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ABSTRACT
Alternate bearing, seen in many types of plants, is the variable yield with a strongly biennial pattern.
In this paper, we introduce a new model for alternate bearing behavior. Similar to the well-known
Resource Budget Model, our model is based on the balance between photosynthesis or other limiting
resource accumulation and reproduction processes. We consider two novel features with our model,
1) the existence of a finite capacity in the tree’s resource reservoir and 2) the possibility of having
low (but non-zero) yield when the tree’s resource level is low. We achieve the former using a density
dependent resource accumulation function, and the latter by removing the concept of the well-defined
threshold used in the Resource Budget Model. At the level of an individual tree, our model has a
stable two-cycle solution, which is suitable to model plants in which the alternate bearing behavior
is pronounced. We incorporate environmental stochasticity by adding two uncorrelated noise terms
to the parameters of the model associated with the nutrient accumulation and reproduction processes.
Furthermore, we examine the model’s behavior on a system of two coupled trees with direct coupling.
Unlike the coupled Resource Budget Model, for which the only stable solution is the out-of-phase
solution, our model with direct coupling has stable in-phase period-2 solutions. This suggests that
our model might serve to explain spatial synchrony on a larger scale.

1. Introduction1

"Alternate bearing" is the variability of fruit or nut pro-2

duction in many types of plants for which a year of high3

yield (ON-year) is followed by one or more years of low4

or no production (OFF-years). Generally, the crop varies5

biennially. However, in some cases, it can show longer pe-6

riod cycles where multiple years of high or low yield happen7

consecutively (Monselise and Goldschmidt, 1982; Shalom8

et al., 2012). When this phenomenon is observed in collec-9

tive synchrony among trees in orchards and natural forests,10

it is known as masting.11

Alternation is very common and is observed in a variety12

of plants like citrus trees (Shalom et al., 2012), olive trees13

(Lavee, 2007), and pistachio trees (Lyles et al., 2015; Noble14

et al., 2018). These plants are different in many ways. The15

differences include time of flowering, dormancy, and dura-16

tion of fruiting compared to vegetative growth (Monselise17

and Goldschmidt, 1982). The ubiquity of the phenomenon18

suggests that there is a commonmechanism that explains the19

crop variability in a variety of plants.20

Both exogenous conditions, like environmental triggers,21

and endogenous factors, like bud abscission, flowering inhi-22

bition by current fruits (Shalom et al., 2012), pollination, and23

fruit overload, have been considered as contributing factors24

to the alternate bearing phenomenon. The depletion of the25

resource level of the plant due to over-fruiting is considered26

the most common cause of the phenomenon (Monselise and27
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Goldschmidt, 1982; Lavee, 2007). Isagi pioneered a simple 28

model to explain the mechanism of variable acorn yield ob- 29

served at the level of an individual tree (Isagi et al., 1997). 30

His model, called the Resource Budget Model (RBM), is 31

based on the dynamics of the tree’s energy resource which is 32

accumulated as the result of photosynthesis and consumed 33

during the flowering and nut production processes. 34

The Resource Budget Model, as originally proposed by 35

Isagi et al. (1997) and expanded in Satake and Iwasa (2000), 36

assumes the existence of a well-defined threshold for the 37

tree’s resource levels below which the plant will not repro- 38

duce. This means that during an OFF-year, the tree has no 39

yield. This assumption is appropriate for the plants like olive 40

and citrus, for which there is zero or near-zero yield dur- 41

ing an OFF-year, but represents other species with low but 42

positive OFF-year yields less well. Once the resource level 43

of the tree exceeds the threshold, flowering and nut produc- 44

tion happens. Both flowering and nut production processes 45

are costly and result in the depletion of the tree’s resource 46

reservoir. The cost of flowering and nut production is as- 47

sumed to be proportional to the amount of resources above 48

the threshold with the depletion coefficient (the parameter 49

of the model). The Resource Budget Model belongs to the 50

category of tent maps for which there is no stable period- 51

2 solution at the level of individual tree (except at the bi- 52

furcation point). Systems of two trees do have an in-phase 53

period-2 solution, but it is only stable if the trees are coupled 54

via indirect (mean-field) coupling, as with pollination, and 55

not for trees coupled directly through local interactions like 56

root grafting (Prasad et al., 2017). Together, these features 57

make the Resource Budget Model a simple and successful 58

model to explain the masting phenomenon in many plants 59
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for which there is zero or near-zero yield during an OFF-60

year, the plant goes through several OFF-years before hav-61

ing a year with high yield, and at a collective level, the plants62

can interact via pollination (the plants are monoecious). But63

the model needs to be modified if it is to be applied to the64

plants like pistachio that have a low yield, but not zero, dur-65

ing OFF-years, whose yield show a two-cycle behavior, and66

is dioecious, therefore, the interaction between the female67

trees happens via direct coupling (root grafting). Lyles et68

al. modified the Resource Budget Model by removing the69

concept of threshold from the model and adding temporal70

stochasticity to the depletion coefficient and the pollen avail-71

ability to achieve the variable and synchronized nut produc-72

tion of the trees (Lyles et al., 2015). However, this model,73

like the previous Resource Budget Models, does not show74

synchrony in trees with direct coupling.75

In another attempt to predict the yield of citrus trees, Ye76

and Sakai suggested a more generalized version of the Re-77

source Budget Model (Ye and Sakai, 2016). Motivated by78

the result of their analysis of field data collected from a cit-79

rus orchard in Japan (Ye et al., 2008), they added a vege-80

tative growth factor to the Resource Budget Model to ac-81

count for the role of new leaf growth in inhibition of fruit82

production. According to their model, the cost of new leaf83

growth is proportional to the empty portion of the resource84

tank. Also, the return map obtained from their experimen-85

tal study showed, what they called, a "hump-shaped" curve86

similar to what is obtained from the logistic map. To repro-87

duce the logistic-like return map, they replaced the linear88

relationship between the resource reserve level and flower-89

ing and fruiting cost in the original Resource Budget Model90

(see Sec. 2), with a nonlinear Ricker-type relationship (Ye91

and Sakai, 2016). By adding nonlinearity they modified the92

model to better reflect the yield dynamics of citrus trees.93

However, similar to the original Resource Budget Model,94

this model assumes the existence of a well-defined thresh-95

old below which no flowering or production happens, which96

does not reflect the low (but non-vanishing) yield of species,97

like pistachio, during OFF years.98

Inspired by an existing data set collected from a pista-99

chio orchard at the level of individual trees during a 6-year100

period (Lyles et al., 2015; Noble et al., 2018), we propose101

a different approach for modeling alternate bearing that ac-102

commodates low but non-vanishing yield during OFF-years.103

This is achieved by replacing the concept of a sharp cut-off104

for reproduction (represented by a threshold function) with a105

continuous function that accommodates the non-zero yield106

when the tree’s current energy level is low. Also, we take107

into account the fact that there is a maximum capacity for the108

plant to store photosynthate and other nutrients and there-109

fore, its energy storage cannot grow indefinitely.110

In Sec. 2 we briefly review the rules and the character-111

istics of the Resource Budget Model. In Sec. 3, we describe112

our new model of alternate bearing behavior for the trees113

with low yield during OFF-years. We analyze the model by114

performing a bifurcation analysis. Furthermore, we discuss115

and apply some necessary constraints on the model to make116

Figure 1: The orbit diagram of the Resource Budget Model
shows that the dynamics of the system goes from a stable
fixed point for the depletion coefficient, m < 1, to period-four
oscillation for a very small range of m and then quickly leading
to chaos.

it biologically meaningful and applicable. In Sec. 4, we add 117

stochasticity to the model to account for environmental vari- 118

ation. As the preliminary step to understand the collective 119

behavior of the trees in an orchard or a natural forest, in Sec. 120

5, we study the dynamics of a two-tree system. 121

2. Background 122

First we describe the Resource BudgetModel: every year, 123

the resource level of an individual tree (St) increases by a 124

constant amount called Ps. If the resource level exceeds 125

a threshold, LT , the plant will flower and bear fruits/nuts 126

which depletes the energy reservoir of the tree. The cost of 127

flowering is assumed to be proportional to the excess amount 128

of resources above the threshold with a positive constant a. 129

The cost of fruit/nut production is also considered to be pro- 130

portional to the cost of flowering. The Resource Budget 131

Model is formulated as, 132

St+1 =

{

St + Ps, St + Ps ≤ LT
St + Ps − a(Rc + 1)(St + Ps − LT ), St + Ps > LT

(1)

whereRc is the ratio of the cost of fruit/nut production to the 133

cost of flowering. The model can be written in terms of the 134

dimensionless variable st = St+Ps−LT
Ps

as, 135

st+1 =

{

st + 1, st ≤ 0
−mst + 1, st > 0

(2)

where m = a(Rc + 1) − 1 is called the depletion coefficient. 136

As it is shown in the model’s orbit diagram (Figure 1) 137

and discussed in Appendix A, the model has a stable fixed 138

point for m < 1. At exactly m = 1 (which is the discontinu- 139

ous bifurcation point) the system shows two-cycle behavior. 140

Form > 1 the system demonstrates a chaotic period-four os- 141

cillation for a very small range of the parameter, followed by 142

a single band chaos (Prasad and Sakai, 2015). 143

3. The Model 144

Similar to the Resource Budget Model, our new model 145

of alternate bearing is based on the dynamics of the nutrient 146
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(i.e. carbon, nitrogen, phosphorus, etc) level of an individ-147

ual tree. According to our model, the nutrient level of an148

individual tree in year t + 1 is determined based on the bal-149

ance between two processes that happen in year t: 1) nutrient150

accumulation, 2) reproduction. The accumulation of nutri-151

ents is the result of photosynthesis (Marino et al., 2018) and152

the plant’s interaction with soil and soil-based microorgan-153

isms (Guignard et al., 2017). The process of reproduction is154

the flowering and production of nuts. Nut production comes155

with a higher cost than flowering and is considered the main156

sink of the tree’s nutrient reservoir (Marino et al., 2018). The157

nutrient level of a tree in year t+ 1 (St+1) can be written as,158

St+1 = St + Nutrient Accumulation − Cost of Reproduction. (3)
In modeling the Nutrient Accumulation and the Cost of159

Reproduction, we take into account the following consider-160

ations:161

1) The Nutrient Accumulation process cannot result in162

the indefinite growth of the tree’s nutrients level. In other163

words, each tree has a maximum capacity to store nutrients,164

denoted by Smax. Therefore, the amount of nutrients that is165

added to the tree’s reservoir each year is a density dependent166

function of its existing nutrients level. We model the Nutri-167

ent Accumulation process by a function of St, which grows168

when St is small but approaches zero as St → Smax.169

170

2)Aswementioned in the introduction, the function used171

to model the Cost of Reproduction should allow for low yield172

(as opposed to zero yield) during OFF-years.173

174

There are many mathematical functions that satisfy the175

above conditions and can be considered to model these two176

processes. For the purpose of this paper, we have chosen the177

bounded growth function for Nutrient Accumulation and a178

shifted sigmoid function for the Cost of Reproduction. How-179

ever, these functions are not unique. In Appendix C, we180

present an alternate version of the model using a different181

Nutrient Accumulation function and show that the dynam-182

ics of the model stay qualitatively similar.183

184

Bounded Growth Function185

The amount of nutrients added to the tree’s reservoir as a186

result of photosynthesis and other nutrient uptake processes187

at the end of year t is modeled by:188

Nutrient Accumulation = Smax(1−e−r1St∕Smax )−St, (4)
whereSt is the current nutrients level,Smax is the tree’smax-189

imum capacity to store nutrients, and r1 is the efficiency of190

the Nutrient Accumulation process. Figure 2a shows the be-191

havior of the nondimensionalized version of equation 4 as a192

function of st = St
Smax

and for different values of r1. As r1193

gets larger, the tree can accumulate more nutrients and do194

it more efficiently and with less available resources. There-195

fore the accumulation function has a higher maximum and is196

right skewed with increasing r1 (the accumulation function 197

reaches its maximum for a smaller current resource levels 198

(st)). 199

200

Shifted Sigmoid Function 201

The cost of reproduction ismodeled by a vertically shifted 202

sigmoid function. A sigmoid function allows for low pro- 203

duction when the current nutrients level is low. Also, the 204

second term (vertical shift) ensures that when St = 0, there 205

is no reproduction, and therefore no cost. 206

Cost of Reproduction = Smax
1+e(−r2St+L)∕Smax

− Smax
1+eL∕Smax

. (5)
In equation 5, r2 is the tree’s reproductive investment 207

and L∕r2 (=L∗) is the threshold that controls the level of re- 208

source needed to trigger high yield. We can nondimension- 209

alize equation 5 by defining st = St
Smax

and l = L
Smax

. Figures 210

2b and 2c show the behavior of the nondimensionalized ver- 211

sions of the Cost of Reproduction for different values of the 212

efficiency rate (r2) and the threshold (l). 213

As it can be seen in Figure 2a, there are values of r1 for 214

which the Nutrient Accumulation term becomes negative. 215

Also, for some values of r2 and l, the curves in Figures 2b 216

and 2c cross the diagonal line which indicates that the Cost 217

of Reproduction exceeds the current resource levels (st). For 218

the model to be meaningful, both of these conditions must 219

be avoided. This can be done by imposing constraints on the 220

model and defining acceptable ranges of parameters. Section 221

3.2 addresses this issue in detail. 222

Finally, we can write the nondimensionalized model as, 223

st+1 = (1 − e−r1st ) −
(

1
1 + e(−r2st+l)

− 1
1 + el

)

. (6)
While equation 6 models the dynamics of a tree’s nutri- 224

ents level, the amount of nut production is the observable 225

that is actually measured for each tree. Since nut production 226

is the main sink of the tree’s nutrient resources during re- 227

production, it can be taken to be proportional to the cost of 228

reproduction. We use Yt = 1
1+e(−r2st+l)

− 1
1+el to denote the 229

nondimensionalized yield of a tree at time t to also study the 230

dynamics of the observable of the system. 231

3.1. Bifurcation Analysis 232

In this section we study the behavior of the model for 233

different values of efficiency rates and a fixed value of l. 234

For simplicity, we choose the accumulation efficiency and 235

reproductive investment rates (r1 and r2) to always be equal. 236

Therefore, we will have r1 = r2 = r. This will simplify the 237

model to a one-dimensional, single parametermap, many ex- 238

amples of which have been extensively explored (Strogatz, 239

1994; Devaney, 2003; Feigenbaum, 1980). However, the re- 240

sults presented in this section remain qualitatively the same 241

if r1 and r2 are chosen to be different. 242

Figure 3a and 3b show the orbit diagram of the model 243

and the tree’s yield (Yt) respectively, when l = 7. Quali- 244

tatively, the orbit diagrams are similar to orbit diagrams of 245
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Figure 2: The behavior of a) nondimensionalized Nutrient Accumulation term for different values of r1, b) and c) nondimension-
alized Cost of Reproduction for different values of r2 when l = 3.5, and different values of l when r2 = 7, respectively.

one dimensional unimodal maps with one parameter, like246

the quadratic map. The model has a stable fixed point for247

r ≲ 6.8. At r ≈ 6.8 the first period-doubling bifurcation248

happens. For 6.85 ≲ r ≲ 8.6 the model shows a 2-cycle be-249

havior (the range of the parameter where the alternate bear-250

ing behavior can be modeled). At r ≈ 8.6 a second period-251

doubling bifurcation happens and the system switches to a252

4-cycle oscillation. Next period-doubling bifurcation hap-253

pens at r ≈ 9.1 followed by a cascade of period-doubling254

bifurcations that leads to chaos. Like the orbit diagrams255

of other unimodal maps, the chaotic regime is interrupted256

by small windows of cyclic behavior. Figure 3c shows the257

Lyaponov exponent as a function of the parameter r. We258

used the method introduced in (Strogatz, 1994) to calculate259

the Lyaponov exponent. For the range of the parameter val-260

ues where � < 0 the system has a stable fixed point or a261

cyclic attractor. When �→ −∞, the attractor is superstable.262

Period-doubling bifurcations happen when � = 0. For � > 0263

the trajectories diverge exponentially which is a signature of264

a chaotic regime.265

Figure 4 shows the trajectories for different values of r266

belonging to different regimes, again with l = 7. For r =267

6, the model relaxes to a stable fixed point (Figure 4a) and268

the tree maintains a fixed carbon level and constant yield.269

For r = 7.5, the carbon level, and therefore the production,270

show a period-2 oscillation (Figure 4b). Figure 4c shows the271

model’s stable period-4 solution for r = 8.8. When r = 9.8272

the system is in the chaotic regime (Figure 4d).273

The analysis in this section has also been performed for 274

different values of l. As we change l, the locations of the 275

period-doubling bifurcations and the width of the chaotic 276

windows change, but the behavior of the model stays quali- 277

tatively the same. 278

3.2. Constraints on the Model 279

As we briefly mentioned in section 3, for a range of val- 280

ues of r1, the Nutrient Accumulation term becomes nega- 281

tive. Also, for some combinations of r2 and l the Cost of 282

Reproduction exceeds the current resource levels (st). To 283

avoid this and for the model to be biologically meaningful, 284

we have to determine the acceptable range of values for the 285

model’s parameters. 286

3.2.1. Nutrient Accumulation 287

The Nutrient Accumulation process should always result 288

in the increase of current resource levels. Thismeans that the 289

result of equation 4 should always be greater than zero when 290

the current resource levels are below the maximum capacity 291

(i.e. St < Smax or st < 1). As St → Smax (st → 1), the Nu- 292

trient Accumulation function should approach zero. In other 293

words, St = Smax (st = 1) should be the stable fixed point of 294

the model when the reproduction is turned off. This means 295

that the solution of equation 7 (Nutrient Accumulation = 0) 296

should be s∗ = 1. 297

1 − e−r1s
∗
− s∗ = 0. (7)
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(a) (b)

(c)
Figure 3: a) The orbit diagram of the model for r1 = r2 = r and l = 7, b) the orbit diagram of the tree’s yield Yt, and c) the
corresponding Lyaponov exponent (�) as a function of r. For values of r where � > 0 the system is in the chaotic regime.

In Figure 2a, s∗ is where each curve crosses the horizontal298

axis. As we can see, for any finite values of r1, the solution299

to the equation 7 is less than 1. This means for s∗ < st ≤ 1300

the result of the Nutrient Accumulation function is negative.301

As it can be seen in Figure 2a, as r1 becomes larger, s∗ gets302

closer to 1 and the result of the Nutrient Accumulation func-303

tion remains positive for a larger range of st. Our goal is to304

find a lower bound for r1 (let’s call it rmin) so that for values305

of r1 greater than rmin the corresponding s∗ is sufficiently306

close to 1. We can write s∗ = 1− �, where � is the tolerance307

that controls the proximity of s∗ to 1. To determine the rmin308

as a function of �, in equation 7, we substitute r1 with rmin309

and s∗ with 1 − �. we can write,310

1 − e−rmin(1−�) − (1 − �) = 0. (8)
Solving for rmin, we obtain a lower bound for r1 as a func-311

tion of � (i.e. r1 ≥ rmin(�)), where rmin(�) = 1
1−� ln

(

1
�

)

.312

For any value of r1 greater than rmin we can accept that the313

Nutrient Accumulation term remains positive for st ∈ (0, 1−314

�) ≈ (0, 1). For the rest of this manuscript, we choose � =315

0.01 and study the behavior of the model for r1 ≥ 4.65.316

3.2.2. Cost of Reproduction 317

A tree’s intensity of flowering and nut production de- 318

pends on the current level of its nutrients storage. A tree will 319

never draw more resource to flower and reproduce than what 320

is available in its reservoir. In the language of our model, the 321

Cost of Reproduction (equation 5) cannot exceed the current 322

nutrient levels. In terms of the density of nutrient levels, st, 323

it means: 324

(

1
1 + e(−r2st+l)

− 1
1 + el

)

≤ st. (9)

As presented in Figures 2b and 2c, for some combina- 325

tions of r2 and l, the above condition is not met. To find the 326

acceptable (r2, l) pairs, for which the condition is satisfied, 327

we solved equation 9 numerically. The shaded area in Figure 328

5 shows the acceptable pairs of (r2, l) for which the cost of 329

reproduction does not exceed the current nutrient levels. 330

4. The Role of Environmental Variation 331

The stochastic effect of environmental variation plays 332

an important role in photosynthesis (and other nutrient up- 333

take processes) and reproduction. Factors like the amount 334

of CO2, the intensity of radiant energy, and the temperature 335
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Figure 4: The trajectories for different values of r. a) r = 6,
the model relaxes to a stable fixed point, b) r = 7.5, it shows
a stable period-two oscillation, c) r = 8.8, the model has a
period-four solution, d) r = 9.8, the systems is in the chaotic
regime. In all panels l = 7.
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Figure 5: The area covered by blue dots shows the combina-
tions of (r2, l) for which the condition in equation 9 is satisfied
and the Cost of Reproduction stays below the current nutrient
levels.

affect the process of photosynthesis (Marshall and Biscoe,336

1980). On the other hand, the amount of precipitation and337

the temperature during the reproduction season affect flow-338

ering or nut production. We incorporate environmental vari-339

ability into the model by adding two noise terms to the nu-340

trient accumulation efficiency and reproductive investment341

rates (r1 and r2 respectively),342

st+1 = 1−e−(r1+�1t)st−
(

1
1 + e(−(r2+�2t)st+l)

− 1
1 + el

)

(10)

in which �1t and �2t are uncorrelated random variables that343

are independently drawn from a normal distribution with344

mean zero and variances �21 and �22 , respectively.345

In our simulations we choose r1 = r2 = r = 7 and l = 7346

for which the system is in the two-cycle regime. We also set 347

�1 = �2 = �. Notice that these choices of parameters satisfy 348

the conditions set for r1, r2, and l as mentioned in section 349

3.2 and shown in Figure 5.While under the effect of very 350

large noise, these conditions can be violated, for the small 351

enough variance of the noise terms, our choices of parame- 352

ters are unlikely to go beyond the acceptable range. Figure 353

6a shows a perfect period-two behavior of the model without 354

noise. Figure 6b-d show the effects of noise with different 355

strengths (variances, �) on the amplitude and the phase of 356

the oscillation. 357

5. The Dynamics of a Two-Tree System 358

One of the mechanisms behind spatial synchrony, ob- 359

served in the masting phenomenon, is the local interaction 360

between trees. The trees planted in proximity to one another 361

interact in complex ways including exchanging their carbon 362

through root grafts (Klein et al., 2016). Grafting is known as 363

direct interaction or diffusive coupling (Prasad et al., 2017). 364

Trees also interact through pollination via external agents 365

(e.g. birds, insects, and wind). This process is considered an 366

indirect interaction and usually implemented in the form of 367

mean-field coupling (Satake and Iwasa, 2000; Prasad et al., 368

2017). In dioecious plants, pollen distribution is provided 369

by male trees while flowering and reproduction are done by 370

female trees. Therefore, pollination cannot be considered as 371

the mechanism behind the interaction among female trees. 372

Instead, root grafting (direct coupling) should be considered 373

as the method of local interaction. The numerical simula- 374

tions of the Resource Budget Model with direct coupling for 375

a system of two trees show that the only possible period- 376

2 solution for the trees is the out-of-phase solution (Prasad 377

et al., 2017). We confirmed these results by performing a 378

stability analysis of the coupled Resource Budget Model as 379

discussed in Appendix B. These results suggest that the Re- 380

source Budget Model cannot model the spatial synchrony 381

observed among dioecious plants, like pistachios, for which 382

the direct coupling is the main method of interaction. 383

In this section we use direct coupling to investigate the 384

dynamics of a deterministic system of two coupled trees. 385

The internal dynamics of each tree is defined by equation 386

6. We use s̃i,t (i = 1, 2) to refer to each tree’s resource level 387

after nutrient uptake and reproduction but before exchange 388

of resources. Each tree shares a fixed fraction of its resource 389

(�) with its neighboring tree and receives the same fraction 390

of the second tree’s resource in return. The result is a net 391

flow of nutrient from one tree to another. The nutrient level 392

of each tree at the beginning of year t + 1 is: 393

s1,t+1 = s̃1,t + �(s̃2,t − s̃1,t)
s2,t+1 = s̃2,t + �(s̃1,t − s̃2,t).

(11)

To understand the dynamics of this system, we solve 394

equations 11 numerically to construct the orbit diagram. We 395

assume both trees have the same internal dynamics by choos- 396

ing the same nutrient accumulation efficiency and reproduc- 397

tive investment rates. Also, similar to previous sections we 398
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Figure 6: The behavior of the density of resources (black) and the yield (blue) for 50 years for r = 7, l = 7, and a) � = 0 (no
noise), b) � = 0.25, c) � = 0.5, and d) � = 0.75

simplify the model by setting the nutrient accumulation effi-399

ciency and reproductive investment rates to be equal. There-400

fore, the internal dynamics of both trees only depend on one401

parameter, r. We also choose l = 7 for both trees. To build402

the orbit diagram, we follow the technique used in (Hast-403

ings, 1993). We choose 20 random initial conditions for each404

choice of parameters r and � to capture all stable solutions405

where the system is multistable.406

Figure 7 shows the dependence of the system’s dynamics407

on parameter r and different values of �. Similar to the cou-408

pled logistic equations discussed in (Hastings, 1993), two409

general categories of solutions are identified: the perfectly410

in-phase solutions where s1,t = s2,t and all the other so-411

lutions, which we refer to as out-of-phase solutions, where412

s1,t ≠ s2,t . The left column in Figure 7 shows the orbit dia-413

gram of the total nutrient levels (s1,t+s2,t) for stable in-phase414

solutions. The right column shows the orbit diagram of the415

nutrient levels difference (s1,t − s2,t) when the system has a416

stable out-of-phase solution. For the range of parameters for417

which the in-phase and out-of-phase solution coexist, both418

solutions are shown in red. Different patterns of oscillation419

are observed in both in-phase and out-of-phase categories.420

These patterns include in-phase or out-of-phase period-2,421

period-3, period-4, or higher period oscillations, as well as422

chaotic behavior. When the resource exchange between the423

two trees is weak (e.g. � = 0.05), as shown in Figure 7a and424

7b, the out-of-phase solutions are more prevalent and the in-425

phase solutions are mostly observed when the two trees are426

in fixed point or oscillatory regimes with different periods.427

As the interaction becomes stronger, the in-phase solutions428

appear for a wider range of parameter r and chaotic in-phase429

solutions are more commonly observed. For a strong enough430

� (e.g. � = 0.2) the trees predominantly stay in-phase while 431

out-of-phase solutions are observed for r ≥ 9.7. The simi- 432

larity between Figures 7e and 3a suggests that, in this case, 433

the system behaves mostly like a single unit system. 434

As we mentioned above, the category of in-phase solu- 435

tions include a variety of periodic and chaotic oscillations 436

that emerge for different values of parameter r. Figure 8 437

compares the basin of attraction of some of these solutions. 438

To obtain Figures 8c-f, we scan the entire phase space of 439

(s1,0, s2,0), with increment of 0.005, to find the initial con- 440

ditions that relax to an in-phase attractor for � = 0.1 and a 441

given value of r. Figures 8c-j are color coded to match the 442

markers lines in Figures 8a and 8b. We choose values of r 443

for which the in-phase and out-of-phase solutions coexist. 444

The in-phase solutions studied in Figure 8 are in the form 445

of period-2 oscillation for r = 8 (Figure 8c and 8g), chaotic 446

for r = 9.4 (Figure 8d and 8h), period-10 for r = 9.95 (Fig- 447

ure 8e and 8i), and period-3 when r = 10.9 (Figure 8f and 448

8j). The general patterns of the basins of attraction are sim- 449

ilar for different values of r (different patterns of in-phase 450

solution), however, the density and the distribution of points 451

differ, which can provide hints toward the prevalence of the 452

attractor in the phase space. For example, the high density 453

and the uniform distribution of points in Figure 8c indicates 454

that the period-2 attractor has a higher probability of emerg- 455

ing when r = 8 compared to the period-3 attractor (Figure 456

8f) when r = 10.9 which has a nonuniform basin with lower 457

density areas. 458
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6. Discussion459

We developed a newmodel for the alternate bearing phe-460

nomenon. Alternate bearing is defined as the variability of461

the production in many types of plants in a biennial manner.462

Similar to the Resource Budget Model, our new model is463

based on the balance between generating and storing nutrient464

during photosynthesis and other nutrient uptake processes465

and consuming it through flowering and nut production. We466

considered two biologically motivated criteria: 1) the lim-467

ited capacity of each plant to store nutrient, and 2) low but468

non-vanishing yield during OFF-years (when the resource469

level is low). The limited capacity of the resource tank was470

also considered in the generalized Resource Budget Model471

proposed by Ye and Sakai (2016). There are multiple math-472

ematical functions that can satisfy the above conditions. In473

each case different constraints should be applied to keep the474

model biologically meaningful. Therefore, the model can be475

written in different mathematical forms while the qualitative476

dynamics of the model remains robust.477

As it was observed in the experimental data in Ye et al.478

(2008), the return map of the fruit production shows a hump-479

shaped curve. Ye and Sakai reproduced this behavior by re-480

placing the linear relationship between resource level and481

the cost of flowering and fruit production in the original Re-482

source Budget Model with a Ricker-type function which in-483

troducedmore parameters to themodel (Ye and Sakai, 2016).484

We chose proper nonlinear functions, that satisfy the bio-485

logically motivated conditions mentioned above, to model486

the Nutrient Accumulation and Cost of Reproduction in our487

model. As a result the return map of the resource level and,488

consequently, the yield of the plant show a logistic-like curve.489

Therefore, unlike the Resource BudgetModel, the newmodel490

for alternate bearing has stable period-2 solutions for a wide491

range of the model’s parameters and is well suited to model492

the variable yield of plants in which the two-cycle behav-493

ior is more pronounced. The structure of our model makes494

it possible to nondimentionalize the resource level of the495

plant and, therefore, lower the number of parameters to three.496

Furthermore, by setting the nutrient accumulation efficiency497

and the reproductive investment rates to be equal, we fur-498

ther lower the number of parameters to two which makes499

the model easier to analyze and manipulate. However, the500

behavior of the model remains qualitatively the same if the501

two rates are not the same.502

Trees in an orchard or natural forest do not show a perfect503

periodic reproduction since they are subject to environmen-504

tal fluctuations. Although these variations affect the nutrient505

uptake and reproduction differently, they are not indepen-506

dent. To account for environmental stochasticity, we added507

two uncorrelated noise terms to the accumulation efficiency508

and the reproductive investment rates. Our analysis shows509

that adding stochasticity to the model affects the amplitude510

and phase of the oscillation of the tree’s yield which models511

the noisy two cycle behavior observed in alternate bearing512

plants. To include the correlation between different envi-513

ronmental factors, one can use correlated noise terms. In514

this case, the correlation coefficient between the two noise515

terms becomes an additional parameter of the model. 516

Masting and spatial synchrony is observed among alter- 517

nate bearing plants in orchards or natural forests. As the pri- 518

mary step to examine the behavior of our model on a collec- 519

tive level, we analyzed the dynamics of a coupled two-tree 520

system. One of the mechanisms behind masting is the lo- 521

cal interaction between neighboring trees. This interaction 522

can be direct (root grafting), indirect (pollen coupling), or a 523

mixture of both . Since in diecious plants, the female trees 524

cannot interact through pollen coupling, we used direct cou- 525

pling to model the local interaction. The numerical and sta- 526

bility analysis of the coupled Resource Budget Model with 527

diffusive coupling showed that the only stable two cycle so- 528

lution is the out-of-phase solution. Therefore, the Resource 529

Budget Model cannot reproduce the spatial synchrony ob- 530

served among female trees of the diecious plants for which 531

root grating (direct coupling) is the main interaction mech- 532

anism. Our analysis shows that our new model for alternate 533

bearing with direct coupling has stable in-phase period-2 so- 534

lutions for a wide range of parameters and different values 535

of coupling strength (�). Having stable in-phase solutions 536

can be interpreted as the primary requirement for the model 537

to be used in studying spatial synchrony at a larger scale. 538
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(a) (b)

(c) (d)

(e) (f)
Figure 7: Left column: orbit diagrams of the total carbon levels when s1,t = s2,t (in-phase solutions), right column: orbit diagrams
of the carbon levels difference when s1,t ≠ s2,t (all other solutions), for different values of �. The red areas in all the figures
indicate the coexistence of in-phase and out-of-phase solutions for that parameter value.
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Figure 8: (a) and (b) The orbit diagram of in-phase (s1,t = s2,t) and out-of-phase (s1,t ≠ s2,t) solutions for � = 0.1. (b)-(f) The
basin of attraction for the in-phase solutions for different values of r and different patterns of oscillation (color coded to match
the marker lines on (a) and (b)). (g)-(j) The corresponding pattern of in-phase oscillations for s1,t, s2,t, and s1,t + s2,t.
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A. Stability Analysis of Period-2 Solutions in598

the Resource Budget Model599

As it is shown in the orbit diagram of the Resource Bud-600

get Model in Figure 1, RBM has one fixed point ŝ = 1
1+m601

which is stable for m < 1. The period-2 solution, if exists, is602

the fixed point of st+2 = f (st), where f (st) can be obtained603

by iterating the model twice. Using equation 2 we will have,604

st+2 = f (st) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

st + 2, st ≤ −1
−mst + (1 − m), −1 < st ≤ 0
m2st + (1 − m), 0 < st <

1
m

−mst + 2. st ≥
1
m

(A.1)

Solving st+2 = st = ŝ, we obtain two acceptable answers605

from the second and fourth conditions in equation A.1,606

ŝ =

⎧

⎪

⎨

⎪

⎩

1−m
1+m , −1 < ŝ ≤ 0
1

1+m , 0 < ŝ < 1
m

2
1+m . ŝ ≥ 1

m

(A.2)

Form > 1 all solutions become unstable. On the other hand,607

if m < 1 the first and the third solutions become unaccept-608

able since they do not satisfy their required conditions. The609

second solution is the model’s stable fixed point and not a610

period-2 solution.611

For m = 1 there is a continuum of period-2 solutions612

where the system oscillates between any values of ŝ1 and ŝ2,613

as long as 0 < (ŝ1, ŝ2)<1, and ŝ1 + ŝ2 = 1. To analyze the614

stability of these attractors, we study the system’s response615

to small and large perturbations. Any small perturbation that616

keeps st between 0 and 1 will push the system into another617

period-2 attractor where the system will oscillate between618

two different values of ŝ1 and ŝ2. On the other hand, a large619

perturbation can result in st falling outside the (0, 1) range.620

In that case, the system will come back and settle in one of621

the period-2 attractors inside the continuum.622

B. Stability Analysis of the Coupled Resource623

Budget Model624

When coupling two trees together, three scenarios can be625

considered:626

627

I) Stable fixed point628

If both trees maintain the same resource levels above the629

threshold, we can write the model as,630

s1,t+1 = −(m + �)s1,t + 1 + �s2,t
s2,t+1 = −(m + �)s2,t + 1 + �s1,t.

(B.1)

Setting s1,t+1 = s1,t and s2,t+1 = s2,t, the fixed point of the631

system is ŝ1 = ŝ2 = 1
1+m . To perform the stability analysis,632

we find the eigenvalues of the coefficient matrix, 633

A =
(

−(m + �) �
� −(m + �)

)

, (B.2)

to be �1 = −m and �2 = −m−2�. Therefore, the fixed point 634

of the system is only stable if (m + 2�) < 1. 635

636

II) Both trees oscillating between two positive values 637

In this case, the model is the same as equation B.1. If 638

the trees are in-phase with the same amplitude, s1,t = s2,t, 639

there is no net flow of resources between the trees and the 640

systems will be the same as two uncoupled trees. Since for 641

an individual tree there is only a continuum of 2-period so- 642

lutions when m = 1, the trees will stay in-phase only if they 643

are started with equal resource levels and m = 1. 644

If s1,t ≠ s2,t, the trees can be out of phase oscillating 645

between two positive values. In this case, the following two 646

conditions will be true, 647

s1,t+2 − s2,t+2 = s1,t − s2,t
s1,t+1 + s2,t+1 = s1,t + s2,t.

(B.3)

Iterating equation B.1 twice, we can write, 648

s1,t+2 − s2,t+2 = (m = 2�)2(s1,t − s2,t). (B.4)
This means that the first condition in equation B.3 is satisfied
if (m + 2�) = 1. As for the second condition, we will have,

s1,t + s2,t =
2

1 + m
. (B.5)

To find the period-2 solution, we assume that both trees 649

oscillate out-of-phase between ŝlow and ŝℎigℎ (both positive). 650

Substituting these values in equations B.1, we will have, 651

ŝℎigℎ = −(m + �)ŝlow + 1 + �ŝℎigℎ
ŝlow = −(m + �)ŝℎigℎ + 1 + �ŝlow.

(B.6)

Using the criterion (m + 2�) = 1 obtained from the first 652

condition in equation B.3, we will have, 653

ŝlow + ŝℎigℎ = 2
1 + m

(B.7)

Therefore, any combination of ŝlow and ŝℎigℎ that satis- 654

fies equation B.7 is the solution of the system. 655

656

III) Both trees oscillating between the same positive 657

and negative values 658

In this case the model can be written as, 659

s1,t+1 = −(m + �)s1,t + 1 + �s2,t s1,t > 0
s2,t+1 = (1 − �)s2,t + 1 + �s1,t s2,t ≤ 0.

(B.8)
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The second iteration will be,660

s1,t+2 = (1 − �)s1,t+1 + 1 + �s2,t+1 s1t+1 ≤ 0
s2,t+2 = −(m + �)s2,t+1 + 1 + �s1,t+1 s2,t+1 > 0.

(B.9)

We define,661

X(1)
t = s1,t + s2,t

X(2)
t = s1,t − s2,t.

(B.10)

According to the conditions described in equation B.3, for662

the out-of-phase oscillation, we can write,663

X(1)
t+1 = X(1)

t

X(2)
t+2 = X(2)

t .
(B.11)

Applying the first and second iteration of the model in equa-664

tions B.11,665

X(1)
t = 3 − 4� − m

(1 + m)(1 − k)

X(2)
t = 1

1 − �
.

(B.12)

From here, we can obtain s1,t = 2
1+m and s2,t = 1−(m+2�)

(1−�)(1+m) .666

We began our discussion assuming that s1,t > 0 and s2,t ≤667

0. Our final result for s1,t is in agreement with our initial668

assumption. But for s2,t to be less than or equal 0, (m + 2�)669

should be greater than or equal one ((m + 2�) ≥ 1).670

To analyze the stability of this solution, we can analyze671

the stability of the fixed point of the following pair of equa-672

tions,673

s1,t+2 = f (s1,t, s2,t)
s2,t+2 = g(s1,t, s2,t).

(B.13)

Using equations B.8 and B.9, the coefficient matrix will be,674

A =
(

−m − � + m� + 2�2 2�(1 − �)
−2�(m + �) −m − � + m� + 2�2

)

. (B.14)

Matrix A has two eigenvalues, �1 = (�m − m − � + 2�2) −675

2�[(� + m)(� − 1)](1∕2), and �2 = (�m − m − � + 2�2) +676

2�[(�+m)(�−1)](1∕2). Since � < 1, �1 and �2 are complex677

conjugates. The period-2 solution is stable if |�| < 1. This678

results in m < 1.679

C. An Alternate Version of the Model680

As we mentioned before, there are multiple mathemati-681

cal functions that satisfy the criteria discussed in section 3.682

As an example, we can use the Beverton-Holt function to683

model the Nutrient Accumulation process. Therefore, the684
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Figure C.1: The behavior of the alternative Nutrient Accumu-
lation function (equation C.2) for different values of efficiency
rate.

amount of nutrients added to the tree during year t can be 685

written as, 686

Nutrient Accumulation =
r1SmaxSt

Smax + (r1 − 1)St
−St (C.1)

where r1 > 1 is the nutrient accumulation rate, and Smax is 687

the maximum capacity of the tree to accumulate nutrients. 688

We can nondimensionalize equation C.1 by defining st = 689

St
Smax

and multiplying both sides by 1
Smax

. We will have, 690

Nutrient Accumulation =
r1st

1 + (r1 − 1)st
− st. (C.2)

Figure C.1 shows the behavior of the equation C.2 for differ- 691

ent values of r1. 692

We use the sigmoid function presented in equation 5 for 693

the Cost of Reproduction. We can write the model as, 694

st+1 = st +
(

r1st
1+(r1−1)st

− st
)

−
(

1
1+e(−r2st+l)

− 1
1+el

)

. (C.3)
As we can see in Figure C.2, the orbit diagram of this 695

version of the model is similar to the orbit diagram of the 696

version proposed in the main text (Figure 3a). This is an 697

affirmation of the robustness of the model. 698
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Figure C.2: The orbit diagram of the alternate version of the
model (equation C.3).
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