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SAMPLING FROM ROUGH ENERGY LANDSCAPES*

PETR PLECHACT AND GIDEON SIMPSONY

Abstract. We examine challenges to sampling from Boltzmann distributions associated with
multiscale energy landscapes. The multiscale features, or “roughness”, corresponds to highly oscillatory,
but bounded, perturbations of a smooth landscape. Through a combination of numerical experiments
and analysis we demonstrate that the performance of Metropolis adjusted Langevin algorithm can be
severely attenuated as the roughness increases. In contrast, we prove that random walk Metropolis is
insensitive to such roughness. We also formulate two alternative sampling strategies that incorporate
large scale features of the energy landscape, while resisting the impact of fine scale roughness; these
also outperform random walk Metropolis. Numerical experiments on these landscapes are presented
that confirm our predictions. Open questions and numerical challenges are also highlighted.
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1. Introduction
In this work, we consider the task of sampling from a Boltzmann distribution,

plde) = 2 e PV@dy 7z = /e—ffv@dx, V:R" - R, (1.1)

when V is, in some sense “rough”, or “rugged”. We are particularly interested in
multiscale landscapes of the form

Ve(z) = Vo(z) + Vi(z,xz/e), €>0. (1.2)

Here, V} is a smooth, long range, trapping potential (Vp(z) — oo as |z| — oo) that is
bounded from below, and V; is bounded with local short wavelength features. Vi(x,y)
will also be assumed to be smooth. An example of such a rough landscape, and its impact
on the associated distribution, is shown in Figure 1.1. Model potentials like (1.2) serve
as prototypes for rough and multiscale landscapes found in disordered media and soft
matter, [1-5]. The goal of the present work is to assess how such roughness impacts
the performance of well known Markov chain Monte Carlo (MCMC) sampling strategies
like random walk Metropolis (RWM) and Metropolis adjusted Langevin (MALA).

We recall that RWM and MALA generate samples for e #V(*) with proposals’

RWM:X]S+1 = Xy + V ﬁ_10€k+17 gk-‘rl ~ N(07 I)a (13)
MALA: XP | = X — SVV(X3) + VB 10841, &1 ~N(O D).  (14)

These proposals are then accepted or rejected with the appropriate rule to ensure de-
tailed balance with respect to pu(dz) oc e #V (@) dz.

As an example, sample MALA paths with o = 1 for the landscapes in Figure 1.1
are shown in Figure 1.2. A path for the smooth landscape exhibits better mixing than
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Fic. 1.1. In (a), we see a smooth multimodal energy landscape. In contrast, the landscape in (b),
is rough, with many internal energy barriers. The underlying potentials are Vo(z) = (22 — 1)% and
Ve(z) = Vo(x) + é cos(z/e) with e = 0.01 and B =15 (color online).
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Fic. 1.2. Sample paths corresponding to the energy landscapes in Figure 1.1. The samples were
generated using MALA with o =1 (color online).

the one for the rough landscape. On the rough landscape the trajectory stagnates.’
This begs the question of whether or not o = 1 was merely a poorly chosen value —
perhaps with a different value the rough landscape would also be efficiently sampled.
Large values of o result in proposals with greater magnitude, but few will be accepted,
and the trajectory will move slowly. Conversely, small values of o produce more readily
accepted proposals, but their size limits exploration of the state space. Consequently,
an optimal choice of ¢ is anticipated for each distribution.

Assuming we tune our sampler to the optimal o for each V. we seek to assess how €
impacts sampling performance. In this work, optimality, at a fixed value of € and at a
fixed dimension, will refer to maximization of some measurement of mixing, discussed
below over the set of numerical parameters, i.e. ¢ in the case of MALA. Ultimately, our
work indicates that even at the optimal value of proposal variance, MALA will cease to
be effective as € — 0. In contrast, even a poorly tuned RWM sampler remains robust
in the e — 0 limit.

In a “global” sense, robustness refers to the stability of the mixing and asymptotic
variance properties of the chain as e vanishes. This can be quantified through the

2Stagnation corresponds to persistent rejection of proposals.
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spectral gap of the transition operator 7 of a given MCMC method?

Gap(T)=1— sup A=1-A. (1.5)
Aea(T)H)\{1}

The gap controls both the mixing of the process and the time-averaged variance con-
stant, [6]. In particular, if the gap vanishes (A — 1), then the mixing collapses and
the variance bound explodes. The relationship between the gap and these quantities is
given below.

Experimentally accessible measurements of mixing can be found by looking at ob-
servables. In particular, we consider the mean square displacement of the chain in
stationarity. If this remains positive in the ¢ — 0 limit, it provides a “local” (in the
sense of a single observable) notion of robustness. In addition to being straightforward
to estimate through simulations, the mean squared displacement provides an upper
bound on the spectral gap.

To obtain better performance than RWM, we also formulate two related sampling
strategies that incorporate information about the large scale (i.e. long wavelength)
features of the energy landscape through V; in (1.2). Indeed, our results, particularly
Theorem 2.1 and Corollary 2.1 show that for potentials that can be decomposed as in
(1.2) with Vy smooth and trapping and V; rough but bounded, if the proposal of the
sampling strategy is e-independent, then the performance of the method will also be
e-independent.

1.1. Review of prior work

The question of optimizing o to maximize performance was initially examined in
[7,8] and has been subsequently studied in other works, including [9-17]. Many of these
works consider an energy landscape of the type

n

Vo) => v(@:), == (1,...,2,) €ER™. (1.6)

i=1

This choice of the potentials induces Boltzmann distributions that are products (for
brevity, we take 8 = 1):

p(dx) He_”(”")dwi. (1.7)

i=1

Thus, coordinates only interact through the accept/reject step of the method. Some

results for potentials other than (1.6) have also been obtained. In [9], the authors treat

distributions which have a density e~ ®*) with respect to a product measure (1.7). In

earlier works, [7-9], it was often assumed that whichever sampler is studied, the process

is in stationarity. This has been relaxed in the more recent results, [10-13,16,17].
Some of our results will also specialize to the rough analog of (1.6),

Ven(@) = vo(w) +vi (i, mi/e) . (1.8)

i=1

=ve(xi)

As in the case of (1.2), we assume vg is trapping while vy is uniformly bounded. Both
vo(z;) and vi(x;,y;) are assumed to be smooth functions.

3Some authors refer to (1.5) as the interval, Int(7"). In [6], Gap(T) is instead defined as 1 —sup |A|.
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In the case of (1.6), in stationarity, the performance can be measured by considering
the mean square displacement (MSD)

MSD,, = E,,[| X511 — Xi|?]. (1.9)

The strategy of [9] is to use the MSD as a proxy for mixing, and o is selected to maximize
it in the limit of n — oo. Indeed, this leads to the results that, as n — oo,

MSD,, /n = n~a(t;v) + o(n™!), I>0, (1.10)

where I and a both depend on the method, but not on the dimension n. The choice of
o is then related to ¢ by

o? =0n~! (1.11)

The function a is the mean acceptance rate in the n — oo limit, [18].
Consequently, we can maximize this measure of performance as n — oo by solving

¢, = argmax (*a(l;v). (1.12)
¢

The optimal o, is inferred from (1.11), and there is an associated optimal acceptance
rate, a({y). This optimization provides a strategy for tuning the value of o to achieve the
optimal acceptance rate approximately 23% for RWM. Analogously, one tunes MALA
to have a 57% acceptance rate, [7,8], and Hamiltonian Monte Carlo (HMC) to have a
65% acceptance rate, [15].

For RWM I = 1 while it is I = 1/3 for MALA. The function a has the explicit form

a(t;v) = 20 (-”2/1 /C[@) , (1.13)

with K a functional involving derivatives of v; ® is the standard normal (N(0,1))
cumulative distribution function. A similar result holds for HMC, [15].

There are caveats to applying these results in practical computations, [19]. In
particular, the results are obtained as n — oo for distributions of form (1.7), and often
assume the process to be in stationarity. Many distributions of interest will not be of this
form, so target acceptance rates, like 23% for RWM, may be inappropriate. However, in
the recent work [20], it was demonstrated that for a more general class of distributions
than (1.7), 23% remains the optimal acceptance rate for RWM.

We mention these results because they motivate certain aspects of this work, such
as the examination of product measures and the examination of MSD,, as a proxy for
mixing. However, we emphasize that this work is focused on problems at fixed n, letting
€ — 0. The preceding results can provide guidance in the ¢ — 0 limit, but they would
necessitate first taking n — oo.

We also highlight the recent work in [10] which studies “ridged” densities associated
with potentials of the form

Vo(z) = Vo(z1) + Vi(z1,22/€), o= (21,72) € R"="1F72, (1.14)

Here, roughness is only present in a subset of the degrees of freedom (z3). Examining
RWM for such a problem, the authors are able to derive a limiting diffusion from which
they can find an optimal step size. This limiting diffusion has a state dependent diffusion
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coefficient. Both the drift and diffusion coeflicients are nontrivial requiring averaging
against the rough degrees of freedom.

Related to the work on ridged densities, and the present work, is [21]. In this work,
the authors consider the case that one of the coordinates is scaled differently than the
others. This would correspond to a potential like

V() = V(a1 /e, 22,...,2,), x€R™ (1.15)

In [21] the authors also look for algorithms that are less sensitive to length scale varia-
tions in the gradients. They obtain results on MALA and HMC showing poor behavior
in the ¢ — 0 limit. An important tool that they use in their analysis is the Dirichlet
form and its relationship to the spectral gap; we, too, make use of that approach.
Another relevant work is [22]. There, the authors sought to perform gradient based
sampling on non-differentiable energy landscapes and proposed using a Moreau-Yosida
regularization. This approach is related to one of the mechanisms that we propose in
order to overcome roughness, though our potentials are smooth, but highly oscillatory.

1.2. Measures of performance and notions of robustness. As mentioned,
the key metrics that we use to assess performance are the spectral gap, (1.5), along with
the MSD, (1.9). We recall the relationships amongst these quantities, [6,21]. First, the
relaxation to the equilibrium in the total variation (TV) and the time-averaged variance
constant (TAVC) are controlled by A and Gap(7):

Jim Lo lpoT* — iz < log A = loa(1 ~ Gap(T), (1.16)
k—1

tim 2 var, [ 3700 | < 2 Var(rx) = 2282 v r(xy), (117)
3=0

k—oo k

1—A Gap(T)

for an initial distribution with dpg/dp € L?(u) and any function f € L?(p). Conse-
quently, if Gap(7) — 0, mixing ceases and there is no upper bound on the TAVC. On
the other hand, if the gap remains positive then there is a priori bound on the TAVC.
Due to the inequality in (1.16) a positive spectral gap does not imply a lower bound on
mixing.

A key relationship is between spectral gap and the Dirichlet form

inf  1E,[f(Xes1) — f(Xp)P]=1—  sup A= Gap(T), (1.18)
feLg(w) eo(TO\{1}

where L3 ; (1) is the subset of mean zero, unit variance functions in L?(u). An elemen-
tary computation reveals that this is equivalent to

Bk — A
Gan(T) = ol = a7 0)) (1.19)

Consequently, for any square integrable function, if we can estimate the term on the
right-hand side of (1.19), we have obtained an upper bound on the spectral gap. This
allows us to use (1.9) as a proxy for the gap; if we find, numerically, that MSD,, — 0
as € — 0, that is strong empirical evidence that Gap(7¢) — 0 too. Again, due to
the infimum in the Dirichlet form, positivity of the one step jumping distance of any
observable, including MSD,,, does not imply positivity of the gap.
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We thus formalize two notions of robustness. Our robustness criteria for a method
with a transition operator 7. for sampling the Boltzmann distribution of potential V,
are

Global Robustness Criterion: lim i(I)lf Gap(7Te) > 0, (1.20)
e—
MSD,,
Local Robustness Criterion: lim inf _MSD,,_ > 0. (1.21)

e=0 2 Var,(X)

Analogous robustness conditions can be constructed for other observables. Failure to be
locally robust immediately implies the method cannot be globally robust. Likewise, a
globally robust method automatically implies local robustness. However, there may be
distributions and methods for which, on a particular observable, the method is locally
robust, but for which it fails to be globally robust.

In (1.20) and (1.21), no mention is made of the choice of the numerical parameter
0. Some methods may fail to be robust if ¢ is not chosen carefully. Thus, we introduce
two conditional notions of robustness that depend on o

Global Robustness Criterion with Optimal o: lim iglf sup Gap(7c(o)) >0, (1.22)
€E— o

MSD,,
Local Robustness Criterion with Optimal o: liminf sup M
e=>0 5 2Var,(X)

>0. (1.23)
These notions generalize to methods with additional numerical parameters. Obviously,
if a method fails to satisfy (1.22), it will fail to satisfy (1.20). Conversely, if the method
satisfies (1.20), then it will also satisfy (1.22). Analogous relationships can be formulated
for local robustness.

1.3. Results on performance in the presence of roughness. Our key
observations and results are:

(i) At a fixed dimension n, the performance of RWM for potentials of the form (1.2),
is globally robust in the sense of (1.20). This is a consequence of Corollary 2.1. In-
deed, any method that uses e-independent proposals will similarly satisfy (1.20).
Proposals with a sufficiently mild e-dependence will also be robust; see Corol-
lary 2.3. The methods need not be optimally tuned for (1.20) to hold.

(ii) A rigorous result is established that, subject to certain assumptions, MALA fails
to be globally robust when o is inadequately scaled for potentials like (1.8). This
is the content of Theorem 2.3. Specifically, when o is too large relative to e, the
spectral gap will close.

(iii) Numerical experiments and an explicit example indicate that for n = 1, the optimal
scaling of MALA is o x /€, so that MSD;  e. In contrast, for n sufficiently large,
the empirical optimal scaling is o €, so that MSD,, /n o €2.

The experiments also indicate that MALA is not locally robust even at an empir-
ically determined optimal &, (1.23). Thus, the method suffers generically in the

e — 0.

(iv) We formulate two alternative methods for potentials of type (1.2) that use large
scale information contained in Vj. The first method, which we call Modified MALA,
uses the proposals (at 5 =1)

XD,y = Xi — G VVo(Xy) + 06k (1.24)



P. PLECHAC AND G. SIMPSON 2277

This method fits in the class of sampling methods studied in [15] where the authors
rigorously established that for the path-wise accuracy of Metropolized integrators
it is sufficient to accurately simulate the diffusion term, which (1.24) does.

The second method, we call an Independence Sampler, uses proposals (at 5 =1)

XPoy =Yg ~ e 0@z, (1.25)

The Y}, samples are assumed to be independent, generated by an auxiliary process.
Both of these methods are also insensitive to the roughness and outperform RWM.
As both of these methods use e-independent proposals Corollary 2.1 allows us to
conclude they will also be globally robust in the e — 0 limit.

(v) For potentials that do not admit an obvious decomposition like (1.2) we propose
using local entropy approximation, [23,24] to extract the large scale information
needed for either the Modified MALA method or the Independence Sampler.

In Section 2 we identify a bound on the performance of RWM and other algorithms,
and we consider the asymptotic behavior of MALA as € — 0. In Section 3 we present
alternative methods that are also robust to € — 0. Numerical experiments are presented
in Section 4, and we conclude with a discussion in Section 5.

2. Bounds on performance

In this section we present bounds on performance with respect to the robustness
criteria. For any MCMC method, let g(z — y) denote the associated proposal kernel,
and define

q(y = x)

R(z,y) =V(x) — V(y) 4+ log ——. 2.1

(@) = Vi) = V() + log A0 (21)

Consequently, the proposal XP is accepted with probability F(R(X,,,XF)). The two
forms of F' that we consider here are

Metropolis:  F(r)=1Ae", (2.2a)

Barker: F(r)= (1+e )% (2.2b)

2.1. Roughness independent bounds. For potentials of type (1.2) one can

obtain e-independent upper and lower bounds on a variety of quantities. Indeed, by the
boundedness assumption in the introduction, we are assured that

osc Vi = sup Vi (z,z/e) — inf Vi (z, 2 /€) < 0. (2.3)

Our main results in this subsection are the following:

THEOREM 2.1. Let Ve be a potential of type (1.2) and assume Vi has uniform in
€ bounded oscillation in the sense of (2.3). If the sampling strategy uses proposals
q(x — y) that are e-independent, then for any f, the one step jumping distance is
bounded by € independent constants:

e 20ViE (1 F(Xps1) — F(Xi)I2] < Bl (Xnsn) — F(Xk)
< e2och1]EH0[|f(Xk+1) — f(Xk)|2] (2.4)

?]

In (2.4), po(dz) oc e V0@ g,

A corollary to this result provides € independent bounds on the spectral gap:
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COROLLARY 2.1. Under the same assumptions as Theorem 2.1
—3o0scVq 3o0sc Vq
e Gap(7o) < Gap(Te) < e Gap(7o) (2.5)
where Ty is the transition operator of the method with proposals generated by q sampling

Ho-

REMARK 2.1. We emphasize that these results, and the results in the rest of Sec-
tion 2.1, are all at a fixed dimension n. Constants, like e*2°¢V1 in (2.4), may depend
in an unfavorable way on n. Additionally, Theorem 2.1 and Corollary 2.1 hold indepen-
dently of the choice of any numerical parameters, like o in RWM.

To prove Theorem 2.1 and its corollary, we first prove the following bounds on the
distribution.

LEMMA 2.1. Let Vi be a potential of type (1.2), and assume Vi has uniform in €
bounded oscillation in the sense of (2.3). Then

e~ Vi (da) < p(de) < Vs pg(de) (2.6)
Proof. The proof of this follows from direct estimates on the densities. First,

Z—le—V(z) > Z—le—Vo(x)e— sup Vi (z,z/¢€)

while

7 = /e—V(x) < /e—Vo(z)d$e—ian1(m,x/e)

[ —
EZO

As an immediate consequence we have bounds for the mean.

COROLLARY 2.2.  Let V. satisfy the same assumptions as in Lemma 2.1. Then for
any non-negative observable, f, which may depend on a small parameter €,

e VB, [(X)] < By[f(X)] < €V, [[(X)]. (27)

Similarly we obtain bounds on the variance.

LEMMA 2.2. Let V. satisfy the same assumptions as in Lemma 2.1. Then L*(n) and
L?(uo) are equivalent as sets, and

e” V1 Var,,, (f(X)) < Var, (f(X)) < €Y Var,, (f(X)). (2.8)
Proof. For f € L?(u1), Lemma 2.1 ensures

emose / £ o (dr) < / f(@)?u(dz) < .

Hence, f € L?(ug) too and L?(u) C L*(po). A similar computation shows the reverse
inclusion. Next, for f € L?(p), let f.(z) = f(z) — E,, [f(X)]. Then, using Lemma 2.1
again,
Var, (f(X)) = Var,(fe(X))
= Eufe(X)?) = Bu[fe(X)]” < Ey[fe(X)?]
< e VB, [fo(X)?] = €V Var, [f(X)].
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Reversing the roles of p and pg establishes the analogous lower bound in (2.8). |

REMARK 2.2.  For potentials satisfying the assumptions of the preceding results, it
will often be sufficient to examine E,,[|f(Xy+1) — f(Xx)|?] since a prior bound on the
variance is provided by Lemma 2.2.

Proof. (Proof of Theorem 2.1.) Given potential V = Vj + V; of the form (1.2)

satisfying the assumptions:

e*VO(y) €T
R(z,y) = (V(z) — Vo(a)) — (V(y) — Vo(y)) +log ( qly — )) .

e”"og(z — y) (2.9)
Vi(z,2/e€) Vi(yy/e)
Ro(z,y)
Since osc V; is bounded,
Ro(z,y) +osc Vi > R(z,y) > Ro(z,y) — osc Vi. (2.10)
Consequently, for either choice of (2.2),
e ' F(Ro(x,y)) 2 F(R(z,y)) > e~ V" F(Ro(z,y)). (2.11)

Since the proposal, ¢(z — y), is also assumed e-independent, then, for any Xj,
Epullf(Xis1) = F(Xi)] = Eullf (XP4) — F(Xk)PF(R(X, XP11))]

> " P VEL [ f(XP,0) — f(Xk)PF(Ro(Xk: XP 1))

Eu[|f(Xk+1) - f(Xk)m <e™ VIE#[|f(XIS+1) - f(Xk)|2F(RO(kaXIS+1))]- (2-12]3)

(2.12a)

In the preceding upper and lower bounds on E[|X; — X¢|?], no € is present. If we now
apply Lemma 2.1 to the upper and lower bounds in (2.12), we obtain (2.4). d

Corollary 2.1 follows from the theorem and Lemma 2.2.
Proof. (Proof of Corollary 2.1.) For any non-constant f,

EM“f(Xk-i-l) - f(Xk)|2] < e3OSCV1 EMOHf(Xk-l-l) - f(Xk)|2]
2 Var, (f(X)) = 2Var,, (f(X))

Taking the infinum over L?(u),

Gap(’ﬁ) < 63och1 inf EI—LOHf(Xk+1) B f(Xk)Iz]

_ 30ch1G T .
releGo 2 Var (f(X)) ‘ ap(7o)

This last equality is due to L?(u) and L%(uo) being equivalent as sets. An analogous
computation establishes the lower bound. 0

Theorem 2.1 and Corollary 2.1 immediately apply to RWM, as it has a proposal
independent of €. Consequently, for RWM,
MSD,, = E,,[| Xj41 — Xi|?] ~ 0.

In contrast, as MALA proposals include gradients of the potential, for potentials of the
form (1.2), these results will not apply.
The results can be modified to allow for proposals that have some e dependence:
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THEOREM 2.2. Let V; be a potential of the type (1.2), and assume Vy has bounded os-
cillation, uniformly in €, in the sense of (2.3). Assume the sampling strategy’s proposal
kernel, g(x — y), satisfies the inequality

Cqo(r = y) < q(z = y) < Dgo(z — y), (2.13)

where qo(x — y) is an e-independent proposal kernel. Then the performance, as mea-
sured by MSD,,, is e-independent:

e—205cV1%EILOHf(Xk+1) — F(Xo) ) B[ f(Xit1) — F(X2))?]

< DR, (1K) ~ FXOP). (2.14)

Proof. As in the proof of Theorem 2.1, we begin by writing

e—Vo(y) T
Rz, y) = (V(2z) = Vo(z)) = (V(y) = Vo(y)) + log (W)

De™ VO(“)Q()(:Z/—)x)
C e Vo@gy(z—y

<%@—%@+m(

D
< osc Vi +log —

C + RO(xay>

Analogously,
C
R(z,y) > —osc Vi + log ) + Ro(x,y).

Consequently, for a function f,

Epllf(Xis1) = f(X0)PP] < e°s°v‘ Eull f(XR41) = F(Xi)*F(Ro (X, X))
Eu[lf (X1 — F(Xp)[] = €7 Vl Eu[lf(XP 0 — F(X0)PE(Ro (X, XP 1))
Using Lemma 2.1 yields the result. ]

An analog of Corollary 2.1 can then be established, which we present without proof:

COROLLARY 2.3. Under the same assumptions as Theorem 2.2,

e—3osc i c Gap(%) < Gap(T) <e 3OSCV1 C Gap('ﬁ)) (215)

A method where Theorem 2.2 would apply is the tamed (or truncated) MALA,
[25-27]. Given a parameter ¢ > 0, one form of the tamed MALA (at 8 =1) is

2 VV(X
X]5+1 Xk - g ( k) )|) +Ufk+17 €k+1 ~ N(O,I) (216)

21V (8|VV (X,
This has the effect of ensuring that the gradient term is never larger than 1/J, mitigating

stiff regimes of the state space.

COROLLARY 2.4. The performance, as measured by the spectral gap, of the tamed
MALA on potentials of the type (1.2), is insensitive to e.
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Proof. For the tamed MALA as implemented in (2.16), let

VV(Xk)

1Xe) =~y GV

Then its proposal density is

q(x%y)Mexp{f#h/fxf";fg(mﬂ?}. (2.17)
Since |fs(z)| <671,
2y —af — gz <ly—2— S hs@)* <2y — 2P+ &= (2.18)
Setting
qo(w%y)uexp{—%\y—xﬁ}, (2.19)

we have that the tamed MALA proposal kernel satisfies

e 22 qp(x — y) < glx = y) <e2?go(z — y). (2.20)

Thus, Corollary 2.3 applies. ]

2.2. Optimal proposal variance for MALA. Next, we perform a formal cal-
culation on the performance of MALA with respect to proposal variance o and roughness
€. Though this does not lead to any immediate conclusions, it may guide future analysis.

We define M (o) to be the MSD,, obtained with o, assuming stationarity,  ~ p,
with the Barker rule, (2.2b). Thus, the optimal value of o can be obtained by solving
M’ (o) = 0. Proceeding with this strategy we have

M(o) = / & — yPF(R(z, y:0))g(y: 2, 0)dypu(dz), (2.21)

where ¢ is the Gaussian density of the normal distribution N(z — ";VV(JE)7 o%I) and
u(dz) is the Boltzmann distribution.

PROPOSITION 2.1. At a critical point of (2.21), where M'(c) =0,

4
g
0= Elfe- yPF2VV (@)]?] +0*nEllz — yF] ~ Ellz — y|*F), (2.22)

=A =M =C

or
-1

o2 =2

el =) +tG (2.23)

nM nM\? 24
+ -
While this is a formal calculation, it does not require any particular assumptions on
the potential beyond the associated distribution being normalizable and having the
necessary moments.

Proof. See Appendix A for the derivation of (2.22). The expression (2.23) follows
by solving for o2. ]



2282 SAMPLING FROM ROUGH ENERGY LANDSCAPES

2.3. Insights from the high dimensional limit. We recall from the intro-
duction that for product distributions such as (1.7), as n — oo, the MSD,, per degree
of freedom is given by (1.10). Here, we consider the n — oo limit at fixed €, and then
examine the impact of the roughness through e. This corresponds to a consideration
of the order lim._,qlim,,_,o,. Elsewhere in this manuscript, we focus on fixed n while
letting € — O.

The optimal ¢ for (1.10) can be found using (1.12) and (1.13). From (1.11) we
can then find the optimal choice of o and obtain the scaling of the MSD,, /n in (1.10).
After changing coordinates to A = —¢'/1/K[v]/2, and optimizing in this transformed
coordinate, one can deduce that the optimal 2 ~ K~!. Consequently, for potentials
like (1.8), the optimal scaling, as n — 0o, is 02 ~ (nk) ™! and

(i) For RWM, I =1 and K[v] = E,,[(v])?], so that 02 ~ €2/n;

(ii) For MALA, I = 1/3 and K[v] = E,[5(v")? + 3(v/)3]/48 ~ €75 so that ¢% ~

€2 /nlt/3.
In this limit, both RWM and MALA will fail to be locally robust at optimal ¢ (in the
sense of (1.23)) as e — 0. Thus, they will also suffer when a suboptimal value is selected
for any observable. This does not contradict the analysis of Section 2.1. There, in the
product case, our lower bound would have the prefactor e=™°%¢¥1, which vanishes more
rapidly than the €2 /n we have here.

2.4. Scaling in dimension one. We consider the question of sampling from
the distribution associated with V(z) = ¢~ '2? in n = 1, using MALA. While this may
seem odd, as this corresponds to a Gaussian distribution, it reveals a distinct scaling
in low dimensions. It can be interpreted as the necessary scaling to efficiently sample
individual modes of the highly multi-modal landscape in Figure 1.1(b), or alternatively,
as the analog of the stiff differential equation problem & = —e 'z, 0 < e < 1.

In this case,

2
Xpoy =X — G ' Xy + 081, (2.24)

and the term in the accept/reject rule is

2

R(z,y) = o5 (z® —42). (2.25)

8¢2

With the aid of a computer algebra system (see, also, Appendix B) we conclude

25 8
MSDy = s a1 o)) {(8 + 8% arctan (\/;> N 2‘/%3/2}

= em(J). (2.26)

A consequence of this computation is that it provides an explicit example for which
MALA will not satisfy the local robustness criterion, even with optimal o, (1.23).

The function m(d) has a single maximum (see Figure B.1), and the maximum value
is achieved at ¢, = 1.27797, and m(d,) = 1.8494. Thus, the optimal scaling for the time
step is

0 = /20,€ ~ 1.59873 /€.

This scaling is different from the scaling found in Section 2.2. We note that this optimal
choice is smaller than the Euler-Maruyama stability threshold which requires o < 24/e.
Additionally, the acceptance rate at this optimal value is 0.70, which is quite different
than the n — oo acceptance rate of 0.57.
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2.5. Poorly scaled proposals. We show rigorously that, under particular
assumptions, if o is improperly scaled, MALA will fail to be robust in the sense of (1.20).
Our approach is based on the method of [21] (see, also, [6,28]) using the relationship
between the Dirichlet form and the spectral gap, (1.5).

As in [21], the interval A is bounded in terms of the conductance of a set, K, with
w(K) € (0,1/2). Using the observable

1
T) = 1 (x) — pu(K)), 2.27
) = e (L) = () (227)

we immediately have for a method with the transition operator T

Gap(T) < 2P, (Xpy1 € K| X, € K). (2.28)

PROPOSITION 2.2. Assume that

(1) The potential is V(z) = Vo(x) + Vi(x), where Vi is trapping and Vi(x) = Vi(x,x/€)
s bounded.

(2) A concentration inequality holds for p
P, (|X| > t) < Coe™ " (2.29)

where Cy, K, and p are independent of €.

(8) There exists m > 0 such that for all € sufficiently small, the set K = {x||x| > m}
satisfies

0<p, <upK)<pg <3, (2.30)

where Mo and Ty are independent of €.

(4) The gradient VVy satisfies a growth bound with an exponent § > 0, such that for all
x

|VVo(z)| < Do + Dy|z|°. (2.31)

(5) Let >0, 0 € R, and v > 0 satisfy

2a+ 0y +60<1. (2.32)
Let 0 = €%, and define the sets
Key={m<|z|<e7} CK, (2.33)
Leo={z | |VVi(z)| > 71} (2.34)
Then it holds
Gap(Tuaa) Sem¢ " e
+Pu(Xpp1 € KN L g, X € KN L y). (2.35)

In (2.35), the relation < is introduced. Generically, if a < b, then there is a constant,
C, independent of b, such that a < Cb.
Before proving the result, a few remarks are in order.
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(1) The concentration inequality for y will hold provided pg, the distribution associated
with Vp, has a concentration inequality. This is a consequence of Corollary 2.2.

(2) The bound (2.30) will similarly hold provided such a condition holds for V. Again,
this is a consequence of Corollary 2.2 by selecting a set K for which 0 < po(K) <
1 _—oscVy
56 .

(3) The set L. g captures the points in space where VV; will be large. To obtain a
rate, it is necessary to know the measure of Lg 4, requiring additional details on the
structure of the potential. In particular, it is essential to estimate

Py (Xp1 € KCN L g, Xp, € K N LE ), (2.36)

which is clearly related to the conductance of set K with the additional constraints
that Xy and Xy41 both reside in L;Q, the set where the gradient is “small”. See
Figure 2.1 for an illustration of these sets.

(4) To see how the set (2.36) can become small, consider the case that Vy = 22/2 and
V1 = cos(z/€). Then VVi(z) = —sin(z/¢)/e. For any 6 > 0 and all € > 0 sufficiently
small

co={z||sin(z/e)| < ¢} c U [~ T0 )+ enk.
kEZ

Then, recalling that g(y; z, o) is the Gaussian density of the proposal

HDM(X]C_H € K° ﬂL;g,Xk € KQLE,G) < /

p(dz) / 9(y; x, 0) dy.
KNLE , KenLe ,

For any z € KN L¢,

1
g(y;z,0)dy / dy
/I(CF“IL‘;H Z [—elt0 et tenk V 2mo?

|ekm|<m
St Y g (2.37)
|ekm|<m
Additionally,
1 2
KN L) S po(K N L) S / v
u( 79) ol ’0) Iek;m [—€1+9,61+9]+57"k\/ﬁ

<Y e
|ekm|>m

S €l / (D24 < (2:38)

em

Combining (2.37) and (2.38), (2.36) is thus bounded as
P.(Xps1 € KCNLEy, Xy, € KNLE,) S €27

For § > 1/2 and ~ and « sufficiently small the above expression is < e.
(5) As the result requires & < 1/2, o >> /e in this regime.
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{lz| >m} =K

Lip={a | [VVi(z)] <)

o] < m} =K
Key={m<|z|<e 7}

Fia. 2.1. A diagram of the sets discussed in Proposition 2.2. For the sake of clarity, we have
plotted L¢ ,, and not L. g, the set where the gradient of V1 is “small”.

Proof. (Proof of Proposition 2.2.) Since u(K) is, by assumptions, uniformly
bounded away from 0 and 1/2 as € — 0, it is sufficient to study P, (Xx41 € K¢, X, € K).
For all sufficiently small € we can write

]P)u(Xk+1 € Kc,Xk € K) :]P)M(Xkdrl S KC,Xk S Ke,.y)
+PM(Xk+1 € Kc7 |Xk| > 6_7)
<P, (X1 € K¢, Xy, € Ko ) + Coe ™™ 7,

where we have used the assumed concentration inequality at the end.

Next, we divide the set depending on whether X and Xy lie in the high or low
gradient sets

Pu(Xk1 € K Xy, € Ke ) =Pu(Xpy1 € K¢, Xi € Ky N Lep)
+ P (Xpt1 € KN Leg, Xy, € Ky N LE )
+Pu(Xpg1 € KCNLE g, Xi € Key N LE ). (2.39)
We consider the first of the three terms on the right-hand side of (2.39):
]P;L(Xk+1 e K¢ X, € Ks,'y N Leﬂ)

:PM(X/H-I e K¢ | X € I(e’7 n Le’g)P(Xk € K€7’Y N Le,g)

S]P’H<Xk+1 e K¢ | Xpe K., N Le’g)

<P.(Xp, € K| Xp € Ky N Le).

Conditioned on X} € K., N L.,

IXP | = X5 — S VVo(Xy) — S VVI(Xk) + 0]

2 2
FIVVIXR)| = [Xk| = F[VVo(Xi)| = 0[€k1]
€2a+071 —eY = %162a _ %62(1757

v 1V
N|—=

= €%&k+1l,
therefore
Pu(m > |XIS+1| | Xk € Key N Lep)
< B(m > Je07l - Bagte _ Buei oy )
=P(|&r41] > %6a+071 —e 1T — Do %faﬂh —€e %m)

= ]P)(|§k+1| > 6—(1—04—9)(% _ 61—9—2a—5’y _ %161—0 _ %61—9—67 . 61—9—2am))_
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By our assumptions on the exponents, for all € small enough,

1 _—2(1—a—0)

Pu(m > |XP | Xk € Key M Leg) < P([Epsa]| > i((l*a*e)) < emazc ,

where we have a tail inequality on N(0, I,,).
For the second term in (2.39) we use reversibility to get

Pu(Xk41 € KN Leg, Xk € Key N L g) = Pu(Xp1 € Key N Lg g, X € KN Le ).
Using the same approach as above we have

Pu(Xj41 € Key N Ly | Xy € K€M Leg)
<Pu(e” > [XP| | Xk € KN Lep)

<SP > gt o — Dot — Bromd — g )
=P(|gp1] > 2T —emom — Doer — Drevmd — o)
=P(|€k+1] > € —(1-a- 9)(2 (l-20-0,, %61_9 %el 00 61_9_2(1_7)).

Again, by our assumptions on the exponents and a tail inequality on the Gaussian

Po(Xpi1 € Koy NLEg | X € KN Leg) < P(IGp1| > de 7070y < emane 707,

~

Combining these estimates we obtain (2.35). 0

The next proposition provides an estimate of the last term in (2.35) for a particular
class of potentials.

THEOREM 2.3. Assume that
(1) There exists p > 1 and constants Vimin and Cp >0

Vo(x) > Vinin + Cp 3 _ |2il”, (2.40)

=1

(2) The growth bound of Proposition 2.2 holds for VVj.
(8) The potential Vi takes the form

Vi(z) = Z A; cos <;6) (2.41a)
‘

=1
<A<|A|<A<oo, 0<L<t; << oo (2.41Db)
(4) o, v, 6, and 0 satisfy (2.32).
Then there exists a constant k such that
Gap(Tarara) Se 2% " + emme TNy enl20-a) (2.42)

Before proving this result we make a few remarks:
(1) If V, is harmonic it will satisfy these assumptions with p = 2 and § = 1.

(2) As long as o < 26, the performance will deteriorate as ¢ — 0. By (2.32), this
necessitates a < 2/5.
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(3) In the numerical experiments discussed below, MSD; was found to be maximized
when o ~ /e, while in higher dimensions, MSD,, was maximized when o ~ e.
Thus, there is a “gap” between values of « for which Theorem 2.3 predicts poor
performance, and values for which we numerically observe peak performance. We
interpret this as a gap in the analysis because, even at the optimal choice of o, our
results show MSD,, — 0 as ¢ — 0, implying the method is not locally (or globally)
robust in the sense of (1.23).

(4) As n increases, the gap vanishes more and more rapidly as e — 0.

Proof. (Proof of Theorem 2.3.) A concentration inequality will obviously hold for
w, as such an inequality holds for g, with P, (| X| > t) S e~ 2%t": this is a consequence
of (2.40). The constant « is related to Cj, p, and the dimens1on.

Since the concentration inequality holds, and Vj is trapping while V; is bounded,
Corollary 2.2 ensures that a set K = {|z| > m} exists and satisfies (2.30). Thus, the
assumptions of Proposition 2.2 hold.

Since

Pu(Xp41 € KN L g, X € KN L y) < / u(dx)/ 9(y; z, 0)dy,
' KNL® KenLe

it will be sufficient to estimate u(K N L¢,) and the integral [.. . g(y;z,0)dy for
El €,0

re KNLE,
We first bound the set Lg y. For all € small enough

s [ ()]} BY -y

i=1k;€Z Ail

=B k;

Next, we bound the set K by

K < | J{lz;] > m/v/n}

Jj=1

Consequently, for all € small enough,

LégNEK C Lnj U Biw <[ U Biw |- (2.43)

J=1 \ |kj[>— wﬁ i#5 ki€Z
Similarly
n
K°cC H{|$]| < m}a
j=1
and

LéyNK° C ﬁ U Bix. (2.44)
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Now, using (2.40) and (2.43),

n
E,GHK)SZM U j,ijH U Bik,

Jj=1 ks> 22 i#j ki€
n
_ P _ P
2D / il g | TT Z/ e=Coleil® g ) |
=1 \ Ik > 2 i#j \ k; Y Bk,

The first term in the above sum is as in the example (2.38)

3 / Ol gy St 3T mCnetimiy)
J ~
m Bjkj

‘k;j‘>eij7r\/ﬁ k5 ‘>5e /T

oo
< 61th9 epr(erﬂ'kj)pdkj S 60.

~

m
GZJ'W\/TL

The other terms are treated the same way

o0
E / e Orlzil” g, < 61+9/ e~ COrletimka)” g < (0.
k. Y Bik; 0
; ,

Consequently
W(LEgNK) S e (2.45)
For x € L¢ g N K, using (2.44),
/ g(y;x,0)dy < ﬁo_lLeb. U [—2ﬁ61+9 2ﬁ61+9] + el;k;
c NKc B ~ L m AZ ’ AZ
=t kil <2 7m

3

ST e >0 1 get ™, (2.46)

i=1 Ihil< 2

Combining this with (2.45) yields the result. ad

3. Alternative algorithms for rough landscapes

Having concluded that there are impediments to MALA for sampling on rough
landscapes, but desiring a method that may perform better than RWM, we propose
two methods here. Both these methods require a smoothed version of the potential
which may not be accessible. Indeed, as the potential of interest is unlikely to admit a
simple decomposition like (1.2), we also propose a method for approximating a smoothed
landscape.

3.1. Modified MALA. The first method, which we call Modified MALA, in-
volves generating proposals from an auxiliary potential, U. The algorithm generates
the proposals

Nipr = X — VU(Xk) + 0&k+1, (3.1)
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and R(z,y) is modified to be
R(z,y) = V(z) = V(y) — g=lo —y + VU@ S > + ghsly — o + VU ()G 2. (3.2)

If the scale separation in (1.2) holds, we might take U = Vj to get (1.24). Since the
proposal is e-independent, Corollary 2.1 applies to this method.

3.2. Independence sampler. The second method we propose is to generate
auxiliary samples, Y}, from another distribution < e~V *)dz, and perform independence
sampling against u(dz) oc e~V *)dz. More explicitly,

Ax) =V(z) = U(z), R(z,y)=Ax)—-Ay) (3.3a)
Xpor = Yii1, with pr.obablhty F(R(Xk, Yit1)), (3.3b)
X, otherwise.

This approach is agnostic as to how samples from the auxiliary distributions are gen-
erated — any strategy which produces (approximately) independent samples will be
satisfactory. When the assumptions about (1.2) hold, then we would take U = Vj giv-
ing (1.25). Corollary 2.1 again applies to this method. Given the choice of U and the
mechanism for sampling from its distribution, this algorithm has no free parameters —
there is no ¢ that can be tuned.

In our numerical examples below, where the potentials take the form (1.8), we nu-
merically approximate an inverse function sampler on each degree of freedom, generating
i.i.d. samples ox e="0(®i) for § = 1,...,n. This approach, of course, will not be practical
for general landscapes, and we return to this issue in the discussion.

3.3. Finding smoothed landscapes. A question that remains is what to do
when (1.2) fails to hold. One option is to use physical intuition about the problem to
identify a potential U(z) that has suitable properties. More systematically, we can use
the local entropy approach formulated in [23,24], or, equivalently the Moreau-Yosida
approximation to estimate a smoothed version of V(z).

Given v > 0, we define V, as

Vy(x) = =" log {/ (%) "t eﬁv(y)dy} : (3.4)

which corresponds to a Gaussian filter of the Boltzmann distribution. The associated
gradient is then

V@ =t [ @l |0y =1 e - EROOY) (39
The density, po(y | ), can be defined by first introducing
Us(y | 2) = V() + 35|z =y, (3.6)
so that
Poc(y | T) x e~ BU~(ylz)
The potential V, could be estimated with the simple Monte Carlo scheme

N,
1 @ ;
~ _p3"1 il —BV (x+Y"7) () ~ -1
V,(z) =~ —57" log g e , YY)~ N(0,v671). (3.7

5 =1
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Likewise, (3.5) could be estimated by integrating the auxiliary diffusion
dY; = —VU, (Y, | 2)dt + /2B~ LdW}. (3.8)

If V is assumed to grow at infinity, then for sufficiently small v, U, (y | ) will be convex
about y = z, and (3.8) will converge to equilibrium exponentially fast. The gradient
VV, can then be estimated by Monte Carlo

N,
1 < .
VV,(x) ~ A E 7Yz — YW, (3.9)

Jj=1

where each Y1) ~ poo (- | z). Of course, Y¥) must now be appropriately sampled. Run-
ning short i.i.d. samples of (3.8) using, for instance, MALA, the algorithm introduces
three additional numerical parameters: Ng, the number of samples; §t, the fine scale
time step; and Ng;, the number of fine scale time steps. We must also specify initial
conditions.

With estimates of V., and VV,,, we then use them as the smoothed landscapes in
our coupled independence sampler scheme or Modified MALA scheme.

4. Numerical experiments

In this section we demonstrate, numerically, how roughness can impede MALA, and
how RWM, along with the methods discussed in Section 3, can resist the roughness. In
these computational examples, we use the Metropolis rule, (2.2a). By Remark 2.2, it is
sufficient to study MSD,, without including the variance factor in (1.21) or (1.23).

Fic. 4.1. Harmonic potential (4.1) with an additive rough term (color online).

4.1. Rough harmonic potential. As a first example, we consider a potential
of the type (1.8), with

ve(w;) = a7 + £ cos(w;/e). (4.1)

The potential is depicted in Figure 4.1 at various values of e.

We explore this potential by varying both € and the dimension n. A priori, we do
not know the optimal value of o for each € and n pair, for each algorithm. Thus, we
examine a range of o values, running long trajectories for each, and then empirically
estimate the one with the maximum MSD,,. See Figure 4.2 for examples of such a
computations. In this way we are able to compare performance across methods. In these
experiments inverse temperature is set to 5 = 5 and 10% iterations are performed in each
run. The starting point for these runs is zo = (0,0, ...,0)T € R™. For the independence
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Fi1G. 4.2. Ezample computations of the MSD for (4.1) for a variety of o and € values. The

empirical maximum, for each (o,€) pair is interpreted to be the optimal choice. Note that the peak of
MSD,, for MALA falls off rapidly with € (color online).

sampler, we combine numerical quadrature and interpolation to approximate the inverse
cumulative distribution function of the distribution e#%0(#:) | This allows us to perform
inverse function sampling. Consequently, there are no free parameters to tune for this
strategy.

Having estimated the optimal o, we can then compare performance between the
algorithms, as a function of € and n. This is shown in Figure 4.3. This indicates that
o « € for MALA, provided n is large enough. In this scaling, Theorem 2.3 does not
apply. However, the numerical experiments reveal that mixing, as measured by MSD,
is impeded because of the size of 0. We thus conclude from the numerical experiment
that MALA fails to satisfy (1.23), implying that it will also fail to be globally robust,
even with optimal . Also note that the mean acceptance rates across a range of € and
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F1G. 4.3. Comparison of performance for (4.1) in different dimensions for a range of €. Observe
that the optimal o x € , as predicted. Also note that while MALA maintains a comparatively higher
acceptance rate, because its step size is shrinking, the mizing rate, as measured by the MSD vanishes
with € (color online).

n deviate from the idealized n — oo RWM and MALA values.

Since RWM, Modified MALA, and the Independence sampler are all globally robust
to € — 0 in the sense of condition (1.20), we examined amplification in performance at
different € and n, as measured by

Optimal MSD for Alternative Method
Optimal MSD for RWM

This is shown in Table 4.1. The alternative methods always beat RWM, and, there is a
greater improvement in higher dimension, though the performance improvement satu-

rates as € — 0. The independence sampler method typically outperforms the Modified
MALA method.

Performance Amplification = (4.2)
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(a) Modified MALA Sampler

€ n=1 n=10 n=20 n=50 n=100
2-° 2.43 6.73 9.59 15.71 4.38
276 2.43 6.74 9.61  15.88 15.16
2-7 2.43 6.74 9.62  15.57 20.93
2-8 2.43 6.73 9.60 15.40 25.07
279 2.43 6.73 9.62 15.72 20.36
2-10 2.43 6.74 9.61 15.48 22.51
(b) Independence Sampler
€ n= n=10 n=20 n=50 n=100
25 2.20 10.15 17.91 40.36 12.59
2-6 220 1017 1794  39.56 57.39
2-7 2.20 10.17 17.88 40.07 70.85
2-8 2.20 10.17 17.91 39.26 67.93
29 2.20 10.17 17.94 39.98 67.61
2—10 2.20 10.17 17.92 39.12 73.55

TABLE 4.1. Ratios of the MSD at optimal o for Modified MALA and Independence sampler to the
RWM for the rough harmonic landscape, (4.1). As e — 0, the amplification in performance saturates,
but increases with dimension. The Independence sampler method appears to give better performance
in moderate to high dimensions.

(a) Modified MALA Sampler

€ n=1 n=10 n=20 n=50 n=100
27° 0.31 4.90 6.93 3.84 1.22
2-6 0.30 4.89 6.98  11.45 1.80
277 0.29 4.89 6.96 5.22 1.01
2-8 0.29 4.89 6.97  11.69 15.40
29 0.29 4.89 7.03 1.00 1.00
2—10 0.29 4.90 6.94 11.64 17.30

(b) Independence Sampler

€ n=1 n=10 n=20 n=50 n=100
27° 6.30 330.89 589.73 441.69 62.95
2-6 6.31 330.06 594.21 1317.64 262.12
27 6.31 330.42 592.44  434.52 0.00
2-8 6.32 330.32 594.40 1343.84 2150.46
279 6.32 330.32 598.89 0.00 0.00
210 6.31 330.81 592.33 1335.96 2287.34

TABLE 4.2. Ratios of the MSD at optimal o for Modified MALA and Independence sampler to the
RWM for the rough double-well landscape, (4.3). As e — 0, the amplification in performance saturates,
but increases with dimension. The Independence sampler method appears to give better performance in
moderate to high dimensions. In contrast to the harmonic potential, both the Modified MALA sampler
and the Independence sampler show signs of decreased performance in high dimensions.
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Fi1c. 4.4. Comparison of performance for (4.3) in different dimensions for a range of €. Observe
that the optimal o o €, as predicted. Also mote that while MALA maintains a comparatively higher
acceptance rate, because its step size is shrinking, the mixing rate, as measured by the MSD vanishes
with € (color online).

4.2. Rough double-well potential. We repeat the experiment from Section 4.1
for a more challenging problem of sampling from the distribution given by the potential

ve(z;) = (x7 — 1)* + & cos(z; /e), (4.3)

with parameters otherwise the same as in the harmonic case. The starting point for
these runs is g = (—1,-1,...,—1)T € R™. Results here are shown in Figure 4.4 and
Table 4.2. These are similar to the experiments for the harmonic potential, but there
are some serious differences and some cases where there is little or no performance gain.
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Fic. 4.5. Sample paths corresponding to the energy landscapes in Figure 1.1(b). These were
generated using MALA with o = 1. Compare with standard MALA sampling in Figure 1.2(b) (color

online).
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Fic. 4.6. Optimal o wvalues for the rough harmonic and double-well potentials in n = 1. In
contrast to results in higher dimensions (see Figures 4.3 and 4.4), for MALA, o < /€ forn =1 (color
online).
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FiG. 4.7. A particular realization of the energy landscape given by (4.4), along with its leading
order, long range component Vo(x) = (x2 — 1)2, and the local entropy approzimation, V5, computed
using (3.4) with 8 =5 and v = 0.05 (color online).
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(a) Modified MALA Sampler

€ n=1 n=10 n=20 n=50 n=100
2-° 0.31 4.91 6.95 3.88 1.22
2-6 0.30 4.89 6.99 11.49 1.73
2-7 0.29 4.89 6.98  11.54 7.48
2-8 0.29 4.89 6.98  11.43 16.84
279 0.29 4.88 6.99  11.67 17.11
2710 0.29 4.88 6.96  11.60 15.67

(b) Independence Sampler

€ n=1 n=10 n=20 n=50 n=100
2-5 6.31 331.09 591.19 439.82 72.42
2-6 6.31 330.56 594.66 1339.65 191.19
27 6.32 330.24 594.54 1337.39 976.85
2 8

2 9

2

6.32  330.13 594.19 1311.59 2562.82
6.32  329.43 595.04 1355.55 2566.64
—10 6.31 329.40 593.38 1325.89 2199.09

TABLE 4.3. Ratios of the MSD at optimal o for Modified MALA and Independence Sampler to
the RWM for the rough double-well landscape, (4.3) with o = (0,0,...,0)T € R™. Compare with
Table 4.2.

— W

6 vV,
I 12

—— Monte Carlo: V,, 4r|—— Monte Carlo: WV,

2
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X X

(a) (b)

F1G. 4.8. Monte Carlo estimates of V,, and VVy for the landscapes in Figure 4.7 (color online).

First, in comparison to the harmonic problem, the performance amplification of the
independence sampler is significantly larger in the double-well problem in dimensions
n = 10 and n = 20. We attribute this to the ability of the independence sampler
to switch between the left and right super basins, a behavior that is entirely absent
from the harmonic problem and one which RWM and the Modified MALA method are
incapable of reproducing.

The second difference is that both the Modified MALA sampler and the indepen-
dence sampler have significant performance issues in dimensions n = 50 and n = 100
values of € including 2~7 and 27%. Examining the actual trajectories, in the case of the
Modified MALA, the optimal o is so small that the contribution of ”72VV0 is negligible.
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Consequently, it is trending towards RWM resulting in no performance amplification.
This is why the ratio is unity. For the independence sampler, the trajectory is stagnant.
This is partially a function of the choice of initial conditions for the trajectories. If, we
instead start the independence sampler at zo = (0,0,...,0)7 € R, instead of Table 4.2
(b), we obtain Table 4.3. This variation requires a more detailed discussion which we
provide in Section 5. Despite these problems in the higher dimension, there is clearly
improvement upon RWM in more modest dimension over a broad range of e.

In Figure 4.5, we repeat the experiment from Figure 1.2 with n = 1, but for the
Modified MALA and the Independence sampler schemes. Computing at o = 1, we see
better mixing than in Figure 1.2, for the same rough energy landscape.

4.3. Results in dimension one.  We briefly consider the behavior in dimension
one for the harmonic potential and the double well. For both energy landscapes, as
shown in Figure 4.6, the optimal o /€, not o o €. Thus, while the performance of
MALA will also degrade in n = 1, a different scaling appears here. This is consistent
with the harmonic problem analyzed in Section 2.4.

4.4. Local entropy approximations. We briefly consider the possibility of
using local entropy, introduced in Section 3.3 with (3.4) and (3.5). This approach may
be of use in problems where no straightforward scale separation, of the type found in
(1.2), is present in the energy landscape. As motivation we consider the potential in
dimension one

M
V(z)= (2" = 1)+ ¢;cos(k;z), (4.4)
Vo () =t

where the ¢; and k; are random, from a particular distribution. Indeed, taking M = 10
and ¢; ~ U(—.1,.1), log(k;) ~ U(10%,10%), we obtain the landscape shown in Figure 4.7,
along with the leading contribution, Vj, and V,, obtained through a numerical quadrature
at § = 5 and v = 0.05. Clearly, the local entropy approximation eliminates the fine
scale roughness found in the original potential.

In general, Monte Carlo approximations of V., and VV,, will be needed, as a quadra-
ture will be impractical in high dimensions. An example of this is shown in Figure 4.8.
In Figure 4.8(a), we compare Vj, V, and a Monte Carlo estimate of V., computed using
(3.7) with Ny = 102,

In Figure 4.8(b), we compare VVj, VV,, and a Monte Carlo estimate of V,, com-
puted using (3.9). In this latter figure we take Ny = 10*, and each sample is obtained
by taking Ng; = 4 time steps with ¢ = 1 in a variant of MALA that exactly linearly
integrates the Ornstein-Uhlenbeck component of (3.8). Obviously, there are many op-
tions for how Monte Carlo estimates of V, and VV,, can be obtained. We will return to
this in the discussion.

5. Discussion

We have examined a class of rough energy landscapes where the performance of
MALA can be driven to zero at a fixed dimension. When ¢ is inadequately scaled with
€, Proposition 2.2 and Theorem 2.3 reveal that MALA will fail to be globally robust,
(1.20). Even if o is optimally scaled, according to the empirical estimates, the numerical
simulations indicate that it also suffers.

There are several outstanding questions on MALA that merit investigation. First,
it would be desirable to develop a rigorous understanding of why the optimal o scaling
is 0 o y/€ in dimension one, while it is o o € for n sufficiently large. Next, there is an
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analysis of why the spectral gap collapses at the optimal scaling as € — 0; recall that
our result in Theorem 2.3 does not apply to either scaling. Another, related, challenge
is how to quantify the size of the small gradient set, (2.36), outside of the separable
case, as € — 0, or, alternatively, how to avoid analyzing the small set. Separately, there
is the question of how ¢ should be scaled for MALA before it has reached stationarity.

We have also demonstrated that RWM along with the Modified MALA and the
Independence sampler are insensitive to the roughness of the landscape and are globally
robust. While modified MALA and the Independence sampler require a smoothed
energy landscape for proposals, RWM is a viable option without additional information.
Indeed, Corollary 2.1 tells us that for rough energy landscapes like (1.2), with roughness
bounded uniformly in e, if the proposal of the MCMC scheme is e-independent, then the
performance will be insensitive to €. Corollary 2.3 indicates that other methods that
have a weak e-dependence, such as the tamed MALA, will also exhibit robustness to
the roughness.

As the results in Section 4 show, there still appear to be challenges in high dimen-
sions. The degradation of the Independence sampler shown in Table 4.2 is a consequence
of an unusually difficult starting point, o = (=1, —1,...,—1)T € R", as the following
calculation shows.

For e =277, cos(—1/¢) = —0.69 and at e = 272, cos(—1/¢) = —1.00. Consequently,
every single component of the initial guess is close to a global minimum of the energy
landscape and almost every proposal will be at a position in state space in which every
coordinate has higher energy. Starting at any Xy = x,

E[|X1 — Xof*)/n = E[|X1 = Xo[]/n = E[| X] — Xo[*1 A fX0 XD /n

< \JEIXT — Xoft/n2\/E[1 A eRXo XD, (5.1)

Under our assumptions on U = V), the fourth moment term is bounded by a constant
independent of both n and e. In the above expressions the expectation is over the
proposal. The exponent in the acceptance probability is

R(Xo,X7) = Ra(z,y) = Zr(xiayi) = Zri- (5.2)
T~ =1 i=1
r=Xo,y=X3
With 21 =29 = ... 2, = —1, the r;’s are thus i.i.d. Furthermore, since
r(@,y) = vi(z/€) —vi(y/e) = |r(z,y)| < oscvr < oo. (5.3)

Suppose p, = E[r;] < 0; E[R,] = nu,. Then using Hoeffding’s inequality, [29],
E[l A eRn(xvy)] _ E[l A eRn(x7y)1Rnfn;Lr<n|ur\/2] —l—E[l A eRn(%y)1Rn*nur2n|#r\/2]
S efn‘;u«r|/2 +P(Rn . > n|ﬂ7’|/2)

2
—nlur1/2 L 7 5.4
<e —|—exp( 8 (oscon)? ) (5.4)

Consequently the mean acceptance and the sampling performance will both be driven
to zero exponentially fast as n — oo once p, < 0. Checking this numerically with
r1=-1,8=5¢e=2"andvy =06 (22-1)%, v, =" %cos(x),

pr =vi(x1/€) — Elvi(y1/€)] = vi(z1/€) — /U1 (y1/€)z5 e W dy,

—0.623.

(5.5)
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In fact, due to the oscillatory nature of the integral, u, & vq(x1/€). With such a value of
lr, it is straightforward to see, from (5.4), that the performance will rapidly be driven
to zero for large enough n. In contrast, in Table 4.3, we see better results when z; = 0.
Repeating the above computation, u, = 0.625 > 0, making it resistant to the previous
pathology.

This phenomenon does not plague RWM because, in contrast to the independence
sampler, RWM has a parameter, o, that can be tuned to maintain an O(1) mean
acceptance probability as n — oco. Indeed, the scaling 02 = O(n~1) for RWM, discussed
in Section 2.3, ensures this. We conjecture that a Metropolis within Gibbs sampler, by
which only a subset of the n coordinates are altered in each step of the sampler, will
alleviate this problem in the Independence sampler.

Generating the samples from the smooth distribution for the Independence sampler
is also a challenge in the general case. We believe this can be easily accomplished using
MALA or HMC. These other samplers should be well behaved on the smooth energy
landscape, allowing for the straightforward construction of approximately independent
proposals for the rough landscape.

Smoothed energy landscapes might be available through a known decomposition
like (1.2). We also conjecture that the optimal choice of approximate landscapes for
potentials like (1.2) corresponds to the homogenized energy landscapes discussed in
[3-5]. Unfortunately, computing such smoothed energies requires solving an elliptic
PDE in a space of the same dimension as the considered state space; a Monte Carlo
estimator of the solution may partially overcome this difficulty. Alternatively, physical
knowledge of the system may motivate some choice for a surrogate smoothed landscape.

When these options are not available, the local entropy approximation is another
possibility. The challenge to using local entropy, which we do not further develop here,
is that unless the problem is in a very low dimension, auxiliary sampling algorithms
must be formulated and tuned to first estimate V,, and VV,. This task would involve
determining a sample size, a sampling strategy, and some form of parallelization in order
to outperform simpler alternatives like RWM.

Finally, the weakness of MALA in the presence of roughness can be seen as the
MCMC manifestation of stiffness. We conjecture that it is a generic problem in gradi-
ent based MCMC methods, including HMC. Indeed, the magnitude of VV in HMC will
constrain the time step of, for instance, the Verlet method used in the Hamiltonian flow
subroutine. Thus, the number of force calls per HMC step will tend to increase with
roughness degrading the overall performance. This has been partially addressed in [21],
where the authors considered potentials of the form (1.15) and rigorously established
that HMC suffers from scaling issues.
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Appendix A. Details of the mean square displacement computation. In
this section, we give details of the derivation of (2.22). Differentiating (2.21) with
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respect to o

M =E, [ [ 1= o (B (R Roti.0) + F(Rsg(0:, ) dy} (A1)

F'(r) = F(r)(1 - F(r)) (A.2)
R=5 (IVV(2) - [VV(y)]*), (A.3)

Opg = —1
I (A.4)

+ & (ly—o+ V@ -2y -2+ FVV (@) 5IV(@) g
Consequently,
M = T [lo =y F(1 = F) (WV(@) P~ [VV))] - 20
+ %E[Ix —ylPFly — 2 + S VV ()]’

~ ZElle — yPFly — = + 5 VV() - SV ()] (A.5)

Assuming that the optimal o occurs at a finite value, the first order condition M’ = 0
will hold. The expression (A.5), at the optimal value, can then be expressed as

1

M=——
o2n

E[le—yPF (jo -y ~ 15 VV@PF - 159VPQ - F)]. (A6)
This calculation makes use of the identity

ly—z+ SVV ()] —2(y— 2+ FVV(2) T VV(2)
=ly — o’ ~ |F VV (). (A7)

Since M = E[|z — y|?F], we can re-write (A.6) to get (2.22).
Next, note that for the Barker proposal, F(r) = (1+e ") =1~ F(—r) so

F(y,z) = F(R(y,z)) =1 - F(=R(y,z)) = 1 = F(R(z,y)) = 1 - F(z,y).
Additionally, recall that the Metropolis method satisfies detailed balance. Therefore,
Elle — y|*F(z,y)(1 = F(z,9))|VV (y)|*]

= [1e = sPF)(1 — Fl. ) IV () Poly: . ) dynd)
= [1e = sPF2)(1 = Fag)[9V () (i . o)dzn(dy)
— [1e = sP 019V )Poli g, 0)doutdy),

and we conclude

Ellz —yF (FIVV(2)] + (1 = F)[VV(y)*)] = 2E [z — y|*F*|VV (2)]?] .

Using this result in (A.6) gives us (2.22).

Appendix B. Details of computations in dimension one. In this section, we
provide a derivation of (2.26). We denote g,(x) the Gaussian density for N(0,¢) and
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gy (y|z) the Gaussian density for N((1 — o%¢~1/2)x,0?). Then

Ay = E[1 A eR@9)]

. (B.1)
= / 9o () gy (y|z)drdy + / eV g, (2)gy (y]z)dzdy,
R(z,y)>0 R(z,y)<0
and we observe that
) g, (@) gy (yla) = gu () gy (x]2). (B.2)

Furthermore, we note that the set R(x,y) > 0 corresponds to |z| > |y| and R(z,y) <0
corresponds to |x| < |y|. We can thus use the symmetry (x,y) — (y, ) to reduce (B.1)
to

M= g (l)dndy
R(z,y)>0

- /O_Qoo /_rl " 29, (x) gy (y|z)dady

- / yiaos [ [ G
[ : (. ydydet [ w(...)dyd:c. (B.3)
2=0 Jy=—z =0 Jy=0

Since the integrand, 2(y — z)2g,(z)gy,(y|z) is invariant to (z,y) — (—z,—y), I = IV
and II = I1I. Thus we have

Ay =14 / / 2)g, (yl)dedy. (B.4)
x=0 —x

Using Mathematica and making the change of variables, £ = z/y/¢ and § = ¢ 10?/2,
_ 2 —1\3/2
A = - arctan ((25 ) ) . (B.5)
Analogously,
MSDy =Bty 21 A ™) = [y )20, (0)g, ole)dady
R(z,y)

+ /R e ) ey, (B
m’y

As in the case of the computation of Ay, we use the symmetry

(z — )%V g, (2)gy (y|2) = (2 — y)?9: (y) gy (z]2), (B.7)

to reduce (B.6) to

MSD; = 2 / (y — 2)%g2 (2)gy (ylx)dzdy
(z,y)>0
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oo rlal
- /z_ /:_ l2(y—$)29x(m)gy(y|x)dxdy. (B.8)

This is the split into four integrals, as in (B.3). Since the integrand, 2(y—=)2g.(z)gy (y|z)
is invariant to (z,y) — (—=x,—y), I = IV and II = III. Thus

MSD; = 4/ / 9z () gy (y|x)dady. (B.9)
z=0Jy=—=x

Using Mathematica with ¢ = 2/y/¢ and 6 = ¢~ 102/2, MSD,, = em/(§) we have

_ 20 3 /8 3/2
= A 250)) (8 4 0°) arctan 5 2v/25 . (B.10)

This function is plotted in Figure B.1.

m(d)

15

m(8)

0.5

0.0

0.0 2.5 5.0 7.5 10.0

Fic. B.1. Function (B.10). Note that it has a single mazimum at 5. = 1.2779727440041808. At
this value the acceptance rate is 0.70.
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