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Introduction 

Early childhood is increasingly seen as a time to introduce and foster computer science 

skills and computational thinking (CT). While this trend is not without historical precedent 

(e.g., Papert, 1980), there is currently a movement to produce computationally-themed 

materials and toys for kindergarten-aged children (Hamilton et al., 2020). In some cases, 

the design of these materials and toys are informed by research (e.g., Bers et al., 2014). In 

many other cases, the use and development of such materials and toys are driven by 

popular intuition. As the whole range of materials are beginning to see uptake in 

kindergarten and early childhood settings, we see a more pressing need for there to be 

assessments for this age group that measure CT. 
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ABSTRACT 

Background and Context: There is a need for early childhood 
assessments of computational thinking (CT). However, there is not 
consensus on a guiding framework, definition, or set of proxies in 
which to measure CT. We are addressing this problem by using 
Evidence Centered Design (ECD) to develop an assessment of kin- 
dergarten-aged children’s CT. 
Objective: To present a design case on the development of the 
assessment, specifically the algorithmic thinking (AT) tasks and to 
share validity evidence that emerged. 
Method: We focus on the AT sub-component of CT and present the 
principled assessment design process using ECD. 
Findings: Our operationalization of CT includes spatial reasoning as 
a sub-component. Pilot results showed an acceptable internal con- 
sistency reliability for the AT items and critical design decisions that 
contributed to validity evidence. 
Implications: An important contribution of this work is the inclu- 
sion of spatial reasoning in our definition of early childhood CT. 

mailto:jody.clarke@usu.edu
https://doi.org/10.1080/08993408.2021.1877988
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However, for a number of reasons, determining what to assess and how to do so is not 

as simple as it seems (Pellegrino et al., 2016). First, the field does not currently have an 

agreed upon definition of CT. Unlike assessments in disciplines like math (Clements et al., 

2019), there is not yet consensus on what skills constitute CT. Second, even if an agreed- 

upon definition of CT was established, we still lack a clear understanding of the knowl- 

edge, skills, and abilities (KSAs) involved in young children’s CT given some develop- 

mental constraints. For example, Kindergarten children are just learning how to read and 

write, meaning the expression of their CT capabilities do not lend themselves to many 

standard forms of computer-based or paper-and-pencil elicitation techniques. Third, and 

relatedly, interest in early childhood CT is so recent we also lack common curriculum 

practices to observe that could inform assessment design. For these reasons and more, it 

is easy to come unmoored because so much is unknown and in need of study. In these 

messy circumstances, it helps to put a stake in something, and for us that was the 

Evidence-Centered Design process (ECD, Mislevy & Haertel, 2006). 

The present article applies ECD to the early stages of the design of an assessment of 

kindergarteners’ CT. Specifically, our goal has been to design an assessment that can be 

used to assess CT as promoted in currently designed materials and toys for young children 

who are preliterate, which emphasize controlling and moving an agent through a grid-like 

space. Aligning our design process with a rigorous set of established steps for setting up   

our assessment as an argument through conducting domain analysis, domain modeling,  

and conceptual assessment framing, provided structure for assessment design. This 

approach supported making valid inferences about children’s learning, based on  itera- 

tively specifying and testing their CT knowledge, skills, and abilities. ECD was a means of 

managing the uniquely messy circumstances of assessing young children’s CT. This article 

presents (1) a design case that outlines specific challenges associated with the design, 

validation, and administration of early childhood CT assessments with special attention 

focused on fairness (i.e., equity) and (2) an explanation for how we dealt with these 

challenges in the design of an interview-based assessment of CT  for  kindergarten  

students. 

In the sections that follow, we first lay out the scope of what is known about CT 

assessments, highlighting the critical issue of validity and describing the ECD approach 

to validity by design. Then, we describe our project, called Coding in Kindergarten, 

contextualizing our assessment design in the overall design process and aims of the 

project, including a summary of our procedures and sample. Then we turn to the central 

contribution of the paper and align the first three layers of ECD – domain analysis, 

domain modeling, and conceptual assessment framework – to our process of develop- 

ing our Kindergarten CT assessment. Due to space limitations and our interest in 

illustrating our process and argument in sufficient depth, we focus on algorithmic 

thinking (AT), one sub-component of the larger CT construct. For AT, we describe (a) 

concepts and considerations that emerged from our domain analysis, (b) how these 

were articulated in terms of a design pattern, and (c) instantiated in the student, 

evidence, and task models in our assessment. Finally, we discuss how developing an 

early CT assessment using the iterative ECD process required us to engage with related 

important competency areas, such as spatial reasoning. We suggest some implications 

of this and other special considerations for designing assessments of kindergarten-level 

CT that bear on fairness and equity. 
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Current scope of assessing computational thinking 

The computer science education community is growing rapidly and beginning to con- 

struct nuanced definitions of CT (e.g., Cutumisu et al., 2019; Grover et al., 2015; Shute et al., 

2017; Tang et al., 2020) however, there lacks comprehensive research on how to measure 

CT. Part of the challenge is that CT has been conceptualized somewhat differently at 

different age ranges, and therefore different frameworks have been employed to both 

define and understand CT (e.g., Basu et al., 2020; Bers et al., 2014, 2019; Brennan & Resnick, 

2012; Grover & Pea, 2013, 2018; Lye & Koh, 2014; Shute et al., 2017; Snow et al., 2019; 

Yadav et al., 2014). Partly due to these different conceptions and frameworks adopted to 

guide research on CT, current assessment tools for CT look very different from one 

another. Each has been created in a variety of formats, engage students in different 

tasks types, and have been developed to function in different educational settings. We 

aim to develop an assessment that can be used across different research projects studying 

the integration of CT into kindergarten classrooms. Specifically, to be used with young 

children who are preliterate or emerging readers. 

 

Validity and reliability of computational thinking  assessments 

Assessment of CT has garnered enough interest and initial efforts from researchers, that   

we have begun to see systematic literature reviews on the topic (Cutumisu et al., 2019; 

Tang et al., 2020). After combing through well over 100 combined articles that empirically 

reported the use of assessments to measure CT, one of the most resounding shared  

findings was that the reliability and validity of the current CT assessments was in short 

order. For example, Tang et al. (2020) reported that of the 96 empirical CT assessment 

studies analyzed, only 45% reported reliability measures and only 18% reported validity 

evidence. 

 
The role of validity in assessment design 

Validity is a central issue in assessment design. Validity in assessments refers to the degree 

to which evidence and theory support the interpretations of test scores entailed by 

proposed uses of tests (American Educational Research Association,  American 

Psychological Association & National Council on Measurement in Education [AERA, APA, 

NCME], 2014; Messick, 1989, 1995). Much like theory development, the process of valida- 

tion involves accumulating relevant evidence to provide a sound scientific basis for the 

proposed interpretations of the assessment (American Educational Research Association, 

American Psychological Association & National Council on Measurement in Education 

[AERA, APA, NCME], 2014). However, establishing validity is an ongoing process and it may 

change as interpretations and uses develop or as new evidence is accumulated (American 

Educational Research Association, American Psychological Association & National Council 

on Measurement in Education [AERA, APA, NCME], 2014; Kane, 2006; M. T. Kane, 2013). It is 

important to stress that validity is not a property of the test but of the proposed 

interpretations and situated inferences of the scores (M. T. Kane, 2013). Thus, not only  

does validity ensure a test is measuring what it is intended to measure, it ensures 

inferences  based on  the  outcome of a particular  use of  an assessment  are    appropriate. 
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Mislevy (2007) has argued for the need to make the underlying principles of assessment 

design more explicit and to structure such designs around assessment arguments. He 

referred to this as “validity by design” where “as test creators, we are not carrying out 

validation activities but carrying out design activities structured in such a way that validity 

evidence emerges” (Mislevy, 2007, p.  467). 

 
Evidence-centered design & validity (by design) 

Assessments require a comprehensive framework for making valid inferences about 

learning. One such framework is Evidence-Centered Design (ECD), which provides rigor- 

ous procedures for linking theories of learning and knowing to observations and to 

interpretation (Mislevy & Haertel, 2006). The ECD framework is a systematic way to design 

assessments and involves constructing educational assessments in terms of evidentiary 

arguments (Mislevy & Haertel, 2006). Evidentiary argumentation is borrowed from 

Toulmin’s argument schema (Toulmin, 1958) where the argument is constructed through 

a series of logically connected propositions that are supported by data and subject to 

alternative explanations (Mislevy & Riconscente, 2005). The ECD framework provides the 

structure for developing the argument, but it is up to the assessment designer to provide 

the content (Mislevy & Riconscente, 2005). This view of assessment as argument is central 

to validity arguments presented by Kane (2006), M. T. Kane (2013)) and the AERA/NCME 

Standards (American Educational Research Association, American Psychological 

Association & National Council on Measurement in Education [AERA, APA, NCME], 2014). 

ECD is a multilayer approach comprised five layers: (1) domain analysis, (2) domain 

modeling, (3), the conceptual assessment framework, (4) assessment implementation, and 

(5) assessment delivery. In layers 1 and 2, the focus is on the purposes of the assessment, 

the nature of knowing, and structures for observing and organizing knowledge. In the    

third layer, assessment designers focus on the student model (what skills are being 

assessed), the evidence model (how are skills measured), and the task model (situations 

that elicit the behaviors/evidence). These aspects of the design are interrelated. The ECD 

method was developed to assess complex performances. For this reason, other groups  

(e.g., Basu et al., 2020; Snow et al., 2019) have used ECD to develop assessments that 

measure CT practices. While Snow et al. (2019) documented some of the challenges of 

using  ECD  such  as  time  and  cost,  they  have  also  shown  the  potential  of  ECD  as         

a framework for developing an assessment for CT practices. In particular, they have 

illustrated the importance of design patterns in that they provide a framework that clearly 

outlines the focal KSAs and guidance on how to develop tasks to measure them. Building  

off the work of Snow et al. (2019), we used ECD to guide the design of our assessment. 

 
The coding in kindergarten project 

The larger National Science Foundation-funded research (Grant no. NSF #1842116) from 

which this article originates, the Coding in Kindergarten (CiK) project, is investigating how 

to both integrate computer science into kindergarten mathematics instruction using 

commercial screen-free coding toys and assess the students’ CT. We are using commercial 

toys for two reasons. First, a number of early childhood education classrooms, including 

those with which we partner, have a “no screen-time” policy, making apps that have been 
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thoughtfully designed (e.g., Scratch Jr.) ineligible for kindergarten classroom use. Some 

work has been done to develop high quality academic research-based toys, but teachers 

and schools can view those as a substantial material investment beyond what they can 

typically afford (e.g., Bers et al., 2014). That has made easily purchased and easily replaced 

commercial  toys  an  attractive  option  for  educators  as  a  way  to  introduce  coding  in   

a  playful  and simple way. 

Second, and in line with the project’s computer  science  and  mathematics  integra-  

tion, we  hypothesize  these  toys,  which  all  involve  moving  a  robot-like  entity  through  

a grid space, will foster spatial reasoning skills (Sarama & Clements, 2009). For example, 

prior research on young children’s spatial assembly skills with blocks  suggests  an  

important link between  spatial  and  mathematical  skills  and  that  tangible  block-  

building activities facilitate the use of spatial language in cooperative social settings 

(Verdine et al., 2014). Similarly, these types of coding toy contexts engage students in 

cooperative spatial orientation and measurement experiences  (Shumway  et  al.,  2019;  

see  Figure 1). 

The CiK project has three goals: to operationalize what CT looks like in kindergarten 

classrooms when students interact with coding toys; to develop curricula and resources    

for teachers to use coding toys in their classrooms; and, to develop an assessment that 

could be used across toys that measures kindergarteners’ CT. Thus, we are not assessing 

the curriculum per se, but the kinds of CT skills that are afforded by using screen-free 

coding toys and other similar learning objects (e.g., the Robot Turtles educational board 

game produced by ThinkFun). By necessity, we have had to design and implement 

curriculum as we operationalize CT and develop our assessment. Our research involves 

working in kindergarten classrooms in public schools. While we developed and piloted 

curriculum around the toys in classrooms (Silvis et al., 2020), the focus of this paper is on 

the design of our assessments and the validity evidence that has emerged in the early 

design process. Nonetheless, it is important to acknowledge the concurrent design 

activities, including the curricula and how enacting it in classrooms informed  our  

definitions of CT, our design patterns, our student models, task models, and evidence 

models. 

 

 

Figure 1. Group of Students and Teacher Interacting with Coding Robots. 
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Context of  the research 

We worked with four elementary schools in the Mountain West, United States. All four 

schools are classified as Title I; three are classified as rural, and those three also received 

funding to offer full-day kindergarten. Figure 2 presents the timeline of our work with the 

four schools, depicted as A, B, C, and D. In school A, we worked with three teachers and six 

classes. In schools B, C, and D we worked with one teacher and class per school. 

Curriculum implementations involved a member of the research team, a former ele- 

mentary or preschool teacher, teaching a 30-min lesson with a coding toy to small groups 

of 4–5 kindergarten students during their STEAM Centers (Science, Technology, 

Engineering, Art, and Mathematics activities that students visit in a rotation each week). 

Each lesson was observed and video recorded by a member of the research team. 

Assessment implementations involved a member of the research team working one-on- 

one with a child. 

During Phase 1, Spring, Year 1, we piloted prototypes of curriculum tasks around two 

toys and then some assessment items. During Phase 2, we conducted two different types 

of pilots. Our first approach involved School A and was focused on piloting assessment 

items. The teachers, who had been using coding toys prior to working with us, had access 

to our curricula and resources and implemented coding lessons on their own. Members of 

the research team piloted assessment items with students. Our second approach focused 

on piloting both curriculum and assessments. In school B and C, members of the research 

team taught a sequence of six lessons around two or three different coding toys. At the 

end of the curriculum, researchers administered a version of our assessment with each 

student. 

Data collection at School D was not completed at the time of writing this paper.    

For the purposes of this paper, we focus only on Phase 2 in Figure 2, the highlighted 

period between early fall and late winter. We describe the Phase 2 procedures and 

sample below. Phase 3 (not pictured) involves scaling up curriculum implementation 

through professional development and continuing co-design of lessons using coding 

toys. While we expect teachers will deliver the lessons, the intended use of the 

assessment is as a tool for researchers who study early childhood CT. Although it will  

be available for teachers to   use. 

 
 
 
 

Figure 2. Timeline for Assessment Events Over a One-Year Period. 
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Sample for this study 

Data in this paper focuses on six classrooms within three Title 1 schools (A, B, and C). It is 

important to note that full day kindergarten is rare in this region. The three schools we 

worked with implemented full day kindergarten in order to provide opportunities for 

students demonstrating academic risk upon kindergarten entry. Participants’ parents 

were asked to complete an optional demographic survey, but not all of them did. Eighty- 

nine students took versions of the assessment during this time period (females = 45, 

males = 44). Forty-seven identified as White, 14 as Latinx, 1 as Black, 4 as Asian/Pacific 

Islander, 2 as Native American, and 2 as Other. Ten students reported receiving ESL services, 

9 reported receiving special education services, and 22 as receiving free and reduced lunch. 

 

Procedures for the assessment administration 

Research team members were trained and certified on the administration of the Research- 

Based Early Mathematics Assessment, a validated mathematics assessment designed for 

a similar age group (Clements et al., 2019). The assessors all taught the curriculum in 

Schools B and C and demonstrated good rapport and management skills with children. 

They had prior formal classroom teaching experience and advanced degrees in education. 

On average, we were allotted 20 minutes to assess each child. Standard materials included 

in the assessment task environment were: a small 3-D printed moveable agent; a series of 

paper-based grids bound in a flip book that served as the navigation plane for moving the 

agent; a collection of paper-based arrow code tiles for sequencing and some preset 

laminated code strips; a program organizer to contain the sequence; administrator 

pages, with item scripts and prompts; and scoring sheets (see Figure 3). All assessments 

were video recorded and double scored. 

 

Applying ECD to kindergarten CT assessment 

As mentioned above, the ECD model has five layers; for the purposes of this paper, we 

discuss the first three in relation to our design process. Likewise, our assessment targets 

 
 

Figure 3. Student taking assessment. Left shows materials used in assessment tasks: (1) program 
organizer (2) arrow codes (3) grid pages, flip book (4) moveable agent (5) administration pages, with 
script (6) preset code strips (7) scoring sheets. Right shows child’s-eye view of assessment   materials. 



124 J.  CLARKE-MIDURA  ET AL. 
 

 

multiple components of the CT construct, including algorithmic thinking, spatial thinking, 

debugging, and decomposition. Due to space limitations, we focus this paper on only the 

algorithmic thinking (AT) sub-component, and we document design changes that took 

place regarding this crucial component of CT over one year of an assessment design cycle. 

In what follows, we describe how our assessment and conceptualization of this construct 

developed and became further refined through ongoing domain analysis, domain mod- 

eling, and conceptual assessment re-framing. 

 
Domain analysis 

This layer of assessment design is focused on gathering information about the domain  

being assessed. At the core of this process is documenting “how this knowledge  is  

acquired and used, as well as how  competence  is  defined  and  how  it  develops”  

(Mislevy & Riconscente, 2005, p. 7). The information gathered is set up as arguments in    

the second layer, domain modeling. In this section, we summarize portions of our domain 

analysis: CT definitions and ways of measuring CT, AT, and critical aspects of AT assess- 

ment items  (e.g., spatial thinking). 

 

CT definitions 
We started our domain analysis by looking at the published research on CT as well as 

assessments of CT (e.g., Angeli et al., 2016; Bienkowski et al., 2015; Brennan & Resnick, 

2012; Shute et al., 2017; Snow et al., 2017, 2019; Sullivan & Bers, 2016; Weintrop et al., 

2016). First, we culled information on definitions and frameworks  for  CT  including the 

CSTA  standards. We categorized the definitions based on  context, concepts,  and    age. 

Definitions of CT vary and are associated with the environments and domains in which 

particular research is situated. For example, studying CT the context of the Scratch 

programming environment, led Brennan & Resnick to identify concepts like sequences 

and practices like debugging as relevant for CT. Ehsan and Cardella (2017) framed CT 

within engineering education and identified CT competencies such as abstraction, algo- 

rithm and procedure, debugging/troubleshooting, pattern recognition, and simulation 

while observing first-grade students complete an engineering design task in an informal 

learning context. Weintrop et al. (2016) performed a review of CT literature and inter- 

viewed experts in mathematics and science in order to develop a taxonomic definition of 

CT consisting of four categories: (1) data practices (2) modeling and simulation practices 

(3) computational problem-solving practices and (4) systems thinking practices. When it 

comes to operationalizing CT- which factors? how many? how do they interact? what sorts 

of practices do they support?- context appears to matter a great deal. 

In the domain of early childhood CS education, a number of researchers emphasize 

coding and programming environments as relevant for CT development, recognizing that 

other types of CT engagement beyond coding are possible (i.e. unplugged or story-based 

activities). Based in this emerging context for CT, we aligned our definition with the ways 

in which early childhood CT has been conceptualized and assessed, as a multi-factor 

construct (Bers, 2018; Relkin et al., 2020; Shute et al., 2017). Shute et al. (2017) developed 

a definition for CT as the “conceptual foundation required to solve problems effectively 

and efficiently” (p. 151). Included with their definition, they analyzed various CT concepts 

and  categorized  commonly  identified  CT  skills  into  six  main  facets: decomposition, 
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abstraction, algorithm design, debugging, iteration, and generalization. Similarly, Relkin 

et al. (2020) created the TechCheck which was specifically meant to assess young chil- 

dren’s “various domains of CT described by Bers (2018) as developmentally appropriate 

for young children: algorithms, modularity, control structures, representation, hardware/ 

software, and debugging, with the exception of the design process” (p. 4). Though the 

operative dimensions may vary, a variety of CT assessments measure sub-constructs of CT 

and situate their measures in programming contexts. 

 

Computational thinking assessments for young children: unique challenges 
Currently, there is a lack of valid and reliable CT assessments for young children. One 

potential reason is because within the  early-childhood literature, there  has  not been  

a consensus on a guiding framework, definition, or set of proxies with which to measure 

CT (e.g., Angeli & Valenides, 2019; Bers et al., 2019; Cittá et al., 2019; Martinez et al., 2015). 

For example, Angeli and Valenides (2019) measured CT of 50, five- to six-year-old children 

by individually assessing decomposition, AT, sequencing, and debugging and used these 

skills and practices to garner a holistic score of students’ CT. Cittá et al. (2019) measured 

CT of 92, six- to ten-year-old students by having them take a paper-pencil test that 

assessed the “ . . . students’ ability to write and interpret an algorithm on paper in          

a closed environment represented by a chessboard” (p. 5). Bers et al. (2019) measured 

CT of 172, three- to five-year-old children by having them solve a robot-based challenge. 

The resulting product was assessed by the researcher using a Solve-Its checklist 

(Strawhacker et al., 2013). This checklist has progressive levels of complex programs, 

and as students include more or less complexity in their program, they receive more or 

less points. These three examples highlight how different CT assessments for young 

children measure different skills and practices of CT. The varying conceptions of what 

CT is and what skills and practices represent it, makes comparisons of CT learning 

challenging and demonstrates a need for a CT assessment aimed at generality. Based 

on converging literature, we defined CT as being comprised of the following facets: (a) 

algorithmic thinking, (b) decomposition, and (c) debugging. We added an additional skill 

(d) spatial reasoning, which is not part of most CT definitions but something we knew 

would be important based on the movement of the toys and the data collected thus far in 

the project. 

 

A focus on the algorithmic thinking component of    CT 
There are different approaches and definitions to defining algorithms and programming      

in the literature. Most of them start out similarly by defining it as a step-by-step process to 

complete a task (e.g., CSTA CS standards, 1A-AP-08, 2017) and “design(ing) logical and 

ordered instructions for rendering a solution to a problem” (Shute et al., 2017, p. 12).  

These steps can be carried out with or without a computer. Algorithmic thinking (AT) can  

be thought of as the writing or reading of a sequence of steps to solve a problem, either 

computer-based or in an unplugged environment. Sometimes, this ability to read or write    

a program is measured directly (e.g., Cittá et al., 2019) and sometimes underlying  skills  

such as sequencing (Bers et al., 2019; Martinez et al., 2015) or action-symbol correspon- 

dence (Muñoz-Repiso & Caballero-González, 2019) have been measured with young 

children. AT necessitates careful examination of items that would allow for a certain AT 

trajectory   to  be  developed  and  assessed.   This  could  include  foundational  skills      like 
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sequencing and action-symbol correspondence, but would not regard them as the sole 

indicators or algorithmic thinking. These foundational skills may be particularly critical to 

assess in young populations such as kindergarten. 

In our review of standards and existing research, we initially defined algorithmic  

thinking in four parts: give a set of sequential instructions, correctly use the syntax of        

the coding system, create loops through loop procedures/control structures, and create 

functions. After three pilots of the AT assessment items (see Figure 2), we modified the 

aspects of assessment situations that can be varied to shift difficulty or focus, which we   

call variable features. After adjusting variable features in subsequent  assessments,  we 

were better able to observe what we thought kindergarten students could do. 

As with the larger construct, the context in which we are operationalizing AT is relevant 

for measuring it. The context in which we are operationalizing and assessing AT is 

consistent with computational environments being widely adopted in early childhood 

settings: tangible coding materials that rely on a grid-based series of movement com- 

mands (e.g., Bers, 2018). While CT it is not exclusive to coding and programming, and not 

all coding and programming environments in early childhood involve grids and direc- 

tional commands, this format is common enough- and the commercially available coding 

tools numerous enough- that we believe it is prudent to base early childhood CT assess- 

ment in this context. However, circumscribing our assessment design around this particular 

context, introduced unexpected variables associated with a grid system and the development 

of spatial and directional thinking. Rather than a limitation of our design or conceptualiza- 

tion of the constructs, we see this as a relevant finding for researchers and teachers who 

are trying to understand how CT operates and how to observe it in early childhood. We 

therefore analyzed the literature in this domain for its relevance to AT and CT. 

 
Spatial thinking as a variable feature for AT   items 
Kindergarteners engage  their  spatial  thinking  to  program  toys  and  agents  to  move  in  

a given space. Our curriculum tasks and AT assessment items were tethered to spatial 

thinking, and became an important variable feature of the AT assessment items. Hence, 

understanding student’s knowledge of spatial relationships was particularly pertinent to  

our domain analysis. Spatial thinking entails understandings of space and objects’ posi- 

tions in space, reasoning with objects or representations in space, and operations  on 

spatial relationships (National Research Council [NRC], 2006; Sarama & Clements, 2009). 

The K-12 mathematics curriculum relies on spatial thinking (National Research Council 

[NRC], 2006). The kindergarten geometry standards (Common Core State Standards 

Initiative [CCSSI], 2010) state, “describe objects in the environment using names of shapes, 

and describe the relative positions of these objects using terms such as above, below, 

beside, in front of, behind, and next to” (K.G.A.1). The standard emphasizes students’ use  

of language to describe shapes and positions of shapes in space,  but the critical under-  

lying concepts are about developing students’ spatial orientation. Spatial orientation is     

the understanding of different positions in space, and students first develop spatial 

orientation concepts in relation to their own position in space and later develop external- 

based reference systems using landmarks outside themselves (Sarama & Clements, 2009).  

In our programming context, students use their spatial orientation concepts when they 

move a toy or agent around a grid space. For example, in Figure 3, the student is holding  

the agent and ready to move the agent two movements forward on the grid to the grass. 
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Previous research suggests that mental rotations are difficult for young children and    

the ones who have more advanced mental rotation ability demonstrate higher levels of 

mathematical and computational thinking (Cheng & Mix, 2014; Cittá et al., 2019; Cuneo, 

1985). Further, research also suggests young children progress through a specific spatial 

thinking learning trajectory (Sarama & Clements, 2009) and shift from certain egocentric    

to allocentric reference frames while programming (Clarke-Midura et al., 2021). In the 

Figure 3 example, the student is completing an easier task that involves two forward 

movements and is oriented in the same direction as the agent. The same task  (two  

forward movements from the starting point to the grass) with the agent  facing  the  

student is more challenging and requires the student to consider the toys’s frame of 

reference. 

The grid-based system brings important challenges to our assessments, and it is 

important to consider the ways that students will be able to navigate movements within 

rows and columns on a grid. Our grids are two-dimensional arrays made up of rows and 

columns of squares. Student understanding of the arrangement of a grid, specifically the 

organized structure of the rows and columns of squares, requires the cognitive feat of 

spatial structuring. Spatial structuring is a form of abstraction that involves the ability to 

organize and coordinate a set of objects in space (Battista et al., 1998). In our context, 

kindergarteners are still developing spatial structuring concepts and understanding the 

organization of rows and columns in a grid is quite challenging until about the age of 

seven years old (Sarama & Clements, 2009). Hence, while the grid can provide an 

organizing structure to plan paths of movements for the toy or agent, young children 

may have difficulty understanding the grid’s structure. 

 
Domain modeling of AT 

This layer of ECD is focused on diagramming or otherwise systematically planning how 

designers might create an assessment of the construct of interest. Modeling the domain 

means bringing the construct into alignment with the population, knowledge, behaviors, 

work products, and tasks (Oliveri et al., 2019). Along with operationalizing relevant 

attributes of the knowledge and population of interest that emerged from domain 

analysis, a major focus of articulating the domain model should be the evidence which 

supports the argument for the assessment’s validity. 

 

Design pattern for early childhood algorithmic    thinking 
As an approach to design modeling, design patterns (DPs) organize a set of decisions for 

developing assessments (Mislevy & Haertel, 2006). They consist of a series of defined 

attributes, such as focal knowledge, skills, and abilities (KSAs) and characteristic features    

of items, that structure an assessment. Design patterns rationalize an assessment’s argu- 

ment by describing how the construct of interest will be operationalized, elicited, and 

observed (Mislevy & Haertel, 2006). DPs also show how attributes of the design are 

interconnected and are a means of reconciling dependencies between nested design 

considerations  (Oliveri  et  al.,  2019).   Domain  modeling   through   the  development  of   

a design pattern took the form of the following attributes (see online supplemental  

material A for more detail on the   DP). 

Population and special considerations 
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In order to ensure fairness in assessments, designers must account for special con- 

siderations in a given target population (Oliveri et al., 2019). Examples of special con- 

siderations might be examinees’ linguistic and cultural diversity, their prior knowledge, or 

other construct-relevant factors, like age or gender, that bear on making  valid  claims 

about test takers’ performance. We were careful to create tasks that were not biased 

toward a particular socioeconomic status, culture, or prior background experiences. For 

example, we avoided holiday themes and activities that bias a particular group,  and  

instead we used a bug theme among the physical materials and test items. 

Our intended population is primarily preliterate, which demands certain considerations 

in assessment creation, such as interview-based delivery format, verbal instructions or 

observational assessment. Other issues that arise with young children is that they may or 

may not be familiar with typical symbols that seem customary to researchers, such as the 

rotate arrow (see Figure 3). In fact, these arrows may provoke different interpretations for 

children based on their previous, mundane experiences with the symbols (Silvis et al.,  

2020). For example, they may think the left rotate arrow means to make a rotate and 

forward movement, similar to what would be done in a car or walking around a corner, 

rather than make a stationary  rotation. 

We also subjected our measure to a time constraint of twenty minutes, knowing that 

there are limits on young children’s attention and engagement that could influence their 

behaviors. In addition, screen-free and toy-free tasks were required, not only because 

teachers preferred these approaches, but also because we recognized that children have 

had variable exposure to programming contexts and different opportunities to learn to 

use coding toys. We considered children’s’ language development, both in terms of age 

(young children learning language) and linguistic background (English Language 

Learners), in the design of items and administration. Examples include using manipula- 

tives (i.e., moving an agent on the grid and moving tangible arrows to a program 

organizer) and gestures (e.g., pointing to codes or a space on the grid), using prompts 

to support their responses, modifying questions for better comprehension, and eliciting 

nonverbal responses (e.g., yes/no questions, statements such as point to). 

 

Assessment rationale 
Building from definitions of CT that came out of our domain analysis, our initial working 

definition of AT contained four parts: give a set of sequential instructions; correctly use the 

syntax of the coding system; create loops  through  loop  procedures/control  structures; 

and create functions. Our original set of KSAs for AT were modeled after this definition. 

During early winter (see Figure 2), we found that this definition, while grounded in the 

literature on early CT, was inadequate for describing the kind of thinking kindergarteners 

exhibited when learning to code. For example, although our assessment is toy-free, the 

language of directional arrows is an inherent feature of most coding toys and programs 

geared towards children (Clarke-Midura et al., 2019). Thus, algorithms frequently take the 

form of an ordered sequence of directional arrow commands, the execution of which 

instructs an agent to navigate on a plane such as a map, grid, or number line. 

Given the prevalence of this constraint in early childhood coding environments- and 

departing from broader conceptualizations of AT in the literature, we further refined the 

definition. For the purposes of our assessment, we define AT as developing and using 

logical and ordered sequences of instructions [see online supplemental material B].   By 
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defining AT in this way, we retained sequencing at the center of the AT sub-component of 

the CT construct and ensured that assessment content would be context-relevant for the 

target population. 

 

Focal knowledge, skills, and abilities  (KSAs) 
After piloting our assessment three times in the fall (two times with School A, one time 

with School B, see Figure 1), and after implementing the curriculum and observing what 

occurred under non-testing conditions, we modified our KSAs. Initially, the KSAs for AT 

were keyed to our four-part working definition, and the first two KSAs were that students 

could specify a short sequence of instructions (< 3) and a moderate length sequence of 

instructions (> 4). We subsequently unpacked and expanded our definition of AT into finer 

skills that were more reflective of the capabilities that students were demonstrating. One 

way we did this was to shift “length of sequence” from a variable skill to a variable task 

feature that could be modified to differentiate levels of AT. Another way was to more fully 

incorporate the requisite knowledge of one-to-one, movement-action correspondence 

into the KSAs for AT as a form of prior knowledge we were not (yet) measuring. We also 

articulated certain meta-computational concepts; test-taker knowledge of terms like 

“program”, “code”, and “instruction” had been implicit in student performance, but we 

now treated these as prior knowledge consequential for modeling and assessing AT. 

Although our curriculum implementations and pilot assessments in late fall had begun 

to indicate that the ability to create functions and loops using control functions was 

beyond the skill level of kindergarteners we worked with, we preserved these as ceiling 

KSAs in our model and retained the corresponding tasks as “upper anchors” (Penuel et al., 

2014, p. 79) in the assessment. We made this decision because we had only explored 

loops in classrooms with two of the toys to date. Admittedly, these two toys did not 

present loops and functions in a way that we found to be intuitive. However, Kibo, which 

we have not implemented in classrooms, presents loops as “repeat” blocks whose 

sequence begins with “Repeat begin” and ends with “repeat end”. While research on 

Kibo has found that loops can be difficult for preschool-aged children (e.g., Elkin et al., 

2018), we have not been able to conduct research on programming loops with Kibo in 

kindergarten classrooms. Further, Bers and colleagues, are exploring coding trajectories 

that they say start with sequences (order) and end with more complex patterns of 

sequences such as loops (Bers, 2019). Given that there is still much for the field to learn 

about coding in early childhood, we also plan to continue to explore how children engage 

with these concepts. Finally, in consideration of the fact that kindergarteners were in the 

process of learning to read and write, we realized that our working definition of AT 

foregrounded writing (specifying) code, but that reading and enacting programs were 

equally important. We therefore reorganized assessment items to align with these three 

activities in which students demonstrated the AT knowledge we were targeting. We 

provide a blueprint for how this was instantiated in our task design as part of the 

conceptual assessment framework (CAF). 

 

Additional KSAs: the role of spatial   reasoning 
Another key insight from pilot assessments and curriculum implementations was that 

accounting for directional movements of an agent was central to warranting the assess- 

ment argument. In other words, alternative explanations of performance that hinged on 
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students’ directional and spatial knowledge emerged as a potential confound for our focal 

KSA. Teasing out the complex relationship between spatial and directional reasoning and 

disambiguating it from AT became a central design challenge. 

One aim of assessment design patterning is to account for alternative explanations for 

performance. Design patterns are useful in this regard, because they provide a means of 

identifying additional KSAs implicated in the  construct  and  determining  whether  these 

are collateral of, prerequisite for, or irrelevant to the construct (Oliveri et al., 2019). 

Whereas with older children, eliminating such sources of  construct-irrelevant  variance  

may have been an easier matter, young children’s AT was entangled with their incomplete 

spatial knowledge of left and right, their varying interpretations of the semantics of arrow 

symbols,  and  their  developing  understanding  of  symbol-action correspondence. 

We had to determine the relevance of spatial reasoning to the construct of interest. 

Was spatial reasoning an additional set of KSAs that needed explication in the design 

pattern? Or did we need to somehow incorporate it into our focal KSAs? Design patterns 

may identify additional “knowledge, skills, and abilities that are not part of the construct 

but depending on design choices and task features, may be required to perform the task” 

(Oliveri et al., 2019, p. 282). We decided to treat spatial reasoning in this way, as mean- 

ingfully relevant for solving the particular problems that arise in early childhood CT 

educational contexts. Our assessment includes a section of spatial reasoning items pre- 

ceding the AT section, that, like the other components of CT has undergone revisions 

according to a series of design features. We discuss these in more detail following the 

kinds of work products and potential observations that we posited can provide evidence 

to support claims about student knowledge. 

 

Potential work products and  observations 
Based on our definition of AT, we mapped KSAs onto student’s potential work products   

and observable behaviors. We documented types of responses that could serve as indica- 

tors of their KSAs and evidence of latent proficiencies. For example, we expected that they 

could produce a program of three or more codes as well as programs with a turn. These 

programs, comprised of sequences of arrow cards arranged along a specially designed 

“program organizer,” would serve as physical evidence of students’ AT (see Figure 2). 

Additional forms of evidence might be students’ enactments of programs as they 

followed a pre-set program that we called a “code strip” (Figure 2). We knew from 

curriculum implementations and pilot assessments that enacting and simulating ready- 

made instructions was a primary mode through which students demonstrated their early 

knowledge of sequencing. We recognized that students learning to read English were 

likewise learning to read a directional arrow-based programming language and that to 

specify a sequence, they first needed to decode the symbol system. Enactments and 

think-aloud sessions with students provided means of accessing their ability to read and 

follow sequences. Furthermore, our focus on math integration suggested that counting 

the number of codes required to solve a problem served as another potential source of 

evidence of student’s AT. 

 

Variable features 
We prototyped materials and piloted tasks that could elicit these potential work products 

and observable behaviors. Variable features are features of task sets that can be varied to 
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change its level of difficulty, context (to facilitate new task generation), or granularity 

(Oliveri et al., 2019). Through iterative cycles of item redesign, piloting, and data analysis, 

we modified features of tasks to make them more or less difficult and to unpack AT. We 

identified variable features for the context of task sets: using a navigation plane such as 

a map, grid, or number line that the agent could move across; having a path that the 

agent takes with start and end points that correspond to the start and end of algorithms; 

manoeuvring an agent within the plane; positioning codes in a linear sequence; and 

embedding each task in a simple scenario representing a problem for the agent to solve. 

Within this task set, we identified that three key program features, when varied, controlled the 

difficulty of tasks. The first was starting orientation of the program. When  the  agent shared a 

starting reference frame with the student, the task was easier (Shown later in Figure 5, Tasks 

2 & 3). Conversely, a starting orientation that was rotated ninety degrees or was facing the 

child (rotated 180 degrees)  increased  the level of difficulty (Shown  later  in Figure 5, Task 1). 

The second program feature we varied was the presence of turns in the sequence. Tasks that 

asked children to generate or to follow a set of instructions were more challenging if they 

included turns in the sequence. Furthermore, increasing  numbers  of turns increased the 

difficulty level. The third program feature that we used to change difficulty level was the 

distance traveled; longer sequences presented more challenging problems. 

 
The conceptual assessment framework 

The third layer in the ECD approach is the conceptual assessment framework (CAF). This 

layer is a blueprint of the assessment where decisions are made in regards to the statistical 

models, materials and delivery processes that will inform students’ work products, and the 

scoring (Mislevy & Riconscente,  2005). 

The CAF is comprised of three models: the student model, the evidence model, and the 

task model. These three models are fleshed out with the information in the design pattern 

and work together to provide technical details of the assessment. The CAF specifies how 

items can be varied to create families of items and how we update claims about students’ 

proficiencies based on their work products or performances. The CAF also “serves as 

another place for examining the impact the assessment may have on test takers from 

different populations” and to “minimize inadvertent  construct-irrelevant  demands”  

(Oliveri et al., 2019, p. 291) 

 

Student model: what are we  measuring? 
The Student Model answers the question of what the assessment is measuring. It is the 

latent proficiency variables in the statistical model used to accumulate evidence about     

the student. The Student Model variables are the link between students’ performances on 

tasks and the claims we wish to make about their proficiencies (Mislevy & Riconscente, 

2005). In the present study, the student model for AT is a simple model with one student 

variable. In the model, we will accumulate a number right or total score to characterize 

students’ overall proficiency in   AT. 

 

The evidence model: how do we measure  it? 
The Evidence Model provides the technical details on how the assessment measures the 

Student  Model.  In  the  Evidence  Model  we  update  the  Student  Model  based     on 
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observations of what children say or do. The Evidence Model has two components: 

evaluation and measurement. The  evaluation  component  is  linked  to  the  Student  

Model  and puts a value  on (evaluates) the observations  of what  students say and  do.  

This can be done in the form of a rubric, answer key, etc. The measurement component 

compiles the data from evidence component across the tasks. While “each piece of data 

directly characterizes some aspect of a particular performance, it also conveys some 

information about the targeted claim regarding what the student knows or can  do’  

(Mislevy & Riconscente, 2005, p. 19). In the present study, observations of students’  

actions on each task (item) get scored as correct or incorrect based on our answer key. 

 

The task model: in what situation(s) do we measure   it? 
The Task Model describes the kinds of situations that will elicit the observations of 

students’ proficiency. The Task Model is linked to the work products, characteristic  

features, and variable features of the tasks described in the design patterns. The claims     

we want to make about students guide and shape the design decisions around the task 

features. Such decisions include the form of the work product, what materials are  

necessary and directives. Many important decisions  are  made  at  this  layer  that  affect 

the inferences that will be made from the test. For example, it is important there are:           

a sufficient number of tasks to provide information about the construct, sufficient oppor- 

tunities for students to show the broad range of KSAs necessary to assess the targeted 

construct, and opportunities for students to demonstrate the focal KSAs in ways that suit 

the intended context of use (Oliveri et al.,   2019). 

These three models are connected and linked in an assembly model. The assembly 

model specifies how the Student Model, Evidence Model, and Task Model work together 

to generate sufficient evidence to form a valid assessment (Mislevy & Riconscente, 2005). 

Our plan to is use Item Response Theory (IRT), in particular, a Rasch model to fit the data. 

The Rasch model analyses will allow us to ensure the unidimensionality of AT and 

estimate the relative location of items and persons on a single scale (De Ayala, 2013). 

To date, we have not piloted our assessment with a large enough sample to conduct IRT 

on our AT data. However, we collected valid evidence on the internal structure of AT with 

59 students in School A in late winter. Cohen’s kappa was computed to test the agree- 

ment between two coders (i.e, the inter-rater reliability). Results showed that there was an 

almost perfect agreement between the two coders, Cohen’s kappa = .99, p < .001. We 

conducted the Kuder-Richardson Formula 20 (KR20), an index of the internal consistency 

reliability for binary measurements, on our pilot measure of AT that contained 11 items. 

Our KR20 value was .82, which is in the acceptable range. Item analysis for this sample 

indicated a range of item difficulty from .13 to .83. Our goal is to include a range of tasks of 

varying complexity to discriminate students with different ability levels. 

 

Developing the task models: three  examples 
Figure 4 presents our Student Model and example observations and task features. Below 

we present three different task models for our claim that students can specify a program 

using a sequence of codes [Figure 5]. In all of our items, we provide students with a grid 

that includes a green square indicating starting position and a red square indicating 

ending position (the green arrow indicates starting orientation for the assessor, but is not 

depicted on student grids). All items in our assessment involve an assessor   interacting 
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Figure 4. Student, Evidence, and Task Models for    AT. 

 
 

Figure 5. Task Model  Examples. 

 

with a student by reading a question and emphasizing materials or gesturing to the grid. 

In the following three examples, we accept alternative correct sequences; however, for 

the purposes of this paper, we provide only the most common (most efficient) response 

option. Please see online supplemental material D for an Assessment Administration 

example. 

Task Model Example 1 varies the starting orientation for a short distance traveled. The 

task  features  for  this  model  involve  a  starting  orientation  where  the  agent  is     facing 
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towards the right from a students’ perspective. For this particular task, the most efficient 

correct answer is three forward arrows (i.e. FORWARD, FORWARD, FORWARD). Task Model 

Example 2 varies the presence of a turn. For this particular item, the answer we are looking 

for is FORWARD, ROTATE RIGHT, FORWARD. Task Model Example 3 varies two features: 

traveling a distance greater than 3 squares and making a turn. For this particular item, the 

answer we are looking for is FORWARD, FORWARD, FORWARD, ROTATE LEFT, FORWARD, 

FORWARD. 

 

Evidence to support arguments of fairness and validity 

At the time of this writing, we are in what Kane (2010) has referred to as the developmental 

stage of validation. He  writes: 

 
as an assessment program is being developed, the developers are expected to produce 
materials and procedures that support the proposed interpretations and uses and to make        
a case for the validity of the proposed interpretations and uses, and it is appropriate to talk 
about their efforts ‘to validate’ the claims being made. (Kane, 2010, p. 4) 

 
While accumulating the relevant evidence to provide a sound scientific basis for the 

proposed interpretations of our assessment, we constantly ask what is being claimed and, 

given the evidence we have accumulated, are the claims warranted for all students? Using 

ECD provided some structure for us to map out evidence of how students’ performances 

support the inferences that are made regarding students CT competency. 

During the task design process, we made several decisions focused on assessing and 

identifying fairness (Oliveri et al., 2019). For example, we carefully selected the scenarios 

and vocabulary so that the context and content is accessible to all kindergarten students. 

We tried to provide opportunities for students to demonstrate the focal KSAs in ways that 

suit the intended context of use (i.e., kindergarten classrooms). We also considered 

possible alternative explanations that  might  account  for  the  observed  performances  

and  scores on the assessment. 

We collected validity evidence based on student responses  through  pilots  and 

cognitive interviews with kindergarten students in public school classrooms,  the  

population  for  which  our  assessment  is  intended.  The  cognitive  interviews  allowed    

us to identify any hidden  assumptions  or  alternative  plausible  interpretations  of  the  

test scores. These data also allowed us to  design  counter arguments  to  our  claims that 

the assessment is measuring what it is intended to measure. We gathered evidence of 

construct underrepresentation  and  expanded  our  definition  of  CT  to  account  for 

spatial reasoning. We expanded our definitions of  AT  to  account  for  the  reading,  

writing, and enacting of programs. We also built counter arguments around construct 

irrelevant variance. In doing so, we modified our vocabulary and the language used in       

our tasks. 

These efforts are guiding us towards our larger evaluation of our assessment where we 

will move to what Kane calls the appraisal stage (Kane, 2010). In this stage, we will  

calibrate our assessment and gather sufficient data to conduct a “critical evaluation of      

the extent to which the proposed interpretations and uses are plausible and appropriate” 

(Kane, 2010, p. 4). 
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Discussion 

A  central  contention motivating  this article is that there is a growing need to develop  

valid assessments of CT for kindergarten. At the same time, it is a challenging undertaking 

because so much has yet to be specified, both in terms of the types of instruction that are 

emerging and in the constructs that we hope to eventually measure. The goal of this    

paper has been to present a case of our efforts to use ECD to develop, test, and refine 

assessment items for the construct of AT with kindergartners. Design cases are useful for 

others interested in assessment as it can provide some procedural guidance for how to    

use ECD for the design of assessments in computer science education. At the same time, 

cases are useful for surfacing domain-specific tensions and challenges. It is to three of   

those challenges we now turn our    discussion. 

 

Challenge 1: assessing a nebulous  construct 

Typical assessment design processes presume that some image of how a target construct 

is instantiated can serve as a blueprint for the assessment development process. However, 

that image is lacking for early childhood CT. Because research does not yet converge on 

precisely what to assess and how to assess CT in early childhood, we started our project by 

operationalizing CT as best as we could give existing literature and standards documents. 

Through the iterative process of designing and piloting assessment items with kinder- 

gartners who have participated in some introductory toy-based CT instruction, we have 

necessarily adjusted both our items and our understanding of the underlying AT con- 

struct. The KSAs we articulated changed such that our initial targets became upward 

boundaries (e.g., looping) and more specific KSAs that were developmentally appropriate 

were articulated and added (e.g., spatial reasoning). Moreover, we expanded our KSAs to 

be inclusive of reading and enacting existing algorithms rather than focus exclusively on 

the production of algorithms. Because we iterated, we were able to begin to produce 

what we believe to be a more accurate image of what kindergartner’s AT looks like when 

instantiated in these sorts of grid-based navigation tasks. 

 

Challenge 2: expanding our definitions of  CT 

Many of the newly emerging tools and educational toys that are being used for kinder- 

garten CT instruction involve navigating an agent through two-dimensional grid space 

(Clarke-Midura et al., 2019). Taking into account the current lack of consensus in the field 

as to what fully constitutes AT, and by extension, CT, it has still been an important 

realization for us that spatial reasoning plays a major role in young children’s CT. Thus, 

for our assessment development process, we have found it appropriate to expand the 

scope of CT to include spatial reasoning. For kindergarteners, this involves both working 

with different spatial orientations – for instance, understanding right and left when an 

agent is facing the same direction as the child and when it is facing a different one – and 

spatial reasoning – such as when a student is trying to move an agent through the 2D grid 

space and needs to differentiate between rotations and translations. We came to this 

realization in our early pilot tests of our CT assessment items and began seeing systematic 

errors that students were making. By creating and testing new, related items, we   have 
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been able to confirm that children’s spatial thinking plays an important role in these kinds 

of common CT tasks. 

 
Challenge 3: assessing preliterate children 

Given that the target population we are trying to assess is preliterate, our assessment 

protocol needed to be in the form of one-to-one oral administration. This puts it in the  

same style as other established assessments for early childhood (e.g., REMA, Clements       

et al., 2019) in terms of use of manipulatives, interview assessment, and prompts to aid  

task comprehension. There are advantages and drawbacks of this approach, with 

implications  for  scaling  up  administration.  Although  the  assessment  is  intended  as       

a research tool, teachers who may want to administer items would require brief training 

and time for one-on-one interviewing of their students (similar to  how  most  assess-  

ments administered in kindergarten classrooms). We also recognize that children’s 

developing oral and verbal abilities may influence how they interpret  and  respond  to 

items, and we have taken steps such as cognitive interviewing a small subset of children    

to maximize clarity of scripts and prompts. Despite these constraints, we believe inter-   

view style assessment is most appropriate for Kindergarten children, because they are 

preliterate. 

While we tried to make the assessment items accessible to young children, we did 

discover that their different levels of syntactic and semantic knowledge could affect 

performance as well. Arrows, which  are  commonly  used as  individual  code instructions 

for this age group, are not necessarily transparent as a representational convention. 

Moreover, the importance of sequencing codes in a consistent manner, such as individu- 

ally from left to right, and with a one-to-one mapping of a code onto a single increment of 

movement, cannot be taken for granted. To better understand students’ AT,  we revised 

and included items that ask children to read and enact existing programs rather than only 

write a program (specify a sequence of codes). By using items that provide a window into 

students’ AT in terms of reading, enacting, and specifying a sequence of codes, we were 

better able to see what kindergarten students were able to do and which skills they were 

still  developing. 

 
Conclusion 

Assessment design is influenced by its purpose, the context in which it will be used, and 

practical constraints such as resources and time (Pellegrino et al., 2016). In this paper, we 

presented how we are using ECD to develop an assessment of kindergarten-aged chil- 

dren’s CT. In particular, we focused on our early design processes and decisions around 

operationalizing AT for kindergarten-aged students. We shared some of the realizations 

that we have made about AT for this population, such as the role that spatial reasoning 

plays in how AT is currently instantiated with newly developed coding toys and learning 

materials. While we are designing our assessment to be usable in conjunction with        

a broad set of instructional resources, we believe that our operationalizations are useful 

for others who may choose to develop their own assessment instruments for comparable 

populations. Up until now, there has not been a consensus on a guiding framework, 

definition, or set of proxies in which to measure CT in early childhood (e.g., Angeli & 
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Valenides, 2019; Bers et al., 2019; Cittá et al., 2019; Martinez et al., 2015; Snow et al., 2019) 

nor has there been consistent inclusion of spatial reasoning in definitions of CT. 

The process we have described for AT item development is comparable to what we 

have been undertaking with other facets of CT, such as debugging and decomposition 

(see online supplemental material C). Our next steps are to finish refinements on our 

instrument, perform trials with more students, and apply IRT in order so to generate 

evidence that the assessment can effectively fill the niche it is designed to fill. It is our 

hope that as this work progresses, and other groups also pursue important work with this 

age group, that we will soon be in a stronger position for both characterizing and 

measuring the CT of young children. 
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