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SUMMARY
In this article, we investigate the problem of parameter identification of spatial–temporal varying
processes described by a general nonlinear partial differential equation and validate the feasibility
and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with
sensors in a realistic diffusion field. Based on the online parameter identification method developed
in our previous work using multiple mobile robots, in this article, we first develop a parameterized
model that represents the nonlinear spatially distributed field, then develop a parameter identification
scheme consisting of a cooperative Kalman filter and recursive least square method. In the exper-
iments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field
contains obstacles and hazard zones that the robots should avoid. The identified parameters together
with the located source could potentially assist in the reconstruction and monitoring of the field. To
validate the proposed methods, we generate a controllable carbon dioxide (CO2) field in our labora-
tory and build a static CO2 sensor network to measure and calibrate the field. With the reconstructed
realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform
the parameter identification in the field. The results of simulations and experiments show satisfactory
performance and robustness of the proposed algorithms.

KEYWORDS: Parameter identification; Distributed parameter systems; Spatial–temporal varying
processes; Multi-robot system; Experimental validation.

1. Introduction

1.1. Motivation and related work
In many civilian and military applications, people need to measure, monitor, and analyze surround-
ing physical processes.1 For example, to detect toxic and flammable gas, a monitoring and warning
system is built both inside some buildings2 and in outdoor environment.3 In planetary exploration
missions, a special robot system is designed to detect specific biogenic gases in the atmosphere of
the Martian surface.6 To better understand the physical processes and ambient environment, math-
ematical models are often used to provide further insights. For example, the diffusion phenomena
are being studied in detail using advection–diffusion partial differential equations (PDEs).7 Those
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2 Parameter identification by a multi-robot system

spatial–temporal varying processes are often considered as distributed parameter systems (DPSs).
Researchers present several estimation, identification, and control techniques for those DPSs.8

Specifically, parameter identification aims to estimate unknown parameters from observed data so
that the predicted response of the system is close to the process observations. Various parameter
identification methods have been developed to estimate key parameters in DPS, which could help
in the reconstruction and monitoring of the processes.7, 9, 10 Compared to lumped systems, parameter
identification for spatial–temporal varying systems is challenging because of the spatial parameter
variability and the presence of the spatial derivatives in PDEs.11

In order to collect information of the spatial–temporal varying processes, static sensor networks
are often built to provide direct measurements of ambient environment for parameter identification in
many applications.12 However, there are often cases that the spatial domain of interest is so large that
not enough sensor nodes are available to provide high-resolution data. In addition, when unpredicted
environmental disaster happens, no pre-deployed sensor nodes are available in some areas of inter-
est, and the areas are dangerous for humans to get into. In contrast, a mobile sensor network (MSN)
consisting of a distributed collection of “intelligent agents” such as autonomous mobile robots with
sensing capabilities is more practical and robust in those scenarios. These platforms can be equipped
with different kinds of sensors, such as chemical sensor, ultrasonic sensor, and light detection and
ranging (LiDAR). Due to the mobility, the mobile robots are able to move along pre-determined
or online optimized trajectories to take measurements of the field. Therefore, increasing attentions
have been paid to using mobile sensor networks to perform parameter identification in harsh envi-
ronments. Among the existing algorithms, offline scheme is more commonly used for identification
problems10 because of the high computational load caused by PDE-related algorithms. However, an
online parameter estimation scheme is more desirable in scenarios when real-time information of the
field is required. In our previous work,14, 24, 28 online parameter identification strategies have been
proposed to identify the constant diffusion coefficient of a diffusion process using a group of mobile
sensing agents.

Experiments are necessary for validating the proposed approaches. Due to the difficulties that
come with generating and controlling a spatial–temporal varying field and constructing a large-scale
static sensor network, most existing approaches have been only tested in computer simulations or
in pre-collected and smoothed fields.15, 21, 23 To test the algorithms in realistic processes that may
have unpredictable uncertainties and disturbances, several experiments have been designed using
different robot systems for odor sensing problems including tracking a pollution plume or mapping an
unknown area.1, 13, 16–19 For example, in ref. [18], researchers propose an experiment using five robots
to map a multi-source environment with forced ventilation. In ref. [16], a huge robot called Gasbot
is designed to help workers detect methane leak with a special tunable laser absorption spectroscope
sensor in different environments. Recently, unmanned aerial vehicles (UAVs) are also designed for
the chemical mapping purpose. In ref. [19], researchers use a prototype hexacopter carrying an enose
to perform gas leakage localization tasks. Apart from these works, some other interesting works are
also mentioned in refs. [1,13,17]. However, there are still lack of experiments designed for parameter
identification problems using multi-robot systems.

1.2. Contributions
In this work, we investigate the problem of parameter identification of a spatial–temporal varying pro-
cess described by a general nonlinear PDE and validate the feasibility and robustness of the proposed
algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion
field. In our previous work,14 we developed a strategy that combines a cooperative Kalman filter with
the recursive least square (RLS) estimation to achieve online parameter identification in diffusion
fields. In this article, we first generalize the problem to nonlinear PDE and propose a parametrized
model that represents the spatially distributed field, then extend the strategy to the nonlinear case. In
the experiments, we focus on the diffusion field and consider the realistic scenarios, that is, in many
cases, the field may contain obstacles that the robots should avoid colliding with and in other cases,
some areas of the field have high concentration of the chemicals that could damage the robots and
the onboard sensors. Therefore, we extend the strategy in ref. [14] to deal with those scenarios that
the diffusion field may contain obstacles and hazard zones that the robots should avoid.

To validate the proposed strategy, we develop a multi-robot testbed with a controllable diffusion
field under realistic uncertainties and disturbances. For this purpose, we generate a carbon dioxide
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Parameter identification by a multi-robot system 3

(CO2) diffusion field in a lab environment, in which a static CO2 sensor network is constructed.
The static sensor network is able to measure and calibrate the diffusion field. The measurements
collected by the static sensor network are then visualized in Matlab and processed offline to provide
the identified parameters of the diffusion field, which are considered as nominal values for further
comparison with the results using the multi-robot system. The pre-collected diffusion field is first
used to test the proposed strategies in simulations. We then deploy a multi-robot system equipped
with CO2 sensors in the field to conduct the proposed parameter identification strategy. Experimental
results show satisfactory performance and demonstrate the robustness of the strategy using the multi-
robot system.

1.3. Paper organization
The rest of this article is organized as follows. Section 2 introduces the mathematical background,
which includes the field dynamics, the sensing models, the identification algorithm for the spatial–
temporal varying field, and the motion planning algorithms for the mobile multi-robot system. In
Section 3, we introduce the experimental settings including the generation of the CO2 field and the
construction of the static sensor network. In Section 4, we present the simulation results using several
mobile robots in the pre-collected realistic diffusion field measured by the static sensor network. In
Section 5, we illustrate and analyze the proposed online parameter identification strategy using a
mobile robot system equipped with CO2 sensors in the diffusion field. Conclusions and future work
follow in Section 6.

2. Mathematical Background
In this section, we first introduce the online parameter identification strategy developed in our previ-
ous work in refs. [14,20], then generalize the algorithm to cases when there are obstacles and hazard
zones in the field.

2.1. Problem formulation
We assume that the dynamics of a spatially distributed system is described by the following two-
dimensional (2D) PDE defined in a domain � = [0, Lx] × [0, Ly] ∈R

2 as:

∂z(r, t)

∂t
= f (z(r, t), ∇z(r, t), ∇2z(r, t)), r ∈ �, (1)

with the initial condition:

z(r, 0) = z0(r), r ∈ �, (2)

and the boundary condition:

z(rb, t) = zb(rb, t), rb ∈ ∂�, (3)

where z0(r) and zb(rb, t) are arbitrary initial condition and Dirichlet boundary condition, respectively.
In Eq. (4), z(r, t) is the field concentration, which is a continuous function in domain �, and ∇2 is
the Laplacian operator. The field concentration z(r, t) depends on both spatial variable r and time
variable t.

f (.) is an unknown nonlinear function. This type of nonlinear PDEs in Eq. (1) is widely used to
describe physical and engineering phenomena such as heat process, population dynamics, chemical
reactors, and fluid dynamics, ref. [20]. Specifically, the net movement of molecules or atoms is a
diffusion process, which can be formulated as a parabolic PDE

∂z(r, t)

∂t
= θ∇2z(r, t) + vT∇z(r, t), r ∈ �, (4)

where θ is the diffusion coefficient and v is the flow velocity,
We deploy N mobile robots equipped with sensors in the field, and these N robots form a multi-

robot system. Note that in most cases, the number of robots in a multi-robot system is usually much
less than the number of sensors in a static sensor network. Since the measurements are often taken at
discrete time instant, we model the measurement equation for ith robot as

p(rk
i , k) = z(rk

i , k) + εi(k), (5)
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4 Parameter identification by a multi-robot system

Fig. 1. A symmetric formation of four robots.

for i = 1, · · · , N, where i is the index of the robot. In Eq. (5), k denotes the discrete time instant, rk
i

is the location of the ith robot at time instant k, z(rk
i , k) is the field concentration at position rk

i at time
instant k, and εi(k) is assumed to be the measurement noise.

Assume that the robots are able to communicate with other robots in the multi-robot system as
well as a central controller, for example, through bluetooth or wireless communication networks,
to exchange their locations and measurements of the field. The problem is formulated as: design
an online identification strategy to estimate the diffusion coefficient θ of the diffusion process (4)
based on the measurements of the robots while they are moving in the field. More specifically, two
subproblems need to be solved: (i) develop an online parameter identification algorithm to identify
the unknown parameters in f (.) using the limited measurements taken by the robots along their
trajectories; (ii) design formation control and motion planning algorithms for the multi-robot system
taking into considerations of obstacles and hazard zones in the field.

2.2. Identification using multi-robot system
This section introduces the online identification algorithm using the multi-robot system. The algo-
rithm consists of two major steps: a cooperative Kalman filter that provides state estimates of the
field, and an RLS algorithm that utilizes the results from the cooperative Kalman filter to produce the
online estimate of the unknown parameters.

Denote the position of the center of the multi-robot network as rk
c , which is determined by

rk
c = 1

N

∑N
i=1 rk

i . Figure 1 illustrates a symmetric formation of four robots. The online identifica-
tion algorithm will be based on the discretization of Eq. (1). Suppose the current time step is tk. The
temporal variations of the concentration can be approximated with finite difference as,

∂z(rc, t)

∂t

∣∣∣∣
t=tk

≈ z(rk
c, k + 1) − z(rk

c, k)

ts
, (6)

where ts is the sampling interval. Apply the above finite difference to Eq. (1) gives,

z(rk
c, k + 1) ≈ z(rk

c, k) + tsf (z(r
k
c, k), ∇z(rk

c, k), ∇2z(rk
c, k)). (7)

Exact solutions for the nonlinear PDE (7) are difficult to obtain due to diverse nonlinearity, different
structures, and complex boundary conditions.4 Therefore, we parameterize the nonlinear function
f (·) in Eq. (7) by assuming that the unknown nonlinear function f (·) takes a form of polynomial.
Several works have illustrated that the polynomial expression of f (·) can be a good approximation of
the original model in Eq. (4).4 The polynomial form of Eq. (7) is given by the model,

z(rk
c, k + 1) = z(rk

c, k) +
M∑

i=1

θi
(
tsφi(z(r

k
c, k), ∇z(rk

c, k), ∇2z(rk
c, k))

)

+ e(rk
c, k), (8)

where M denotes the order of the polynomial, θi is the coefficient of the ith polynomial term, and
φi(z(rk

c, k), ∇z(rk
c, k), ∇2z(rk

c, k)) is the corresponding monomial, which is the product of different
spatial derivatives z(r, k), ∇z(rk

c, k), and ∇2z(rk
c, k). e(rk

c, k) is the approximation modeling error.
e(rk

c, k) is a higher order term of the space sampling interval, which allows us to assume it as an
independent noise sequence with zero mean and finite variance.20, 28

We observe that Eq. (8) is just a semi-discrete representation of the original continuous PDE
(4). That is because a direct differentiation process of higher order spatially derivative terms such
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Parameter identification by a multi-robot system 5

as ∇z(rk
c, k) and ∇2z(rk

c, k) tends to amplify the effects of the noise.4, 27 Therefore, different from
existing lumped models that discretize each time and spatial derivative term,4, 27 we only consider
the time derivative discretization in our work. We will employ a cooperative Kalman filter to directly
estimate the spatial derivative terms ∇z(rk

c, k) and ∇2z(rk
c, k) along the trajectory of the MSN. This

part of work will be introduced in Section 2.4. In the following, we will use the hat notations to
represent the estimates of the corresponding variables. Then, we can rewrite the above equation in a
vector form,

ẑ(rk
c, k + 1) = �̂(rk

c, k)� + h(rk
c, k), (9)

where �T = [1, θ1, · · · , θM] is the parameter vector that we will identify, h(rk
c, k) is the error term

consisting of discretization and estimation errors, and

�̂(rk
c, k) = [ẑ(rk

c, k), tsφ1(ẑ(r
k
c, k), ∇ ẑ(rk

c, k), ∇2ẑ(rk
c, k)),

· · · , tsφM(ẑ(rk
c, k), ∇ ẑ(rk

c, k), ∇2ẑ(rk
c, k))]. (10)

In Eq. (9), ẑ(rk
c, k + 1) and �̂(rk

c, k) will be determined by the cooperative Kalman filtering in
Section 2.4. In the following section, a cooperative Kalman filter will be designed to provide state
estimates of the field based on the model (9).

For a diffusion process, Eq. (8) is simplified to

ẑ(rk
c, k + 1) = ẑ(rk

c, k) + ts(θ∇2ẑ(rk
c, k) + vT∇ ẑ(rk

c, k)) + e(rk
c, k), (11)

And thus �̂(rk
c, k) becomes [ẑ(rk

c, k), tsθ∇2ẑ(rk
c, k), tsvT∇ ẑ(rk

c, k)] and �T = [1, θ].
In order to identify �, a cooperative Kalman filter will be constructed, followed by the RLS

algorithm. For the convergence of the discretization method, the sampling time ts must satisfy the

inequality ts ≤ 	r2
x +	r2

y

4θ
.27

2.3. RLS estimation
Based on the parametrized model (9), we show how to estimate the unknown parameters using the
RLS method. Let �̂(k) be the estimate of � at time instant k. Given an initial estimate of �̂(0), a
direct application of the RLS method can iteratively update the estimate of �. The proposed RLS
algorithm can be stated as follows:

�̂(k) = �̂(k − 1) + R(k)�̂T(rk
c, k)·

(ẑ(rk
c, k) − �̂(rk

c, k − 1)�̂(k − 1)), (12)

R−1(k) = R−1(k − 1) + �̂T(rk
c, k)�̂(rk

c, k),

where R(k) is the error covariance and

�̂(rk
c, k − 1) = [ẑ(rk

c, k − 1), tsφ1(ẑ(r
k
c, k − 1), ∇ ẑ(rk

c, k − 1), ∇2ẑ(rk
c, k − 1)),

· · · , tsφM(ẑ(rk
c, k − 1), ∇ ẑ(rk

c, k − 1), ∇2ẑ(rk
c, k − 1))]. (13)

We should point out that to run the recursive update law in Eq. (12), we require �̂(rk
c, k − 1) and

�̂(rk
c, k), which can be obtained from the cooperative Kalman filter introduced in the next section.

2.4. Cooperative Kalman filter
In this section, we develop a cooperative Kalman filter that provides necessary information needed to
enable the RLS algorithm. From Eq. (12), we know that we require �̂(rk

c, k) and �̂(rk
c, k − 1), which

consist of the states z(rk
c, k), ∇z(rk

c, k), ∇2z(rk
c, k), z(rk

c, k − 1), ∇z(rk
c, k − 1), and ∇2z(rk

c, k − 1).
While the MSN is moving in the field, the field value along the trajectory of the formation center rc

evolves according to

ż(rc, t) = ∇z(rc, t) · ṙc + ∂z(rc, t)

∂t
, (14)
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6 Parameter identification by a multi-robot system

Substituting the PDE (4) into (14), we obtain

ż(rc, t) = ∇z(rc, t) · ṙc + f (z(r, t), ∇z(r, t), ∇2z(r, t)). (15)

We also derive the total time derivative of ∇z(rc, t) as

∇̇z(rc, t) = H(rc, t) · ṙc + ∂∇z(rc, t)

∂t
, (16)

where H(rc, t) is the Hessian matrix. To construct the cooperative Kalman filter, define the infor-
mation state as X(k) = [z(rk

c, k), ∇z(rk
c, k), z(rk

c, k − 1), ∇z(rk
c, k − 1)]T . In practice, sensors take

measurements discretely with sampling interval ts. By discretizing Eqs. (15) and (16), we obtain
the state equation as the information state evolves according to the following equation:

X(k + 1) = A(k)X(k) + U(k) + e(k), (17)

where e(k) = [e(rk
c, k), 0, e(rk

c, k − 1), 0]T represents the model error terms in Eq. (7). We denote the
covariance matrix of e(k) as E[e(k)e(k)T] = W. The matrices A(k) and U(k) are defined by

A(k) =

⎡
⎢⎢⎢⎣

1 (rk+1
c − rk

c)
T 0 0

0 I2×2 0 0

0 0 1 (rk+1
c − rk

c)
T

0 0 0 I2×2

⎤
⎥⎥⎥⎦,

U(k) =

⎡
⎢⎢⎢⎢⎣

∑M
i=1 θ̂i

(
tsφi(z(rk

c, k), ∇z(rk
c, k), ∇2z(rk

c, k))
)

H(rk
c, k)(rk+1

c − rk
c)∑M

i=1 θ̂i
(
tsφi(z(rk

c, k − 1), ∇z(rk
c, k − 1), ∇2z(rk

c, k − 1))
)

H(rk
c, k − 1)(rk+1

c − rk
c)

⎤
⎥⎥⎥⎥⎦,

where H(rk−1
c , k) is the Hessian matrix and θ̂i can be obtained by the RLS algorithm in Eq. (12).

A measurement equation is also required for the cooperative Kalman filter. By applying the for-
mation control, rk

i and rk−1
i can be controlled to be close to rk

c . Therefore, the concentration can be
locally approximated by a Taylor series up to second order as

z(rk
i , k) ≈ z(rk

c, k) + (rk
i − rk

c)
T∇z(rk

c, k)

+ 1

2
(rk

i − rk
c)

TH(rk
c, k)(rk

i − rk
c), (18)

z(rk−1
i , k − 1) ≈ z(rk

c, k − 1) + (rk−1
i − rk

c)
T∇z(rk

c, k − 1)

+ 1

2
(rk−1

i − rk
c)

TH(rk
c, k − 1)(rk−1

i − rk
c).

Let P(k) be the vector that contains all measurements from all the agents at time k and k − 1. Then,
the measurement equation can be modeled as,

P(k) = C(k) · X(k) + D(k)Ĥ(k) + D(k)ε(k) + n(k), (19)

where Ĥ(k) represents the estimate of the Hessian H(k) = [H(rk
c, k), H(rk

c, k − 1)]T at the center rk
c

in a vector form and ε(k) represents the error in the estimation of the Hessian matrices. Denote
E[n(k)n(k)T] = R and E[ε(k)ε(k)T] = Q. The matrices C(k) and D(k) are defined by

C(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (rk
1 − rk

c)
T 0 0

...
...

...
...

1 (rk
N − rk

c)
T 0 0

0 0 1 (rk−1
1 − rk

c)
T

...
...

...
...

0 0 1 (rk−1
N − rk

c)
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Parameter identification by a multi-robot system 7

D(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

((
rk

1 − rk
c

)⊗(
rk

1 − rk
c

))
T 0

...
...

1

2

((
rk

N − rk
c

)⊗(
rk

N − rk
c

))
T 0

0
1

2

((
rk−1

1 − rk
c

)⊗(
rk−1

1 − rk
c

))
T

...
...

0
1

2

((
rk−1

N − rk
c

)⊗(
rk−1

N − rk
c

))
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where
⊗

is the Kronecker product. Note that the Hessian Ĥ(k) in Eq. (19) are needed to enable the
cooperative Kalman filter and provide the states ∇2z(rk

c, k) and ∇2z(rk
c, k − 1). By designing a one-

step filter,20, 22 Ĥ(k) can be estimated. We omit this part here due to page limitation. Given (17) and
(19), the equations for the cooperative Kalman filter can be readily constructed.22 For more details
about the cooperative Kalman filter, please refer to our previous works.20, 28

Remark 1. The configuration of the robots depends on the spatial variations of the field. If the
field values change slowly over a spatial domain, the distance between individual robots needs to be
larger to capture the spatial variation that enables the gradient estimates produced by the cooperative
Kalman filter. On the contrary, if the field values change significantly over a spatial domain, the
robots need to stay closer to increase the accuracy of the state estimation. The optimal formation can
be determined in real-time by solving an optimization problem.22 Since the main focus of this work is
to validate the proposed parameter identification algorithm in realistic diffusion fields, we choose the
fixed symmetric formation using four robots to simplify the construction of the cooperative Kalman
filter.

2.5. Motion planning
In this section, we introduce motion planning algorithms for the multi-robot system by taking into
consideration of the obstacles in the field and hazard avoidance zones. We first follow the approach in
refs. [22, 29], which views the multi-robot system as a deformable body and uses Jacobin transform
to decouple the motion control and the formation control of the center of the multi-robot system.
Interested readers can refer to ref. [22] for the details about the formation control part. Since the
formation control law converges exponentially as demonstrated in refs. [22, 28], in the following
discussion, we assume that the formation control is achieved and focus on the motion control for
the center of the multi-robot system. Three aspects are considered in the motion control: moving
along information-rich trajectories, avoiding obstacles, and avoiding hazard zones. The resulting
trajectories can prevent the multi-robot system from colliding with obstacles and entering areas with
high concentration of corrosion and radioactive chemicals.

Many results have shown that the performance of parameter estimation depends on the locations
or trajectories of the sensors.9 In ref. [20] we developed a Lyapunov redesign-based online trajectory
planning algorithm for the multi-robot system so that the robots can use local real-time information to
guide them to move along information-rich paths that can improve the performance of the parameter
identification and state estimation in a spatial–temporal varying field described by (1). For a diffusion
field (4), it is proved in ref. [9] that the D-optimization criterion, which is the determinant of the
Fisher information matrix, reaches its maximum value when r = r0 − vt, where r0 = (x0, y0) is the
source position and r0 − vt corresponds to the time-varying location with maximum field value. Since
the gradient direction is associated with the maximum convergence rate to the maximum location,
we control the multi-robot system to move along the gradient direction in this article. We realize
that in fields with multiple sources, gradient following will lead the robots to local minima; thus, we
developed a reinforcement learning-based path planning strategy to deal with the problem of multiple
sources. Interested readers can refer to ref. [29] for details.

Potential field method5, 25, 26 is used to achieve obstacle/hazard zone avoidance and gradient fol-
lowing, where the repulsive potentials are determined by the obstacles and the boundaries of the
hazard zones in the field and the attractive potentials are determined by the field gradient
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8 Parameter identification by a multi-robot system

Fattr(rc) = −∇z(rc), (20)

where Fattr(rc) represents the potential force applied to the center of the multi-robot system rc. The
gradient of the field ∇z(rc) at the center rc is directly obtained from the output of the cooperative
Kalman filter designed in Section 2.4.

2.5.1. Obstacle avoidance. A repulsive potential is designed for the purpose of obstacle avoidance.
Suppose there are M obstacles in the field, the repulsive force Fi

rep from the ith obstacle is given by:

Frep
i (rc, robst

i , l) = ∇Uobst
i (rc, robst

i , l)

= cobst · log

( |rc − robst
i |

l

)
, (21)

where Uobst
i defines the potential field, l is the sensing range of the robots, robst

i = (xobst
i , yobst

i ) is the
position of the ith obstacle, and cobst is a constant. Since we can easily define a boundary at log(1) =
0, we use a logarithmic function instead of a commonly used term 1

rc
in the potential function. Beyond

this boundary, we set the repulsive force to 0, to simulate the limited sensing range of the robots.
Given the attractive force (20) and the repulsive force (21), the total force applied to the center of the
formation can be obtained as

Fobst(rc) = cattr · Fattr(rc) + cobst ·
M∑

i=1

Frep
i (rc, robst

i , l), (22)

where cattr is a weighting constant.

2.5.2. Hazard zone avoidance. We define a hazard boundary �(r) = {r|z(r) = zH}, which can be
seen as a contour line with a given field concentration zH . However, the sensors can neither directly
measure the contour graph nor the distance between the formation center rc and the contour. Consider
rH as the closest position on the contour line to the formation center rc, that is, the vector rH − rc is
perpendicular to the tangent vector of the contour line passing through rH . In order to obtain the
repulsive force that utilizes the distance between the formation center and the contour, we use Taylor
expansion to the first order to approximate z(rH) with respect to the formation center rc as

z(rH) = z(rc) + ∇z(rc) · (rH − rc) + O((rH − rc)
2), (23)

where O(·) represents higher order terms, which are treated as noise in simulations and experiments.
The field value and gradient at the formation center are provided by the cooperative Kalman filter.
Given Eq. (23), the shortest distance between formation center and the contour line |rc − rH| can be
calculated. Thus, a repulsive force Frep is generated using the same model in Eq. (21) as

Frep(rc, rH, h) = chaz · log

( |rc − rH|
h

)
, (24)

where chaz is a weighting constant and h is a scaling quantity similar to the sensing range in Eq. (21).
Given the attractive force (20) and the repulsive force (24), the total force applied to the center of the
formation in the hazard avoidance case can be obtained as

Fhaz(rc) = cattr · Fattr(rc) + chaz · log

( |rc − rH|
h

)
. (25)

Based on the above design, for the purpose of simultaneous obstacle avoidance, hazard zone
avoidance, and gradient following, we obtain the control law applied to the formation center as

F(rc) = cattr · Fattr(rc) + cobst ·
M∑

i=1

Fobst
i (rc, robst

i , l) + chaz · log

( |rc − rH|
h

)
. (26)
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Parameter identification by a multi-robot system 9

Fig. 2. The regulator and flowmeter mounted on a gas cylinder.

Remark 2. For the motion planning in the spatial–temporal varying field described by the nonlin-
ear PDE (1), the attractive force can be replaced by the terms developed in ref. [20]. The repulsive
forces can remain the same for the purposes of obstacle avoidance and hazard zone avoidance.

3. CO2 Diffusion Field Construction and Calibration
In order to validate the proposed algorithms in realistic diffusion environment, we first generate a
controllable carbon dioxide (CO2) diffusion field and build a static sensor network to measure and
calibrate the field. We then perform simulations using several collaborating robots in the pre-collected
and smoothed realistic field to validate the parameter identification, obstacle avoidance, and hazard
zone avoidance algorithms. Furthermore, we deploy four mobile robots equipped with CO2 sensors in
the diffusion field and conducted experiments in it. In this section, we first introduce the construction
of the diffusion field and the static sensor network.

3.1. The controllable CO2 diffusion field
There are lots of physical phenomena following a diffusion equation as described in Section 2.1. We
choose the CO2 gas for reasons that (1) CO2 gas is non-flammable in common conditions, and non-
toxic when inhaled; (2) a significant diffusion process lasts for about 1.5 min in our experimental
field (16 × 16 square feet), which is compatible with the speed of the Khepera robots that we use
in the experiments taking into consideration of the response time of the CO2 sensors; and (3) the
density of CO2 gas is heavier than the standard air density at 101.325 kPa (1 atm). As a result of this,
CO2 may deposit near the ground, and the flow in the experiment can be diffusion dominated instead
of convection dominated.

A cylinder of food grade high-pressure CO2 gas is used to generate the diffusion field, and a
single-stage regulator and a flowmeter are mounted on the cylinder to control the flow velocity as
shown in Fig. 2. During the experiments, CO2 gas is emitted for 1 min with a flow rate at 0.566 m3/h
(20 cfh). At this rate, 0.009 m3 of CO2 gas can flow into the field and create a high-concentration
field with a radius of about 1 m. When the gas release is stopped, the CO2 gas diffuses freely until its
concentration drops back to normal level.

3.2. Static sensor network construction
We build a static sensor network in the diffusion field for the following reasons: (1) The pre-collected
data by the static sensor network can be smoothened and visualized in Matlab, which help us better
understand the dynamics of the realistic diffusion field and allow us to verify the proposed algo-
rithms in simulations prior to real experiments. (2) Based on the data, offline parameter identification
algorithms can be applied to generate estimates of the diffusion coefficient, which will be used as
the nominal value to be compared with the parameter identification results produced by the proposed
online algorithms using mobile robots.

The structure of the static sensor network is illustrated in Fig. 3. An “H” shaped steel frame is built
to support the sensor grid, which is 15 cm above the ground. Twenty-four CO2 sensors are installed
on the eight arms of the steel frame arranged in an asterisk shape. On each arm, three CO2 sensors
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10 Parameter identification by a multi-robot system

Fig. 3. The static sensor network in the CO2 diffusion field.

Fig. 4. A K-30 CO2 sensor.

are evenly distributed and controlled by an LPC-1768 micro-controller. The distance between two
sensors on each arm is about 65 cm. In the sensor network, the micro-controllers are used to collect
and store data from the sensors, establish a real-time connection with a central computer, send the
data to the central computer, and handle some potential sensor errors. We choose the type K-30 CO2

sensors (Fig. 4) to measure the gas concentration. The range of the sensor measurement is [0,10,000]
ppm and the measuring frequency is set to 0.5 Hz, which can guarantee the successful tracking of the
dynamics of CO2 gas.

3.3. CO2 field calibration
The procedure of generating and visualizing a diffusion field is as follows. During the diffusion pro-
cess of CO2 gas, sensors measure the gas concentration at the fixed locations. The micro-controllers
then obtain the data from sensors and send the data to Matlab, which is running on the central com-
puter. Matlab then reproduces the diffusion process by interpolating the field values at every discrete
time instant using a biharmonic equation. The computation of the fitting model is fast enough for
real-time virtualization. Fig. 5 illustrates the diffusion field measured by the static sensor network
and visualized in Matlab. The CO2 gas is first emitted for about 1 min, then the diffusion process
starts at time t = 0 and ends at around t = 83.65 s. The slight rise of the concentration measurement
in the second subfigure at T = 20.54 s is due to the response time of the sensors. In addition, we
observe that at the boundary of the surface, the concentration drops below 0 ppm, which is impossi-
ble in physical world. This is because of the errors introduced by the fitting algorithms. In simulations
and experiments, we will control the robots to avoid getting too close to the boundaries.

Based on the measurements collected by the static sensor network, an RLS algorithm is
implemented to minimize the cost function
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Fig. 5. The diffusion process of the CO2 field measured by the static sensor network.

J(θ) = 1

2

T∑
k=0

‖p(k) − ẑ(r, k, θ̂ )‖2, (27)

where z(r, k, θ) is the vector of the true field values at the fixed sensor locations at time step k,
the estimate of which ẑ(r, k, θ̂ ) is obtained by solving the diffusion Eq. (4) with the estimated dif-
fusivity θ̂ . p(k) is an N (N = 24 in our case) dimensional observation vector that consists of the
measurements from all the N sensors in the field at step k as

p(k) = z(r, k, θ) + ε(k), (28)

where ε(k) is the measurement noise vector.
The parameter identification result is shown in Fig. 6. As it can be observed from the figure,

the estimated diffusivity converges to θ̂ = 0.2392. Because this value is obtained using the global
information from the 24 sensors, we consider this value as the nominal value for θ in the experimental
field, and we will use this nominal value to verify the performance of the proposed online parameter
identification algorithms.

Remark 3. In this work, we generate the diffusion field by first emitting the CO2 gas for 1 min,
then letting the gas diffuse freely afterwards. Note that if the gas emission continues, depending on
different boundary conditions, the field would behave differently. For example, If we have an infinite
field, the diffusion phenomenon would continue and the algorithm would still work in this situation
since the field concentration is mainly governed by the diffusion process. If the field is constrained,
for example, the gas emits in a small room, then as the gas emission goes on, the concentration of the
gas in the room would keep increasing until there is no diffusion in the field. In this case, it is hard
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12 Parameter identification by a multi-robot system

Fig. 6. Estimated diffusivity using the static sensor network. The red dashed line is the nominal value of the
diffusivity and the blue solid line is the estimated diffusivity.

to evaluate the algorithms since the assumption that the field is spatial–temporal varying is no longer
satisfied.

4. Simulation Results
In this section, we validate the proposed algorithms in simulations in the pre-collected diffusion field.
Compared with simulations in a virtual field generated by a group of pre-selected parameters, simula-
tions in realistic diffusion fields allow us to validate algorithms under realistic unknown disturbances,
boundary and initial conditions, as well as other uncertainties that could not be provided by the virtual
fields.

We first simulate the online parameter identification algorithm introduced in Section 2.2 using
four collaborating mobile robots in the field without obstacles and hazard zones. As seen in Fig. 7,
the four blue circles represent the four robots, the bold orange line is the trajectory of the formation
center of the four robots, and the background contour graph represents the current field concentration.
The robot formation starts from a randomly selected point on the left part of the field (subfigure 1),
tracks the gradient of the field based on the gradient estimates provided by the cooperative Kalman
filter, and finally reaches the location with the highest concentration (subfigure 4). The diffusion
coefficient is estimated while the robots are moving in the field based on the proposed algorithm,
which is shown in Fig. 8. We can observe that the identified diffusion parameter converges to the
value of θ = 0.25 with the steady-state error 0.0108 compared to the nominal value θ = 0.2392.

We then validate the online parameter identification algorithm when obstacles are present in the
field assuming that the obstacles do not interact with the surrounding chemical field, that is, the
presence of the obstacles would not change the dynamics of the field. As shown in Fig. 9, we place
several stationary round-shaped obstacles in the original diffusion field and apply the control law
in Eq. (22) to the center of the formation. The robots start from the same place as in the previous
simulation and reach the accessible highest concentration area at the end of the simulation. This
initial condition makes the trajectories in two simulations shown in Figs. 7 and 9 comparable with
each together. The identified diffusion coefficient is shown in Fig. 10, which also converges to a value
around 0.25 with the steady-state error 0.0108.

In situations when the robots are vulnerable in high concentration areas, for example, the chemical
field may be radioactive or corrosive, hazard avoidance algorithms are necessary. We simulate this
scenario and show the results in Figs. 11 and 12. In Fig. 11, the high concentration area is surrounded
by the bold blue contour lines, and the same static obstacles are sketched in grey circles as in the
previous simulation. The control law in Eq. (26) is applied to the formation center. Figure 11 shows
that the robots not only avoid the obstacles but also stay away from the high concentration area, due
to the existence of our hazard avoidance algorithm. Figure 12 illustrates that the identified diffusion
coefficient converges to 0.245 with the steady-state error 0.0058.

5. Experiment Result
In this section, we introduce the mobile robot testbed that is used to validate the proposed online
parameter identification algorithm and present the experimental results.
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Parameter identification by a multi-robot system 13

Fig. 7. Four robots perform online parameter identification while moving in the diffusion field in simulation.
The four circles represent four robots. The red solid line is the trajectory of the center of the multi-robot system.

Fig. 8. The identified diffusion coefficient in the field without obstacles and hazard zones. The red dashed line
is the nominal value of the diffusivity and the blue solid line is the estimated diffusivity.

5.1. Mobile robot system
The testbed consists of a central computer, four Khepera IV robots equipped with CO2 sensors, an
OptiTrack motion-capture system that is used to provide real-time information about the locations
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14 Parameter identification by a multi-robot system

Fig. 9. Four robots perform online parameter identification while moving in a diffusion field with obstacle
avoidance algorithm in simulation. The four circles represent four robots. The red solid line is the trajectory of
the center of the multi-robot system.

Fig. 10. The identified diffusion coefficient in the field with obstacles. The red dashed line is the nominal value
of the diffusivity and the blue solid line is the estimated diffusivity.

and orientations of the robots, and the facilities used to generate the CO2 field, as illustrated in
Fig. 13.

Khepera IV robots are round mobile robots with two differential drive wheels and two sliding
supports. On each robot, a group of controller, transmitter, and CO2 sensor are installed as shown
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Parameter identification by a multi-robot system 15

Fig. 11. Four robots perform online parameter identification while moving in a diffusion field with hazard zone
avoidance algorithm in simulation. The four circles represent four robots. The red solid line is the trajectory of
the center of the multi-robot system.

Fig. 12. The identified diffusion coefficient in the field with hazard zones. The red dashed line is the nominal
value of the diffusivity and the blue solid line is the estimated diffusivity.

in Fig. 14. COZIR GC-0008 (Fig. 15) CO2 gas sensor is selected as the onboard CO2 sensor with
a sampling rate of 20 Hz, which is significantly faster than the sampling rate of the K-30 sensor
used in the static sensor network. The GC-0008 sensor also has a wide sensing range from 0 to
10,000 ppm with a 3% error rate as described in the data sheet. In addition, the GC-0008 sensor has
a faster response time than the K-30 sensor. All the improved performance of the GC-0008 sensor
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16 Parameter identification by a multi-robot system

Fig. 13. The multi-robot testbed.

Fig. 14. A Khepera IV robot with a CO2 sensor.

Fig. 15. A GC-0008 CO2 sensor is in the same scale as an SD card.

is necessary for the multi-robot system since the online parameter identification algorithm requires
real-time measurements while the robots are moving in the field.

A central controlling Matlab program is running on a central computer. In the Matlab program, the
motion-capture services, data collecting services, the identification algorithm, the motion planning
algorithm, and the control algorithms for four Khepera robots are running step by step sequentially.
First, the motion-capture system sends the current locations and orientations of the robots to the
computer. Meanwhile, the program obtains the corresponding gas concentration at those locations
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Parameter identification by a multi-robot system 17

Fig. 16. Trajectories of the robots in one experiment (at T = 0 s, T = 49.84 s, and T = 85.48 s) in the realistic
field (left) and pre-collected field (right).
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18 Parameter identification by a multi-robot system

Fig. 17. CO2 concentration measurements by the four Khepera robots.

Fig. 18. The estimated CO2 diffusivity in two experiments.

from the micro-controllers of the robots. Given these information, the central computer calculates
new locations and orientations of robots for the next time step and sends the corresponding moving
distances and turning angles back to the robots. After this, the robots execute the instructions and
move to the new locations according to the received commands within a closed loop control strategy.

Four Khepera IV robots are deployed in the experimental field to implement the proposed online
parameter identification algorithm. In the experiment, all the settings are kept the same as in the
experiment using the static sensor network in Section 3.3. Figure 16 illustrates the trajectories of
the four Khepera IV robots in the realistic CO2 diffusion field (left column) in one experiment and
the trajectories of four simulated mobile robots in the pre-collected field by the static sensor network
(right column). These groups of figures are captured at three different time instants of the experiment:
T = 0 s, T = 49.84 s, and T = 85.48 s (final time). Comparing those trajectories, especially shown in
Fig. 16, our robot systems rarely finally approach the CO2 source, though the robot system is moving
toward the source location by the gradient descent algorithm. This indicates the diffusivity estimation
process does not depend on the trajectories of our robots. If the robots follow the gradient direction,
the estimation process may converge faster, not better. This feature is useful when the robot system
is not able to follow the gradient direction. For example, we can still reach an accurate estimation
when different navigation algorithms and obstacle avoidance algorithms are running together in the
multi-robot system.

Figure 17 illustrates the sensor readings by the four robots in the experiment (Experiment 3) and
Fig. 18 show the identified diffusion coefficient in three separate experiments with the robots start-
ing from different initial positions. The sudden drop of the CO2 concentration shown in Fig. 17
is caused by a failure of the sensor installed on Khepera robot 4, and this causes a sudden jump
in the estimation result, as shown in Experiment 3 (the sudden jump at around 22 s) in Fig. 18.
It can be observed from the three experiments that the estimated diffusivity converges fast using
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the online identification algorithm with the steady-state errors 0.0108, 0.0208, and 0.0042, respec-
tively. The algorithm is robust to the change of the initial positions of the robots, and also robust to
sensor errors.

6. Conclusion
In this article, we introduce an online parameter identification algorithm using a multi-robot system
in realistic scenarios when obstacles and hazard zones are present in the field. To verify the algo-
rithms, we design and build a controllable CO2 field in our laboratory and construct a static sensor
network to measure and calibrate the field. Simulations are performed in the pre-collected field and
experiments are done using a group of four collaborating Khepera IV robots equipped with sensors.
Both simulation and experimental results show satisfactory results. Future work includes the exten-
sion of the algorithm to more complicated situations such as time-varying coefficients and the field
change due to the interactions between the obstacles and the surrounding field.
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