

1 **Constant Pressure Mode of Operation in the Second Dimension of Two-Dimensional Liquid**
2 **Chromatography: A Proof of Concept**

4 Konstantin Shoykhet^{a,*}, Dwight Stoll^b, Stephan Buckenmaier^a

5 ^a Agilent Technologies R&D and Marketing GmbH & Co KG, Hewlett-Packard-Str. 8, Waldbronn, 76337,
6 Germany

7 ^b Gustavus Adolphus College, 800 West College Avenue, St. Peter, MN 56082, United States of America

8 * Corresponding author, konstantin.shoykhet@agilent.com

10 **Keywords**

11 2D-LC; two-dimensional liquid chromatography; constant pressure; volume-based; throughput

12

13 **Abstract**

14 The use of two-dimensional liquid chromatography (2D-LC) continues to grow as the advantages over 1D-
15 LC become increasingly clear in specific application areas, and the number of experienced 2D-LC users
16 increases. As with any technique, however, there is always room for innovation that could improve the
17 performance of 2D-LC. In recent years the technical aspects and potential benefits of a volume-based
18 mode of operation were studied in detail for 1D-LC. The salient features of this approach that are
19 immediately interesting for use in 2D-LC are two-fold. First, the ability to maintain a nominally constant
20 pressure in the second dimension by dynamically adjusting the flow rate to compensate for changes in
21 the viscosity of the fluid in the ²D flow path provides a means to more fully utilize the pressure capability
22 of the pumping system, and accelerates separations in the second dimension (²D). Second, constant
23 pressure operation minimizes physical stress on the system components and the ²D column. In this paper
24 we discuss the aspects of volume-based operation of LC that are particularly relevant to 2D-LC systems.
25 The proof-of-concept experiments illustrate the viability of the constant pressure mode of operation for
26 the second dimension of 2D-LC. In the described separations the throughput improvement is on the order
27 of 10%; this gain will be strongly application-dependent, and may be as large as several tens percent in
28 some cases. Future work will involve a detailed investigation of the impact of the constant pressure mode
29 on robustness of ²D separations.

30 **Introduction**

31 Increasingly, 2D-LC is being used to improve upon the performance of conventional one-dimensional LC,
32 and is being applied in diverse application areas ranging from environmental science to biopharmaceutical
33 analysis [1,2]. In some cases this improved performance appears as an increase in resolving power
34 compared to 1D-LC separations without significantly increasing analysis time [3,4]. In other cases the
35 benefits of 2D-LC manifest in other ways; for example, replacing two 1D-LC methods with a single 2D-LC
36 method, or providing additional selectivity to resolve a particular set of analytes in a mixture that would
37 otherwise be very difficult to resolve [5,6].

38 In recent years the number of 2D-LC users has increased significantly due to the increasing capabilities
39 and robustness of commercially available instrumentation and creative demonstrations of problem-
40 solving using these technologies [7,8]. However, there is still ample room for new concepts and
41 technologies that can aid in further improving robustness and performance, which would help users to
42 more fully realize the benefits of 2D-LC separations in routine analysis, regulated environments, and for
43 processing of large numbers of samples.

44 About a decade ago a volume-based operational concept (VOBA) for modern liquid chromatography was
45 introduced [9,10]. It was shown that in the context of 1D-LC, VOBA can yield meaningful analysis time
46 reductions on the order of 25%, along with improvements in separation robustness. The goal of this paper
47 is to demonstrate that VOBA – particularly a special case of VOBA we refer to as a constant pressure (cP)
48 mode - can be implemented in the second dimension of 2D-LC separations. We envision two major
49 potential benefits of this capability.

50 First, VOBA/cP can enable significant improvements in the throughput of 2D-LC in situations where the
51 second dimension is the primary determinant of the total analysis time. Such scenarios could be
52 encountered when storing of samples from ¹D occurs, before they become sequentially analyzed in the
53 ²D (e.g. in selective comprehensive (sLCxLC, a.k.a. HiRes sampling) or multiple heartcutting (MHC) mode).
54 These gains can be realized by increasing the ²D flow rate in regions of the analysis where in the
55 conventional constant flow (cF) operational mode the ²D pressure would be well below the limit of the
56 pump. In the following we explain when and how these situations arise in 2D-LC. We anticipate that the
57 analysis time savings as much as several tens percent can be achieved in some cases.

58 Second, cP operation can significantly reduce pressure variations experienced by the ²D column during
59 each ²D separation. Given that prior work [11] has shown that repeated pressure cycling can be
60 detrimental to the lifetime of chromatographic columns used in the second dimension of 2D-LC systems,
61 this has the potential to significantly improve the robustness of 2D-LC operation, particularly in cases
62 where many ²D separations are done per analysis (i.e., in comprehensive mode (LCxLC) and sLCxLC with
63 fast ²D separations).

64

65 **Experimental**

66 ***Chemicals***

67 LC/MS-grade acetonitrile (ACN) and methanol (MeOH) were from Merck (Germany) and water from a
68 Milli-Q system (Millipore, Germany). Formic acid (FA) was from Honeywell (Fluka). Samples were the

69 phenone check out sample (Agilent p/n 5188-6529) and a dilution of the 2D-LC checkout standard (Agilent
70 p/n 5190-6895), containing a suite of pesticides [12].
71

72

73 ***Instrumentation***

74 Data were acquired using two similar but different 2D-LC systems.

75 ***System A***

76 The first and second dimensions incorporated 1290 Infinity II modules (Agilent, Germany) including binary
77 pumps (Model G7120A), multisampler (G7167B), multi-column thermostats (MCT) (G7116B), and DAD
78 detectors (G7117B). A multiple heartcutting (MHC) 2D-LC interface was used with 40 μ L loops. Detailed
79 chromatographic conditions are given in the captions of Figs. 1-3.

80 Agilent LC ChemStation C 01.10 was used for instrument control and data acquisition and processing.

81 ***System B***

82 All LC modules were from the 1290 series from Agilent (Germany): ¹D and ²D pumps (G7120A), both with
83 35 μ L JetWeaver mixers; multisampler (G7167B); ¹D and ²D multicolumn thermostats (G7116B); ¹D
84 (G7114B) multiple wavelength UV absorbance detector, and ²D (Model G4212A; ultralow dispersion flow
85 cell G4212-60038) diode-array (DAD) UV absorbance detector. The active solvent modulation (ASM) valve
86 interface (p/n: 5067-4266) used to connect the two dimensions, was set up with two nominally identical
87 20 μ L sample loops.

88 Agilent ChemStation software (C.01.07 SR3 [465]), with a 2D-LC Add-on (rev. A.01.04 [025]), was used
89 for instrument control and data acquisition and processing. Detailed chromatographic conditions are
90 given in the caption of Fig. 4.

91

92 ***VOBA operation***

93 VOBA operation was supported by an experimental prototype firmware for a 1290 Infinity binary pump
94 and prototype Chemstation add-ons, which enabled method execution and chromatogram presentation
95 referring to delivered eluent volume, as explained in more detail below.

96

97 ***Results and Discussion***

98 Before explaining how VOBA/cP works in 2D-LC and discussing initial results obtained under these
99 conditions, it is instructive to review the conceptual differences between VOBA and conventional
100 operating conditions for HPLC based on the cF mode.

101

102 ***Conventional LC, Constant Flow (cF) Operation***

103 Conventional LC systems operate in a constant flow (cF) mode. Although most contemporary LC systems
104 allow changes in flow rate during an analysis, this is seldom implemented during the separation period
105 itself, and sometimes during column re-equilibration, for example. The pressure drop from the pump
106 outlet to the column outlet depends on eluent composition (which determines its viscosity), the system
107 permeability, and the preset, fixed flow rate. Use of more viscous eluents leads to higher pressure drops
108 at a given flow rate. Consequently, in the gradient elution mode, the pressure changes during the analysis
109 in response to changes in the eluent viscosity caused by the eluent composition change. This type of
110 pressure trace is illustrated in Fig. 1A, which shows a chromatogram obtained from a separation of a
111 mixture of alkylphenones using a solvent gradient elution (20/80 to 80/20 ACN/water). The pressure at
112 the pump outlet (normalized to the maximum pressure recorded during the analysis) is plotted in addition
113 to the chromatogram, with the pressure scale shown on the right Y-axis. The maximum viscosity of ACN-
114 water mixtures is at about 20% ACN [7], which is why the pressure trace is at its highest point at the
115 beginning of the separation. As the separation proceeds, the %ACN increases toward 80%, the viscosity
116 drops, and the pressure follows.

117 If for the moment we assume that the analytical instrument or the column impose a pressure limit close
118 to the maximum pressure in the plot (normalized value = 1) it becomes evident that for the majority of
119 the analysis there is a significant, underutilized pressure capability; this is highlighted by the blue hatched
120 area in Fig. 1A. This means that at any time during the analysis except for the initial phase where the
121 pressure is at its maximum it is possible to increase the flow rate and accelerate the analysis, without
122 exceeding any pressure limitations of the instrument or column.

123

124 *Volume-Centric View of Chromatography*

125 Description of an elementary step in an ideal chromatographic process (i.e., the mass transport of an
126 analyte within a mobile phase through a column) does not require “time” as parameter to explain
127 retention behavior. Indeed, at every step associated with perfusion of an elementary volume of eluent
128 through a column, each analyte travels a certain distance equivalent to a fractional portion of the
129 elementary volume. This distance is determined by a local distribution ratio of the analyte between the
130 mobile and stationary phase – that is, by a local retention factor (k). Thus, the chromatographic process
131 can be adequately described in a volume-domain (i.e., the chromatogram can be plotted versus volume
132 instead of time without altering or losing any information).

133 In order to produce stable and interpretable chromatographic results, it is sufficient to execute a method
134 (i.e., solvent gradient program, event tables, wavelength switching, valve switching) using the volume of
135 eluent pumped into the column as the basis for progress (rather than time), and to relate the detector
136 signal to a volume axis representing the volume of eluent pumped (rather than an axis representing
137 elapsed time). However, LC separations are conventionally executed in a time-based operational mode.
138 This means that methods, utilizing a strictly constant (or at least invariably programmed) flow rate are
139 executed referring to time and the resulting chromatograms are recorded in relation to a time axis. Prior
140 work has shown that for 1D-LC results can be obtained using the VOBA approach with variable flow rate,
141 that are comparable to those obtained using conventional cF operation [9],[10].

142 When separations are carried out using the VOBA approach, it is possible to present the resulting
143 chromatograms on an artificial time basis linearized in relation to the pumped volume, which is

144 compatible with the native representation of the data obtained in constant flow mode. To do so, one
145 replaces eluent volume on the X-axis by the combination of time with a fixed flow rate. In fact, the
146 conventional time-based representation of the chromatographic process is already a description of a
147 volume-based process, but one that implicitly assumes data are collected at a fixed eluent flow rate. Thus,
148 the use of real time as basis for data collection and review is not a fundamental requirement and the flow
149 rate can be varied during the separation period without compromising the quality of the results if the LC
150 operation is related to the pumped eluent volume.

151 A comparison of chromatograms obtained using VOBA and conventional cF approaches is shown in Fig. 1.
152 Panel A shows the chromatogram obtained using the cF approach. Panel B shows the chromatogram vs.
153 real time, obtained using the VOBA approach with variable flow rate, for the same sample and elution
154 conditions (with the solvent gradient program translated from a time basis to a volume basis). The
155 chromatograms in Panels A and B look different, as expected given that the flow rates were different. It
156 is important to bear in mind, that in both panels A and B solvent composition gradient is linear with eluent
157 volume. Consequently, the composition is changing linearly with time in the panel A but not linearly with
158 time in the panel B (because the eluent volume is not linear with time if the flow rate is not constant).
159 However, when the chromatogram in Panel B is stretched so that its volume base is linked to that in panel
160 A, the resulting chromatogram, which is shown in the Panel C is indistinguishable from that in the panel
161 A. Also, the solvent composition, which is changing linearly with volume, is linear in the coordinates of the
162 Panel C plot. Such treatment of volume based data provides a representation over an artificial time axis
163 enabling direct comparison to data collected in the cF mode [9].

164

165 *Constant Pressure (cP) Operation as a Special Case of VOBA*

166 A special execution mode of VOBA is constant pressure volume-based operation (cP). It is possible to
167 operate a chromatograph in such a way that the pump dynamically adjusts the flow rate during the
168 analysis to maintain a user-specified system pressure at all times. The lower the eluent viscosity is, the
169 higher the flow rate will be, and vice versa. In fact, the chromatogram shown in Fig. 1B was obtained by
170 execution of the method used for the Fig. 1A, but this time in cP mode with the pressure set to the
171 maximum value observed in Panel A. In the initial phase of both separations the flow rate was the same.
172 Whereas in Panel A the pressure decreased as the viscosity of the eluent was decreasing, in Panel B the
173 eluent flow rate was increasing (right Y-axis in Fig. 1B) in response to this viscosity decrease so that the
174 pressure was nominally constant throughout the analysis. Consequently, the analysis time is markedly
175 reduced due to full utilization of the available pressure capabilities over the entire analysis. (i.e., the
176 analysis time reduction is related to the size of the blue area in the Fig. 1A); this illustrates one of the most
177 prominent benefits of the cP mode operation.

178 In addition to the benefit of enabling more effective use of the available system pressure, the cP mode
179 can also improve method robustness by avoiding overpressure situations (e.g., due to slow pressure
180 creep, or a partial flow obstruction), and reducing physical stress on components of the LC system by
181 reducing the number of major pressure cycling events that occur over time. While these benefits are
182 attractive in conventional 1D-LC, they may be even more advantageous in the context of 2D-LC.

183

184 *2D-LC – Conventional Operation*

185 To the best of our knowledge 2D-LC separations are always carried out using constant flow rates in the
186 first and second dimensions, at least during the actual separation (i.e., not the re-equilibration periods).
187 Given that significant amounts of the mobile phase used in the first dimension must be transferred into
188 the second dimension, the pressure variations during a 2D-LC separation can be more complex compared
189 to those in 1D-LC. The mobile phase viscosity varies in the second dimension not only due to eluent
190 composition changes during a gradient elution, but also due to mismatch between the viscosity of
191 fractions collected from the first dimension and the ²D eluent itself. This is clearly illustrated in a 2D-LC
192 separation run using a typical 2D-LC separation method with the cF mode in both dimensions.

193 Fig. 2A shows the pressure profile from the ¹D separation, running a solvent gradient from 10/90 to 80/20
194 MeOH/water over the course of 30 min. As expected based on the known viscosities of MeOH/water
195 mixtures [13], the pressure increases up to about 50% MeOH and then decreases as the MeOH fraction
196 increases further. The narrow blue rectangles in Panel A (labelled Cut 1, 2, 3) indicate regions of this ¹D
197 separation where the ¹D effluent was collected (using 40 μ L loops) and transferred to the ²D column for
198 further separation. Panel B shows the pressure profiles measured at the ²D pump during the injection and
199 separation of each of the collected fractions, using a solvent gradient from 10/90 to 90/10 ACN/water.
200 For reference, Panel Bi shows the ²D pressure profile if no injection of ¹D effluent is made. Again, given
201 the known viscosities of ACN/water mixtures, this pressure profile appears as expected, with a maximum
202 that occurs around 20% ACN. Panels Bii-Biv show the pressure profiles obtained from the ²D separations
203 of Cuts 1-3. In Panel Bii we see that during the injection period (roughly the first 20 s of each ²D separation)
204 the pressure increases due to the higher viscosity of the MeOH/water mixture (¹D effluent) compared to
205 the ACN/water mixture (²D eluent). Looking further at Panels Biii and Biv we see that this pressure “bump”
206 during injection of the ¹D effluent increases further due to the even higher viscosity of the injected ¹D
207 effluent.

208 In this case the magnitude of the pressure “bump” at the beginning of each ²D separation is most strongly
209 influenced by the viscosity mismatch between the ¹D effluent and the ²D eluent. It is important to note,
210 however, that the magnitude of this pressure variation is further influenced by other factors such as the
211 volume of the ¹D effluent fraction transferred, the ²D column and connecting capillaries, and whether or
212 not Active Solvent Modulation (ASM) is used [14]. The influence of ASM can be significant because this
213 approach involves dilution of ¹D effluent with ²D mobile phase as the effluent fraction exits a sample loop
214 in the 2D-LC interface towards the ²D column. The viscosity of the diluted fraction can be higher or lower
215 than the viscosity of the ²D mobile phase, depending on the particular combination of solvents. The total
216 volume to be injected onto the ²D column is higher with ASM, and thus a section of the column containing
217 different viscosity solvent is larger and the pressure effect may be more pronounced. Whatever this
218 pressure “bump” is due to, a pressure maximum experienced in the second dimension in the course of
219 the entire 2D LC separation effectively determines the maximum flow rate usable in the ²D method. For
220 example, if at a ²D flow rate of 1 mL/min. the pressure bump for only one of the aliquots is at 750 bar, and
221 the instrument pressure limit is 800 bar, then a ²D flow rate setting cannot be increased even if the
222 pressure during the rest of the separation is 600 bar or less. This makes the underutilization of the
223 pressure capability of the pump in the ²D separation in cF mode even more pronounced. In the case of
224 the separation in Fig. 2, the portion of underutilized pressure due to the effect of the mismatch between
225 injected ¹D effluent and ²D eluent is indicated by the red hatched area; the blue hatched area represents

226 the portion of underutilized pressure that results from viscosity changes during solvent gradient elution
227 as discussed above for 1D-LC separations.

228

229 *2D-LC - Operation in cP Mode*

230 Since the principle of the cP mode of operation relies on the ability of the pump to dynamically respond
231 to changes in viscosity by adjusting the eluent flow rate to keep pressure constant, it is does not matter
232 which aspect of the system (e.g., ¹D eluent / ²D eluent viscosity mismatch, eluent composition etc.) the
233 viscosity change comes from - the pump will respond in any case. To demonstrate the capability of cP
234 mode in the second dimension we have carried out the separation shown in Fig. 3, both in cF and cP
235 modes. Panel A shows a portion of a ¹D chromatogram from the separation of several pesticide standards.
236 This is a multiple heartcutting experiment, where five fractions of ¹D effluent (40 μ L each) are transferred
237 to the second dimension as indicated by the blue vertical rectangles. Fig. 3B shows three rows each with
238 five ²D chromatograms, coming respectively from the five cuts indicated in Panel A. In the first row (Fig.
239 3Bi) we have chromatograms obtained using the cF mode in the second dimension. In this case the ²D
240 flow rate was 600 μ L/min., and the nominal pressure corresponding to the initial gradient conditions was
241 600 bar. Each cut yields two well separated peaks that partially overlapped in the first dimension. The
242 chromatograms in the second row (Fig. 3Bii) were obtained using the cP mode in the second dimension,
243 with the pressure setpoint at 660 bar corresponding to the maximum in the pressure “bump” observed
244 when the second dimension was run in cF mode. We see that the chromatograms look very similar to
245 those in row 1, with comparable resolution of each pair of peaks, but peaks elute faster because a higher
246 flow rate is applied compared to the 600 μ L/min. used in cF mode; the initial flow was 680 μ L/min and
247 dynamically changed to reach 1040 μ L/min at the lowest mobile phase viscosity. Finally, in row 3 the same
248 chromatograms from row 2 are shown, but plotted using an artificial time axis calculated as $t = V/F$ (with
249 $F = 600 \mu$ L/min) as discussed above for the 1D-LC separation in cP mode. Comparing the chromatograms
250 in rows 1 and 3 we cannot distinguish them by eye. That is, we obtain very similar separations, but in less
251 time (as shown in row 2) by more effectively using the available pressure capability of the pump
252 throughout the ²D separation.

253

254 *Example Opportunity for Larger Time Savings in the Second Dimension*

255 In the example discussed in the preceding section we see that the analysis time savings realized by
256 switching from cF to cP mode in the second dimension was roughly 10%. The magnitude of this time
257 savings is strongly dependent on the contrast between the viscosities of the ¹D effluent and the ²D eluent,
258 and sometimes can be much larger than 10%. To illustrate this point we show in Fig. 4 a pressure profile
259 obtained from the second dimension of a 2D-LC separation of water- and fat-soluble vitamins. This
260 application was first described by Bäurer, Lämmerhofer, and coworkers [15], who used isocratic elution
261 in both dimensions. Recently, we have been studying the impact of ASM on this separation, which uses
262 HILIC and RP separations in the first and second dimensions, respectively. The HILIC eluent contains 95%
263 ACN, and the RP eluent contains 80% ACN, thus the viscosities of these eluents are similar. However, when
264 ASM is used to mitigate the effect of the HILIC effluent on the RP separation, the ²D pump is set to 100%
265 water during the ASM step to act as a diluent for the fraction of effluent that comes from the ¹D
266 separation. With an ASM factor of 2, this results in a fraction injected into the ²D column that contains

267 about 47% ACN. The viscosity of the injected fraction is about 0.52 cP, whereas the viscosity of the 2 D
268 eluent is about 0.31 cP (60 °C, 400 bar [13]). Thus, though the pressure is essentially constant during a 2 D
269 separation step itself, the significantly more viscous aliquot matrix defines the nearly 1.5 times higher
270 maximum pressure value in the 2 D analysis cycle. Given this contrast, we would expect a significant
271 difference between the pressure during the ASM injection step, and the pressure during the rest of the
272 separation. Indeed, this is what we observe in the pressure profile shown in Fig. 4, where the pressure
273 during the ASM injection step is about 500 bar, compared to about 350 bar during the rest of the
274 separation. This is an example of a real 2D-LC application where we would expect the implementation of
275 the cP mode of operation to result in an improvement in the throughput of the second dimension on the
276 order of 30%.

277

278 *Effect of cP Mode on Robustness of 2D-LC Methods*

279 Sudden pressure changes can be detrimental to the lifetime of analytical LC columns as has been
280 demonstrated in prior investigations of this effect in 2D-LC [11]. It was found that pressure changes from
281 2 D operating pressure of about 500 bar to near zero that occurred upon switching the 2D-LC interface
282 valve every 20 s caused rapid deterioration of the 2 D column performance during only two hours of
283 operation; peak broadening, splitting, and tailing was observed. Such pressure changes can occur due to
284 a short interruption of the flow towards the column during the valve switch [11]. In contrast, in the same
285 experiment using an interface valve optimized to minimize these pressure changes, the column
286 performance remained stable for at least 80 hours of operation.

287 Ongoing work suggests that repeated pressure cycling caused by the mobile phase gradient itself may also
288 affect the lifetime of columns. Given these experiences, it seems likely that a cP mode of operation for
289 the second dimension of 2D-LC should provide an avenue to further increase the robustness of 2D-LC by
290 mitigating impacts of pressure variations on the performance of second dimension columns, particularly
291 in cases where many 2 D separations are executed per 2D-LC analysis (i.e., LC \times LC and sLC \times LC with fast 2 D
292 separations). Further work is needed to quantify this effect.

293

294 **Conclusions**

295 In this work we have carried out proof-of-concept experiments that demonstrate that a volume-based
296 mode – and more specifically a constant pressure (cP) mode – of operation is viable in the second
297 dimension of 2D-LC separations. This is an exciting new capability that opens new avenues for improving
298 the throughput of second dimension separations, and possibly the robustness of 2D-LC separations in
299 general. In the case of the separations shown here, the speed of each 2 D separation was improved about
300 10%. However, the magnitude of this speed improvement will be strongly dependent on the viscosities
301 mismatch of the 1 D effluent that gets injected into the 2 D column, and the 2 D eluent. We expect that the
302 upper end of the potential speed improvement is probably on the order of 30% or more. In addition to
303 these potential improvements in separation speed, we also believe that the cP mode of operation may
304 improve the overall robustness of 2D-LC by preventing overpressure situations in the second dimension,
305 and by mitigating the negative effects of pressure variations on the lifetimes of 2 D columns.

306

307 **Acknowledgements**

308 D.S. was supported by a grant from the United States National Science Foundation (CHE-2003734). We
309 thank Dr. Gabriel Leme for his effort to acquire the data shown in Fig. 4.

310

311 **References**

312 [1] D.R. Stoll, P.W. Carr, Two-Dimensional Liquid Chromatography: A State of the Art Tutorial,
313 Analytical Chemistry. 89 (2017) 519–531. <https://doi.org/10.1021/acs.analchem.6b03506>.

314 [2] B.W.J. Pirok, D. Stoll R., P.J. Schoenmakers, Recent developments in two-dimensional liquid
315 chromatography – Fundamental improvements for practical applications, Analytical Chemistry. 91
316 (2019) 240–263. <https://doi.org/10.1021/acs.analchem.8b04841>.

317 [3] D.R. Stoll, H.R. Lhotka, D.C. Harmes, B. Madigan, J.J. Hsiao, G.O. Staples, High resolution two-
318 dimensional liquid chromatography coupled with mass spectrometry for robust and sensitive
319 characterization of therapeutic antibodies at the peptide level, Journal of Chromatography B.
320 (2019) 121832. <https://doi.org/10.1016/j.jchromb.2019.121832>.

321 [4] K. Zhu, M. Pursch, S. Eeltink, G. Desmet, Maximizing two-dimensional liquid chromatography peak
322 capacity for the separation of complex industrial samples, Journal of Chromatography A. 1609
323 (2020) 460457. <https://doi.org/10.1016/j.chroma.2019.460457>.

324 [5] D.R. Stoll, D.C. Harmes, G.O. Staples, O.G. Potter, C.T. Dammann, D. Guillarme, A. Beck,
325 Development of Comprehensive Online Two-Dimensional Liquid Chromatography-Mass
326 Spectrometry using Hydrophilic Interaction and Reversed-Phase Separations for Rapid and Deep
327 Profiling of Therapeutic Antibodies, Analytical Chemistry. 90 (2018) 5923–5929.
328 <https://doi.org/10.1021/acs.analchem.8b00776>.

329 [6] M. Pursch, A. Wegener, S. Buckenmaier, Evaluation of active solvent modulation to enhance two-
330 dimensional liquid chromatography for target analysis in polymeric matrices, Journal of
331 Chromatography A. 1562 (2018) 78–86. <https://doi.org/10.1016/j.chroma.2018.05.059>.

332 [7] H. Wang, H.R. Lhotka, R. Bennett, M. Potapenko, C.J. Pickens, B.F. Mann, I.A.H. Ahmad, E.L.
333 Regalado, Introducing Online Multicolumn Two-dimensional Liquid Chromatography Screening for
334 Facile Selection of Stationary and Mobile Phase Conditions in both Dimensions, Journal of
335 Chromatography A. (2020) 460895. <https://doi.org/10.1016/j.chroma.2020.460895>.

336 [8] J. Camperi, L. Dai, D. Guillarme, C. Stella, Development of a 3D-LC/MS Workflow for Fast,
337 Automated, and Effective Characterization of Glycosylation Patterns of Biotherapeutic Products,
338 Anal. Chem. 92 (2020) 4357–4363. <https://doi.org/10.1021/acs.analchem.9b05193>.

339 [9] K. Broeckhoven, M. Verstraeten, K. Choikhet, M. Dittmann, K. Witt, G. Desmet, Kinetic
340 performance limits of constant pressure versus constant flow rate gradient elution separations.
341 Part I: Theory, Journal of Chromatography A. 1218 (2011) 1153–1169.
342 <https://doi.org/10.1016/j.chroma.2010.12.086>.

343 [10] M. Verstraeten, K. Broeckhoven, M. Dittmann, K. Choikhet, K. Witt, G. Desmet, Kinetic
344 performance limits of constant pressure versus constant flow rate gradient elution separations.
345 Part II: Experimental, *Journal of Chromatography A*. 1218 (2011) 1170–1184.
346 <https://doi.org/10.1016/j.chroma.2010.12.087>.

347 [11] E.S. Talus, K.E. Witt, D.R. Stoll, Effect of pressure pulses at the interface valve on the stability of
348 second dimension columns in online comprehensive two-dimensional liquid chromatography,
349 *Journal of Chromatography A*. 1378 (2015) 50–57. <https://doi.org/10.1016/j.chroma.2014.12.019>.

350 [12] S. Buckenmaier, Agilent 1290 Infinity 2D-LC Solution for Multiple Heart-Cutting, Technical
351 Overview, Publication Number 5991-5615EN, 2015

352 [13] J. Billen, K. Broeckhoven, A. Liekens, K. Choikhet, G. Rozing, G. Desmet, Influence of pressure and
353 temperature on the physico-chemical properties of mobile phase mixtures commonly used in high-
354 performance liquid chromatography, *Journal of Chromatography A*. 1210 (2008) 30–44.
355 <https://doi.org/10.1016/j.chroma.2008.09.056>.

356 [14] D.R. Stoll, K. Shoykhet, P. Petersson, S. Buckenmaier, Active Solvent Modulation: A Valve-Based
357 Approach To Improve Separation Compatibility in Two-Dimensional Liquid Chromatography,
358 *Analytical Chemistry*. 89 (2017) 9260–9267. <https://doi.org/10.1021/acs.analchem.7b02046>.

359 [15] S. Bäurer, W. Guo, S. Polnick, M. Lämmerhofer, Simultaneous Separation of Water- and Fat-Soluble
360 Vitamins by Selective Comprehensive HILIC × RPLC (High-Resolution Sampling) and Active Solvent
361 Modulation, *Chromatographia*. 82 (2019) 167–180. <https://doi.org/10.1007/s10337-018-3615-0>.