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Abstract—Level curve tracking in a spatial-temporal varying
field is an important problem in many applications such as
tracking and monitoring the propagation of a wildfire. In this
paper, we investigate the level curve tracking problem using a
collaborating group of sensing agents in an advection-diffusion
field with obstacles. We implement a cooperative Kalman filter
that takes into consideration the spatial-temporal varying prop-
erty of the field to estimate the field value and gradient at two
consecutive time steps, which are used in the motion control law
that applies to the center of the agent formation so that the
center of the formation is able to detect and track a desired level
curve value in the advection-diffusion field. Obstacle avoidance
is considered in the motion control law design. Simulations show
satisfactory results of the proposed strategy.

I. INTRODUCTION

A level curve in a two dimensional field corresponds to the
set of all points in the field that have the same given field value.
Level curve tracking in a scalar field is an important problem in
many environmental monitoring applications such as keeping
track of the progression of the wildfire front, the spread of
volcanic plumes, and the propagation of chemical container
spreading in a water body [1]. Most of the scenarios are
mostly unprecedented and people cannot deploy static sensors
networks, e.g., we cannot place sensors near all water bodies or
forests and static sensor networks [2], [3] are often impractical
for such tasks due to the large area they need to cover and
high cost of installing in such areas [4], [5]. To overcome
these hurdles, using mobile sensor agents is a great option
with more options like patrolling the area, climbing gradient
of the scalar fields, monitoring boundaries etc. However, using
a single mobile sensor acquires lot of noise in real-world so
instead many existing algorithms use multiple sensing agents
to carry out the level curve tracking task or boundary tracking
task [6]–[8].

In practice, most of the environmental processes are not
static. Instead, they are spatial-temporal varying, meaning
the state changes w.r.t. both time and space [9]. Advection-
diffusion phenomena is one typical spatial-temporal varying
processes, which can be found in many scenarios [1]. In face
of such processes, level curve tracking becomes challenging
since level curves are not static in the field any more. While
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most of the existing work deal with level curve tracking in a
static field [6]–[8], few of them consider the situation where
the field is spatial-temporal varying.

In this paper, we investigate the problem of cooperative level
curve tracking in an advection-diffusion field with obstacles in
the field. Following the similar approach used in [6], which
carries out level curve tracking in a static scalar field, we
develop a modified cooperative Kalman filter that takes into
consideration the spatial-temporal varying property of the field
and is able to provide additional estimated states of the field,
i.e., the estimated states in two consecutive time steps. This
enables us to apply the same steering motion control law
as in [6] to our problem and achieve the cooperative level
curve tracking. In addition, we consider the case that there are
obstacles in the field, so the control law design must include
the obstacle avoidance capability. To tackle this problem, we
use the potential field approach for obstacle avoidance and
add an additional term to the motion control law. Simulation
study is conducted for the proposed strategy and the simulation
results are satisfactory.

The rest of the paper is organized as follows. Section II
formulates the problem of cooperative level curve tracking
in an advection-diffusion field using a group of collaborating
sensing agents. Section III introduces the formation control of
the multi-sensor group and discusses the level curve tracking
control law. Section IV presents the cooperative Kalman filter
that provides the estimates of the field values and gradients.
Simulation results are discussed in Section V including the
step-by-step algorithm, and conclusions and future work are
introduced in Section VI.

II. PROBLEM FORMULATION

A. Advection Diffusion Processes

Most of the real world scenarios that consists of transport
of substance by bulk motion in the nature like river flow,
spreading of smoke, or wildfire can be modeled as spatial-
temporal varying processes. These different types of processes
can usually be modelled using partial differential equations
(PDEs), which govern the motion of the particles/substances
in the field. In this paper, we consider the two-dimensional
(2D) advection-diffusion process, which is expressed using the
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equation below in (1) defined within the domain Ω ∈ R2 with
certain initial and boundary conditions.

∂z(r, t)

∂t
+ vT∇z(r, t) = θ∆z(r, t), r ∈ Ω, (1)

where z(r, t) is the concentration of the field at position r and
time t, ∇z(r, t) represents the spatial gradient of z(r, t), θ is
the diffusion coefficient, and v is the flow velocity.

A level curve is defined as a set of all points in the field, at
which the field takes on a given value. In a static scalar field,
a level curve is described as Lc(r) = {r|z(r) = C}, where C
is a given value. In the advection-diffusion field, we take the
similar definition with the additional dimension of time, thus,
the level curve can be written as Lc(r, t) = {r|z(r, t) = C}.

B. Sensor Dynamics

In most of the real world situations, there are uncertainties
in the measurements of the field concentration due to noise
and the sensing devices being imperfect. In this paper, we
employ multiple sensing agents in a mobile sensor network
to obtain the necessary estimates cooperatively and reduce the
noise. Each of the agent is equipped of a sensor which is
able to capture point measurements of the field at its current
position z(r, t). In most applications, we cannot obtain the
continuous sensor measurements, so we obtain the measure-
ments discretely over time. Let tk be the time step at kth

interval and rki be the agent i’s position at kth time step. The
field concentration value at rki will be denoted as z(rki , k). Let
rkc = [rkc,x, r

k
c,y]T be the center of the formation of N agents

at time tk, i.e, rkc = 1
N

∑N
i=1 r

k
i . The measurement captured

by each agent can be modeled as

p(rki , k) = z(rki , k) + wi, (2)

where wi is assumed to be i.i.d Gaussian noise. We also make
the following assumption for the sensing agents.

Assumption I: Each agent is capable of knowing it’s
location rki and the field concentration measurement value
p(rki , k) and is also capable of sharing these information with
the other agents that are part of this formation.

In this paper, we aim to develop and verify a level curve
tracking strategy for the group of sensing agents so that they
can detect and track a level curve with a given level value in
an advection-diffusion field. To-do so, a cooperative Kalman
filter is needed to provide estimates of the field states, and
formation and motion control laws need to be designed.

III. FORMATION AND MOTION CONTROL

In this section, we introduce the control laws that enable
the sensor network to detect and track a level curve in
the advection-diffusion field while remaining in a desired
formation.

A. Formation Shape and Orientation Control

We first explain how the formation is kept intact as we
move the center of the formation. To achieve this, we use
a transformation called Jacobi transformation Ψ [6]. Using

Fig. 1: The formation of four agents.

this transformation, we can decouple the formation shape
and orientation dynamics from the center of the formation
without taking the motion of the formation center into the
account. Hence, the formation shape and orientation can be
modified without worrying about the motion of the center of
the formation. We can control the formation to have fixed
orientation or we can have it rotate if we are using just two
sensing agents. In this paper, we are considering that we have
sensor agents N > 3 and our experiments are carried out using
four sensor agents with a fixed orientation as shown in Figure
1. Details of the formation control can be found in [6], [8].

B. Formation Motion Control

Motion control is applied only to the center of the formation
of the N agents since the formation can be considered as a
rigid body after the formation control converges. Hence, we
consider the center of the formation as a Newtonian particle
and derive the equations governing this particle moving in
the advection-diffusion field. This control algorithm is an
extension of the one used in [6] for the static scalar field. This
algorithm consists of how to find the curvature using Hessian
matrix, how to calculate the motion control law derived from
Lyapunov approach, and how to update the position of the
center of the formation. Due to the page limit, we skip the
complete derivation, instead, we use the control law derived
in [6] and extend it to include an extra parameter to avoid
obstacles along the path. Define the tangent vector to the
level curve that passes the formation center as x1 and the
perpendicular vector satisfying the right-hand convention as
y1. The control law for level curve tracking applied to the
formation center rc is

uc = κ1 cosα+ κ2 sinα− 2f̃(zc)||∇zc|| cos2
(α

2

)
+K4 sin

(α
2

)
, (3)

where α is the angle between x1 and the moving direction of
the formation, f̃(zc) is a function satisfying f̃(C) = 0, and
f̃(C) 6= 0 if zc 6= C, κ1 = −xT

1 ∇
2zcx1

||∇zc|| and κ2 =
xT
1 ∇

2zcy1

||∇zc||
are two parameters related to the curvature of the level curve
that can be estimated through computing the Hessian of the
field ∇2zc, and K4 is a constant. zc represents the field value
at the formation center rc. This control law does not take into
account the presence of any obstacles in the path of the sensor
network.
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To achieve obstacle avoidance, we use the potential field
method [10] to add obstacle avoidance repulsive force to the
steering control law. Consider M obstacles. Then the repulsive
force from the ith obstacle is given by:

F rep
i (rc, r

obst
i , l) = ∇Uobst

i (rc, r
obst
i , l)

= cobst · log

(
||rc − robsti ||

l

)
, (4)

where Uobst
i defines the potential field, l refers to the sensor

range, robsti = (xobsti , yobsti ) provides us with the location
of the ith obstacle, and cobst is a constant, which helps in
defining how much farther the formation center should move
away from the obstacle. Using the log will help us easily
set the boundary at log(1) = 0 and if it goes above zero
it would mean that there would be no repulsive force. Hence,
we sum up the repulsive forces from all the M obstacles as
F obst(rc) = cobst

∑M
i=1 F

rep
i (rc, r

obst
i , l), where F obst(rc) is

the total amount of repulsive force applied to the center of
the formation, and add F obst(rc) to the steering control law
in Equation (3), which produces the final motion control law:

u∗c = κ1 cosα+ κ2 sinα

− 2 ˜f(zc)||∇zc|| cos2
(α

2

)
+K4 sin

(α
2

)
+ F obst(rc). (5)

For a static field, two important inputs to the control law (5) are
the field value zc and gradient ∇zc at the formation center rc
at each time step k, denoted as z(rkc , k) and ∇zc(rkc , k), which
remain constant for the given position rkc over time. However,
in a spatial-temporal varying field, zc and ∇zc change over
time at a given position, so we need to obtain the delayed
values while implementing the control law, i.e., zc and ∇zc at
the same position rkc at time step k+1, denoted as z(rkc , k+1)
and ∇zc(rkc , k + 1), so that when the control law is applied
to the center of the formation, the correct values are used.

IV. COOPERATIVE FILTERING

In this section, we discuss how to obtain the delayed
estimates of the field value zc and gradient ∇zc at a given
position through a constrained cooperative Kalman filter to
enable the motion control law (5).

Cooperative Kalman filter was first developed in [6] to esti-
mate the field value and gradient, i.e., z(rkc , k) and ∇z(rkc , k),
at the formation center at time step k in a static field.
In order to provide the real-time estimate of the diffusion
coefficient θ in an advection-diffusion field, reference [11]
improved the cooperative Kalman filter with modified state and
measurement equations that take into consideration the field
dynamics, which results in a constrained cooperative Kalman
filter that provides two additional estimates z(rkc , k + 1)
and ∇z(rkc , k + 1) at each time step. The difference is that
z(rkc , k+1) and ∇z(rkc , k+1) are the field value and gradient
at position rkc at time step k+ 1, which are different from the
values at time step k at the same position rkc due to the time-
varying nature of the advection-diffusion field. The constrained
cooperative Kalman filter requires the estimated diffusion
coefficient θ. To track a level curve in an advection-diffusion

field, z(rkc , k+1) and ∇z(rkc , k+1) are needed in the steering
control law (5) due to the latency in applying the control law
in practice while the estimate of the diffusion coefficient θ is
not necessary. Therefore, we adopt the constrained cooperative
Kalman filter in [11] in this paper with modifications so that
we are able to estimate z(rkc , k + 1) and z(rkc , k + 1) of the
field with unknown diffusion coefficient.

To construct this cooperative Kalman filter, we need to
construct a state equation and a measurement equation. To
locally approximate the field values, we make use of Taylor
expansion as shown in the following two equations.

z(rki , k) ≈ z(rkc , k) + (rki − rk−1c )∇z(rkc , k)

+
1

2
(rki − rk−1c )TH(rk−1c , k)(rki − rk−1c ). (6)

z(rki , k + 1) ≈ z(rkc , k + 1) + (rki − rk−1c )∇z(rkc , k)

+
1

2
(rki − rk−1c )TH(rk−1c , k + 1)(rki − rk−1c ). (7)

In the above equations, H(·) represents the Hessian of the
field. We define the state estimated using Kalman filter as
X(k+ 1) = [z(rkc , k),∇z(rkc , k), z(rkc , k+ 1),∇z(rkc , k+ 1)].
By using first order Taylor expansion and finite difference
method and expressing them in terms of matrix multiplication,
we can write the prediction model of cooperative Kalman as

X(k + 1)− = Ax(k)X(k) + h(k) + w(k), (8)

where w(k) is the the i.i.d noise with covariance ma-
trix Q. Ax(k) and h(k) can be defined as Ax(k) =

1
(
rkc − rk−1c

)T
0 0

0 I2×2 0 0

0 0 1
(
rkc − rk−1c

)T
0 0 0 I2×2

 and h(k) =


0

H
(
rk−1c , k − 1

) (
rkc − rk−1c

)
0

H
(
rk−1c , k

) (
rkc − rk−1c

)
.

 . We also have the field

value measurements from the N sensor agents. So we
denote these measurements as P (k) = [p(rk−11 , k −
1), · · · , p(rk−1N , k − 1), p(rk1 , k), · · · , p(rkN , k)]T . The mea-
surement equation can be modeled as

P (k) = C(k) ·X(k)− +D(k) ~H(k) + v(k), (9)

where ~H(k) = [ ~H(rk−1c , k − 1), ~H(rk−1c , k)]T represents the
estimate of the Hessian at the center of the formation rkc and
v(k) represents the i.i.d noise. C(k) and D(k) can be defined

as C(k) =



1 (rk−1
1 −rk−1

c )
T

0 0

...
...

...
...

1 (rk−1
N −rk−1

c )
T

0 0

0 0 1 (rk1−r
k−1
c )

T

...
...

...
...

0 0 1 (rkN−r
k−1
c )

T


and D(k) =
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

1
2 ((rk−1

1 −rk−1
c )⊗(rk−1

1 −rk−1
c ))

T
0

...
...

1
2 ((rk−1

N −rk−1
c )⊗(rk−1

N −rk−1
c ))

T
0

0 1
2 ((rk1−r

k−1
c )⊗(rk1−r

k−1
c ))

T

...
...

0 1
2 ((rkN−r

k−1
c )⊗(rkN−r

k−1
c ))

T


,

where ⊗ is the Kronecker product. Using Equations (8) and
(9), we are able to construct a constrained cooperative
Kalman filter following the equations in [11]. The constraint
comes from the dynamic equation (1) and is a function of
the estimated diffusion coefficient θ. There are two ways to
deal with the constraint. First, we can follow the strategy in
[11] to estimate θ in real time. Or second, we can substitute
an estimated value into the constraint. We omit the equations
here due to the page limit. With the constructed cooperative
Kalman filter, the estimated state X(k + 1) can be obtained
and z(rkc , k + 1) and ∇z(rkc , k + 1) will be used in the
steering control law. For the Hessian estimation, we use the
same approach as in [6] so we omit the derivations.

V. SIMULATION RESULTS

In this section, we verify the proposed strategy using sim-
ulations. We first summarize the step-by-step algorithm, then
implement the algorithm in a simulated advection-diffusion
field with obstacles using four sensing agents.

A. The cooperative level curve tracking algorithm

To verify the cooperative level curve tracking strategy, we
first construct an advection-diffusion simulated field using
finite difference method [12]. Using this method, we can
define parameters such as the diffusion coefficient and the
flow velocity to make the field concentration diffuse outwards
overtime and also change its source location at each time step.

Algorithm 1 provides a brief overview of how the center
of the formation rc gets updated over time while tracking
the desired field value in the simulated field. We start by
setting the discretization time step denoted as sim dt at which
the diffusion of the field happens. The notation agent dt
determines the rate at which sensors capture the field values in
the simulation. In addition, we need to set the initial positions
of the agents r1 · · · , r4 with a constraint that they need be
within the bounds of the simulated field. Along with this,
we will also set ∆rx and ∆ry , which are the max distance
between agents along x and y directions, respectively. In the
case of using 4 agents, we will align themselves in rhombus
formation over time.

Since this is a simulated environment, we define the total
number of times the simulated map will be updated by setting
tmax. At each time step k, we use the cooperative Kalman
filter defined in section IV to determine the field concentration
and it’s gradient at rc at both kth and (k+1)th time step. Using
the estimated Hessian of the field, we apply the motion control
algorithm as explained in section III-B to obtain where the
center of the formation should move to at k+1 timestep. With
the updated r∗c we will perform formation control as explained

Algorithm 1: Level Curve Tracking in an Advection-
Diffusion Field
Require: Simulated field, the positions of the agents
rk = {rk1 , · · · , rk4}, and the measured fields at each
time step pk = {pk1 , · · · , pk4}.

load u; //load the simulated field;
// set the discretization time steps for the field and

agent motion ;
sim dt← 0.01 ;
agent dt← 0.01;
z desired← C;
set Ψ, ∆rx,∆ry;
// set current time step k and max time steps tmac;
set k ← 0;
set tmax;
initialization;
while k ≤ tmax do

load r;
calculate ∇z2(rkc , k);
S =
[z(rkc , k),∇z(rkc , k), z(rkc , k + 1),∇z(rkc , k + 1)];
S∗ = CoopKalmanFilter(pk,∇2z(rc, k), rk, r

k
c , S);

// Apply motion control explained in section III-B;
rk+1
c =
MotionControl(zdesired, rkc , S

∗,∇2z(rkc , k));
// Apply formation control in section III-A to

calculate the next positions where the N = 4
agents should move to.
rk+1 = FormationControl(rk,Ψ, rk+1

c );
// update the simulated field;
Update(u, sim dt);

end

in section III-A to determine where the agents should move
in the next time step.

B. Simulation Results

We conduct simulations to verify the proposed cooperative
level curve tracking strategy based on Algorithm 1. We first
generate an advection-diffusion field without obstacles and
test the level curve tracking behavior of the sensing agents.
Figures 2 (a) - (d) illustrate the level curve tracking process
using four sensing agents in the simulated advection-diffusion
field. As shown in the figures, the field is gradually diffusing
while also advecting towards the lower left corner. The black
lines in the figures represent the trajectory of the center of the
formation. The formation center starts at an arbitrary position
with field concentration less than 5, as shown in Figure 2 (a).
It gradually approaches the level curve with field concentration
of 10, which is the desired field value z desired, as shown in
Figures 2 (b) - (d). Figure 3 shows the level values at the center
of the formation along its trajectory. Observing the figures, the
level value at the center of the formation gradually converges
to the desired level value.
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(a) Step = 0. (b) Step = 200.

(c) Step = 500. (d) Step = 1000.

Fig. 2: The level curve tracking process using four sensing
agents in a simulated advection-diffusion field. The black lines
represent the trajectory of the formation center. The formation
center starts at an arbitrary position with field value less than
5, as shown in (a). It gradually approaches and tracks the level
curve with z desired = 10, as shown in (b) - (d).

Fig. 3: The field values at the center of the formation v.s. the
desired field value.

Next, we conduct simulations in an advection-diffusion field
with obstacles. The results are demonstrated in Figures 4 (a) -
(d). All the settings are the same as the first simulation except
that we add obstacles in the field. So the obstacle avoidance
part is activated for the motion control of the center of the
formation. In Figures 4 (a) - (d), the black dots represent the
obstacles. We can observe from the figures that the center of
the formation is able to detect and track the desired level curve
value while avoiding obstacles.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a level curve tracking strategy
that allows a group of sensing agents to detect and track
a level curve with the desired level value in an advection-
diffusion field with obstacles. A cooperative Kalman filter
is implemented to provide estimated state of the spatial-
temporal varying field so that the motion control laws can
be enabled to control the center of the formation. We provide

(a) Step = 0. (b) Step = 200.

(c) Step = 500. (d) Step = 1000.

Fig. 4: The level curve tracking process in a simulated
advection-diffusion field with obstacles. The black dots rep-
resent the obstacles and the red lines represent the trajectory
of the formation center. The formation center gradually ap-
proaches and tracks the level curve with z desired = 10 while
avoiding obstacles as shown in (a) - (d).

the detailed algorithm for the implementation and performed
simulation study. The future work includes the extension of
the algorithm to other types of spatial-temporal varying fields
and the verification of the proposed strategy in realistic fields.
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