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Abstract

Bilevel optimization has arisen as a powerful
tool for many machine learning problems such
as meta-learning, hyperparameter optimization,
and reinforcement learning. In this paper, we in-
vestigate the nonconvex-strongly-convex bilevel
optimization problem. For deterministic bilevel
optimization, we provide a comprehensive con-
vergence rate analysis for two popular algorithms
respectively based on approximate implicit differ-
entiation (AID) and iterative differentiation (ITD).
For the AID-based method, we orderwisely im-
prove the previous convergence rate analysis due
to a more practical parameter selection as well
as a warm start strategy, and for the ITD-based
method we establish the first theoretical conver-
gence rate. Our analysis also provides a quanti-
tative comparison between ITD and AID based
approaches. For stochastic bilevel optimization,
we propose a novel algorithm named stocBiO,
which features a sample-efficient hypergradient
estimator using efficient Jacobian- and Hessian-
vector product computations. We provide the con-
vergence rate guarantee for stocBiO, and show
that stocBiO outperforms the best known compu-
tational complexities orderwisely with respect to
the condition number ~ and the target accuracy
€. We further validate our theoretical results and
demonstrate the efficiency of bilevel optimization
algorithms by the experiments on meta-learning
and hyperparameter optimization.

1. Introduction

Bilevel optimization has received significant attention
recently and become an influential framework in var-
ious machine learning applications including meta-
learning (Franceschi et al., 2018; Bertinetto et al., 2018;
Rajeswaran et al., 2019; Ji et al., 2020a), hyperparameter

"Department of Electrical and Computer Engineering, The Ohio
State University. Correspondence to: Kaiyi Ji <ji.367 @osu.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

optimization (Franceschi et al., 2018; Shaban et al., 2019;
Feurer & Hutter, 2019), reinforcement learning (Konda &
Tsitsiklis, 2000; Hong et al., 2020), and signal process-
ing (Kunapuli et al., 2008; Flamary et al., 2014). A general
bilevel optimization takes the following formulation.

min &(z) = f(z,y" («)

s.t. y*(x) = argmin g(z, y), (1)
y€eRa

where the upper- and inner-level functions f and g are both
jointly continuously differentiable. The goal of eq. (1) is
to minimize the objective function ®(z) with respect to
(w.r.t.) z, where y* () is obtained by solving the lower-level
minimization problem. In this paper, we focus on the setting
where the lower-level function g is strongly convex w.r.t. ¥,
and the upper-level objective function ®(x) is nonconvex.
Such geometrics commonly exist in many applications such
as meta-learning and hyperparameter optimization, where
g corresponds to an empirical loss with a strongly-convex
regularizer and x are parameters of neural networks.

A broad collection of algorithms have been proposed to
solve bilevel optimization problems. For example, Hansen
et al. 1992; Shi et al. 2005; Moore 2010 reformulated the
bilevel problem in eq. (1) into a single-level constrained
problem based on the optimality conditions of the lower-
level problem. However, such type of methods often in-
volve a large number of constraints, and are hard to imple-
ment in machine learning applications. Recently, more effi-
cient gradient-based bilevel optimization algorithms have
been proposed, which can be generally categorized into
the approximate implicit differentiation (AID) based ap-
proach (Domke, 2012; Pedregosa, 2016; Gould et al., 2016;
Liao et al., 2018; Ghadimi & Wang, 2018; Grazzi et al.,
2020; Lorraine et al., 2020) and the iterative differentiation
(ITD) based approach (Domke, 2012; Maclaurin et al., 2015;
Franceschi et al., 2017; 2018; Shaban et al., 2019; Grazzi
et al., 2020). However, most of these studies have focused
on the asymptotic convergence analysis, and the nonasymp-
totic convergence rate analysis (that characterizes how fast
an algorithm converges) has not been well explored except
a few attempts recently. Ghadimi & Wang 2018 provided
the convergence rate analysis for the ITD-based approach.
Grazzi et al. 2020 provided the iteration complexity for the
hypergradient computation via ITD and AID, but did not
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characterize the convergence rate for the entire execution of
algorithms.

e Thus, the first focus of this paper is to develop a
comprehensive and sharper theory, which covers a
broader class of bilevel optimizers via ITD and AID
techniques, and more importantly, improves existing
analysis with a more practical parameter selection
and orderwisely lower computational complexity.

The stochastic bilevel optimization often occurs in applica-
tions where fresh data are sampled for algorithm iterations
(e.g., in reinforcement learning (Hong et al., 2020)) or the
sample size of training data is large (e.g., hyperparameter op-
timization (Franceschi et al., 2018), Stackelberg game (Roth
et al., 2016)). Typically, the objective function is given by

min &(x) = f(z,y"(v)) =

{;23;1 F(z,y*(2); &)
E¢ [F(z,y*(2); §)]

{;Zﬁl G(z,y; ()

sty'(e) =argming(@y) = g a0

yERY

2

where f(z,y) and g(z,y) take either the expectation form
w.r.t. the random variables £ and ( or the finite-sum form
over given data D,, ,,, = {&,(j, i =1,...,n;j =1,...,m}
often with large sizes n and m. During the optimization
process, data batch is sampled via the distributions of &
and ¢ or from the set D,, ,,,. For such a stochastic setting,
Ghadimi & Wang 2018 proposed a bilevel stochastic ap-
proximation (BSA) method via single-sample gradient and
Hessian estimates. Based on such a method, Hong et al.
2020 further proposed a two-timescale stochastic approxi-
mation (TTSA) algorithm, and showed that TTSA achieves
a better trade-off between the complexities of inner- and
outer-loop optimization stages than BSA.

e The second focus of this paper is to design a more
sample-efficient algorithm for bilevel stochastic opti-
mization, which achieves lower computational com-
plexity by orders of magnitude than BSA and TTSA.

1.1. Main Contributions

Our main contributions lie in developing shaper theory and
provably faster algorithms for nonconvex-strongly-convex
bilevel deterministic and stochastic optimization problems,
respectively. Our analysis involves several new develop-
ments, which can be of independent interest.

We first provide a unified convergence rate and complexity
analysis for both ITD and AID based bilevel optimizers,
which we call as ITD-BiO and AID-BiO. Compared to ex-
isting analysis in Ghadimi & Wang 2018 for AID-BiO that
requires a continuously increasing number of inner-loop

steps to achieve the guarantee, our analysis allows a con-
stant number of inner-loop steps as often used in practice.
In addition, we introduce a warm start initialization for the
inner-loop updates and the outer-loop hypergradient estima-
tion, which allows us to backpropagate the tracking errors
to previous loops, and yields an improved computational
complexity. As shown in Table 1, the gradient complexities
Gce(f, €), Ge(g, €), and Jacobian- and Hessian-vector prod-
uct complexities JV(g, €) and HV(g, €) of AID-BiO to attain
an e-accurate stationary point improve those of Ghadimi
& Wang 2018 by the order of x, ke /4, k, and &, respec-
tively, where « is the condition number. In addition, our
analysis shows that AID-BiO requires less computations of
Jacobian- and Hessian-vector products than ITD-BiO by an
order of x and x'/2, which implies that AID can be more
computationally and memory efficient than ITD.

We then propose a stochastic bilevel optimizer (stocBiO) to
solve the stochastic bilevel optimization problem in eq. (2).
Our algorithm features a mini-batch hypergradient estima-
tion via implicit differentiation, where the core design in-
volves a sample-efficient hypergradient estimator via the
Neumann series. As shown in Table 2, the gradient complex-
ities of our proposed algorithm w.r.t. F' and G improve upon
those of BSA (Ghadimi & Wang, 2018) by an order of x and
e 1, respectively. In addition, the Jacobian-vector product
complexity JV(G, €) of our algorithm improves that of BSA
by an order of . In terms of the target accuracy e, our
computational complexities improve those of TTSA (Hong
et al., 2020) by an order of e~ 1/2,

Our results further provide the theoretical complexity guar-
antee for ITD-BiO, AID-BiO and stocBiO in meta-learning
and hyperparameter optimization. The experiments validate
our theoretical results for deterministic bilevel optimiza-
tion, and demonstrate the superior efficiency of stocBiO for
stochastic bilevel optimization.

1.2. Related Work

Bilevel optimization approaches: Bilevel optimization
was first introduced by Bracken & McGill 1973. Since
then, a number of bilevel optimization algorithms have
been proposed, which include but not limited to constraint-
based methods (Shi et al., 2005; Moore, 2010) and gradient-
based methods (Domke, 2012; Pedregosa, 2016; Gould
et al., 2016; Maclaurin et al., 2015; Franceschi et al., 2018;
Ghadimi & Wang, 2018; Liao et al., 2018; Shaban et al.,
2019; Hong et al., 2020; Liu et al., 2020; Li et al., 2020;
Grazzi et al., 2020; Lorraine et al., 2020; Ji & Liang, 2021).
Among them, Ghadimi & Wang 2018; Hong et al. 2020
provided the complexity analysis for their proposed meth-
ods for the nonconvex-strongly-convex bilevel optimization
problem. For such a problem, this paper develops a general
and enhanced convergence rate analysis for gradient-based
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Table 1. Comparison of bilevel deterministic optimization algorithms.

Algorithm | Ge(f,e) | Gelg,e) | V(e [ HV(ge |
AID-BiO (Ghadimi & Wang, 2018) | O(x*e™!) | O(k%¢ /%) | O (k1) | O (k*%e 7))
AID-BiO (this paper) O3 ) | Ok*e) | Okl | O(K*Pe )
ITD-BiO (this paper) O(k%e ) | O(k*e™) | O(s*e ) | O(k'e?)

Ge(f, €) and Ge(g, €): number of gradient evaluations w.r.t. f and g. & : condition number.
IV (g, €): number of Jacobian-vector products V.V, g(z, y)v. Notation O: omit log % terms.

HV (g, €): number of Hessian-vector products V2 g(z, y)v.

Table 2. Comparison of bilevel stochastic optimization algorithms.

y Algorithm | Ge(F,9 | GeGe) | NG, | HVGeo |
TTSA (Hong etal., 2020) | O(poly(rk)e=2)"| O(poty(r)e=2) | Opoty(r)e=2) | O(poty(r)e2)
BSA (Ghadimi & Wang, 2018) O(k8e2) O(K%3) O (k%?) O (k%?)
stocBiO (this paper) O(k5e2) O(k%2) O (k°e?) O (k%)

* We use poly(r) because Hong et al. 2020 does not provide the explicit dependence on .

bilevel optimizers for the deterministic setting, and proposes
a novel algorithm for the stochastic setting with order-level
lower computational complexity than the existing results.

Other types of loss geometries have also been studied. For
example, Liu et al. 2020; Li et al. 2020 assumed that the
lower- and upper-level functions g(z, -) and f(z, -) are con-
vex and strongly convex, and provided an asymptotic analy-
sis for their methods. Ghadimi & Wang 2018; Hong et al.
2020 studied the setting where ®(-) is strongly convex or
convex, and g(z, -) is strongly convex.

Bilevel optimization in meta-learning: Bilevel optimiza-
tion framework has been successfully applied to meta-
learning recently (Snell et al., 2017; Franceschi et al., 2018;
Rajeswaran et al., 2019; Ziigner & Giinnemann, 2019; Ji
et al., 2020a;b). For example, Snell et al. 2017 proposed a
bilevel optimization procedure for meta-learning to learn
a common embedding model for all tasks. Rajeswaran
et al. 2019 reformulated the model-agnostic meta-learning
(MAML) (Finn et al., 2017) as bilevel optimization, and
proposed iMAML via implicit gradient. Our work provides
a theoretical guarantee for two popular types of bilevel opti-
mizer, i.e., AID-BiO and ITD-BiO, for meta-learning.

Bilevel optimization in hyperparameter optimization:
Hyperparameter optimization has become increasingly im-
portant as a powerful tool in the automatic machine learning
(autoML) (Okuno et al., 2018; Yu & Zhu, 2020). Recently,
various bilevel optimization algorithms have been proposed
for hyperparameter optimization, which include implicit
differentiation based methods (Pedregosa, 2016), dynamical
system based methods via reverse or forward gradient com-
putation (Franceschi et al., 2017; 2018; Shaban et al., 2019),
etc. Our work demonstrates superior efficiency of the pro-
posed stocBiO algorithm in hyperparameter optimization.

2. Algorithms

In this section, we describe two popular types of determin-
istic bilevel optimization algorithms, and propose a new
algorithm for stochastic bilevel optimization.

2.1. Algorithms for Deterministic Bilevel Optimization

As shown in Algorithm 1, we describe two popular types of
deterministic bilevel optimizers respectively based on AID
and ITD (referred to as AID-BiO and ITD-BiO) for solving
the problem eq. (1).

Both AID-BiO and ITD-BiO update in a nested-loop manner.
In the inner loop, both of them run D steps of gradient
decent (GD) to find an approximation point y,’? close to
y*(z). Note that we choose the initialization y{ of each
inner loop as the output y,?71 of the preceding inner loop
rather than a random start. Such a warm start allows us to
backpropagate the tracking error ||y —y* (x| to previous
loops, and yields an improved computational complexity.

At the outer loop, AID-BiO first solves ’U]JCV from a linear
system Vig(zy, yf )v = Vyf(zk, yp)" using N steps of
conjugate-gradient (CG) starting from v (where we also
adopt a warm start with Ug = v,]cv_l), and then constructs

V() = Vof (k) = VaVyg(an,u vy (3)
as an estimate of the true hypergradient V®(xy), whose
form is given by the following proposition.

Proposition 1. Hypergradient VO (xy,) takes the forms of

Vo(xy) =Vaf(zr,y" (vx) = VaVyg(ar, y* (zr))ve, @)

!Solving this linear system is equivalent to solving a quadratic
programming min,, %vTvzg(xk, y,?)v — UTVyf(ack, y,f’).
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%Inner—loop SGD updates

Draw sample batch B

)

y <y —1VyG(x,y; B)

l Output yp

S
Initializations ¥
QOre VyF(x,yp; B)

Oveo

{ Outer-loop hypergradient estimation |

Draw sample batch B

R

O G <y—aV,G(xy;B)
Q r «torch.autograd.grad(< G,r >)overy
Qv cvtr

l Repeat Q times

v« av/Q

l Jacobian vector

Figure 1. Illustration of hyperparameter estimation in our proposed stocBiO algorithm. Note that the hyperparameter estimation (lines
9-10 in Algorithm 2) involves only computations of automatic differentiation over scalar < G;(y),r; > w.r.t. y. In addition, our
implementation applies the function torch.autograd.grad in PyTorch, which automatically determines the size of Jacobians. More details
can be found in our code via https://github.com/JunjieYang97/StocBio_hp.

Algorithm 1 Bilevel algorithms via AID or ITD

1: Input: K, D, N, stepsizes «, 3, initializations o, Yo, vo.
2: fork=0,1,2,..., K do

3 Sety) =yP ,if k> 0and yo otherwise
4: fort=1,.....Ddo

5: Update y, = yi ' — aVyg(zr, yi ")
6:  end for

7:  Hypergradient estimation via

AID: 1) set v) = v, if k> 0 and vo otherwise
2) solve vy from Vg (zy, y& v = Vy f(Th, y5)
via N steps of CG starting from v
3) get Jacobian-vector product V.V, g(xk, y2 Jvf
via automatic differentiation
4 V(zi) = Vaf (@i, yb) = VaVyglar, y Jo

ITD: compute VP () = M

8:  Update zx41 = z — 5V‘I>($k)
9: end for

via backpropagation

where vy, is the solution of the following linear system
Viag(wr, y* (xx))v = Vy f (2, y* (21)).

As shown in Domke 2012; Grazzi et al. 2020, the con-
struction of eq. (3) involves only Hessian-vector prod-
ucts in solving vy via CG and Jacobian-vector product
V. Vyg(zk, y2)vd, which can be efficiently computed and
stored via existing automatic differentiation packages.

As a comparison, the outer loop of ITD-BiO computes the

Af (w,yp (1))
Oz

gradient as an approximation of the hyper-

gradient V®(xy) = W“Ty;(w via backpropagation,

where we write y} (z) because the output v/ of the in-
ner loop has a dependence on zj, through the inner-loop

iterative GD updates.
Of (@ (1)

Szk

chain rule. For notation simplification, let H]D;Dl

of (@w,yp (1))
Oy

The explicit form of the estimate
is given by the following proposition via the

()=1.

Proposition 2. takes the analytical form of:

D—-1

=Vaof(@e,yi) — @ Y VaVyg(ar, vi)

t=0
<Ta
j=t+1
Proposition 2 shows that the differentiation involves the
computations of second-order derivatives such as Hessian
Vf} g(+,-). Since efficient Hessian-free methods have been
successfully deployed in the existing automatic differentia-
tion tools, computing these second-order derivatives reduces
to more efficient computations of Jacobian- and Hessian-
vector products.

8f(xk7 Yk )
aibk

2.2. Algorithm for Stochastic Bilevel Optimization

We propose a new stochastic bilevel optimizer (stocBiO)
in Algorithm 2 to solve the problem eq. (2). It has a double-
loop structure similar to Algorithm 1, but runs D steps of
stochastic gradient decent (SGD) at the inner loop to ob-
tain an approximated solution y. Based on the output
yP of the inner loop, stocBiO first computes a gradient
VyF(z1,y; Dr) over a sample batch Dy, and then com-
putes a vector v as an estimated solution of the linear sys-
tem V2 g(zk, y* (zx))v = Vy f(zr, y*(zx)) via Algorithm 3.
Here, vg takes a form of

vQ nZ H (I —nViG(xk,y: Bj))vo,  (5)

q=—1j=Q—¢q


https://github.com/JunjieYang97/StocBio_hp
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Algorithm 2 Stochastic bilevel optimizer (stocBiO)

1: Input: K, D, Q, stepsizes « and £, initializations xo and yo.

2: fork=0,1,2,..., K do

3 Setyy = yf_, if k> 0 and yo otherwise

4 fort=1,....,Ddo

5 Draw a sample batch S;—1

6 Update yf, = yi. ' — aV,G(zk, y ' Si—1)
7:  end for
8.
9
10

Draw sample batches Dr, Dy and D¢
Compute gradient vo = V, F(zx, ¥t ; Dr)
Construct estimate vg via Algorithm 3 given vg
11:  Compute V.V, G (xk, yr; Da)vg
12:  Compute gradient estimate @@(azk) via eq. (6)
13:  Update zx41 = zx — BV (21)
14: end for

Algorithm 3 Construct vg given vg

: Input: Integer Q, samples Dy = {Bj}?zl and constant 7).

cforj=1,2,....,Qdo

Sample B; and compute G (y) =y — nV,G(z,y; B;)
: end for
: Setrg = o

cfori=@Q,...,1do

ri_1 = 8(Gi(y)ri)/8y = r; — nVﬁG(m,y; B;)r; via
automatic differentiation

8: end for

9: Return vg =17 ZZQ:O s

where vo = V,F(zr,y¢;Dr), {B;,j = 1,..,Q} are
mutually-independent sample sets, () and 7 are constants,
and we let [[ 5, ,(+) = I for notational simplification. Our
construction of vg, i.e., Algorithm 3, is motived by the
Neumann series > ;o U¥ = (I — U)~!, and involves only
Hessian-vector products rather than Hessians, and hence is
computationally and memory efficient. This procedure is
illustrated in Figure 1.

Then, we construct
Vo(z) =Ve F(zk, y¢ s Dr) — VoV, Gk, yi'; Da)vg (6)

as an estimate of hypergradient V®(z). Compared to the
deterministic case, it is more challenging to design a sample-
efficient Hypergradient estimator in the stochastic case. For
example, instead of choosing the same batch sizes for all
Bj,j =1,...,Q ineq. (5), our analysis captures the differ-
ent impact of components VZG(:C]C, yPiB),j=1,..,Q
on the hypergradient estimation variance, and inspires an
adaptive and more efficient choice by setting [Bg_ ;| to de-
cay exponentially with j from 0 to @ — 1. By doing so, we
achieve an improved complexity.

3. Definitions and Assumptions

Let z = (z,y) denote all parameters. For simplicity, sup-
pose sample sets S; forall t = 0,...,D — 1, Dg and D
have the sizes of S, D, and Dy, respectively. In this paper,

we focus on the following types of loss functions for both
the deterministic and stochastic cases.

Assumption 1. The lower-level function g(x,y) is p-
strongly-convex w.rt. y and the total objective function
O(x) = f(z,y*(x)) is nonconvex w.r.t. x. For the stochas-
tic setting, the same assumptions hold for G(z,y; () and
O (x), respectively.

Since ®(x) is nonconvex, algorithms are expected to find
an e-accurate stationary point defined as follows.

Definition 1. We say T is an e-accurate stationary point for
the objective function ®(z) in eq. (2) if E|V®(2)|? < ¢,
where T is the output of an algorithm.

In order to compare the performance of different bilevel
algorithms, we adopt the following metrics of complexity.

Definition 2. For a function f(x,y) and a vector v, let
Gc(f, €) be the number of the partial gradient V , f or V f,
and let IV (g, €) and HV (g, €) be the number of Jacobian-
vector products V ;N ,g(x, y)v. and Hessian-vector prod-
ucts Vf/ g(x,y)v. For the stochastic case, similar metrics
are adopted but w.r.t. the stochastic function F(x,y; ).

We take the following standard assumptions on the loss func-
tions in eq. (2), which have been widely adopted in bilevel
optimization (Ghadimi & Wang, 2018; Ji et al., 2020a).

Assumption 2. The loss function f(z) and g(z) satisfy
e The function f(z) is M -Lipschitz, i.e., for any z, 2/,
1f(2) = f(N)] < M|z = 2'|.

o Vf(z)and Vg(z) are L-Lipschitz, i.e., for any z, 2/,
IVF(z) = VI <Llz =,
IVg(z) = V()| <Ll|z - #||.
For the stochastic case, the same assumptions hold for

F(z;€) and G(z; () for any given & and (.

As shown in Proposition 1, the gradient of the objective func-
tion ®(z) involves the second-order derivatives V,V,g(2)
and Vig(z). The following assumption imposes the Lip-
schitz conditions on such high-order derivatives, as also
made in Ghadimi & Wang 2018.

Assumption 3. Suppose the derivatives V;V,g(z) and
Vflg(z) are T- and p- Lipschitz, i.e.,

VaVy9(2)=VaVyg () < 7llz=||
V2g(z) = V2g(z)|| < pllz = ]|

e Foranyz, 2,

e Forany z, 2/,

For the stochastic case, the same assumptions hold for
V.VyG(z;¢) and ViG(z; ¢) for any ¢.

As typically adopted in the analysis for stochastic optimiza-
tion, we make the following bounded-variance assumption
for the lower-level stochastic function G(z; ¢).
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Assumption 4. Gradient VG(
ie, E¢||VG(2; () —

z; ¢) has a bounded variance,
Vg(2)||? < o2 for some o.

4. Main Results for Bilevel Optimization
4.1. Deterministic Bilevel Optimization

We first characterize the convergence and complexity of
AID-BiO. Let k = % denote the condition number.

Theorem 1 (AID-BiO). Suppose Assumptions 1, 2, 3 hold.

2 2

Define a smoothness parameter Ly = L + w +
pLM+L2+TML + pL;M = O(k?), choose the stepsizes o <
%, 8= ﬁ, and set the inner-loop iteration number D >
O (k) and the CG iteration number N > ©(y/k), where the

detailed forms of D, N can be found in Appendix E. Then,
the outputs of AID-BiO satisfy

- Z |V (x

—inf, ®(z)) + 500
K b

H2 64Lq>(q>(.’130)

where Ag = |lyo — y* (x0)|1* + [lug — vol* > 0.

In order to achieve an e-accurate stationary point, the com-
plexities satisfy

e Gradient: Ge(f,¢) = O(k*¢™1),Ge(g, €) = O(k*e™).

e Jacobian- and Hessian-vector product complexities:
WV(g,e) = O (k% ") ,HV(g,€) = O (K*% ).

As shown in Table 1, the complexities Ge(f, €), Ge(g, €),
JV(g,€) and HV(g,€) of our analysis improves that of
Ghadimi & Wang 2018 (eq. (2.30) therein) by the order
of k, ke /%, k and k. Such an improvement is achieved by
arefined analysis with a constant number of inner-loop steps,
and by a warm start strategy to backpropagate the tracking
errors ||y — y*(x)|| and |JvYY — v}|| to previous loops, as
also demonstrated by our meta-learning experiments. We
next characterize the convergence and complexity perfor-
mance of the ITD-BiO algorithm.

Theorem 2 (ITD-BiO). Suppose Assumptions 1, 2, and
3 hold. Define Lg as in Theorem 1, and choose o < %
8= ﬁ and D > ©(klog %), where the detailed form of

D can be found in Appendix F. Then, we have

N

1

16Lg(®(xg) — inf, ®(x)) 2
IS ) t3

i) 2 < )
" V) < - .

0

>
Il

In order to achieve an e-accurate stationary point, the com-
plexities satisfy

e Gradient: Ge(f,e) = O(k3¢ "), Ge(g, €) = O(k*e ™).

e Jacobian- and Hessian-vector product complexity:
WV(g,e) = O(x*e"),HV(g,€) = (K,46 Y.

By comparing Theorem 1 and Theorem 2, it can be seen
that the complexities JV(g, €) and HV(g, ¢) of AID-BiO are
better than those of ITD-BiO by the order of x and %,
which implies that AID-BiO is more computationally and
memory efficient than ITD-BiO, as verified in Figure 2.

4.2. Stochastic Bilevel Optimization

We first characterize the bias and variance of an important
component v in eq. (5).

Proposition 3. Suppose Assumptions 1, 2 and 3 hold. Let
77 < + and choose |Bg41—;| = BQ(1 —nu)i=" for j =
1, ,Q where B > W Then, the bias satisfies

|Evg — [Vag(zr y )] ' Vy f (e, yP)||
<p A —qu)®tM. (D)

Furthermore, the estimation variance is given by

Ellvg — [Vig(@r i )]~ Vo f (@, ui)|1?
< a?L2M? 1 1401 np)?@T2 M2 2M? ®)
- p* B p? p?Dy’

Proposition 3 shows that if we choose ), B and Dy at the
order level of O(log 1), O(1/€) and O(1/e), the bias and
variance are smaller than O(e), and the required number of
samples is Z L BQ(1 —nu)i=t = O (e 'log1). Note
that the chosen batch size |Bg41—] exponentlally decays
w.r.t. the index j. In comparison, the uniform choice of all
|B;| would yield a worse complexity of O (e~ (log £)?).

We next analyze stocBiO when ®(x) is nonconvex.

Theorem 3. Suppose Assumptions 1, 2, 3 and 4 hold. De-
2 2 3 y 2
ﬁne L<I> =L+ 2L°+TM + pLMJrll;QJrT]V[L + pL 3M

, and
choose 3 = ﬁ,n < %, and D > O(klog k), where the
detailed form of D can be found in Appendix G.3. We have

K—-1
S BV < (52 4 k(1 - g
k=0
H502 KQ 1432 Ii2
- 4+ = 9
RS +Dg+Df+B) ©

In order to achieve an e-accurate stationary point, the com-
plexities satisfy

e Gradient: Ge(F,e) = O(k%¢?),Ge(G, €) = O(ke2).

e Jacobian- and Hessian-vector product complexities:
IV(G,e) = O(k°e2),HV(G, €) = O(k%72).

Theorem 3 shows that stocBiO converges sublinearly with
the convergence error decaying exponentially w.r.t. () and
sublinearly w.r.t. the batch sizes S, Dy, Dy for gradient esti-
mation and B for Hessian inverse estimation. In addition, it
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can be seen that the number D of the inner-loop steps is at
a constant level, rather than a typical choice of ©(log(2)).

As shown in Table 2, the gradient complexities of our pro-
posed algorithm in terms of F and G improve those of BSA
in Ghadimi & Wang 2018 by an order of x and ¢!, respec-
tively. In addition, the Jacobian-vector product complexity
JV(G, €) of our algorithm improves that of BSA by the or-
der of x. In terms of the accuracy e, our gradient, Jacobian-
and Hessian-vector product complexities improve those of
TTSA in Hong et al. 2020 all by an order of ¢ ~°-5.

5. Applications to Meta-Learning

Consider the few-shot meta-learning problem with m tasks
{Ti,i =1,...,m} sampled from distribution Pr. Each task
T: has a loss function £(¢, w;; &) over each data sample &,
where ¢ are the parameters of an embedding model shared
by all tasks, and w; are the task-specific parameters. The
goal of this framework is to find good parameters ¢ for all
tasks, and building on the embedded features, each task then
adapts its own parameters w; by minimizing its loss.

The model training takes a bilevel procedure. In the lower-
level stage, building on the embedded features, the base
learner of task 7; searches w; as the minimizer of its loss
over a training set S;. In the upper-level stage, the meta-
learner evaluates the minimizers w;,? = 1, ..., m on held-
out test sets, and optimizes ¢ of the embedding model over
all tasks. Let w = (wy,...,w,,) denote all task-specific
parameters. Then, the objective function is given by

: 1
m(;nﬁp(q[),w*)zaz |D\ Z‘Cd)v w;;§)
i=1 £€D;
Lp, (¢,w]): task-specific upper-level loss

21:1 Ls, (¢, w;) . (10)
m

s.t. w" = argmin Ls(¢, w) =
w

where Ls, (¢, wi) = 197 Y¢es, L£(,wi; )+R(w;) witha
strongly-convex regularizer R (w;), e.g., L2, and S;, D; are
the training and test datasets of task 7;. Note that the lower-
level problem is equivalent to solving each w; as a mini-
mizer of the task-specific loss Ls, (¢, w;) fori = 1,...,m.
In practice, w; often corresponds to the parameters of the
last linear layer of a neural network and ¢ are the param-
eters of the remaining layers (e.g., 4 convolutional layers
in Bertinetto et al. 2018; Ji et al. 2020a), and hence the lower-
level function is strongly-convex w.r.t. w and the upper-level
function Lp (¢, w*(¢)) is generally nonconvex w.r.t. ¢. In
addition, due to the small sizes of datasets D; and S; in
few-shot learning, all updates for each task 7; use full gradi-
ent descent without data resampling. As a result, AID-BiO
and ITD-BiO in Algorithm 1 can be applied here. In some
applications where the number m of tasks is large, it is more

efficient to sample a batch B of i.i.d. tasks from {7;,7 =
1,...,m} at each meta (outer) iteration, and optimizes the
mini-batch versions ED(¢7’[E' B) = g Zies Lo (¢, w:)

and Ls(¢p, w; B) = |B‘ > ien Ls, (¢, w;) instead.

We next provide the convergence result of ITD-BiO for this
case, and that of AID-BiO can be similarly derived.

Theorem 4. Suppose Assumptions 1, 2 and 3 hold and sup-
pose each task loss Ls, (¢, ) is p-strongly-convex. Choose
the same parameters 3, D as in Theorem 2. Then, we have

K2 )

"B

Theorem 4 shows that compared to the full batch case (i.e.,
without task sampling) in eq. (10), task sampling introduces

a variance term O(\Tlﬂ) due to the stochastic nature of the
algorithm.

1 K—-1
E[Vo(60) 2 <<9(

k:O

5.1. Experiments

To validate our theoretical results for deterministic bilevel
optimization, we compare the performance among the fol-
lowing four algorithms: ITD-BiO, AID-BiO-constant (AID-
BiO with a constant number of inner-loop steps as in our
analysis), AID-BiO-increasing (AID-BiO with an increas-
ing number of inner-loop steps under analysis in Ghadimi
& Wang 2018), and two popular meta-learning algorithms
MAML? (Finn et al., 2017) and ANIL3 (Raghu et al., 2019).
We conduct experiments over a 5-way 5-shot task on two
datasets: FC100 and minilmageNet. The results are aver-
aged over 10 trials with different random seeds. Due to the
space limitations, we provide the model architectures and
hyperparameter settings in Appendix A.

It can be seen from Figure 2 that for both the minilmageNet
and FC100 datasets, AID-BiO-constant converges faster
than AID-BiO-increasing in terms of both the training ac-
curacy and test accuracy, and achieves a better final test
accuracy than ANIL and MAML. This demonstrates the su-
perior improvement of our developed analysis over existing
analysis in Ghadimi & Wang 2018 for AID-BiO algorithm.
Moreover, it can be observed that AID-BiO is slightly faster
than ITD-BiO in terms of the training accuracy and test
accuracy. This is in consistence with our theoretical results.

We also compare the robustness between the bilevel opti-
mizer ITD-BiO (AID-BiO performs similarly to ITD-BiO in
terms of the convergence rate) and ANIL when the number
T (i.e., D in Algorithm 1) of inner-loop steps is relatively
large. It can be seen from Figure 3 that when the number

MAML consists of an inner loop for task adaptation and an
outer loop for meta initialization training.

3 ANIL refers to almost no inner loop, which is an efficient
MAML variant with task adaption on the last-layer of parameters.
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Figure 2. Comparison of various bilevel algorithms on meta-learning.
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Figure 3. Comparison of ITD-BiO and ANIL with a relatively large inner-loop iteration number 7'.

of inner-loop steps is large, i.e., ' = 10 for minilmageNet
and T = 20 for FC100, the bilevel optimizer ITD-BiO con-
verges stably with a small variance, whereas ANIL suffers
from a sudden descent at 1500s on minilmageNet and even
diverges after 2000s on FC100.

6. Applications to Hyperparameter
Optimization

The goal of hyperparameter optimization (Franceschi et al.,
2018; Feurer & Hutter, 2019) is to search for representation
or regularization parameters )\ to minimize the validation
error evaluated over the learner’s parameters w*, where w*
is the minimizer of the inner-loop regularized training error.
Mathematically, the objective function is given by

mmﬁ L(w

Dval( Va]| Z
£€EDya

s.t. w® = argrnm Z (w, A;€) + R A) an
ul ot

Lp,(w,\)

where Dy, and D, are validation and training data, L is the
loss, and R, is a regularizer. In practice, the lower-level
function Lp, (w, ) is often strongly-convex w.r.t. w. For
example, for the data hyper-cleaning application proposed
by Franceschi et al. 2018; Shaban et al. 2019, the predic-
tor is modeled by a linear classifier, and the loss function
L(w;§) is convex w.r.t. w and R, » is a strongly-convex
regularizer, e.g., L? regularization. The sample sizes of Dy
and D, are often large, and stochastic algorithms are pre-

ferred for achieving better efficiency. As a result, the above
hyperparameter optimization falls into the stochastic bilevel
optimization we study in eq. (2), and we can apply the pro-
posed stocBiO here. Furthermore, Theorem 3 establishes
its performance guarantee.

6.1. Experiments

We compare our proposed stocBiO with the following base-
line bilevel optimization algorithms.

e BSA (Ghadimi & Wang, 2018): implicit gradient based
stochastic bilevel optimizer via single-sample sampling.

e TTSA (Hong et al., 2020): two-time-scale stochastic op-
timizer via single-sample data sampling.

e HOAG (Pedregosa, 2016): a hyperparameter optimiza-
tion algorithm with approximate gradient. We use the im-
plementation in the repository https://github.com/
fabianp/hoag.

e reverse (Franceschi et al., 2017): an iterative differen-
tiation based method that approximates the hypergradi-
ent via backpropagation. We use its implementation in
https://github.com/prolearner/hypertorch.

e AID-FP (Grazzi et al., 2020): AID with the fixed-point
method. We use its implementation in https://github.
com/prolearner/hypertorch

e AID-CG (Grazzi et al., 2020): AID with the conjugate
gradient method. We use its implementation in https:
//github.com/prolearner/hypertorch.

We demonstrate the effectiveness of the proposed stocBiO
algorithm on two experiments: data hyper-cleaning and
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Figure 4. Comparison of various stochastic bilevel algorithms on logistic regression on 20 Newsgroup dataset.
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Figure 5. Comparison of various stochastic bilevel algorithms on hyperparameter optimization at different corruption rates. For each
corruption rate p, left plot: training loss v.s. running time; right plot: test loss v.s. running time.

logistic regression. Due to the space limitations, we provide
the details of the objective functions and hyperparameter
settings in Appendix B.

Logistic Regression on 20 Newsgroup: As shown in Fig-
ure 4(a), the proposed stocBiO achieves the fastest con-
vergence rate as well as the best test accuracy among all
comparison algorithms. This demonstrates the practical
advantage of our proposed algorithm stocBiO. Note that
we do not include BSA and TTSA in the comparison, be-
cause they converge too slowly with a large variance, and
are much worse than the other competing algorithms. In
addition, we investigate the impact of the batch size on the
performance of our stocBiO in Figure 4(b). It can be seen
that stocBiO outperforms HOAG under the batch sizes of
100, 500, 1000, 2000. This shows that the performance of
stocBiO is not very sensitive to the batch size, and hence
the tuning of the batch size is easy to handle in practice.

Data Hyper-Cleaning on MNIST. It can be seen from Fig-
ures 5 and 6 that our proposed stocBiO algorithm achieves
the fastest convergence rate among all competing algorithms
in terms of both the training loss and the test loss. It is also
observed that such an improvement is more significant when
the corruption rate p is smaller. We note that the stochastic
algorithm TTSA converges very slowly with a large variance.
This is because TTSA updates the costly outer loop more
frequently than other algorithms, and has a larger variance
due to the single-sample data sampling. As a comparison,
our stocBiO has a much smaller variance for hypergradient
estimation as well as a much faster convergence rate. This
validates our theoretical results in Theorem 3.
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<" BSA g BSA
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Figure 6. Convergence of algorithms at corruption rate p = 0.2.

7. Conclusion

In this paper, we develop a general and enhanced con-
vergence rate analysis for the nonconvex-strongly-convex
bilevel deterministic optimization, and propose a novel al-
gorithm for the stochastic setting and show that its com-
putational complexity outperforms the best known results
orderwisely. Our results also provide the theoretical guar-
antee for various bilevel optimizers in meta-learning and
hyperparameter optimization. Our experiments validate
our theoretical results and demonstrate the superior perfor-
mance of the proposed algorithm. We anticipate that the
convergence rate analysis that we develop will be useful for
analyzing other bilevel optimization problems with different
loss geometries, and the proposed algorithms will be useful
for other applications such as reinforcement learning and
Stackelberg game.
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