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ABSTRACT

Alternate bearing, seen in many types of plants, is the variable yield with a strongly biennial pattern.
In this paper, we introduce a new model for alternate bearing behavior. Similar to the well-known
Resource Budget Model, our model is based on the balance between photosynthesis or other limiting
resource accumulation and reproduction processes. We consider two novel features with our model,
1) the existence of a finite capacity in the tree’s resource reservoir and 2) the possibility of having
low (but non-zero) yield when the tree’s resource level is low. We achieve the former using a density
dependent resource accumulation function, and the latter by removing the concept of the well-defined
threshold used in the Resource Budget Model. At the level of an individual tree, our model has a
stable two-cycle solution, which is suitable to model plants in which the alternate bearing behavior
is pronounced. We incorporate environmental stochasticity by adding two uncorrelated noise terms
to the parameters of the model associated with the nutrient accumulation and reproduction processes.
Furthermore, we examine the model’s behavior on a system of two coupled trees with direct coupling.
Unlike the coupled Resource Budget Model, for which the only stable solution is the out-of-phase
solution, our model with direct coupling has stable in-phase period-2 solutions. This suggests that

our model might serve to explain spatial synchrony on a larger scale.

1. Introduction

"Alternate bearing" is the variability of fruit or nut pro-
duction in many types of plants for which a year of high
yield (ON-year) is followed by one or more years of low
or no production (OFF-years). Generally, the crop varies
biennially. However, in some cases, it can show longer pe-
riod cycles where multiple years of high or low yield happen
consecutively (Monselise and Goldschmidt, 1982; Shalom
et al., 2012). When this phenomenon is observed in collec-
tive synchrony among trees in orchards and natural forests,
it is known as masting.

Alternation is very common and is observed in a variety
of plants like citrus trees (Shalom et al., 2012), olive trees
(Lavee, 2007), and pistachio trees (Lyles et al., 2015; Noble
et al., 2018). These plants are different in many ways. The
differences include time of flowering, dormancy, and dura-
tion of fruiting compared to vegetative growth (Monselise
and Goldschmidt, 1982). The ubiquity of the phenomenon
suggests that there is a common mechanism that explains the
crop variability in a variety of plants.

Both exogenous conditions, like environmental triggers,
and endogenous factors, like bud abscission, flowering inhi-
bition by current fruits (Shalom et al., 2012), pollination, and
fruit overload, have been considered as contributing factors
to the alternate bearing phenomenon. The depletion of the
resource level of the plant due to over-fruiting is considered
the most common cause of the phenomenon (Monselise and
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54 sesmaeilieucdavis.edu (S. Esmaeili); amhastings@ucdavis.edu (A.
Hastings); kca27@case.edu (K. Abbott); machta@umass.edu (J. Machta);
vnareddy@umass.edu (V.R. Nareddy)

Goldschmidt, 1982; Lavee, 2007). Isagi pioneered a simple
model to explain the mechanism of variable acorn yield ob-
served at the level of an individual tree (Isagi et al., 1997).
His model, called the Resource Budget Model (RBM), is
based on the dynamics of the tree’s energy resource which is
accumulated as the result of photosynthesis and consumed
during the flowering and nut production processes.

The Resource Budget Model, as originally proposed by
Isagi et al. (1997) and expanded in Satake and Iwasa (2000),
assumes the existence of a well-defined threshold for the
tree’s resource levels below which the plant will not repro-
duce. This means that during an OFF-year, the tree has no
yield. This assumption is appropriate for the plants like olive
and citrus, for which there is zero or near-zero yield dur-
ing an OFF-year, but represents other species with low but
positive OFF-year yields less well. Once the resource level
of the tree exceeds the threshold, flowering and nut produc-
tion happens. Both flowering and nut production processes
are costly and result in the depletion of the tree’s resource
reservoir. The cost of flowering and nut production is as-
sumed to be proportional to the amount of resources above
the threshold with the depletion coefficient (the parameter
of the model). The Resource Budget Model belongs to the
category of tent maps for which there is no stable period-
2 solution at the level of individual tree (except at the bi-
furcation point). Systems of two trees do have an in-phase
period-2 solution, but it is only stable if the trees are coupled
via indirect (mean-field) coupling, as with pollination, and
not for trees coupled directly through local interactions like
root grafting (Prasad et al., 2017). Together, these features
make the Resource Budget Model a simple and successful
model to explain the masting phenomenon in many plants
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Density Dependent Resource Budget Model

for which there is zero or near-zero yield during an OFF-
year, the plant goes through several OFF-years before hav-
ing a year with high yield, and at a collective level, the plants
can interact via pollination (the plants are monoecious). But
the model needs to be modified if it is to be applied to the
plants like pistachio that have a low yield, but not zero, dur-
ing OFF-years, whose yield show a two-cycle behavior, and
is dioecious, therefore, the interaction between the female
trees happens via direct coupling (root grafting). Lyles et
al. modified the Resource Budget Model by removing the
concept of threshold from the model and adding temporal
stochasticity to the depletion coefficient and the pollen avail-
ability to achieve the variable and synchronized nut produc-
tion of the trees (Lyles et al., 2015). However, this model,
like the previous Resource Budget Models, does not show
synchrony in trees with direct coupling.

In another attempt to predict the yield of citrus trees, Ye
and Sakai suggested a more generalized version of the Re-
source Budget Model (Ye and Sakai, 2016). Motivated by
the result of their analysis of field data collected from a cit-
rus orchard in Japan (Ye et al., 2008), they added a vege-
tative growth factor to the Resource Budget Model to ac-
count for the role of new leaf growth in inhibition of fruit
production. According to their model, the cost of new leaf
growth is proportional to the empty portion of the resource
tank. Also, the return map obtained from their experimen-
tal study showed, what they called, a "hump-shaped" curve
similar to what is obtained from the logistic map. To repro-
duce the logistic-like return map, they replaced the linear
relationship between the resource reserve level and flower-
ing and fruiting cost in the original Resource Budget Model
(see Sec. 2), with a nonlinear Ricker-type relationship (Ye
and Sakai, 2016). By adding nonlinearity they modified the
model to better reflect the yield dynamics of citrus trees.
However, similar to the original Resource Budget Model,
this model assumes the existence of a well-defined thresh-
old below which no flowering or production happens, which
does not reflect the low (but non-vanishing) yield of species,
like pistachio, during OFF years.

Inspired by an existing data set collected from a pista-
chio orchard at the level of individual trees during a 6-year
period (Lyles et al., 2015; Noble et al., 2018), we propose
a different approach for modeling alternate bearing that ac-
commodates low but non-vanishing yield during OFF-years.
This is achieved by replacing the concept of a sharp cut-off
for reproduction (represented by a threshold function) with a
continuous function that accommodates the non-zero yield
when the tree’s current energy level is low. Also, we take
into account the fact that there is a maximum capacity for the
plant to store photosynthate and other nutrients and there-
fore, its energy storage cannot grow indefinitely.

In Sec. 2 we briefly review the rules and the character-
istics of the Resource Budget Model. In Sec. 3, we describe
our new model of alternate bearing behavior for the trees
with low yield during OFF-years. We analyze the model by
performing a bifurcation analysis. Furthermore, we discuss
and apply some necessary constraints on the model to make

Figure 1: The orbit diagram of the Resource Budget Model
shows that the dynamics of the system goes from a stable
fixed point for the depletion coefficient, m < 1, to period-four
oscillation for a very small range of m and then quickly leading
to chaos.

it biologically meaningful and applicable. In Sec. 4, we add
stochasticity to the model to account for environmental vari-
ation. As the preliminary step to understand the collective
behavior of the trees in an orchard or a natural forest, in Sec.
5, we study the dynamics of a two-tree system.

2. Background

First we describe the Resource Budget Model: every year,
the resource level of an individual tree (S;) increases by a
constant amount called P,. If the resource level exceeds
a threshold, Ly, the plant will flower and bear fruits/nuts
which depletes the energy reservoir of the tree. The cost of
flowering is assumed to be proportional to the excess amount
of resources above the threshold with a positive constant a.
The cost of fruit/nut production is also considered to be pro-
portional to the cost of flowering. The Resource Budget
Model is formulated as,

s _Jsi+p, S+ P <Ly
o S, + P, —a(R, + 1)(S,+ P,— Ly), S,+P,> Ly

where R, is the ratio of the cost of fruit/nut production to the

cost of flowering. The model can be written in terms of the

. . . S,+P—L
dimensionless variable s, = % as,
s
s;+ 1 5; <0 @)
S =
ol -ms,+1, s5,>0

where m = a(R, + 1) — 1 is called the depletion coefficient.

As it is shown in the model’s orbit diagram (Figure 1)
and discussed in Appendix A, the model has a stable fixed
point for m < 1. At exactly m = 1 (which is the discontinu-
ous bifurcation point) the system shows two-cycle behavior.
For m > 1 the system demonstrates a chaotic period-four os-
cillation for a very small range of the parameter, followed by
a single band chaos (Prasad and Sakai, 2015).

3. The Model

Similar to the Resource Budget Model, our new model
of alternate bearing is based on the dynamics of the nutrient
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(i.e. carbon, nitrogen, phosphorus, etc) level of an individ-
ual tree. According to our model, the nutrient level of an
individual tree in year ¢ + 1 is determined based on the bal-
ance between two processes that happen in year ¢: 1) nutrient
accumulation, 2) reproduction. The accumulation of nutri-
ents is the result of photosynthesis (Marino et al., 2018) and
the plant’s interaction with soil and soil-based microorgan-
isms (Guignard et al., 2017). The process of reproduction is
the flowering and production of nuts. Nut production comes
with a higher cost than flowering and is considered the main
sink of the tree’s nutrient reservoir (Marino et al., 2018). The
nutrient level of a tree in year t 4+ 1 (.S, ;) can be written as,

S,41 = S; + Nutrient Accumulation — Cost of Reproduction. (3)

In modeling the Nutrient Accumulation and the Cost of
Reproduction, we take into account the following consider-
ations:

1) The Nutrient Accumulation process cannot result in
the indefinite growth of the tree’s nutrients level. In other
words, each tree has a maximum capacity to store nutrients,
denoted by S,,,,. Therefore, the amount of nutrients that is
added to the tree’s reservoir each year is a density dependent
function of its existing nutrients level. We model the Nutri-
ent Accumulation process by a function of .S;, which grows
when §; is small but approaches zero as S; = S,

2) As we mentioned in the introduction, the function used
to model the Cost of Reproduction should allow for low yield
(as opposed to zero yield) during OFF-years.

There are many mathematical functions that satisfy the
above conditions and can be considered to model these two
processes. For the purpose of this paper, we have chosen the
bounded growth function for Nutrient Accumulation and a
shifted sigmoid function for the Cost of Reproduction. How-
ever, these functions are not unique. In Appendix C, we
present an alternate version of the model using a different
Nutrient Accumulation function and show that the dynam-
ics of the model stay qualitatively similar.

Bounded Growth Function

The amount of nutrients added to the tree’s reservoir as a
result of photosynthesis and other nutrient uptake processes
at the end of year 7 is modeled by:

Nutrient Accumulation = S, (1—e™"! St/ Smax ) — S, (4)

where S; is the current nutrients level, S,,,, is the tree’s max-
imum capacity to store nutrients, and ry is the efficiency of
the Nutrient Accumulation process. Figure 2a shows the be-
havior of the nondimensionalized version of equation 4 as a

. S
function of 5, = -

and for different values of r;. As r|
gets larger, the tree can accumulate more nutrients and do
it more efficiently and with less available resources. There-
fore the accumulation function has a higher maximum and is

right skewed with increasing r; (the accumulation function
reaches its maximum for a smaller current resource levels

(5,))-

Shifted Sigmoid Function

The cost of reproduction is modeled by a vertically shifted
sigmoid function. A sigmoid function allows for low pro-
duction when the current nutrients level is low. Also, the
second term (vertical shift) ensures that when S, = 0, there
is no reproduction, and therefore no cost.

S,

max _
1+eC725+ 1)/ Smax

Smax . (5)

Cost of Reproduction = Tael/Smax

In equation 5, r, is the tree’s reproductive investment
and L/r, (=L%) is the threshold that controls the level of re-
source needed to trigger high yield. We can nondimension-

alize equation 5 by defining s, = SS’ L Figures

and !/ =

2b and 2c show the behavior of the nondimensionalized ver-
sions of the Cost of Reproduction for different values of the
efficiency rate (r,) and the threshold (/).

As it can be seen in Figure 2a, there are values of | for
which the Nutrient Accumulation term becomes negative.
Also, for some values of r, and /, the curves in Figures 2b
and 2c cross the diagonal line which indicates that the Cost
of Reproduction exceeds the current resource levels (s,). For
the model to be meaningful, both of these conditions must
be avoided. This can be done by imposing constraints on the
model and defining acceptable ranges of parameters. Section
3.2 addresses this issue in detail.

Finally, we can write the nondimensionalized model as,

1 1
= —e sy = _
St = (1= ) < 14 eCrsth) 1 4 ¢l > - ©

While equation 6 models the dynamics of a tree’s nutri-
ents level, the amount of nut production is the observable
that is actually measured for each tree. Since nut production
is the main sink of the tree’s nutrient resources during re-
production, it can be taken to be proportional to the cost of
reproduction. We use Y, = ! !

—— — — to denote the
1+e( rosp+l) 1+e!
nondimensionalized yield of a tree at time ¢ to also study the

dynamics of the observable of the system.

3.1. Bifurcation Analysis

In this section we study the behavior of the model for
different values of efficiency rates and a fixed value of /.
For simplicity, we choose the accumulation efficiency and
reproductive investment rates (r; and r,) to always be equal.
Therefore, we will have r| = r, = r. This will simplify the
model to a one-dimensional, single parameter map, many ex-
amples of which have been extensively explored (Strogatz,
1994; Devaney, 2003; Feigenbaum, 1980). However, the re-
sults presented in this section remain qualitatively the same
if r; and r, are chosen to be different.

Figure 3a and 3b show the orbit diagram of the model
and the tree’s yield (Y;) respectively, when I = 7. Quali-
tatively, the orbit diagrams are similar to orbit diagrams of
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Figure 2: The behavior of a) nondimensionalized Nutrient Accumulation term for different values of r|, b) and ¢) nondimension-
alized Cost of Reproduction for different values of r, when / = 3.5, and different values of / when r, =7, respectively.

one dimensional unimodal maps with one parameter, like The analysis in this section has also been performed for
the quadratic map. The model has a stable fixed point for  different values of /. As we change /, the locations of the
r 5 6.8. Atr =~ 6.8 the first period-doubling bifurcation period-doubling bifurcations and the width of the chaotic
happens. For 6.85 < r < 8.6 the model shows a 2-cycle be- windows change, but the behavior of the model stays quali-
havior (the range of the parameter where the alternate bear- tatively the same.

ing behavior can be modeled). At r = 8.6 a second period-

doubling bifurcation happens and the system switches to a  3-2. Constraints on the Model

4-cycle oscillation. Next period-doubling bifurcation hap- As we briefly mentioned in section 3, for a range of val-
pens at r ~ 9.1 followed by a cascade of period-doubling ues of r;, the Nutrient Accumulation term becomes nega-
bifurcations that leads to chaos. Like the orbit diagrams tive. Also, for some combinations of r, and / the Cost of
of other unimodal maps, the chaotic regime is interrupted ~ Reproduction exceeds the current resource levels (s,). To
by small windows of cyclic behavior. Figure 3c shows the avoid this and for the model to be biologically meaningful,
Lyaponov exponent as a function of the parameter r. We we have to determine the acceptable range of values for the
used the method introduced in (Strogatz, 1994) to calculate model’s parameters.

the Lyaponov exponent. For the range of the parameter val-
ues where 4 < 0 the system has a stable fixed point or a
cyclic attractor. When 4 — —oo, the attractor is superstable.
Period-doubling bifurcations happen when A = 0. For A > 0
the trajectories diverge exponentially which is a signature of
a chaotic regime.

Figure 4 shows the trajectories for different values of r
belonging to different regimes, again with / = 7. For r =
6, the model relaxes to a stable fixed point (Figure 4a) and
the tree maintains a fixed carbon level and constant yield.
For r = 7.5, the carbon level, and therefore the production,
show a period-2 oscillation (Figure 4b). Figure 4c shows the
model’s stable period-4 solution for r = 8.8. When r = 9.8
the system is in the chaotic regime (Figure 4d). l—e —5*=0. @)

3.2.1. Nutrient Accumulation

The Nutrient Accumulation process should always result
in the increase of current resource levels. This means that the
result of equation 4 should always be greater than zero when
the current resource levels are below the maximum capacity
(e S, < S, 0rs; <1). As S, = 8,4 (5; = 1), the Nu-
trient Accumulation function should approach zero. In other
words, S; = S,,,x (s, = 1) should be the stable fixed point of
the model when the reproduction is turned off. This means
that the solution of equation 7 (Nutrient Accumulation = 0)
should be s* = 1.

S. Esmaeili et al.: Preprint submitted to Elsevier Page 4 of 13
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Figure 3: a) The orbit diagram of the model for r; = r, = r and | = 7, b) the orbit diagram of the tree's yield Y,, and c) the

1

corresponding Lyaponov exponent (4) as a function of r. For values of r where A > 0 the system is in the chaotic regime.

In Figure 2a, s* is where each curve crosses the horizontal
axis. As we can see, for any finite values of ry, the solution
to the equation 7 is less than 1. This means for s* < s, <1
the result of the Nutrient Accumulation function is negative.
As it can be seen in Figure 2a, as r| becomes larger, s* gets
closer to 1 and the result of the Nutrient Accumulation func-
tion remains positive for a larger range of s,. Our goal is to
find a lower bound for r; (let’s call it r,,,;,) so that for values
of ry greater than r,,, the corresponding s* is sufficiently
close to 1. We can write s* = 1 — §, where 6 is the tolerance
that controls the proximity of s* to 1. To determine the r,;,
as a function of 8, in equation 7, we substitute r; with r,;,
and s* with 1 — §. we can write,

1 — e min1=0) _ (1 =) =0. 8)

Solving for r,,;,,, we obtain a lower bound for r; as a func-
tion of & (i.e. 7y > 7y, (6)), Where 7, () = 7= 1n (1),

For any value of r; greater than r,,;, we can accept that the
Nutrient Accumulation term remains positive for s, € (0, 1—
6) = (0, 1). For the rest of this manuscript, we choose 6§ =
0.01 and study the behavior of the model for r; > 4.65.

3.2.2. Cost of Reproduction

A tree’s intensity of flowering and nut production de-
pends on the current level of its nutrients storage. A tree will
never draw more resource to flower and reproduce than what
is available in its reservoir. In the language of our model, the
Cost of Reproduction (equation 5) cannot exceed the current
nutrient levels. In terms of the density of nutrient levels, s,,
it means:

1 1
— <s.
(et 1) = ®

As presented in Figures 2b and 2c, for some combina-
tions of r, and /, the above condition is not met. To find the
acceptable (r,, I) pairs, for which the condition is satisfied,
we solved equation 9 numerically. The shaded area in Figure
5 shows the acceptable pairs of (r,, /) for which the cost of
reproduction does not exceed the current nutrient levels.

4. The Role of Environmental Variation

The stochastic effect of environmental variation plays
an important role in photosynthesis (and other nutrient up-
take processes) and reproduction. Factors like the amount
of CO,, the intensity of radiant energy, and the temperature
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Figure 4: The trajectories for different values of r. a) r = 6,
the model relaxes to a stable fixed point, b) » = 7.5, it shows
a stable period-two oscillation, ¢) r = 8.8, the model has a
period-four solution, d) r = 9.8, the systems is in the chaotic
regime. In all panels [ =7.

Figure 5: The area covered by blue dots shows the combina-
tions of (r,, ) for which the condition in equation 9 is satisfied
and the Cost of Reproduction stays below the current nutrient
levels.

affect the process of photosynthesis (Marshall and Biscoe,
1980). On the other hand, the amount of precipitation and
the temperature during the reproduction season affect flow-
ering or nut production. We incorporate environmental vari-
ability into the model by adding two noise terms to the nu-
trient accumulation efficiency and reproductive investment
rates (r; and r, respectively),

— e+ 1 _ 1
Sivp = 1-e <1+e(—<r2+§z,>s,+l> 1+el> (10)

in which &, and &,, are uncorrelated random variables that
are independently drawn from a normal distribution with
mean zero and variances 612 and o-%, respectively.

In our simulations we choose ry =ry, =r=7and [ =7

for which the system is in the two-cycle regime. We also set
o, = 0, = o. Notice that these choices of parameters satisfy
the conditions set for r{, r,, and / as mentioned in section
3.2 and shown in Figure 5.While under the effect of very
large noise, these conditions can be violated, for the small
enough variance of the noise terms, our choices of parame-
ters are unlikely to go beyond the acceptable range. Figure
6a shows a perfect period-two behavior of the model without
noise. Figure 6b-d show the effects of noise with different
strengths (variances, o) on the amplitude and the phase of
the oscillation.

5. The Dynamics of a Two-Tree System

One of the mechanisms behind spatial synchrony, ob-
served in the masting phenomenon, is the local interaction
between trees. The trees planted in proximity to one another
interact in complex ways including exchanging their carbon
through root grafts (Klein et al., 2016). Grafting is known as
direct interaction or diffusive coupling (Prasad et al., 2017).
Trees also interact through pollination via external agents
(e.g. birds, insects, and wind). This process is considered an
indirect interaction and usually implemented in the form of
mean-field coupling (Satake and Iwasa, 2000; Prasad et al.,
2017). In dioecious plants, pollen distribution is provided
by male trees while flowering and reproduction are done by
female trees. Therefore, pollination cannot be considered as
the mechanism behind the interaction among female trees.
Instead, root grafting (direct coupling) should be considered
as the method of local interaction. The numerical simula-
tions of the Resource Budget Model with direct coupling for
a system of two trees show that the only possible period-
2 solution for the trees is the out-of-phase solution (Prasad
et al., 2017). We confirmed these results by performing a
stability analysis of the coupled Resource Budget Model as
discussed in Appendix B. These results suggest that the Re-
source Budget Model cannot model the spatial synchrony
observed among dioecious plants, like pistachios, for which
the direct coupling is the main method of interaction.

In this section we use direct coupling to investigate the
dynamics of a deterministic system of two coupled trees.
The internal dynamics of each tree is defined by equation
6. We use §;, (i = 1,2) to refer to each tree’s resource level
after nutrient uptake and reproduction but before exchange
of resources. Each tree shares a fixed fraction of its resource
(x) with its neighboring tree and receives the same fraction
of the second tree’s resource in return. The result is a net
flow of nutrient from one tree to another. The nutrient level
of each tree at the beginning of year ¢ + 1 is:

Spap1 =81+ Kk, —51,)

Spp41 =S+ K(§1,t = 5p0)-

an

To understand the dynamics of this system, we solve
equations 11 numerically to construct the orbit diagram. We
assume both trees have the same internal dynamics by choos-
ing the same nutrient accumulation efficiency and reproduc-
tive investment rates. Also, similar to previous sections we
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Figure 6: The behavior of the density of resources (black) and the yield (blue) for 50 years for r =7, I =7, and a) ¢ =0 (no

noise), b) 6 =0.25, ¢) 6 = 0.5, and d) ¢ = 0.75

simplify the model by setting the nutrient accumulation effi-
ciency and reproductive investment rates to be equal. There-
fore, the internal dynamics of both trees only depend on one
parameter, . We also choose / = 7 for both trees. To build
the orbit diagram, we follow the technique used in (Hast-
ings, 1993). We choose 20 random initial conditions for each
choice of parameters r and x to capture all stable solutions
where the system is multistable.

Figure 7 shows the dependence of the system’s dynamics
on parameter r and different values of k. Similar to the cou-
pled logistic equations discussed in (Hastings, 1993), two
general categories of solutions are identified: the perfectly
in-phase solutions where s;, = s,, and all the other so-
lutions, which we refer to as out-of-phase solutions, where
814 # 8o, - The left column in Figure 7 shows the orbit dia-
gram of the total nutrient levels (s; ,+s, ;) for stable in-phase
solutions. The right column shows the orbit diagram of the
nutrient levels difference (s, , — s, ,) when the system has a
stable out-of-phase solution. For the range of parameters for
which the in-phase and out-of-phase solution coexist, both
solutions are shown in red. Different patterns of oscillation
are observed in both in-phase and out-of-phase categories.
These patterns include in-phase or out-of-phase period-2,
period-3, period-4, or higher period oscillations, as well as
chaotic behavior. When the resource exchange between the
two trees is weak (e.g. k = 0.05), as shown in Figure 7a and
7b, the out-of-phase solutions are more prevalent and the in-
phase solutions are mostly observed when the two trees are
in fixed point or oscillatory regimes with different periods.
As the interaction becomes stronger, the in-phase solutions
appear for a wider range of parameter r and chaotic in-phase
solutions are more commonly observed. For a strong enough

K (e.g. k¥ = 0.2) the trees predominantly stay in-phase while
out-of-phase solutions are observed for r > 9.7. The simi-
larity between Figures 7e and 3a suggests that, in this case,
the system behaves mostly like a single unit system.

As we mentioned above, the category of in-phase solu-
tions include a variety of periodic and chaotic oscillations
that emerge for different values of parameter r. Figure 8
compares the basin of attraction of some of these solutions.
To obtain Figures 8c-f, we scan the entire phase space of
(51,0» $2,0)» with increment of 0.005, to find the initial con-
ditions that relax to an in-phase attractor for k = 0.1 and a
given value of r. Figures 8c-j are color coded to match the
markers lines in Figures 8a and 8b. We choose values of r
for which the in-phase and out-of-phase solutions coexist.
The in-phase solutions studied in Figure 8 are in the form
of period-2 oscillation for » = 8 (Figure 8c and 8g), chaotic
for r = 9.4 (Figure 8d and 8h), period-10 for r = 9.95 (Fig-
ure 8e and 8i), and period-3 when r = 10.9 (Figure 8f and
8j). The general patterns of the basins of attraction are sim-
ilar for different values of r (different patterns of in-phase
solution), however, the density and the distribution of points
differ, which can provide hints toward the prevalence of the
attractor in the phase space. For example, the high density
and the uniform distribution of points in Figure 8c indicates
that the period-2 attractor has a higher probability of emerg-
ing when r = 8 compared to the period-3 attractor (Figure
8f) when r = 10.9 which has a nonuniform basin with lower
density areas.
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6. Discussion

We developed a new model for the alternate bearing phe-
nomenon. Alternate bearing is defined as the variability of
the production in many types of plants in a biennial manner.
Similar to the Resource Budget Model, our new model is
based on the balance between generating and storing nutrient
during photosynthesis and other nutrient uptake processes
and consuming it through flowering and nut production. We
considered two biologically motivated criteria: 1) the lim-
ited capacity of each plant to store nutrient, and 2) low but
non-vanishing yield during OFF-years (when the resource
level is low). The limited capacity of the resource tank was
also considered in the generalized Resource Budget Model
proposed by Ye and Sakai (2016). There are multiple math-
ematical functions that can satisfy the above conditions. In
each case different constraints should be applied to keep the
model biologically meaningful. Therefore, the model can be
written in different mathematical forms while the qualitative
dynamics of the model remains robust.

As it was observed in the experimental data in Ye et al.
(2008), the return map of the fruit production shows a hump-
shaped curve. Ye and Sakai reproduced this behavior by re-
placing the linear relationship between resource level and
the cost of flowering and fruit production in the original Re-
source Budget Model with a Ricker-type function which in-
troduced more parameters to the model (Ye and Sakai, 2016).
We chose proper nonlinear functions, that satisfy the bio-
logically motivated conditions mentioned above, to model
the Nutrient Accumulation and Cost of Reproduction in our
model. As a result the return map of the resource level and,
consequently, the yield of the plant show a logistic-like curve.
Therefore, unlike the Resource Budget Model, the new model
for alternate bearing has stable period-2 solutions for a wide
range of the model’s parameters and is well suited to model
the variable yield of plants in which the two-cycle behav-
ior is more pronounced. The structure of our model makes
it possible to nondimentionalize the resource level of the
plant and, therefore, lower the number of parameters to three.
Furthermore, by setting the nutrient accumulation efficiency
and the reproductive investment rates to be equal, we fur-
ther lower the number of parameters to two which makes
the model easier to analyze and manipulate. However, the
behavior of the model remains qualitatively the same if the
two rates are not the same.

Trees in an orchard or natural forest do not show a perfect
periodic reproduction since they are subject to environmen-
tal fluctuations. Although these variations affect the nutrient
uptake and reproduction differently, they are not indepen-
dent. To account for environmental stochasticity, we added
two uncorrelated noise terms to the accumulation efficiency
and the reproductive investment rates. Our analysis shows
that adding stochasticity to the model affects the amplitude
and phase of the oscillation of the tree’s yield which models
the noisy two cycle behavior observed in alternate bearing
plants. To include the correlation between different envi-
ronmental factors, one can use correlated noise terms. In
this case, the correlation coefficient between the two noise

terms becomes an additional parameter of the model.

Masting and spatial synchrony is observed among alter-
nate bearing plants in orchards or natural forests. As the pri-
mary step to examine the behavior of our model on a collec-
tive level, we analyzed the dynamics of a coupled two-tree
system. One of the mechanisms behind masting is the lo-
cal interaction between neighboring trees. This interaction
can be direct (root grafting), indirect (pollen coupling), or a
mixture of both . Since in diecious plants, the female trees
cannot interact through pollen coupling, we used direct cou-
pling to model the local interaction. The numerical and sta-
bility analysis of the coupled Resource Budget Model with
diffusive coupling showed that the only stable two cycle so-
lution is the out-of-phase solution. Therefore, the Resource
Budget Model cannot reproduce the spatial synchrony ob-
served among female trees of the diecious plants for which
root grating (direct coupling) is the main interaction mech-
anism. Our analysis shows that our new model for alternate
bearing with direct coupling has stable in-phase period-2 so-
lutions for a wide range of parameters and different values
of coupling strength (x). Having stable in-phase solutions
can be interpreted as the primary requirement for the model
to be used in studying spatial synchrony at a larger scale.
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Figure 7: Left column: orbit diagrams of the total carbon levels when s, = s,, (in-phase solutions), right column: orbit diagrams
of the carbon levels difference when s,, # s,, (all other solutions), for different values of k. The red areas in all the figures
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indicate the coexistence of in-phase and out-of-phase solutions for that parameter value.
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A. Stability Analysis of Period-2 Solutions in
the Resource Budget Model

As it is shown in the orbit diagram of the Resource Bud-
get Model in Figure 1, RBM has one fixed point § = H_Lm
which is stable for m < 1. The period-2 solution, if exists, is
the fixed point of 5,,, = f(s;), where f(s,) can be obtained

by iterating the model twice. Using equation 2 we will have,

s;+2, 5; < -1
-ms,+(1-m), —-1<s5,<0

Sy = f(s) = s+ (1 —m) 0<s, <L (A.1)
—ms; + 2. S; _i

Solving s,,, = s, = §, we obtain two acceptable answers
from the second and fourth conditions in equation A.1,

1-m

—, —-1<§<0
Hl-m ]
§=4-L 0<s5<1 (A2)
I-Em ] m
. §>-=
1+m —m

For m > 1 all solutions become unstable. On the other hand,
if m < 1 the first and the third solutions become unaccept-
able since they do not satisfy their required conditions. The
second solution is the model’s stable fixed point and not a
period-2 solution.

For m = 1 there is a continuum of period-2 solutions
where the system oscillates between any values of §; and §,,
as long as 0 < (8;, §,)<1, and §; + §, = 1. To analyze the
stability of these attractors, we study the system’s response
to small and large perturbations. Any small perturbation that
keeps s, between 0 and 1 will push the system into another
period-2 attractor where the system will oscillate between
two different values of §; and §,. On the other hand, a large
perturbation can result in s, falling outside the (0, 1) range.
In that case, the system will come back and settle in one of
the period-2 attractors inside the continuum.

B. Stability Analysis of the Coupled Resource
Budget Model

When coupling two trees together, three scenarios can be
considered:

I) Stable fixed point
If both trees maintain the same resource levels above the
threshold, we can write the model as,

S1pp1 = —(m+ K)Sl’, + 1+ KSy, B.1)
Sopp1 = —(m+ )5y, + 1+ K5,

Setting 51,1 = s1, and s, ,,1 = s, the fixed point of the

coa _oa 1
system is §; = §, = —

. To perform the stability analysis,

we find the eigenvalues of the coefficient matrix,

A= (—(m+1<) K >’
K —(m+«)

tobe A; = —mand A, = —m—2k. Therefore, the fixed point
of the system is only stable if (m + 2x) < 1.

(B.2)

IT) Both trees oscillating between two positive values

In this case, the model is the same as equation B.1. If
the trees are in-phase with the same amplitude, s;, = s, ,
there is no net flow of resources between the trees and the
systems will be the same as two uncoupled trees. Since for
an individual tree there is only a continuum of 2-period so-
lutions when m = 1, the trees will stay in-phase only if they
are started with equal resource levels and m = 1.

If sy, # s,,, the trees can be out of phase oscillating
between two positive values. In this case, the following two
conditions will be true,

S142 — 82,042 = S1p — Sy

(B.3)
Sl T 520401 = S1p F S
Iterating equation B.1 twice, we can write,
2
Sip2 = Soupr = (M =26)"(s1, — $2). (B.4)

This means that the first condition in equation B.3 is satisfied
if (m + 2x) = 1. As for the second condition, we will have,

sl,t + S2,l = (BS)

1+m
To find the period-2 solution, we assume that both trees

oscilla.lte f)ut-of-phase between ) ow and §;,p (both positive).

Substituting these values in equations B.1, we will have,

§high =—(m+K)S,, +1+ K‘ehigh B.6)
§low = _(m + K):g\hl‘gh +1+ K§[0w.

Using the criterion (m + 2x) = 1 obtained from the first
condition in equation B.3, we will have,

2

Ty (B.7)

S10w + §high =
Therefore, any combination of §,,,, and §,,, that satis-
fies equation B.7 is the solution of the system.

III) Both trees oscillating between the same positive
and negative values
In this case the model can be written as,

Sipp1 = —(m+ K)sl’, +1+ KSy Sy > 0

B.8
S2,l‘ S 0 ( )

Sy = (I =K)sy, + 1+ x5y,
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The second iteration will be,

Si+2 = (1- K)Sl,t+1 +1+ K82 141 Si41 <0 (B.9)
Sppp2 = —(M+K)Sp o + 1+ K58y 41 $2041 > 0.
We define,
(1
X '=s,+s
t 1.t 2.t (B.10)

@) _
Xt = Sl,t - S2J.

According to the conditions described in equation B.3, for
the out-of-phase oscillation, we can write,

Xl = .
2 _ v©@ )
Xt+2 - Xt :

Applying the first and second iteration of the model in equa-
tions B.11,

M _ 3—-4k-—m

L+ m)(1—k)
1

1-—x

(B.12)
x? =

1—-(m+2k)
(1=x)(1+m)’
We began our discussion assuming that s;, > 0 and s,, <
0. Our final result for s, is in agreement with our initial
assumption. But for s, , to be less than or equal 0, (m + 2x)
should be greater than or equal one ((m + 2x) > 1).

To analyze the stability of this solution, we can analyze
the stability of the fixed point of the following pair of equa-
tions,

. 2
From here, we can obtain s, = and 55, =
g 14+m d

S22 = f(sl,t’ Sz,t)

(B.13)
$2042 = 8(S1 4 524)-

Using equations B.8 and B.9, the coefficient matrix will be,

2k(1 — k)

—m — Kk + mk + 2k2
A=
—-m— Kk + mk + 2K

—2k(m + x) 2) . (B.14)
Matrix A has two eigenvalues, A, = (km —m — k + 2k2) —
2k[(k + m)(x — D]I/?, and Ay = (km —m — k + 2k%) +
2k[(k +m)(x — 1)1/, Since x < 1, A and 4, are complex
conjugates. The period-2 solution is stable if |A| < 1. This
results inm < 1.

C. An Alternate Version of the Model

As we mentioned before, there are multiple mathemati-
cal functions that satisfy the criteria discussed in section 3.
As an example, we can use the Beverton-Holt function to
model the Nutrient Accumulation process. Therefore, the

0.6

o
3

o o
w IS

Carbon Accumulaion
o
o

0.1

St

Figure C.1: The behavior of the alternative Nutrient Accumu-
lation function (equation C.2) for different values of efficiency
rate.

amount of nutrients added to the tree during year ¢ can be
written as,

rlsmaxSt
Snax + (1 = DS,

Nutrient Accumulation =

-5, (C.1)

where r| > 1 is the nutrient accumulation rate, and S, is
the maximum capacity of the tree to accumulate nutrients.

We can nondimensionalize equation C.1 by defining s, =

St and multiplying both sides by L. We will have,
. . rysy
Nutrient Accumulation = ———  —5,. (C.2)
1 + (rl - I)St

Figure C.1 shows the behavior of the equation C.2 for differ-
ent values of ry.

We use the sigmoid function presented in equation 5 for
the Cost of Reproduction. We can write the model as,

— _ns e (L L
st =50+ (e =)~ (fromen — ) €3

As we can see in Figure C.2, the orbit diagram of this
version of the model is similar to the orbit diagram of the
version proposed in the main text (Figure 3a). This is an
affirmation of the robustness of the model.
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Figure C.2: The orbit diagram of the alternate version of the
model (equation C.3).

S. Esmaeili et al.: Preprint submitted to Elsevier Page 14 of 13





