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Abstract—Network bandwidth demand in datacenters is doubling every 12 to 15

months. In response to this demand, high-bandwidth network interface cards, each

capable of transferring 100s of Gigabits of data per second, are making inroads

into the servers of next-generation datacenters. Such unprecedented data delivery

rates on server endpoints raise new challenges, as inbound network traffic

placement decisions within the memory hierarchy have a direct impact on end-to-

end performance. Modern server-class Intel processors leverage DDIO technology

to steer all inbound network data into the last-level cache (LLC), regardless of the

network traffic’s nature. This static data placement policy is suboptimal, both from

a performance and an energy efficiency standpoint. In this work, we design IDIO,

a framework that—unlike DDIO—dynamically decides where to place inbound

network traffic within a server’s multi-level memory hierarchy. IDIO dynamically

monitors system behavior and distinguishes between different traffic classes to

determine and periodically re-evaluate the best placement location for each flow:

LLC, mid-level (L2) cache or DRAM. Our results show that IDIO increases a

server’s maximum sustainable load by up to �33.3% across various network

functions.

Index Terms—Cache, network, data direct I/O, datacenters
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1 INTRODUCTION

THE evolution of networking technology has led to network band-
width in servers approaching memory bandwidth and proper han-
dling of network traffic in memory hierarchy can noticeably affect
overall performance. Data Direct I/O (DDIO) technology [1], [5]—
introduced to address this challenge—allows the NIC to directly
write data incoming from the network in LLC, reducing memory
bandwidth utilization and drastically improving the performance
of latency-sensitive applications such as Virtual Network Func-
tions (VNFs). By default, DDIO uses two of the LLC’s ways for all
incoming network traffic, which we find generally works well, but
still leaves significant performance gains on the table.

We identify a number of DDIO shortcomings in multi-tenant
server environments, arising from the fact that all applications
using the network share the same limited number of LLC ways.
Even though the number of ways allocated for DDIO is configura-
ble, they still have to be statically defined. First, there is no number
of DDIO-allocated ways that is universally optimal [8]. Second, as
DDIO ways are shared by all co-running applications, interference
can significantly impact the performance of latency-sensitive appli-
cations, especially as the number of applications using DDIO

approaches the LLC’s limited associativity. The latest generation of
Intel server processors, which reduces the LLC associativity from
20 to 11 ways, further exacerbates this challenge.

Based on these observations, we argue that there is a need for
dynamic DDIO policies with differentiated network traffic place-
ment decisions among applications. We propose Intelligent Direct
I/O (IDIO) technology, a next-generation DDIO mechanism that
determines the placement of incoming data on per-application
basis. Motivated by the latest evolution of Intel servers’ cache hier-
archy, which shrinks the LLC but quadruples each core’s private
MLC, IDIO extends network data placement capability from the
LLC to each core’s MLC.

2 BACKGROUND AND MOTIVATION

2.1 DDIO Technology

As high-speed networking devices make inroads into the datacen-
ter market, the classical DMA approach of writing network data
into DRAM becomes a performance bottleneck for network-inten-
sive applications. DCA [5] has been proposed to alleviate this prob-
lem and improve network performance, by bypassing DRAM and
writing/reading data directly to/from the cache. Most of modern
Intel’s Xeon processors employ a DCA implementation called Intel
Data Direct I/O (DDIO) technology [1]. DDIO directly uses the
CPU’s LLC for data communication between I/O devices and pro-
cessors instead of detouring to DRAM, reducing both access
latency and memory bandwidth utilization considerably.

Without DDIO, a packet transmission (i.e., TX) operation evicts
the packet’s cachelines after forwarding data to the I/O adaptor,
under the legacy assumption that I/O operations are slow and
infrequent. In contrast, DDIO does not evict the cachelines corre-
sponding to data after TX, based on the insight that the same cache-
lines will be frequently reused with the high-speed I/O
technologies. Consequently, DDIO reduces the memory access
latency while serving much more read requests from the CPU and
the I/O adaptors without DRAM accesses. For packet reception
(i.e., RX), the I/O device directly writes data to the LLC without
transferring data to DRAM. Depending on the presence of the tar-
get address in the LLC, DDIO either write-allocates or write-
updates data delivered from the I/O devices in the LLC. As a
result, the CPU can access the data arrived from I/O devices with-
out detouring to DRAM, leading, again, to both reduced latency
and memory bandwidth usage.

DDIO restricts the number of LLC ways it uses, preserving LLC
capacity to avoid performance degradation of the running applica-
tions due to increased LLC pressure. The default number of LLC
ways allocated for DDIO varies by platform, but typically accounts
for 10–20 percent of the total LLC capacity. Furthermore, a system
leveraging DDIO relies on constructive sharing of the LLC between
the running applications and ongoing network traffic. The LLC size
and associativity are therefore parameters that play a key role in
DDIO’s effectiveness.

Starting with the Skylake microarchitecture, Xeon processors,
used predominantly in server platforms, introduced drastic
changes to the cache hierarchy. Compared to its predecessor,
Broadwell, the Skylake microarchitecture (1) reduced per-core LLC
size from 2.5 to 1.375 MB; (2) changed LLC’s inclusion policy from
inclusive to non-inclusive; (3) reduced the LLC’s associativity from
20- to 11-way; and (4) quadrupled the size of all private L2 caches
to 1 MB, to compensate for the downscaled LLC. These changes,
along with continuous bandwidth increase of network devices,
have significant implications on the performance and effectiveness
of DDIO technology. Reduced per-core LLC capacity means that
DDIO technology has less cache space to store ever-increasing
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inbound data from the network. This resource balance shift ampli-
fies the DMA leakage problem—network packets written in the
LLC by DDIO are evicted before their consumption by the applica-
tion—observed even on Broadwell when co-running several net-
work-intensive applications on the same server [8].

2.2 DDIO Limitations

In this section, we study DDIO’s memory and cache behavior to
demonstrate its shortcomings and highlight improvement oppor-
tunities targeted by IDIO. We focus our study on VNFs, which are
widely deployed in datacenter settings. Specifically, we use two
representative micro-NFs for our demonstrations: L3 forwarding
function implemented on top of DPDK (i.e., L3fwd:SIZE where
“SIZE” is the size of packets sent by the load generator) [3] and
iperf3 running on Linux kernel [2]. Since the L3fwd application, by
default, only touches the header of received packets, we modified
it to touch each packet’s entire payload to have a more general NF
memory access pattern. We run an NF and iperf on two cores and
a single core, respectively, and an LLC antagonist on the server’s
remaining cores. The LLC antagonist pollutes the LLC by writing
into a buffer and we control its intensity via adjusting the number
of cores. The experimental methodology is detailed in Section 4.

Fig. 1(left) illustrates how memory interference at LLC, intro-
duced by an application-antagonist, affects the performance of co-
running NFs. The X-axis is the LLC miss rate normalized to that of
running the NF without the LLC antagonist. The Y -axis plots the
NF’s maximum sustainable bandwidth normalized to that of run-
ning the NF without the LLC antagonist. Fig. 1(right) plots mcf’s (a
memory-intensive workload in SPECint benchmark suite) IPC
when co-located with L3fwd:1518B. The NF here plays the role of
the LLC antagonist and causes interference for mcf. The X-axis of
Fig. 1(right) is the normalized bandwidth of the NF.

Prior work has extensively studied the sensitivity of CPU appli-
cations [6] and NFs [4] to LLC interference. The key takeaway
points from our simple analysis are three. First, NFs with large
packet sizes are less sensitive to LLC interference. As Fig. 1(left)
shows, the bandwidth of L3fwd:1518B is insensitive to LLC inter-
ference, while L3fwd:64B’s bandwidth drops by �7% at 69 percent
normalized LLC miss rate. Second, different NFs have different
sensitivity to LLC contention. For instance, in our setup, iperf is
more sensitive than DPDK’s L3fwd and its bandwidth reduces by
�48% at 1:62� normalized LLC miss rate. Lastly, interference
between NFs and CPU applications goes both ways: a co-running
CPU application can be detrimental to an NF’s performance and
vice versa (see Fig. 1(right)).

In this work, we propose IDIO that leverages MLCs for better
inter-thread network traffic isolation and IO cache capacity boost.
Recent work proposed selective network data steering to private
L1 data caches [7]; we expect MLC steering to capture similar
latency and traffic isolation benefits while mitigating cache thrash-
ing concerns. The rest of this paper introduces IDIO, offering solu-
tions to the shortcomings of the DDIO.

3 IDIO ARCHITECTURE

IDIO makes dynamic decisions about each packet’s placement in
the memory hierarchy, improving DDIO’s flexibility in two dimen-
sions. First, instead of applying a fixed policy for all incoming
packets, IDIO applies differential treatment based on the per-
packet quality of service targets. Second, IDIO considers three
potential placements in the memory hierarchy: DRAM, LLC, and
MLC. IDIO continuously monitors network data movement in the
memory hierarchy and periodically adapts its placement decisions
per traffic flow accordingly.

Fig. 2 shows IDIO’s high-level architecture. IDIO introduces
two new components: a packet classifier and the IDIO controller.
In addition, we enhance tag arrays in the cache hierarchy to enable
network data tracking, essential for adaptive placement decisions,
and extend the MLC controllers to support MLC data injection.
The packet classifier resides in the NIC and determines each
incoming packet’s priority class, as well as destination core. The
on-chip IDIO controller constantly collects and monitors on-chip
statistics to adaptively determine the best placement for each traffic
flow. In the rest of this section, we detail the role and functionality
of each component, as well as the dynamic policy governing the
IDIO controller’s decisions.

3.1 IDIO Packet Classifier

IDIO implements a packet classification logic inside the NIC to
identify each incoming packet’s latency criticality by monitoring
their DSCP field. The DSCP (also known as ToS—Type of Service)
field can be set by the setsockopt function for each socket con-
nection and updated on the fly. DSCP can be used to distinguish
among requests with different latency criticality. IDIO distin-
guishes between two packet priority classes, batch and latency crit-
ical, to dynamically identify the best data placement policy for
each packet.

In addition, the packet classifier also identifies which core each
packet is destined to, which is necessary information to enable
effective MLC steering. IDIO’s packet classifier builds on existing
NIC support to determine each packet’s destination core. We lever-
age SR-IOV and Ethernet Flow Director to create several virtual
NIC ports (vPort) and pin them to network sockets created on each
core using Application Device Queue (ADQ) [9]. To transfer the
metadata extracted by the packet classifier on the NIC to the on-
chip IDIO controller, we embed them within each DMA request
by leveraging the reserved bits inside the PCIe’s Transaction Layer
Packet (TLP) headers.

3.2 IDIO Controller

We have one IDIO controller per PCIe root complex and each
IDIO controller controls the data flowing from the vPorts con-
nected to its PCIe bus. The role of the IDIO controller is to dynami-
cally decide where to place the inbound network traffic: DRAM,
LLC, or a core’s MLC. The Decision Engine in Fig. 2 is the

Fig. 1. Sensitivity analysis of network-intensive and memory-intensive applications
to LLC interference. Fig. 2. IDIO overview.
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controller’s entity making these placement decisions. The IDIO

controller maintains a set of counters per physical core i: data-
RXCounter[i] counts the amount of network data (cachelines) des-
tined for core i; prefetchedMLCCounter[i] counts the amount of
network data that is prefetched to core i’s MLC; DRAMWritebacks
[i] tracks the amount of network data destined for core i that is
directly written back to DRAM; IOAccessCounter[i] counts the
amount of network data read through DMA and hits inside the
LLC. Network data residing in the LLC are distinguished by an
added IDIO bit.

The Decision Engine determines data placement after taking
several inputs into account: the aforementioned per-core counters,
additional counters inside each MLC controller (Section 3.3), as
well as criticality and header/payload information embedded
inside each DMA request. We detail the IDIO controller’s data and
control plane in Section 3.5, after introducing all the remaining
supporting hardware components.

3.3 MLC Controller

The MLC (L2 cache) controller implements a prefetcher logic that
takes prefetch hints from the Decision Engine and sends prefetch
requests to the LLC. These prefetch hints are the mechanism IDIO

employs to steer incoming network data to MLCs, when deemed
appropriate. Each MLC controller maintains two counters to keep
track of the number of missed accesses to packet payloads (coreAc-
cessCounter), and number of hits to prefetched packet payloads
(hitMLCCounter).

3.4 LLC and MLC Extensions

IDIO extends the LLC and MLC tag arrays with an IDIOtag bit per
cacheline that indicates whether the corresponding cacheline stores
a network packet’s payload. All packet payloads DMA’ed over
PCIe and through the IDIO controller into the cache hierarchy
have the IDIObit of their corresponding cacheline set. The IDIO

tag’s value is set in the LLC when the cacheline is first written by
the IDIO controller, and is carried into the MLC if the cacheline is
moved from the LLC to the MLC by an MLC controller’s prefetch
request. The MLC controller uses the IDIO tag to distinguish
cachelines brought to MLC by its own prefetch decisions as
opposed to demand accesses from the CPU.

3.5 Dynamic Data Placement Policy

The IDIO controller determines the destination of each DMA
request by taking three inputs into account: (i) data criticality
(DMA write request classified as either “batch” or “latency crit-
ical”); (ii) the amount of untouched network data inside the cache
hierarchy; and (iii) whether the DMA request contains a packet
header or payload.

MLC data placement can be attractive for a couple of reasons,
especially for the latest Intel Xeon Scalable processors, which
scaled down the LLC size and quadrupled the MLC size, resulting
in comparable LLC and MLC sizes per core. Because the LLC is
non-inclusive of the MLC, injecting network data directly to MLC
as well can approximately double the space that can be used for
network data. In addition, MLC’s lower (�4 ns versus 20 ns) and
more predictable (private access versus shared NUCA) access
latency can improve the performance of network-intensive latency-
sensitive applications.

MLC data injection is only constructive if the core consumes the
injected data before it is evicted from the MLC. The size of a net-
work packet header is less than 64 Bytes and thus fits in one cache-
line of typical size. Considering a network ring buffer size of 1,024,
the maximum capacity that is occupied by injecting packet headers
to MLC is 64 KB, which is �6% of a 1 MB MLC. Due to the moder-
ate capacity requirement and latency criticality of headers, IDIO
always injects the header of received packets to MLC. This decision

also resonates well with demanding NF applications that most ben-
efit from DDIO, as most NFs only operate on the header of received
packets without touching the payload.

Each DMA request carries key metadata set by the on-NIC
IDIO packet classifier (Section 3.1): isLatencyCritical, isHeader, and
destCore, which indicate if the DMA request belongs to a latency
critical application, if it contains a packet header, and the target
physical core for the received packet, respectively. The IDIO con-
troller keeps a two-bit status register for each physical core that
indicates the memory-level destination (MLC, LLC, or DRAM) for
incoming DMA requests carrying packets destined for that core. If
status[destCore] is MLC, then IDIO sends prefetch hints to
destCore’s MLC. If status[destCore] is LLC or the DMA request is
latency critical, IDIO write-allocates the data inside the LLC.
Finally, if status[destCore] is DRAM, data is directly DMA’ed into
DRAM, bypassing the LLC.

The IDIO controller resets the value of status registers every
1 ms. Each core’s status register is initialized to LLC. The IDIO con-
troller calculates the amount of untouched prefetched data in each
MLC by reading the hitMLCCounter value from each MLC control-
ler and subtracting it from prefetchedMLCCounter. If this number
exceeds a threshold, IDIO changes that core’s status from MLC to
LLC. We set the default value of that threshold to 10 percent of the
MLC’s capacity.

Our experimental results show that the average depth of an
NF’s circular buffer is less than 30 packets across different packet
sizes. Based on this observation, we anticipate that in the common
case, IDIO will always inject received network data to the MLC
regardless of the application type since the descriptor ring depth in
a stable state is shallow. Thus, IDIO’s default policy is to keep all
the on-the-fly packets inside MLC with moderate MLC capacity
overhead. IDIO only sends received packets to LLC (or DRAM) in
special situations where the CPU does not use packets’ payload
(e.g., an IP forwarding NF) or there is a temporal spike in the net-
work load and/or core’s service time (due to page faults, cache
misses, interrupts, etc.).

To assess the benefit of caching packet payloads, IDIO calcu-
lates the amount of data that is sent to the processor (not DRAM)
but not touched by the destination core or a network device. If data-
Usage is low (less than 10 percent of the data received from the net-
work), then it is not beneficial to place data inside LLC (neither
MLC, obviously) and status is changed to DRAM. If dataUsage
exceeds 90 percent, IDIO changes status to MLC again. High data-
Usage suggests that injecting packet payloads to MLC can increase
application performance. To ensure that IDIO doesn’t get stuck
into sending payloads to DRAM if the application transitions to a
new phase where it benefits from placing payloads inside LLC or
even MLC, IDIO opportunistically sets status to LLC after sending
payloads to DRAM for 10 ms.

4 EVALUATION

Methodology. For the sensitivity analysis in Fig. 1, we use two serv-
ers each equipped with an Intel Xeon Gold 6134 processor with 8
cores (16 threads), 24.75 MB LLC, and two DDR4-2,400 memory
channels. The servers are connected to each other using four dual-
port 10 GbE Intel NICs. We use SR-IOV to run multiple DPDK
applications (NFs) on one server. On the second server, we deploy
several instances of a DPDK packet generator (pktgen) application
that send requests to the first server’s NFs.

We implement IDIO in gem5 bare-metal full system simulator
and deploy a minimal operating system that performs memory
allocation, synchronization primitives, and networking. We simu-
late a scaled-down CPU, featuring two cores and a proportionally
downsized LLC, provisioning 1.8 MB/core for a total of 3.6 MB
and 16 ways associativity. This setup is sufficient to study the
effects of in-bound network packet placement within the cache
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hierarchy, while taking into account the effects of interference
between co-located applications with different characteristics. We
plug a load generator into the gem5’s NIC model that generates
requests following exponential inter-arrival time distribution and
configurable burst size.

We evaluate IDIO using six NFs: (i) IP forwarding (IPF)
receives a request from the network, copies the packet to a new
buffer, performs murmur hash on the header, and transmits the
packet over the network; (ii) IPF with zero copy (IPFz) does not
copy the received packet into a new buffer; (iii) IPFz without
packet transmission (IPFzRX) terminates the request’s processing
after consuming the received data inside the NF; (iv) Deep Packet
Inspection (DPI) receives a request from the network, copies the
packet to a new buffer, performs murmur hash on the entire packet,
and transmits the packet over the network; (v) DPI with zero copy
(DPIz); and (vi) DPIz without packet transmission (DPIzRX). These
micro-NFs model the general behavior of the majority of NFs run-
ning in datacenters. Furthermore, we also evaluate IDIO using
iperf and memcached.

Experimental Results. We compare the performance of IDIO

against inbound network data placement inside DRAM, LLC, and
MLC, which we refer to as static configurations. Fig. 3 shows the
99th percentile response time of NFs running on a server deploying
three static configurations (DRAM, LLC, MLC) and IDIO. Although
baseline DDIO (LLC configuration) technology is effective in signif-
icantly reducing memory bandwidth utilization, we observe that it
has very little impact on the tail latency of NFs running on an iso-
lated server. On the other hand, MLC and IDIO are very effective in
reducing tail latency and improving the server’s Maximum Sus-
tainable Load (MSL). We define MSL as the load level at the knee
of 99th percentile response time versus load graph. Across differ-
ent NFs, IDIO and MLC both increase MSL by 20.0, 30.8, 28.0, 33.3,

14.3, and 27.9 percent for IPF, IPFz, IPFzRX, DPI, DPIz, and
DPIzRX, respectively.

Table 1 compares iperf bandwidth and memcached queries per
second (QPS), normalized to MLC, for different network data place-
ment policies. IDIO clearly outperforms LLC and DRAM place-
ment and is comparable to MLC placement, performing within 4
and 1 percent for iperf and memcached, respectively. Both Fig. 3
and Table 1 seem to indicate that MLC forwarding is always a
good idea. However, depending on the NF’s memory access pat-
tern, we expect static MLC forwarding to result in MLC thrashing,
on-chip interconnect interference, and increased power consump-
tion. As future work, we aim to study more complex NF and CPU
application scenarios under static DDIO and IDIO configurations.
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TABLE 1
iperf and Memcached Performance Results

benchmark DRAM LLC MLC IDIO

iperf normalized bandwidth 0.68 0.66 1 0.96
memcached normalized QPS 0.87 0.95 1 0.99
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