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Abstract— MIMO (multi-input multi-output) system identifi-
cation is a particular instance of a parsimonious model selection
problem. If the observed data is assumed to arise from a
stable and low order plant, then the representing model should
also be stable and have few poles in its realization. These
constraints are challenging to impose in an L1 or nuclear norm
framework, especially when observations are non-uniformly
sampled. This paper implements MIMO identification by ran-
domized active-set methods, as realized by Fully Corrective
Frank-Wolfe (FCFW). Reweighting pole-group penalties allow
for further system sparsification while monotonically decreasing
the regularized fitting error. Efficacy of the approach is shown
on two examples.

I. INTRODUCTION

Identification of minimal order dynamic models that fit the
data in a certain prediction sense is generally a hard non-
convex problem. Typical relaxations are based on nuclear
norm minimization (leading to subspace based approaches)
that may be ill-conditioned and do not guarantee model
stability [1]. Incorporating requirements such as stability or
limits on bandwidth or overshoot into the objective formal-
ism also leads to substantial increase in the computational
complexity. Atomic set based formulations for SISO (single-
input single-output) system identification have been proposed
that seek to soften or overcome the non-convexity and
computational complexity issues [2]. Atomic formulations
can be solved using sparsity-inducing Frank Wolfe methods.

A randomized SISO system identification based on noisy
time and frequency responses with the possibility of missing
data was presented by Yilmaz, Bekiroglu et. al. in [3], [4],
[5]. Their algorithm samples the unit disk to find candidate
poles, and this stochastic Frank-Wolfe process converges in
expectation to the true solution of a convex surrogate objec-
tive. Plant characteristics such as overshoot can be encoded
by adding sector bounds to the sampling region. They use a
Forward Frank-Wolfe algorithm that never drops poles when
added to the system. Their algorithm therefore performs a
denoising of input data by ensuring the estimated response
arose from a stable system, but the resulting systems are
typically of very high order (e.g. ≈ 1000 poles). A follow-
up paper treated the MIMO case through a fixed set of atoms
using an `1/`∞ penalty, but did not perform randomization
or Frank-Wolfe over this new atomic domain [6].
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This paper presents a two-stage algorithm (Alg. 2) that
monotonically decreases fitting error to perform active-set
MIMO identification. The contributions of this paper over
[3], [4], [5], [6] are:
• The use of a two-stage Fully Corrective Frank-Wolfe

Algorithm with linear convergence rate over the sublin-
ear greedy Forward Frank-Wolfe scheme in [3]

• Incorporation of prior frequency domain knowledge for
a MIMO system

• A sparsification algorithm that maintains feasibility and
monotonically reduces fitting error and model order

Fig. 1 illustrates the reduced order and fitting error of
models found by our work (Alg. 2) over the approach in [5].

Fig. 1. SISO identification by the proposed two-stage Active-set (Fully
Corrective Frank-Wolfe Algorithm) vs. the Forward algorithm proposed in
[5]. Forward only Frank-Wolfe running for 10000 iterations leads to a very
high order system (gray), and each iteration adds 2 complex-conjugate poles.
The proposed Active Set approach results in a 6th order system with a
maximum intermediate order of 8. The right pane shows a faster decrease
in error in FCFW vs. Forward algorithm.

The paper is organized as follows: Section II reviews
preliminaries such as the Frank-Wolfe algorithm and the
approach proposed in [5]. Section III presents the two-stage
MIMO identification algorithm. Section IV demonstrates this
algorithm on a SISO and MIMO identification problem using
mixed domain data. Section V concludes the paper.

II. PRELIMINARIES
A. Notation

R,C Real and Complex numbers
Dρ Closed disc of radius ρ in C
j

√
−1

† Conjugate Transpose
Gij Transfer function from input j to output i

conv(A) Convex Hull of Set A
z−1 Delay Operator
Tu Toeplitz Matrix of a vector u
⊗ Kronecker Product
� Hadamard Product



B. Atomic Norms

Let H be a Banach space with inner product 〈·, ·〉, and
{ai}Ii=1 ∈ H be a set of I vectors called ‘atoms’. The
collection of {ai} is an ‘atomic set’ A, and has a polyhedral
convex hull if I is finite. Elements x ∈ cone(A) ⊂ H are
conic combinations of {ai}: there exists nonnegative weights
ci ≥ 0 such that x =

∑I
i=1 ciai. An atomic ‘norm’ ‖·‖A can

be defined over A for elements x ∈ cone(A):

‖x‖A = inf
t
t : x ∈ t convA = inf

ci≥0

{∑
i

ci : x =
∑
i

ciai

}
The quantity ‖x‖A measures the size of x with respect

to A based on how much the convex hull A must stretch
to contain x. The particular choice of ci with respect to A
to represent an element x is referred to as the ‘loading’. If
the optimal representation of x has weights ci ≥ 0, then the
active set (support) S = supp(x), S ⊆ A is the set of atoms
such that ci > 0. Atomic norms are only true norms if A is
centrally symmetric: a ∈ A iff −a ∈ A ∀a ∈ A [7]. Atomic
norms are a convex surrogate for minimizing the number of
active atoms ‖c‖0 such that x =

∑
i ciai.

C. Frank Wolfe

Frank-Wolfe (conditional gradient) algorithms are first-
order methods to solve constrained optimization problems.
For a convex f(x), such a problem is below:

x̄ = argmin
x

f(x) ‖x‖A ≤ τ (1)

Refer to [7] for more detail about the Frank-Wolfe process.
Algorithm 1 implements Forward Frank-Wolfe with stepsizes
α∗ chosen by the line minimization rule where x is within
an atomic ball of radius τ .

Algorithm 1 Frank-Wolfe with Line Minimization Rule
x0 = 0
for k = 0 . . . T do

at = argmaxa∈A 〈−∇f(xk), a〉 LMO
α∗ = argminα∈[0,1] f(xk + ατat)

xk+1 = xk + ατat
end for

The key step in Frank-Wolfe process is the Linear Mini-
mization Oracle (LMO) to choose new atoms. The new atom
at produces a surrogate duality gap DG = 〈−∇f(x), at〉
which upper bounds suboptimality: f(x) − f(x̄) ≤ DG.
Randomized Frank-Wolfe schemes to approximate the LMO
have an expected guarantee of convergence [8].

Fully Corrective Frank-Wolfe (FCFW) is a Frank-Wolfe
variant which optimizes a loading ci ≥ 0,

∑
i ci ≤ τ over

the active set of atoms. The LMO selects a new atom, and
a correction step optimizes the loading over the augmented
set of atoms. If A is a finite set, the constrained-optimal
point x̄ will be reached within floating-point precision in
finite time. FCFW also has a linear convergence rate in terms

of duality gap [9], but performing correction steps may be
as difficult as the solving the original problem. If f(x) in
Equation (1) is quadratic, Active Set techniques for solving
quadratic programs can be used in the correction step to
perform FCFW [10].

D. Frank-Wolfe for SISO System Identification

A SISO system can be represented by a scalar transfer
function G(z) = Y (z)/X(z). A stable SISO G(z) can be
approximated to arbitrary precision by:

Ĝ(z) =

N1∑
k=1

cexpk

z − pk
+ 2

N2∑
k′=1

ccosk′ (z − ak′) + csink′ bk′

z2 − 2ak′z + a2k′ + b2k′
(2)

under the constraints that each pk, a
2
k′ + b2k′ ∈ [0, ρ) and

cexpk , ccosk′ , c
sin
k′ ∈ R . A pole is ‘active’ for Ĝ(z) if it appears

in Eq. (2), and the active real and complex poles are pk
and ak′ ± jbk′ . The system order of this approximation
is N1 + 2N2. Repeated poles can be approximated by
perturbations [11]. This forms an atomic decomposition of
the transfer function G(z). Yilmaz et. al. characterized the
atoms comprising any stable discrete time transfer function
(up to approximation) [5]. Given a set of poles S ∈ Dρ, a
set of transfer functions based on S are:

A1(S) =

{
±α1

p

(
1

z − p
+

1

z − p̄

)}
(3a)

A2(S) =

{
±α2

p

(
−j
z − p

+
j

z − p̄

)}
(3b)

A3(S) =

{
±α3

p

(
1

z − p

)}
(3c)

A4(S) = {±1} (3d)
A(S) = A1(S) ∪ A2(S) ∪ A3(S) ∪ A4(S) (3e)

The atomic set of transfer functions based on S is A(S).
α1,2,3
p are normalization constants to maintain a unit Hankel

norm among the transfer functions. The time-domain impulse
response g is the inverse Z-transform of G(z). If u is an
applied discrete time-domain input (vector of length Ns),
then the discrete time output is y = Tug where Tu is a
Toeplitz matrix of u. Atomic norm-based low order stable
system identification can proceed by solving the following
optimization problem given a recorded input u and recorded
output y:

Emin = min
‖g‖A≤τ

‖y − Tug‖22 (4)

The regularization parameter τ is a proxy for system
order. An increase in τ generally leads to a rise in system
approximated order. Frank-Wolfe, where S is all poles in Dρ,
requires solving a NP-hard polynomial optimization problem
at each LMO. Tractable choices of S for Frank-Wolfe include
a fine gridding (ε-net) that discretely samples the disk Dρ [2].
Randomized sampling of Dρ converges to the true solution
of (4) in expectation [5], but the solution system is usually
of high order. Prior knowledge of system characteristics such
as rise time and overshoot can restrict poles in S to sector
bounds.



E. MIMO Model Structure

Let G(z) be a discrete time MIMO plant with Nu inputs
and Ny outputs. Each input-output rational transfer function
[G(z)]ij = Nij(z)/Pij(z) has poles and zeros corresponding
to the roots of Nij(z) and Pij(z). The poles of G(z) are the
roots of the least common multiple P (z) = LCMij(Pij(z))
over all input-output responses with multiplicities. The order
of G(z) is defined as the degree of P (z). Multiple input-
output systems G(z)ij can therefore share the same poles
P (z) without increasing system order.

In a system identification framework, output measure-
ments of G(z) are recorded from applied inputs as corrupted
by a noise process. This measurement model is:

(yi)n = (gij ∗ uj)n + (ηi)n (5)

where {uj}Nu
j=1 are the channel inputs, ∗ is convolution,

{yi}
Ny

i=1 are the measured noisy outputs, and ηi is the noise
process. The input uj must be persistently exciting in order
to stimulate all modes of the system, which in this paper is
obtained by white noise. The measurement (ηi)n is likewise
modeled as additive white Gaussian noise (AWGN). The
system is observed over Ns samples, and the time index
n ranges from n = 1 . . . Ns. This identification task is
conducted under the prior that G(z) is a low order system,
and therefore that P (z) has a low degree.

III. ACTIVE SET MIMO

System identification through FCFW can proceed on
MIMO models with variations from the SISO procedure.

A. MIMO Atomic Domains

MIMO systems exhibit a group sparsity structure in the
choice of poles, and cannot simply be treated as a set of
independent SISO transfer functions [G(z)]ij .

Ĝij(z) =

N1∑
k=1

cexpijk

z − pk
+ 2

N2∑
k′=1

ccosijk′(z − ak′) + csinijk′bk′

z2 − 2ak′z + a2k′ + b2k′

In a SISO system, a pole pk is present in the identified
transfer function Ĝ(z) if the respective loading term ck 6= 0.
In the MIMO case, pk is present if ∃(i, j) | cexpijk 6= 0.
Likewise, the complex pole a ± jb is present if ∃(i, j) |
(ccosijk, c

sin
ijk) 6= (0, 0). This grouping structure can be carried

to an atomic framework based on the pole-atoms A(S).
Let {uj}Nu

j=1 be per-channel inputs and {yi}
Ny

i=1 contain
corresponding corrupted output over Ns samples. The low-
order MIMO optimization problem is therefore:

Emin = min
‖Ĝ‖A≤τ

Ny∑
i=1

‖yi −
Nu∑
j=1

Tuj
ĝij‖22 (6)

B. Least Squares Formulation

The MIMO optimization model in (6) can be further
manipulated into a structured and constrained quadratic
program. Let P ∈ RNs×Np be a dictionary matrix of pole
Ns-length pole in A(S). The Ns-length SISO response to
an input u is y = TuPc. The MIMO model has coefficients

cij = cexpijk ∪ccosijk′ ∪csinijk′ for each input-output pair (i, j), and
the output at channel i is yi =

∑Nu

j=1 Tuj
Pcij .

A typical Least Squares problem has the form f(c) =
1
2‖Ac − b‖22 for a data matrix A and an answer vector b.
In the MIMO case b = [yT1 , y

T
2 . . . y

T
Ny

]T . If coefficients c
are arranged as c = [cT1,1, c

T
1,2 . . . c

T
1,Nu

. . . cTNy,Nu
]T and the

input is Tu = [Tu1
. . . TuNu

], then the data matrix A for a
set of poles S has the form:

AtimeS = INy
⊗ (Tu(INu

⊗ P )) (7)

An atomic penalty can be defined on the coefficients c
by using a mixed `1/`∞ penalty. Based on the atomic set
A(S) of pole responses, define a partition of coefficients
gpoles = greal ∪ gcomp. The real exponential responses and
optionally constant signals A3(S)∪A4(S) are in coefficient
group greal = ∪ijcexpijk , and the complex exponential impulse
responses in A1(S)∪A2(S) are in coefficient group gcomp =
∪ijccosijk′ c

sin
ijk′ . A group-sparsity inducing atomic penalty can

be formulated based on this structure:

‖c‖A =

N1∑
k=1

‖cexpijk ‖∞ + 2

N2∑
k′=1

‖ccosijk′ c
sin
ijk′‖∞ (8)

The operation ‖cexpijk ‖∞ yields the maximum coefficient
across all input-output pairs for real pole k. In this paper,
the `1/`∞ norm is used to promote group sparsity with
penalties ‖cij‖∞ [12]. The problem in [6] uses a mixed
`1/`∞ penalty group together complex poles. The MIMO
optimization problem is therefore:

Emin = min
‖c‖A≤τ

‖AtimeS c− btime‖22 (9)

Gradients and residuals of fS(c) = 1
2‖A

time
S c − btime‖22

can be evaluated quickly by exploiting the high degree of
structure in AtimeS . The operators and gradient are:

AtimeS ci =

Nu∑
j=1

TujPcij (10a)

Atime
T

S bij = PTTTuj
bi (10b)

∇fS(c) = Atime
T

S (AtimeS (c)− b) (10c)

C. Frequency Response
Information about the plant’s frequency response Gij

can be incorporated into optimization problem (6). These
responses may arise from sources - direct experimentation
using sine-sweeps and data collection using a spectrum ana-
lyzer, prior information (e.g., manufacturer supplied charts),
or even constructed by empirical estimated on periodic
responses (such as by using etfe function of MATLAB R©

System Identification ToolboxTM [13]). The objective func-
tion in optimization may be enriched by adding frequency
regularization for a set of weighting functions Wij :

Emin = min
‖Ĝ‖A≤τ

∑
i

‖yi − ŷi‖22

+
∑
i,j

‖Wij � (Gij − Ĝij)‖22
(11)



Emin thus represents a trade-off between the time-domain
and frequency-domain descriptions of the energy in the error
signal. The frequency response Ĝij is the transfer function Ĝ
evaluated at targeted frequencies (z → ejω). The weighting
functions Wij(ω) act as regularizers and can encourage
agreement in specific bands of the frequency spectrum. Given
a set of poles S with frequency responses F ∈ CNf×Np , the
frequency data operators and gradients are:

bfreqij = Wij �Gij (12a)

AfreqS cij = Wij � (Fcij) (12b)

Afreq
T

S bij = Re(F †(W̄ij � bij)) (12c)

The time-frequency answer vector and data operators are:

b = [btime; bfreq] (13a)

ASc = [AtimeS c; AfreqS c] (13b)

ATS b = Atime
T

S btime +Afreq
T

S bfreq (13c)

D. Active Set approaches

MIMO system identification (with or without frequency
information) can be solved through any suitable atomic
norm minimization routine. FCFW methods are one possible
approach to solve these optimization problems. The MIMO
atomic set A(S) contains a non-overlapping block structure
in gpoles = greal ∪ gcomp. The linear minimization oracle
(LMO(c) = argmaxa∈A〈−∇f(c), a〉) for the `1/`∞ penalty
in equation (8) can be computed efficiently. For each pole
pk and ak′ ± jbk′ compute:

nrealk = ‖∇f(c)expijk ‖∞ (14a)

ncompk′ = ‖∇f(c)cosijk′ ∇f(c)sinijk′‖∞/2 (14b)

If maxk n
real
k > maxk′ n

comp
k′ , a first order system atom is

added to the active atomic set S ⊂ A. This subsystem is:

srealij =
αk

z − pk
sign(−∇f(c)expijk ) (15)

where αk is a normalization constant. In the alternative case
where a complex pole is chosen, a second order atom sk′ =
αk′sign(−∇f(c)cosk′ −∇f(c)sink′ ) will be added instead.

After adding a new atom, optimize the loading over all
atoms Saug by solving an active-set quadratic program [10].
This allows for model order to be dropped if the loading
over any pole-subsystem is zero.

Pole randomization may be integrated into the MIMO
identification framework, similar to the SISO case [5]. Let
an initial set of poles S be randomly picked from the unit
circle and used to identify a system G(z). The recovered
system Ĝ will have poles Sactive ⊆ S. Randomly sampling
new poles Snew and solving the same MIMO optimization
problem for the augmented set Saug = [Sactive Snew] will
result in a cost Eaug ≤ Emin. This process results in
a non-strictly decreasing sequence of cost functions that
converges in expectation to the infinite-dimensional optima
over S = Dρ [5]. Computation time between iterations can
be reduced by exploiting warm-starts in the active set routine.

E. Sparsification

The `1/`∞ penalty in Equation (8) is a convex approxima-
tion to finding the minimum-order-system. One sparsification
approach is reweighting the `1/`∞ in a similar fashion as
the Reweighted L1 norm [14]. This reweighting process is a
greedy method that does not add any new poles while mono-
tonically decreasing fitting error and sparsifying the system.
[6] also performs reweighting on pole-groups in its soft
atomic penalty to promote sparsity. Because their objective
functions change between iterations, models generated are
therefore incomparable outside of system order. In contrast,
reweighting the hard atomic constraint allows for models to
be compared due to the decreasing fitting error. Reweighting
is illustrated in Figure 2, where a noise-corrupted 3-input
2-output 4th order system is approximated based on a time-
frequency penalty.
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Fig. 2. Identification with prior knowledge of pole bounds: |z| ∈ [0.97, 1)

After solving the MIMO optimization problem for a solu-
tion c with active groups ck, compute group norms ‖ck‖∞
to find weights on the next round (for a small ε > 0).

wrealk =
1

‖ck‖∞ + ε
wcompk′ =

2

‖ccosk′ csink′ ‖∞ + ε
(16)

w̃ =
τw∑N1

k=1 w
real
k ‖ck‖∞ +

∑N2

k′=1 w
comp
k′ ‖ccosk′ csink′ ‖∞

(17)

Equation (17) normalizes the weights to τ such that the point
c maintains feasibility on the old and new atomic ball. The
new atomic norm is:

‖c‖A,w̃ =

N1∑
k=1

w̃realk ‖cexpijk ‖∞ +

N2∑
k′=1

w̃compk′ ‖ccosijk c
sin
ijk‖∞

(18)
The reweighting process penalizes modes with low ‖ck‖∞,

and will converge to an accumulation point based on the
same analysis as in [14].

F. Final Algorithm

Algorithm 2 details a combined MIMO fitting routine.
Figure 3 demonstrates Algorithm 2 on a 3-input 2-output

system with AWGN input. The monotonic decrease in fitting
error throughout execution are observed in orange, and
system order (blue) is reduced in the Reweight stage.



Algorithm 2 MIMO fitting (y, u,Gij)→ Ĝij

c = 0, S = ∅
while Random Iterations do

Randomly pick poles Snew
S ← S ∪ Snew
Use FCFW to minimize ‖ASc− b‖22 over ‖c‖A ≤ τ
S ← supp(c)

end while
while Reweight Iterations do

Compute weights w̃ given c and groups gpoles
Use FCFW to minimize ‖ASc− b‖22 over ‖c‖A,w̃ ≤ τ
S ← supp(c)

end while
Generate Ĝ from (S, c)
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Fig. 3. Fitting error and System Order during Alg. 2 execution

IV. ILLUSTRATIVE EXAMPLES

A. Data Based Model Reduction: SISO example

This examples emulates a data based model reduction
application for a flexible structure such as a steel plate.
We simulate step and frequency responses for 400 seconds
and over the frequency range [5, 500] mHz. The first two
flexible modes of the structure (roughy around frequencies
14 mHz and 50 mHz) are of practical interest where we need
good model accuracy. We use a weighting function that is
proportional to the inverse of the amplitude of the measured
frequency response, with small weights at frequencies ≥
80 mHz. The prior knowledge is the location of the first
two modes and that they are lightly damped. We use this
knowledge to limit the pole sampling region to a circle
sector defined by radius ∈ (0.9, 1) and angle ∈ (−30o, 30o).
Using τ = 1e − 4, 1000 atoms in each iteration with 20
randomization and 10 reweighting iterations, we get a model
of order 54. An Hankel Singular Value plot of the resulting
model suggests further scope for reduction, leading finally
to a model of order 6. Results were also generated using the
randomized Frank Wolfe algorithm of [5], which yielded a
model with 38 poles although the implied complexity was
lower than ideal; HSVD suggested an order of 4. The fit of
this model to the measured frequency and step responses are
shown in figures 4 and 5 respectively.

B. MIMO Identification of Two Tank System

This system consists of the cascaded of two water tanks as
shown schematically in figure 6 [15]. The upper tank (tank 1)

Fig. 4. Model fit to FRF. Note that frequencies above 80 mHz were ignored.
Randomized FW result uses model of order 38 while the current result is
based on order of 6

Fig. 5. Model fit to the step response. The reported percent fit uses the
NRMSE [13] measure (Percent fit = (1-NRMSE)*100). The Randomized
FW result misses certain higher frequencies

is fed by hot and cold water via computer-controlled valves.
The lower tank (tank 2) is fed by water from an exit at the
bottom of tank 1. An overflow maintains a constant level
in tank 2. A cold water bias stream also feeds tank 2 and
enables the tanks to have different steady-state temperatures.
Inputs are the hot and cold water flowing into tank 1, while
the outputs are the water temperatures in the two tanks.

The apriori knowledge of the system is as follows:
• The system is stable but has some long time constants.
• We expect the step response to be non-oscillatory.
• There is a large and frequency dependent uncertainty

in the system owing to the mixing and heating losses.
Uncertainty is low at low frequencies (ω < 1 mHz) and
a linear model can provide a good approximation, and
grows significantly at high frequencies (ω > 4.6 mHz).

For identification we simulate two experiments. First, the
hot and cold water flows are stepped up one at a time
and the corresponding temperatures determined. Second,
the input variables are varied in periodic fashion and the
resulting responses are collected. The noise introduced in
the simulated data is in accordance with the expected un-
certainty. We identify a 6th order model using the following
settings: τ = 20, sampling 1000 atoms in each randomization
iteration. The selection of poles is limited to the real segment



Fig. 6. Schematic diagram of a two-tank system

∈ (0.7, 1) since we expect the poles to be real and relatively
low damped. The weighting profile is shown in figure 7.

Fig. 7. Weighting function for the frequency response penalty

After 20 randomization and 4 reweighting iterations, a
14th order model is obtained, which is further reduced to 6th

order based on Hankel singular value analysis of the model.
The Randomized FW method failed to produce good results
and are not reported. The obtained results are as shown in
figures 8 and 9.

Fig. 8. Time response comparison

V. CONCLUSION

We conclude the our algorithm offers an attractive ap-
proach for mixed domain identification of MIMO systems. It
allows easy incorporation of system priors related to system
dynamics and data reliability. It allows us to implement a
notion of group sparsity which helps us identify systems
of minimal McMillan degree. Examples demonstrate that

Fig. 9. Frequency response comparison

the FCFW-algorithm is faster and yields better results than
algorithms in [5]. Future work includes control synthesis.
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