
ICLS 2021 Proceedings 147 © ISLS 

 

 

 
Objects to Debug with: 

How Young Children Resolve Errors with Tangible Coding Toys 
 

Deborah Silvis, Jody Clarke-Midura, Jessica Shumway 
deborah.silvis@usu.edu, jody.clarke@usu.edu, jessica.shumway@usu.edu 

Utah State University 
Victor R. Lee, Stanford University, vrlee@stanford.edu, 

 
Abstract: Debugging is an important skill all programmers must learn, including preliterate 
children who are learning to code in early childhood settings. Despite the fact that early learning 
environments increasingly incorporate coding curricula, we know little about debugging 
knowledge in early childhood. One reason is that the tangible programming environments 
designed for young children entail a layer of material complexity that we have yet to account 
for in terms of learning to debug. In our study of young children learning to program, we found 
that in the midst of solving programming tasks and learning to debug, tangible toys presented 
bugs of their own. This paper analyzes video of Kindergarteners learning to debug errors in the 
program and errors in the physical materials. We argue that concurrent physical and 
programming bugs present opportunities for young children to learn about the broader 
computational system in which they are learning to code. 

 
Introduction 
Debugging is known to be an important programming skill (Pea, 1986; Pea et al., 1987), and studies of debugging 
are seeing a resurgence in the learning sciences (DeLiema et al., 2020; Fields et al, 2016; Brady et al., 2020; Kafai 
et al., 2020). While much of this work deals with the knowledge and computational thinking of novice 
programmers, there has been less emphasis on how very young children learn to debug. Despite the fact that early 
learning environments increasingly incorporate coding curricula and CS standards, we know little about 
programming and debugging knowledge in early childhood (Wang & Choi, 2020). One reason for this gap is that 
language-dependent frameworks for debugging do not necessarily apply to preliterate programmers. The novel 
programming environments designed for young children entail a layer of material complexity that we have yet to 
account for in terms of learning to debug. 

Rather than screen-based environments like Logo (Papert, 1980) or block-based tools like Scratch Jr., 
preschool and Kindergarten children frequently use tangible and hybrid coding toys (e.g. Bers, 2018; Horn, 2018). 
These types of programming tools include components that can be shared amongst a group of early learners, 
supporting collaborative debugging activities (Fields et al., 2016). They also introduce a number of new issues 
for collaborative work, because the materials are distributed and manipulable. Often, in the midst of solving 
programming tasks and learning to debug, tangible toys present bugs of their own. In this paper, we refer to these 
types of issues as “physical bugs,” and we examine how children reconcile solving bugs in the domain of the 
program with concurrent bugs in the physical, material domain. 

First we review how physical materials have been treated in studies of debugging, drawing a through- 
line between Papert’s (1980) floor turtles and today’s tangible toys. Next we briefly describe our design-based 
study of Kindergarteners learning to code using robot coding toys. We present our analytic process and initial 
findings that discriminated between buggy problems with the program and buggy problems with the physical 
materials. Then we illustrate what resolving these types of bugs looked like when they occurred in isolation and 
then concurrently, during a series of debugging tasks that a group of Kindergarteners worked to solve in the course 
of a 30-minute lesson. We show how the objects they used to resolve the coding errors introduced bugs of their 
own, and we highlight how children debugged both orders of problems. We argue that, rather than constraining 
or complicating children’s debugging skills, tangible toys present opportunities for children to learn about the 
larger coding frame or system in which programming occurs. 

 
Framing perspectives: Tangible coding toys and young children’s debugging 
Papert’s (1980) floor turtle was one of the first tangible coding toys. Prior to the standard screen-based Logo 
version, children programmed the turtle to draw basic shapes using a pen that was fitted to its body. Although the 
floor turtle was more practical for connecting young programmers to the physical world, the robots were 
expensive, and few made it out of MITs Media Lab and into Kindergartens (Bers & Horn, 2010; McNerney, 
2004). No longer tethered to the computer and now increasingly affordable, today’s coding toys bear some 

mailto:deborah.silvis@usu.edu
mailto:jody.clarke@usu.edu
mailto:jessica.shumway@usu.edu
mailto:vrlee@stanford.edu


ICLS 2021 Proceedings 148 © ISLS 

 

 

 
resemblance to the first turtles. A growing suite of tangible programming robots can be found in early learning 
settings (Yu & Roque, 2018). 

Describing how children resolved errors in turtle programming, Papert (1980) wrote that “the process of 
debugging is a normal part of the process of understanding a program” (p. 61). Commonplace as debugging may 
be among novice programmers, we do not yet have an understanding of what the process of debugging looks like 
for young children. Some early tangible programming tools that grew out of the Media Lab, such as Perlman’s 
Slot Machine, required children to re-code entire sequences rather than editing buggy programs (McNerney, 
2004), a fairly inefficient strategy when the program grows to more than a few commands. In his studies of young 
children programming in Logo, Pea (1986) referred to a “superbug,” the idea that, independent of programming 
language, novice programmers learn that some meanings need to be expressed explicitly in code, while others do 
not. Already hardwired, beyond the programming domain at the level of electronics, lies another layer of encoded 
problems to solve, black-boxed within the robot the children are programming (Resnick et al., 1998; 2000). For 
young children, debugging using tangible toys involves solving problems at the level of the program and at the 
level of physical materials (Fields et al., 2016). 

 
Study design: Coding in kindergarten 
This study took place in the context of a larger design-based research project called Coding in Kindergarten (NSF 
#1842116) where we are investigating early childhood computational thinking using commercially available robot 
coding toys (Clarke-Midura et al., 2021). Participants were 48 children in 3 schools, divided into groups of 3-4 
children for coding lessons. Lessons occurred twice per week for one month, and children were assessed following 
implementations. Coding lessons were designed to elicit knowledge and skills associated with computational 
thinking (i.e. algorithmic thinking, sequencing, pattern recognition, decomposition, and debugging). During 
lessons, groups of children and a teacher interacted with a series of tangible robot coding toys and other materials 
included in the coding kits, such as large floor grids used for planning robot paths. Lessons involved programming 
a robot to travel on a path through the grid, and “codes” consisted of directional arrows placed in a sequence of 
movement commands. The tangible programming environment- color-coded directional commands, large floor 
grids, and multiple manipulatives- supported groups of preliterate children to build and debug programs. 

The focal cases in this paper illustrate children’s interactions with Botley, a coding robot that operates 
by entering directional codes into a remote control connected to the agent through Bluetooth (see Figure 1). 
Botley’s kit comes equipped with a set of directional arrow tiles that can be sequenced to build a program. Botley 
can be used with or without its “arms,” which guide a small ball into a goal. We observed that it was sometimes 
difficult to keep the kit’s directional arrow tiles in order when sequencing algorithms, thus we iteratively designed 
means of organizing the codes, making them easier to manipulate. In the first two cases, children used magnetic 
code tiles on a metal sheet to build their program. In the third case, they built programs using the code tiles that 
came equipped with the coding toy kit, along with a paper program organizer designed by members of our research 
team. One minor detail, important for Botley’s operation and for interpreting the cases, is that you must press the 
“trash” button on the remote control to clear Botley’s program before programming and executing a new one. 

 
Data and analytic methods 
Approximately 30 hours of classroom coding lessons were video recorded and then content logged (56 individual 
lessons) (Jordan & Henderson, 1995). We then conducted qualitative coding, which consisted of iterative rounds 
of open coding for characteristics of bugs and debugging activity followed by axial coding according to an 
emergent relationship between (1) bugs in the program and (2) problems with the materials (Glaser & Strauss, 
1967). Within these two broad categories, we identified types of bugs/problems and strategies for 
resolving/repairing them, and we conducted frequency counts. Further analyzing patterns in frequency and 
occurrence of bugs, we found that, rather than discrete bugs solved serially, programming and physical bugs 
frequently co-occurred. For this paper, we selected two cases that illustrate what it looked like when children only 
needed to address a programming or a physical bug and contrasted these with a third case of a 30-minute lesson 
which elicited multiple co-occurrent bugs. We conducted interaction analysis of these debugging episodes, 
focusing on participants’ talk, gesture, and coordinated use of materials (Jordan & Henderson, 1995). 

 
Frequency of bugs and strategies for resolving/repairing 
Table 1 summarizes the results of the types and frequencies of bugs and strategies for debugging in both the 
program and bugs related to physical errors (i.e., physical domain). Overall, bugs in the program most often 
involved turn errors and missing codes, and errors related to the materials most often involved controller errors. 
Students’ strategies were frequently related to the type of bug. For example, if the students’ program was missing 



ICLS 2021 Proceedings 149 © ISLS 

 

 

 
a forward code and the robot did not make it to the goal (i.e., Missing Code), the debugging strategy was usually 
to Add on to End. In the cases below, while we mention the strategies students used, we focus our analysis on the 
ways students addressed programming and physical bugs. Case 1 illustrates a situation in which students 
encountered a Wrong Start Code bug (programming bug), and Case 2 provides an example of an Initializing Robot 
bug (physical bug). We use Case 3 to illustrate students’ ways of resolving and repairing multiple concurrent 
bugs. 

 
Table 1: Bug types and strategies for Programming and Physical bugs 

 
PROGRAMMING BUG TYPES: semantic errors when specifying code sequence 
Turn Errors (56) Misunderstanding turn unit (turn-rotate, not turn-turn) or specifying opposite direction 
Wrong Start/End/Middle code (23) Positional bug errors requiring switch at location in sequence 
Missing Code (63) Children skip a code or miscount a number of needed rotations or forward moves 
Spurious Code (29) Inserting or specifying an unneeded, extra code or codes 
Sequencing Error (9) All codes are present, but out-of-order 
Goal/Path Problem (36) Losing track of path being sequenced or lack of clarity about endpoint 
DEBUGGING STRATEGIES: process of diagnosing and resolving semantic errors 
Swap Codes (46) Removing a code or codes and replacing them with other codes 
Remove/Add on to End (76) Editing the end of the program by making the sequence longer or shorter 
Clear Program, Start Over (30) Removing all codes from the program board and/or pressing delete button 
Remove Code, Move Codes Down (10) Shortening the program by removing a start or middle code error 
Accommodate Bug (9) Transform a bug into a feature of the program, change the goal or path 
PHYSICAL BUG TYPES: physical errors in material or mechanical apparatus 
Material Mishap (24) Incidental issue with grids, tiles, or accessories (i.e. robot wheel snags on rug) 
Initializing Robot (38) Forgetting to reposition robot on start position; false start; mis-orienting robot 
Controller Errors (130) Remote control, program board (i.e. incomplete button press; forgot to “trash” out) 
Mechanical Issues (35) Problems with motor, batteries, Bluetooth pairing, or on/off buttons 
Building in a Bug (29) Intentional user error for pedagogical or personal reasons (i.e. sabotage) 
REPAIR STRATEGIES: process of operating and repairing physical errors 
Halt and Re-run Program (56) Interrupting program execution when a physical bug is identified, restarting 
Work-arounds (12) Swapping out robot units or materials that are malfunctioning 
Just-in-time Fixes (18) Catching, mitigating an issue with the physical apparatus before it causes a problem 
Sweeping a Bug under the Rug (35) Quickly moving on, re-running the program, ignoring physical issue 
Accounting for Technical Issue (12) Explicitly addressing the physical cause of a failed program 

 
Case 1: Resolving a programming bug without mechanical interference 

Typically, when we think of debugging, we imagine programmers fixing a problem in the program. At times 
during coding lessons, children resolved programming bugs in this commonsense manner, without the materials 
interfering in debugging. We designed a task called What Happened? to explicitly teach debugging strategies for 

resolving common programming errors. The What Happened? task involved giving children buggy code that 
failed to get the robot to its goal and asking them to debug the program. In one such task, Lacey and Max worked 
together to diagnose and fix the broken code LEFT FORWARD FORWARD, where the bug was a wrong turn in 
the start position. The appropriate debugging solution was to swap the start code, replacing LEFT with RIGHT. 

 

 
Figure 1. Lacey and Max debug a programming bug 

[a] Lacey: You have to turn 
him this way and get him to 

[b] Max: No, no, 
no, the blue 

[c] Lacey: That 
one? Oh, yeah! 

[d] Max: We had to 
change it to blue 



ICLS 2021 Proceedings 150 © ISLS 

 

 

 
 

Start position bugs involving rotations proved particularly challenging for children; many children 
applied strategies such as adding on to the end or removing the start code altogether to resolve this bug, resulting 
in multiple failed debugging attempts. After simulating how they wanted the robot to move, Lacey initially 
appeared to reapply the same wrong turn in their debugged program (Figure 1, a). Max quickly intervened, 
asserting that they needed the “blue” (i.e. the RIGHT) turn (b). Lacey clapped her hands excitedly to indicate 
agreement, and they compared their program with the buggy program to specify the location of the bug (c,d). 
With the robot turned off, Max and Lacey then demonstrated what their debugged code would make Botley do by 
simulating the movements. They were able to focus on the programming error, since no mechanical issues 
interfered in their debugging. 

 
Case 2: Reorienting to a physical bug as a potential problem source 
Programming bugs are a ubiquitous part of building algorithms, especially for novice programmers, who, in 
addition to learning a programming language, must also learn language-independent conventions for expressing 
meanings within a formal system of mechanistic rules (Pea, 1986). One thing all beginning programmers must 
determine is how much the computer “knows” and how explicit to make their commands in light of the built-in 
constraints. Tangible coding toys are built to make 90 degree turns, therefore establishing the correct starting 
orientation before initiating a program is paramount. Regardless of design, all tangible coding robots we use have 
a “face” that assists children in establishing robot starting positions. Still, forgetting to set the robot’s orientation 
before running a program over multiple debugging attempts was a continuous source of physical bugs. We refer 
to these bugs as “initialization bugs”; however, rather than written code that would declare and clear variables 
and set initial states, initialization bugs take place in the physical, tangible domain where they represent failures 
to re-set the robot itself on the proper trajectory. 

 

 
Figure 2. Jessica reorients the robot (left) and then reenacts this strategy (right). Counter-clockwise from 

Jessica: Penelope, Paulo, Max, Lacey 
 

While reviewing Botley’s movement-code correspondences during one lesson, the teacher Jessica used 
a just-in-time re-orientation to probe children’s understanding of the critical concept of initializing the robot 
(Figure 2). The group was about to run a program LEFT FORWARD that was intended to land Botley on the blue 
tile. However, the robot was mis-oriented from a previous program; in the direction it was facing, LEFT 
FORWARD would have landed it off the tiles and on the carpet in front of Max (a frequent mishap that was a 
source of endless amusement for children). Just as Paulo pushed the button on the remote to run the program, 
Jessica realized that the robot needed to be re-oriented and swiftly rotated Botley 90 degrees to the right. After 
the program successfully reached the blue tile, she then paused to reenact her last-minute rotation, asking the 
children why they thought she had re-oriented it. Max suggested that Jessica was trying to “control” it (she was) 
and Lacey offered that it “didn’t work” (it did). The children’s reasoning about physical problems that require 
their own sort of debugging was still developing. It was, therefore, important that Jessica prompted them to 
examine the physical requirements of the programming environment. Doing so at a moment like this, when there 
was no concurrent problem in the program, supported them to develop repair strategies they would need when 
programming and physical bugs co-occurred. 

 
 
Case 3: Reconciling concurrent programming and physical bugs 



ICLS 2021 Proceedings 151 © ISLS 

 

 

STRATE 
Ju 

ST 
H 

Task 2: F 

STRATE 
Ha 

 
While the first two episodes show how young children address and resolve bugs, debugging was rarely this simple, 
and often involved a cascade of recurrent- and concurrent- bugs. Most coding lessons included multiple target 
programs, each of which required debugging over some number of attempts, which involved resolving both 
physical and programming bugs. When physical and programming bugs co-occurred, children and teachers 
needed to find both a debugging strategy that fixed the code and a repair strategy that mitigated physical bugs. 
More often than not, teachers intervened and interrupted physical bugs before they caused the whole program to 
miscarry, for example, when Jessica applied a just-in-time fix to a potential initialization problem. As children 
worked together to learn how to program and how to use the robots, bugs proliferated, compounding their 
problem-solving. 

 
Task 1: FF Task 2:  RF 

 

Attempt 1   10:52 Attempt 1   14:35 Attempt 2 15:50 Attempt 3 17:05 

PHYSICAL BUG 
Controller error, 
extra button push 

STRATEGY 
Just-in-time fix 

 

Task 2 cont. 

 
PROGRAM BUG 
FRR wrong end 
code 

STRATEGY 
Swap codes 

 
PROGRAM BUG 
FRL wrong end 
code 

STRATEGY 
Swap codes 

 

Task 3: RFLF 

 
PHYSICAL BUG 
Controller error, 
forgot to “trash” 

S RATEGY 
Halt and re-run 

 
PROGRAM BUG 
FRLL spurious 
code, wrong end 
code 
STRATEGY 
Swap, remove codes 

 
Attempt 4   18:29 

 
Attempt 5   19:10 Attempt 1 23:04 Attempt 2 25:10 

 
PROGRAM BUG 
FRR wrong end 
code 

STRATEGY 
Swap codes 

 
PHYSICAL BUG 
Controller error, 
forgot to “trash” 

STRATEGY 
Halt and re-run 

 
PROGRAM BUG 
RLF missing 
middle code 

 
STRATEGY 
Remove end codes 

 
PHYSICAL BUG 
Controller error, 
incomplete push 

GY 
st-in-time fix 

 
PHYSICAL BUG 
Controller error, 
incorrect push 

STRATEGY 
Just-in-time fix 

 

Task 4: FFRFLB 
 

Attempt 1 29:30 Attempt 2 31:12 Attempt 3 31:56 
 

PROGRAM BUG 
FFRLB missing 
middle code 

 
STRATEGY 
Remove end codes 

 
PHYSICAL BUG 
Mechanical issue, 
pairing problem 

GY 
lt and re-run 

 
PROGRAM BUG 
FFRB missing 
middle codes 

 
STRATEGY 
Clear program 

PROGRAM BUG 
R missing multiple 
codes 

 
STRATEGY 
Ran out of time 

PHYSICAL BUG 
Mechanical issue, 
pairing problem 

STRATEGY 
Halt and re-run 

 
Figure 3. Outline of debugging during a 30-minute coding lesson. 

 

Next, we sketch the anatomy of a coding lesson (comprised of a series of tasks, target programs, attempts, 
concurrent bugs, and debugging discussions) (Figure 3). We then zoom in on a single task in the lesson to show 
how the group organized their shared work and materials to handle programming and physical errors. This 
particular lesson involved an activity design called Crack-the-code, in which children attempted to program one 
Botley to run the hidden code of another Botley after they watched its movements. The children alternated between 
planning the program, sequencing the arrows, and pushing the commands on the remote control, sharing the 
materials and rotating roles between tasks. After solving a number of concurrent programming and physical bugs 
in the previous two tasks and cracking the code for the programs FORWARD FORWARD (FF) and FORWARD 
RIGHT FORWARD (FRF), the children attempted to crack a third target program: RIGHT FORWARD LEFT 
FORWARD (RFLF). After watching the first Botley run the program several times, Eli attempted to replicate it, 
instructing his programming assistant Stanley to sequence the codes RIGHT LEFT FORWARD (RLF). 

At this point, they had produced a single programming bug; the program was missing a middle 
FORWARD code, for which the most efficient debugging strategy was to move the two end codes down and 
insert the missing code. However, before they ran the buggy program to test it, they first had to avoid   potential 



ICLS 2021 Proceedings 152 © ISLS 

 

 

 
user errors. After Joey reminded Christian to “trash out” the remote to delete the previous program, Christian 
began to enter the three codes into the remote, but Joey noticed that Christian pushed one of the buttons only half- 
way (the robot lights up when a full button push is registered). Joey stopped Christian inputting commands and 
instructed him to “push it harder.” Joey called out the colors that corresponded with the arrows, and Stanley 
assisted Christian by pointing to the buttons (Figure 4, a). Joey’s and Stanley’s assistance with the physical 
material prevented user errors that would potentially have muddled Eli’s programming bug. 

After they ran this first buggy program and the robot failed to land where they intended it to, Stanley 
exclaimed excitedly that they get to do some “re-bugging” (b), coining a term that aptly describes children’s 
recurrent attempts to debug with robot coding toys. When Joey asked Eli if there was anything he wanted to “fix” 
or “change,” Eli was initially unsure. He began to demonstrate over the robot which way he wanted it to turn, 
referencing directions and colors of the tiles (c). As part of the process of learning to debug, children often 
described what they wanted the robot to do by referencing the physical grid space before blending these 
movements with the relatively unfamiliar and abstract domain of the program (Silvis et al., 2020). Eventually, 
Joey suggested that they remove the end codes and test each code one-by-one (d). This was a basic strategy 
teachers used with novice coders, who were more successful debugging programs when they could simply 
incrementally add onto the end of the sequence, fixing codes one at a time as necessary. 

Figure 4. Debugging during Task 3 
 

Following instruction from Stanley about trashing out the program in the remote control and pushing the 
Go button, Christian ran a single RIGHT command. Having isolated the initial movement, Eli then sequenced the 
remainder of the new program with Stanley’s help (e). It was again time for Christian to program the codes into 
the remote control. Having observed multiple remote control-related user errors, the whole group was by then 
carefully monitoring Christian’s operation of the remote. He successfully pushed the blue (RIGHT) and green 
(FORWARD) buttons, but then mistakenly pushed another forward button before the right turn button. Joey told 
him to press trash and start over, a just-in-time repair strategy in the physical domain that circumvented program 
failure. Joey pointed to the trash button and then told Christian to push the buttons “one-by-one” (f). Stanley 
pointed to each of the arrows in the program as they called out the arrow colors to Christian. In the course of the 
RFLF task, the children had applied both debugging strategies to the program and repair strategies to the physical 
materials. One-by-one coding and one-by-one button pushing were required to resolve errors in the program and 

[d] Joey: sometimes it helps 
to try one piece at a time 

Stanley: press “trash” 

 
 
 
 
 
 
 
 
 
 
 
 

[e] Eli: It just needs one more “straight” 
and then it will be there 

[a] Joey: … the blue, the green, the 
yellow, and then the Go button [b] Stanley: We get to do some “re- 

bugging” 

[c] Eli: It was supposed to go to the 
orange and then over there to the blue 

[f] Joey: Trash it out and then we’ll go 
one-by-one 



ICLS 2021 Proceedings 153 © ISLS 

 

 

 
prevent errors in the physical materials. We turn in the discussion to the ways in which tangible programming 
involves learning to debug both domains. 

 
Discussion: Objects to debug with 
In this paper, we presented the idea that tangible programming lends itself to forms of debugging at the level of 
the program and in the domain of the physical materials. Because coding robot toys are comprised of multiple, 
manipulable components, bugs occurring in the physical domain, such as forgetting to delete the previous program 
or pressing the wrong button on the remote control, can make it challenging for children to tease out errors in the 
program. Teachers’ just-in-time strategies for addressing physical bugs- and for making technical requirements 
more transparent for children- may partly mitigate confusion; however, children must still grapple with the 
relationship between errors in their programs and errors due to the materials. As such, tangible toys can be thought 
of as “objects to debug with,” which introduce novel orders of problems to solve. In a programming context where 
the success of a program hinges as much on accurately sequencing as it does on reliably inputting codes, operating 
materials and tangible programming go hand in hand. 

Another characteristic of this particular computational environment that is consequential for coding 
involves the semantics of the coding language. The operative symbol system is a collection of color-coded arrows, 
a language that instantiates the meaning of directional commands in a symbolic form legible to preliterate children. 
However, Kindergarten children are also developing early spatial reasoning skills that implicate these same 
directional symbols; thus, learning the movement conventions of tangible toys (i.e. how the robots operate in 3D 
space) is entangled with learning the movement-symbol correspondence (i.e. how the symbols operate within a 
program) (Silvis et al., 2020). This complexity is compounded when the physical materials malfunction, or when 
there are user errors. The children in the cases we presented above are simultaneously learning at least the 
following concepts and conventions: (1) to perform mental rotation in 3D space (2) that the turn commands do 
not move the robot to another square, but merely rotate them on the same square (3) that the sequential actions of 
the robot depend on a precise sequence of codes and (4) how to input this same planned sequence of codes into 
the remote control. 

Given the constraints built into the robots and this series of correspondences children are learning, 
concurrent physical and programming bugs require children to grapple with the larger programming environment 
or computational system. Whereas coding toys may appear straightforward and “user friendly” compared with 
screen-based or hybrid alternatives, tangible programming often involves solving both semantic (i.e. 
programming) and pragmatic (i.e. environmental) problems. Rather than a design flaw of tangible toys, we see 
this complexity as a resource for learning to debug, because it forces children to consider the broader relationship 
between all the components of the computational system: the codes; their meanings; their function (i.e. to give 
instructions to the robot); the robot and its movement constraints; coding robot accessories like the remote control 
(how does it “talk” to the robot, anyway?). Learning to coordinate these computational components to solve 
problems is a tall order in Kindergarten- especially when groups of children program collaboratively- but one that 
we see as productive for learning and consequential for their engagement with computing down the road. 

Finally, while we focused in this analysis on the relationship between concurrent programming and 
physical bugs and the consequences of these co-occurring bug types, we also see a need for more study of the 
corresponding strategies students and teachers used to resolve bugs in both domains. Successfully resolving bugs 
requires an alignment between bug type and solution strategy. When children attempt to debug a programming 
bug in the middle of the program by adding onto or removing codes from the end, they fail to debug the program. 
Teaching children to apply particular debugging strategies to particular types of bugs is important across 
programming environments, no less in tangible programming (Klahr & Carver, 1988; McCauley et al., 2008). 
However, coding robot toys also require learning to apply a strategy to fixing the programming bug that teases 
out and takes into account the presence of concurrent physical bugs. This means placing pedagogical focus on the 
technical requirements/constraints of toys and teaching children not only how to fix problems with their programs 
but also how to diagnose and repair problems with operating the robots. Tangible programming environments 
expose how learning to debug does not simply follow from learning to program. We need to design for debugging 
(e.g. Fields et al., 2016), and treat tangible coding toys as objects to debug with. 

 
Conclusion 
The recognition that debugging is an important skill for programming has led to a number of studies. However, 
most of these studies focus on older students who are literate and interacting with computer screens. Very few 
studies focus on how young, preliterate children learn to debug. Integrating CS into early childhood requires a 
deeper understanding of the context and materials with which young children engage while learning to program. 
Preschool and kindergarten aged children often use tangible and hybrid coding toys that use directional arrows as 



ICLS 2021 Proceedings 154 © ISLS 

 

 

 
a syntax. Programming these robot toys requires children to push buttons or manipulate tiles, often external to the 
toy. Thus, understanding how young children debug requires understanding the level of complexity the materials 
introduce and the nature of both the programming and physical bugs they encounter. Insofar as young children 
are learning how to operate these materials while they are learning to code, interactions with the toys are 
consequential for learning. More study is needed of the pedagogical approaches that support children to align their 
debugging strategies with the types of bugs they encounter. As learning designers, attending to tangible 
programming toys as objects to debug with provides insight into young children’s thinking and supports them 
developing valued computational skills and knowledge. 

 
References 
Bers, M.U. (2018). Coding as playground: Programming and computational thinking in the early childhood 

classroom. Routledge. 
Bers, M. & Horn, M.S. (2010). Tangible programming in early childhood: Revisiting developmental assumptions 

through new technologies. In I.R. Berson & M.J. Berson (Eds.), Childhood in a Digital World. 
Information Age Publishing. 

Brady, C, Gresalfi, M., Steinberg, S., Knowe, M. (2020). Debugging for art’s sake: Beginning programmers’ 
debugging activity in an expressive coding context. ICLS 2020. 

Clarke-Midura, J., Silvis, D., Lee, V., Shumway, J., Kozlowski, J. (2021). Developing a Kindergarten 
computational thinking assessment using evidence-centered design: The case of algorithmic thinking. 
Computer Science Education, doi.org/10.1080/08993408.2021.1877988. 

DeLiema, D., Dahn, M., Flood, V.J., Abrahamson, D, Enyedy, N. & Steen, F. (2020). Debugging as a context for 
collaborative reflection on problem-solving processes. In E. Manolo (Ed.), Deeper Learning, Dialogic 

Learning, and Critical Thinking: Research-Based Strategies for the Classroom, p. 209-228. Routledge. Fields, 
D., Searle, K.A., & Kafai, Y.B. (2016). Deconstruction kits for learning: Students’ collaborative debugging of 

electronic textile designs. In P. Blikstein, M. Berland, & D.A. Fields (Eds.), Proceedings of the 6th 

Annual Conference on Creativity and Fabrication in Education (pp.82-85). New York, NY: ACM. 
Glaser, B.G. & Strauss, A.L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine 

Publishing. 
Horn, M. (2018). Tangible interaction and cultural forms: Supporting learning in informal environments. Journal 

of the Learning Sciences, 27:4, 632-665. 
Jordan, B. & Henderson, A. (1995). Interaction analysis: Foundations and practice. The Journal of the Learning 

Sciences, 4(1), 39-103. 
Kafai, Y. et al. (2020). Turning bugs into learning opportunities: Understanding debugging processes, 

perspectives and pedagogies. ICLS 2020. 
Klahr, D. & Carver, S.M. (1988). Cognitive objectives in a LOGO debugging curriculum: Instruction, learning, 

and transfer. Cognitive Psychology, 20, 362-404. 
McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L. & Zander, C. (2008). 

Debugging: A review of the literature from an educational perspective. Computer Science Education, 
18:2, 67-92. 

McNerney, T.S. (2004). From turtles to tangible programming bricks: Explorations in physical language design. 
Personal Ubiquitous Computing, 8: 326-337. 

Papert, S. (1980). Mindstorms. Basic Books. 
Pea, R.D. (1986). Language-independent conceptual “bugs” in novice programming. Journal of Educational 

Computing Research, 2(1), pp. 25-36. 
Pea, R.D., Soloway, E., Spohrer, J.C. (1987). The buggy path to the development of programming expertise. 

Focus on Learning Problems in Mathematics, 9(1), pp. 5-30. 
Resnick, M., Berg, R. & Eisenberg, M. (2000). Beyond black boxes: Bringing transparency and aesthetics back 

to scientific investigation. Journal of the Learning Sciences, 9:1, 7-30. 
Silvis, D., Lee, V., Clarke-Midura, J., Shumway, J., & Kozlowski, J. (2020). Blending everyday movement and 

representational infrastructure: An interaction analysis of Kindergarteners coding robot routes. In M. 
Gresalfi & L. Horn (Eds.), Proceedings of International Conference of the Learning Sciences (ICLS). 

Wang, X.C. & Choi, Y. (2020). Teacher’s role in fostering preschoolers computational thinking: An exploratory 
case study. Early Education and Development. https://doi.org/10.1080/10409289.2020.1759012. 

Yu, J. & Roque, R. (2019). A review of computational toys and kits for young children. International Journal of 
Child-computer Interaction, 21, 17-26. 


	Objects to Debug with:
	Introduction
	Study design: Coding in kindergarten
	Data and analytic methods
	Case 1: Resolving a programming bug without mechanical interference
	Case 2: Reorienting to a physical bug as a potential problem source
	Case 3: Reconciling concurrent programming and physical bugs
	Task 2 cont.
	Task 3: RFLF
	Task 4: FFRFLB

	Discussion: Objects to debug with
	Conclusion
	References


