infinite gain margin and
a phase margin of at least 60°. However, these properties no
longer hold in the output feedback case, where it is well known
that there exist cases where the system is arbitrarily fragile.
Motivated by this observation, since the early 1980’s a large
research effort has been devoted to the problem of designing
robust 7{> controllers. To this effect several relaxations of the
original problem have been introduced, but all of these lead
to conservative solutions. Surprisingly, the original problem
remains, to date, still open. To address this issue, in this paper
we present a randomization based algorithm that seeks to
solve a relaxation of the original problem. Contrary to existing
approaches, the performance of the resulting controller can be
made—in a sense precisely defined in the paper—arbitrarily
close to the optimal one. These results are illustrated with an
academic example.

I. INTRODUCTION

‘Ha control theory has been a mainstay of optimal control
for the past four decades. Its success arises from the fact
that it allows for optimizing a performance index frequently
arising in practical situations, such as minimizing the RMS
value of the output due to Gaussian white inputs. Moreover,
in the state feedback case, the resulting closed loop sys-
tem exhibits very good robustness properties. Unfortunately,
these properties vanish in the output feedback case, where it
is well known that there are cases where infinitesimal model
perturbations can destabilize the system [1]. Starting in
the 1980’s several approaches were proposed to “robustify”
LQG controllers. Initial efforts sought to recover closed-loop
robustness properties through Loop Transfer Recovery (see
for instance the tutorial [2]). This approach attempts to shape
the closed loop transfer functions to guarantee robustness and
acceptable performance, through proper weight selections
in an H, framework. These initial efforts were followed
by “mixed” Ha/Hoo control, where the goal was to find
a controller that minimized the closed loop H2 norm for
the nominal plant, subject to an H., constraint on the
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transfer function where the (dynamic) uncertainty entered
the loop [3]-[6]. Thus, the resulting controllers guaranteed
optimal performance for the nominal plant and robust sta-
bility against bounded dynamic perturbations. While these
efforts represented substantial progress towards endowing
Ho control with robustness, they suffered from the fact
that performance for the actual plant could be arbitrarily
bad, since only nominal performance was optimized. In
addition, as shown in [7], optimal H3/H., controllers are
infinite dimensional, and thus optimization based methods
seeking to approximate them can result in very high order
controllers, necessitating some form of model reduction in
order to be practically implementable. However, the original
performance and robustness guarantees may be severely
degraded by this approximation step.

As a first step to synthesize robust Hs controllers, start-
ing in the mid 1990’s, several approaches were proposed
to analyze worst-case Ho performance in the presence of
uncertainty. The paper [8] introduced bounds on the worst—
case performance, under the assumption of non—causal, non—
linear time varying model uncertainty. While these bounds
lead to tractable synthesis problems, the uncertainty class
considered is too broad, leading to conservative results in
the case of LTI uncertainty. Time and frequency domain
bounds on the worst-case Ho norm were proposed in [9],
[10]. While these bounds work for the case of SISO systems,
as shown in [11], they can be conservative by a factor of
v/dimension of the input. Finally, necessary and sufficient
convex conditions for robust o performance under arbitrar-
ily slowly time varying structured dynamic uncertainty (or
LTT uncertainty with up to 2 uncertainty blocks) were derived
in [12]. These conditions have the form of a frequency de-
pendent LMI coupled with an integral constraint. Thus, while
they can be used to assess performance once a controller
has been found, as in the case with p-synthesis, they are
bilinear in the pair (controller/open-loop plant). In principle,
a D — K type iteration can be used to find a controller (albeit
with the additional complexity of the integral condition), but
such an approach can only be guaranteed to converge to a
local minima. Moreover, the conditions there are only tight
for (arbitrarily slow) time varying, non-causal, uncertainty
and thus can be arbitrarily conservative for LTI, causal one.

Motivated by these difficulties, in this paper we propose
an alternative approach to synthesize robust Hy controllers
for LTI systems subject to LTI bounded dynamic uncertainty.
Our main result is a tractable randomization based algorithm
that leads to controllers achieving performance arbitrarily
close, in a sense made clear in the paper, to the optimal one.
This algorithm is obtained by first using the parameterization
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of all stabilizing controllers to recast the problem as a finite-
dimensional robust optimization. Subsequently, this problem
is solved using randomization based algorithms, leading to a
controller that achieves, with probability arbitrarily close to
1, optimal performance.

II. PRELIMINARIES

A. Notation

p(M)
T,

spectral radius of the matrix M.

Toeplitz matrix associated with the sequence
(n—1).

Ti—g -

L Lebesgue space of complex valued matrix
functions which are essentially bounded on
the unit circle, equipped with the norm:
GVl = ess sup 7 [G(e?)]
we(0,2m)
where & denotes the largest singular value.
Subspace of functions in £°° with a bounded
analytic continuation in |[A\| > 1, equipped
with the norm

[G(Mloo = ess sup 7 [G(A)]

[AI>1

Subspace of H, of functions analytic outside
the disk of radius 0 < p < 1, equipped with
the norm

ICWloop = es5 sup 7 [Goe®)]
0<6<m

Ho space of complex valued matrix functions

G(\) with analytic continuation in |A| <
1 and square integrable on the unit disk,
equipped with the usual H2 norm:

2m
1 . .
|G|z = o /Trace [G(e)G(e?)*] dw,
7r
0

Fe(M, K)Lower linear fractional transformation (LFT)

Fo(M,K) = My+Myo K (I — My K) ™' Moy

Fu(M, A)Upper linear fractional transformation (LFT)
Fu(M,A) = Mog+May A (I — My A)~' My,

B. Theoretical Background

Next we recall some theoretical results required to
establish the main results of this paper.

Interpolation Theory:

Lemma 1: Given r (ro,T1y-+-yTn—1), and s
(80,81, --,8n—1), there exists a Q € Hoo p, [|Qllc0,p < 7
such that

s =Tgr,

if and only if TZR?Ts < ~*TTR*TT, where R
diag(1, p,...p"=1)

Proof: This is a special case of Theorem 2 in [13]. H
Parameterization of All Suboptimal 7., Controllers:
Consider the interconnection shown in Fig. 1, where the plant

G has the following state-space realization:

A| B By, By
= Ci | Dun D12 Dis
Cy | Da1 Day Das
C3 | D31 D3y Dass
Assume that inf || Pewe. (K)o = 7" < 7, where

K stabilizing
P¢_w. (K) denotes the closed loop transfer function be-

tween the signals (w«, (o) corresponding to the controller
K. It is well known that in this case, all suboptimal con-
trollers that render ||P¢_ w. (K)|lc < 7 can be parameter-
ized in terms of a free parameter Q@ € Hoo, [|Qllcc < 7»
as

K= -FE(Joon)

State space realizations of J, can be found for instance in
[14] for the continuous time case, and in [15] for its discrete
time counterpart.
Robust 72 Analysis:

Consider the interconnection shown in Fig. 1, where the
uncertainty A is of the form

A€ {A =diag[A1,...,An] : A € Hoo, |A]|c <771}
(1
and define the set

X =AX: X =diag|x1lpn, ... xnlm, ], X = X*}

of scaling matrices that commute with the elements of A.
Denote by P(K) = Fy(G, K) the closed loop plant, and
by P(w) = P(K,e’*) its z-transform evaluated on the unit
circle.

Theorem 1 ( [12]) Assume that the signal w is a scalar
and that ¢ € R™=. If there exist a positive definite hermitian
matrix X(w) € X and a real transfer function y(w) > 0,

such that
« [ 77TPX X 0
P) | 7 O(w) Inzoxnz }P(w)_{ (v o } <0
@)
holds for all w € [0, 27), then
27 d
17 PEAR < [y )
0 YIS

for all A € A (not necessarily causal).
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Fig. 1. Block diagram of the uncertain plant.

C. Problem Formulation

Consider an uncertainty structure of the form (1). The
goal of this paper is to synthesize an internally stabilizing
controller that robustly stabilizes the system and minimizes
the worst-case Hz norm over A.

Problem 1 (Robust 75 Control Problem) Find an inter-
nally stabilizing controller K that solves:

K = argmin{IAneaX(HPQw(KaA)”Z) }

K stabilizing
where: 4)
PCw(K7 A) = FZ(G(A)>K)
G(A) = Fu(G, A).

For simplicity, we consider the case where A is unstruc-
tured.

In the case of unstructured uncertainty, by using the
parameterization of all suboptimal H ., controllers discussed
in the previous section, this problem can be formally stated
as:

Problem 2 (Robust 7{, Control, unstructured A.) Find
the optimal value of performance measure . and a parameter
Q such that

n= it { mex(1Peu(@ A)lla) subject 0 Qe < 7}

where:
PCw(Qv A) = FE(G(A)’ K)
G(A) = Fu(G,A); K = Fo(J,Q).
4)
Remark 1: Note that if the problem above is feasible,
then p* < oo and the resulting controllers guarantee robust
stability, since, for any @, ||Q|lcc <, | Fe(G, K)|loo < 7.

III. MAIN RESULTS

Problem 2 is a very challenging infinite dimensional robust
optimization problem, since in principle both the variables
A and @ are transfer functions with arbitrarily high order.
Moreover, Pe,,(Q,A) is neither convex in (), nor concave
in A. To circumvent these two difficulties, we first introduce
a convex relaxation of Problem 2 and then present a ran-
domized algorithm for finding a solution to the convexified
problem.

A. A Finite-Dimensional Approximation

The first step towards solving Problem 2 is to restrict the
closed loop poles to disk with radius p < 1 (effectively
constraining the time constant of the closed loop system)
and then show that under these conditions, it can be approx-
imated, arbitrarily close, by a finite horizon problem. To this
effect, we will constrain the uncertainty to A € A, = {A €
Hoop: ||A]loo,p <1} and modify slightly (4) to:

Ro=g min{ max (|| Pry (K, A 2}
g Kstgbilizing AeAp(” G |

subject t0 Pry (K, A) € Hoo,p. (6)

Note that, by simply using the change of variable z = p2
(or equivalently A — 1A, B — 1B) before perform-
ing the parameterization of all stabilizing controllers, the
set of all controllers K, such that Pr,(K,) € Hoops
with || Pry(K,)|lco,p < v can be parameterized as K, =
Fie(Joo, Qp), With Q, € Hoo p, [|@pllos,p < 7. Thus, (6) is
equivalent to:

ol { max (1Pe(@, A)]l) | subject 10 Quc,p < 7.
(N

As we will show next, this problem can be approximated,
arbitrarily close, by a finite dimensional one. In the sequel,
for technical reasons we replace the constraint ||Q|co,p < ¥
with [|@|lec,p < Ye = v —¢€, where € > 0 is arbitrarily small.
In order to obtain a finite dimensional approximation of (7)
we need the following preliminary result.

Lemma 2: Consider the closed loop system shown in
Fig. 2 and let P, (A,Q) denote the closed loop trans-
fer function between the signals (w, (). Then, there exist
some M that depends only on the problem data such that
|1 Pew(A, Q)|loc,p < M, forall A € Ay and all Q € Q, =
{Q € Hoopr Qs < e}

Proof: The proof is omitted to conserve space. [ ]
Using the Lemma above, we can now state the main result
of this section.

Theorem 2: Let my(A, Q) denote the k™ Markov param-
eter of Pr,(A,Q). Then, given 6 > 0, there exist some
finite N (J) that can be determined a-priori such that, for all
A€ A, and all Q € Q, we have that

N-1

1Peaw(A, Q)2 = D Ime(A, Q)3 <6 (®)
k=0

Proof: The proof is omitted to conserve space. [ ]

The theorem above allows for replacing the original problem
(7) with the finite dimensional approximation:

N—1
. 2
ot { max ,; (2, QI3 }- 9)
Note that the problem above is still very challenging due to
the non-convexity (concavity) of the objective and the fact
that in principle A and @) are infinite dimensional. Next, we
reformulate the problem to handle the non-convexity in )
and the fact that the set Q, is infinite dimensional.
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Fig. 2. Block diagram of the uncertain plant.

Let P(A) = F,(P,A) and define the following signals
of length N

'awN—1>7C = (C()?Clw"

., TN=1),5 = (S0,51,--

7(1\/—1)5

i SN—I)'

w = (wo, Wi, . .

r=(ro,r1,-.

Choosing w to be Dirac delta function, the input-output
relations in the interval [0, N — 1] can be written as

Te =T11 + 1127,

; (10)
T =Ty + 13T

T, =TT, {
where T;; and T, are the toeplitz matrices formed by the
first N Markov parameters of P;;(A) and Q) respectively. We
remark that the signals r, s and (—and therefore the matrices
T,, Ts and T—depend on the uncertainty A, however, for
the simplicity of notation, we have dropped the argument A.
Using the IQC characterization of () in terms of r, s given in
Lemma 1 leads to the following finite dimensional problem

N—1
o= Sggn { AnézX{p(kZ_o |lmy||3) subject to:

(11)
T.TRT, < 42T, T R*T, VA € A,,}.

We note that since the disturbance w is selected to be an
impulse, kth Markov parameters of P, (A, Q), i.e. my is
the same as (i. Next, using (10) to eliminate 7;. leads to:

TT(y72R? — TLR*To)TT <

(12)
THR*Tyy + T R2Too Ty + (TooTy) T R?T;.

Finally, a Schur complement argument shows that (12) is
equivalent to:

22 _ 7T R2T,,)L T,

where F = T4, R*Toy + T R?Too T + (TooTs) T R* T

Remark 2: Note that by the choice of the parameteriza-
tion, Fy(P(A), Q) is internally stable, with its poles in |z| <
p<1lforall A e A,and Q € Heo p, [|Qllcc,p < 7. Thus,
from a small gain argument, it follows that || 752 |0c,, < 777,
which implies (since 7. < 7) that (R? — 7275, R?Ths) > 0.
Hence (13) is well defined for all A € A,.

From the derivations above, it follows that a finite dimen-

sional approximation to Problem 2 is given by:

Problem 3 (Finite-dimensional Approximated Robust 7,
Control Problem) Find a sequence sy, k € [0, N — 1] that
solves:

N—-1

s* = argmin max my(A, 8)||2 subject to (13).
rgmi AEA%Z:;H k(A 5)|3 subject 10 (13)

(14)

B. Sequential Randomized Algorithm for Relaxed Robust Ho
Design

Since the set A, is uncountable, problem (14) is a semi-
infinite optimization problem involving an infinite number
of constraints. We note that, Problem 3 is not just a usual
robust optimization problem. In fact, if one successfully finds
a signal s* as the solution of (14), it is still not possible
to construct (). The reason is that, the signal r depends
on A and hence having s*, there are infinite number of
candidate signals r» making it impossible to compute . In
order to solve Problem 3, one needs to first find a pair of
signals s and r robustly satisfying specifications in (11),
and then use interpolation theory results such as [16] to
reconstruct transfer function of the optimal parameter Q*,
and the optimal controller from K* = Fy(J,@*). This
brings further complexity to the picture and hence, direct
use of other robust optimization techniques such the scenario
approach [17] or other sample-based techniques such as [18],
[19] is not possible.

In what follows, we propose a randomized algorithm for
finding a solution to problem (14) which is feasible for
the entire set of uncertainty A, except a subset having
an arbitrary small probability measure. The randomized
algorithm has a sequential nature and falls within the class
of sequential probabilistic verification algorithms [20]. The
algorithm has two main steps: verification and optimization.

Formally, we assume that A is a random variable and
a probability measure P over the Borel o—algebra of A,
is given. More precisely—if A is unstructured—we assume
that the first NV Markov parameters of A, are uniformly
distributed over their support set (see [21] for a precise
description of this set). At each verification step k, we
generate a new multi-sample A, with cardinality M) from
the set of uncertainty

A ={al, AN e Al

according to the measure P, where Af,”’“ = A, x A, X
-+ X A, (M, times). We remark that Aé”k is the domain
of random variables A. The generation of this multi-sample
can be (approximately) done using the procedure described
in [21]. The probability measure on A is defined on this
space, and it is denoted as P.

Next, having a candidate solution Q) and a candidate
performance measure i, we check if ij:_ol 16113 < ik
for all the extracted samples. If a violation is observed,
the violating sample is declared as a violation certificate
Avyio1. In the optimization step, first having the violation
certificate Ay;,1, we solve problem (14) only at the violated
sample—instead of the entire set A,. Having the signal s
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as the solution of the optimization problem, the signal r in
the interval [0, N — 1] and the first N Markov parameters
of (Q can be reconstructed from r = Th; + Thes and
qr = (T;,)~'s. Then, having the truncated impulse response
of @, we compute the finite-dimensional Hankel matrix and
use subspace identification technique [22], [23] to recover the
candidate solution Q.

The two steps—uverification and optimization—are per-
formed till no violating sample is observed. The sequential
algorithm is formally presented in Algorithm 1.

Algorithm 1 Sequential Randomized Algorithm
Input: P(A,Q), N, €,

Output: Q*, u*

Initialization:

Setk=1,Q; =0, A =0, and let iy = ||(||3
Evolution:

Verification:

1) Extract

(15)

. [2.3+1.1lnk+1n}3—‘

1
In 1—¢

i.id samples Ay = {A) . AP} ¢ Al
2) I SNIGAD)E < Fip for all i = 1,..., My,
set ) = Qi—1,0° = pr—1 and exit, oth-
erwise set Ayi,; as the first sample for which
N—1 ~
Yo 16 (Avic1)lI3 > F.
Optimization:
1) Solve (14) formulated at A = Ay;jo; and set jip =
N-1
2o llmyli3
2) Having s as the solution of (14), set r = T5; + Thas
and compute the truncated impulse response of () as
qr = (TT)_ls.
3) Find transfer function of Q) from its truncated impulse

I'CSpOIlSC qk
4) Setk=Fk+1

We now explain Algorithm 1 in more details. The al-
gorithm is initialized with Q = 0 and we set A = 0 to
compute a nominal performance index fi;. In the verifica-
tion step, having the candidate solution and performance
measure @ and i, we check if Z;.V:Bl 1G(AM)2 <
bk, Vi € {1,..., M }. If there is no violation, Algorithm 1
is terminated successfully and the candidate solution Q_1
is declared as a probabilistic robust solution to Problem
3. Otherwise, we set Ay;io1 as the first sample for which
Z;.V;Ol 1¢j(Avio1)||3 > fi. The violated sample is used in
the optimization step to construct a more robust solution. To
this end, we solve the optimization problem (14) formulated
only at Ay;,; instead of the entire uncertainty set A,.
Having s as the solution of (14), we compute r = T +T5as
and g, = (T,)"'s . Next, the transfer function Q) can be
either constructed by formulating the Hankel matrix of gy
and using subspace identification techniques [22], [23] or
using interpolation results such as [16]. We now present a

Theorem quantifying the properties of the solution Q*.

Theorem 3: Given probabilistic parameters ¢, 5 € (0, 1),
suppose Algorithm 1 is terminated at iteration k, then the
following inequality holds

N—-1
]POO{A €A :}P’{A €A, > IG5 > ﬁ*} < a}
7=0

>1-p. (16)
Proof: The proof is omitted to conserve space. [ ]

IV. NUMERICAL SIMULATION

We check the effectiveness of the proposed algorithm in
Section III, through numerical simulation. We note that al-
though Algorithm 1 is presented for unstructured uncertainty,
it can be easily applied to problems involving structured
uncertainty. To this end, we consider an uncertain second
order system of the form

bw?

G(s) = n

§2 + 2nwys + w2’

a7

where b = 13 is a constant, and n and w,, are uncertain
damping ratio and natural frequency respectively. We assume
that damping ratio 7 and natural frequency w,, are uncertain
and vary by 10% from their nominal values 77 = 0.01 and
W, = 1.25 x 10* rad/sec

Wn = En(l + pwéw)
n= 77(1 +pn5n)a

where p, = p,, = 0.1 are the maximum relative uncertain-
ties, and 9,, and §,, are norm-bounded perturbations

10nlloc < 1, [[0wlloo < 1.

In order to pull out the uncertain parameters, system (17) is
first written in state-space form

1 = wp ke,

T = wp(—x1 — 2nx2 + U),

y = bxy, (18)

and uncertain parameters 1 and w,, are represented in LFT
form as

n = Fu(My,6y), wn = Fu(My, 0w),
0

where M, = n ) and M, = 0 Wn > We
n Pw Wn

further obtain the perturbed system in the form of
T 0 W 0 pw 0 0 T
T 2 _En — 2W7L Pw 0 - 2@107; En T2
Yo | | —Wn —20w, | O 0 —2wp, | Wn Uy
Zw - 0 W, 0 0 Vw
Yn 0 n 0 0 0 Uy
Y b 0 0 0 0 u

0
0
0
Defining A = diag(d,, 0w, Jy), the uncertain system (17)
can be written as G = JF,(A,A). In order to design
controller K, as shown in Fig. 3, we augment the plant with
weighting function W), = %2245, The augmented system
is then discretized using Tustin’s method with sampling
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Fig. 4. Impulse response of 1000 uncertain closed loop systems.
. —4 . . T .
time T, = 107% Letting (oo = (YuwsZuw:¥n) » Woo =

(uw,vw,un)T, w = r, and ( = z, the uncertain system
becomes in the form defined in Problem 1.

For simulation purpose, we select p = 0.97, § = 0.01, ¢ =
0.01, and B = 1077 which leads to N(5) > 129.94.
We set N(6) = 130 and used Algorithm 1 to solve the
formulated problem. Algorithm terminates with the robust
optimal solution after 14 iterations by checking the robust-
ness of the solution for 2572 number of random samples (M,
at the last iteration) extracted from the set of uncertainty.
The probability measure is selected to be uniform. Figure
4 shows the truncated impulse response of P, for 1000
random uncertain closed loop systems. We further check
the robustness of the computed performance measure g* =
0.8945 by performing a-posteriori Monte Carlo simulation
using 100, 000 samples. Only 53 out of 100, 000 samples led
to a performance measure greater than 0.8945 resulting in the
empirical violation of 5.3 x 10~# which is much smaller than
the selected accuracy level .

V. CONCLUDING REMARKS

In this paper, we study the problem of synthesizing robust
Ho controllers for LTI systems subject to LTI bounded
dynamic uncertainty. To address this complex problem, we
propose a computationally efficient randomized algorithm
that provides controllers with performance arbitrarily close
to the optimal one. To develop this algorithm, results on
stabilizing controller parameterization are used to obtain a
finite dimensional robust optimization problem that is solved
using a randomized approach.
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