

1 **Exploiting interbacterial antagonism for microbiome engineering**

2

3 **Authors:** Sung Sun Yim¹, Harris H. Wang^{1,2,*}

4

5 **Affiliations:**

6 ¹Department of Systems Biology, Columbia University, New York, NY, USA.

7 ²Department of Pathology and Cell Biology, Columbia University, New York, NY, USA

8

9 *Correspondence to: hw2429@columbia.edu

10

11

12 **ABSTRACT**

13 Interbacterial antagonism can significantly impact microbiome assembly and stability
14 and can potentially be exploited to modulate microbes and microbial communities in diverse
15 environments, ranging from natural habitats to industrial bioreactors. Here we highlight key
16 mechanisms of interspecies antagonism that rely on direct cell-to-cell contact or diffusion of
17 secreted biomolecules, and discuss recent advances to provide altered function and
18 specificities for microbiome engineering. We further outline the use of ecological design
19 principles based on antagonistic interactions for bottom-up assembly of synthetic microbial
20 communities. Manipulating microbial communities through these negative interactions will be
21 critical for understanding complex microbiome processes and properties and developing new
22 applications of microbiome engineering.

23 **Introduction**

24 Microbial communities are made up of diverse sets of microbes that participate in
25 complex interspecies interactions and metabolic processes. Such interactions may include
26 mutualistic cross-feeding, competitive exclusion, or antagonistic killing, which often determine
27 the population dynamics, stability, and resilience of the community [1]. Recent studies to
28 understand these key ecological principles have improved our understanding of microbial
29 community assembly, dynamics, and functions [2,3]. On the other hand, much remains to be
30 explored as new processes, mechanisms and biological machineries are being discovered [4].
31 On a practical level, targeted modulation of microbial community interaction has the potential
32 to impact numerous emerging microbiome applications spanning medicine, agriculture, and
33 bioproduction [5-7].

34 Bacterial antagonism is one of the most common phenomena observed in microbial
35 communities. Antagonistic interactions enable bacteria to establish their spatial and nutrient
36 niches by directly inhibiting growth of or killing their neighbors. The study of microbial
37 antagonism has led to key breakthroughs in medicine—for instance, the development of
38 antibiotics [8]. With the ever-growing abundance of (meta)genomic data, a diverse set of
39 mechanisms for bacterial antagonism has been discovered [4]. Most major bacterial phyla
40 possess the capacity to carry out such bacterial warfare, with some strains harboring multiple
41 antagonistic systems that produce synergistic efficacy and lethality [9]. While one might posit
42 that the evolutionary arms race for bacteria, weaponized with antagonistic machineries, would
43 significantly destabilize microbial ecosystems, recent studies have shown that such
44 competitive interactions actually strongly promote diversity and stability by promoting spatial
45 structuring [2,10]. In fact, cooperative interactions, while efficient, are often destabilized upon
46 external perturbations, in contrast to antagonistic interactions that lead to more robust
47 populations [2]. As many antagonistic systems have only been recently described, their roles
48 as mediators of microbial ecology and dynamics are underestimated thus far.

49 Here, we outline key mechanisms for interbacterial antagonism and highlight recent
50 studies that have utilized these systems to manipulate microbial communities. Specifically, we
51 discuss several promising contact-dependent (*cis*) and diffusion-based (*trans*) antagonistic
52 systems. Since there is extensive literature detailing various aspects of bacterial antagonism
53 that cannot be comprehensively covered here, we refer the readers to several excellent
54 reviews on the subject for further reading [1,3,4,11-13]. Instead, we focus here on aspects
55 related to the use of such systems for directed microbiome modulation. We will examine recent
56 examples of engineering efforts to apply and enhance these systems to optimize their
57 performance and specificity in complex microbial consortia. Finally, we will consider how these
58 antagonistic systems can be leveraged to assemble synthetic microbial communities and

59 control them to exhibit sophisticated and robust phenotypes for several biotechnological
60 applications.

61

62 **Contact-dependent microbial antagonism**

63 Contact-dependent antagonism is based on the direct transfer of toxic protein effectors
64 or protein-DNA complexes from a donor cell to a target cell. Target cells that lack immunity
65 proteins to protect against the toxins are killed. These local antagonistic interactions are
66 generally mediated by multicomponent protein secretion machineries, including Type IV, V,
67 and VI secretion systems (T4SS, T5SS, and T6SS), while some involve direct exchange of
68 outer membranes between cells (**Figure 1a**) [11,13]. Since contact-dependent antagonism
69 only impacts nearest local neighbors, it predominantly serves to partition spatial niches and
70 interspecies boundaries. We outline several examples of how engineering these *cis*-
71 antagonistic interactions is paving the way for *in situ* modulation of microbial communities.

72 The T5SS is one of the first identified mechanisms of interbacterial antagonism where
73 bacterial growth is regulated by direct cell-to-cell contact, termed contact-dependent growth
74 inhibition (CDI) [14]. T5SSs are found in the outer membrane of gram-negative bacteria and
75 have relatively simple architectures, with some subtypes consisting of only one protein
76 component [15]. T5SS proteins are composed of two distinct functional regions, typically a C-
77 terminal β -barrel domain anchored in the outer membrane and an exposed N-terminal
78 passenger domain that can be cleaved and released extracellularly. The functions of the
79 passenger domain can be highly diverse, including adhesion to target cells or extracellular
80 matrix components, autoaggregation for biofilm formation, and cell-to-cell CDI [15]. CDI by the
81 Type Vb secretion system is based on two-partner secretion (TPS), with subunits CdiB and
82 CdiA. CdiB is a translocator that exports the CdiA toxin effector to the cell surface. CdiA
83 proteins range in size from 180 to 630 kDa, but all share the same general architecture [13].
84 Recent elucidation of the CdiA secretion and toxin delivery mechanism shows that CdiA is
85 exported first into the periplasm through the Sec-dependent secretory pathway, then across
86 the outer membrane through CdiB using an N-terminal TPS transport domain [16]. Upon
87 recognition of its target by its protruding receptor binding domain, CdiA autoproteolytically
88 cleaves its effector domain (CdiA-CT), which is delivered into the target cell. T5SS results in
89 strong inhibition activity against target cells even when cell-cell interactions are transient under
90 planktonic conditions, unlike other contact-dependent antagonistic systems that often require
91 prolonged cell-cell adhesion.

92 Rational engineering of CDI target specificity could be achieved by altering the
93 receptor binding domains (RBD). Ruhe *et al.* identified a RBD in BamA-specific CdiA from *E.*
94 *coli* by generating tagged CdiA fragments and performing a binding assay against purified
95 BamA [17]. Interestingly, BamA-specific and OmpA-specific CdiA proteins shared only ~24%

96 sequence identity for their putative receptor binding regions and swapping the regions altered
97 their specificity accordingly. Beyond modular target specificity, CDI could be loaded with
98 diverse passenger proteins, given that T5SS autotransporter domains have been widely used
99 as potent cell surface display platforms for heterologous proteins in a variety of
100 biotechnological applications [18]. Willett *et al.* demonstrated this potential by showing that
101 CdiA C-terminal toxin domains from different bacterial species are interchangeable and can
102 be redirected through different translocation pathways when fused to N-terminal domains of
103 heterologous CdiA proteins [19].

104 The T6SS is a prevalent *cis*-antagonistic system found in gram-negative bacteria,
105 especially in Proteobacteria and Bacteroidetes, that injects target-specific toxin effectors into
106 neighboring cells [11]. Some bacteria, such as *Pseudomonas aeruginosa*, contain multiple
107 evolutionarily distinct T6SSs [9]. T6SSs can be potent against closely related bacteria as well
108 as those in other genera and kingdoms, including their eukaryotic hosts or fungi that are also
109 a part of the ecosystem [20,21]. Recent studies have revealed the role of T6SSs in not only
110 shaping microbial community composition but also augmenting host's resilience to pathogen
111 colonization in the mammalian gut [22,23]. The canonical T6SS from *E. coli* consists of 13
112 genes (*tssA* through *tssM*) encoding its core structural components, and one gene encoding
113 the PAAR (proline-alanine-alanine-arginine repeat) domain-containing protein on its tip [11].
114 When the T6SS complex sheath-like structure enters a contracted state, the Hcp(TssD)-
115 VgrG(Tssl)-PAAR puncturing complex is able to penetrate and translocate into the target cell
116 to deliver the toxin effector (**Figure 1b**) [20,24]. T6SS toxin effectors have a wide range of
117 antibacterial effects and can be grouped by their targets: cell wall (peptidoglycan amidases,
118 peptidoglycan hydrolases), cell membrane (phospholipases, pore-forming effectors), and
119 cytoplasm (nucleases, NADP⁺ hydrolases, FtsZ inhibitors). There are immunity proteins that
120 can detoxify specific toxin effectors (i.e. effector/immunity pairs) and are generally encoded
121 downstream of the effector loci [11] or sometimes in separate mobile arrays of immunity genes
122 [25].

123 The diversity and modular nature of T6SS systems and its effector/immunity proteins
124 suggests the possibility for engineering. Loading other protein domains (e.g. from β -lactamase)
125 either directly to the puncturing complex or to other effectors that are associated with the
126 complex has been demonstrated for T6SS-based protein delivery into eukaryotic host cells
127 [26,27]. Wettstadt *et al.* also recently showed in *P. aeruginosa* that fusing the C-terminus of a
128 canonical VgrG with other proteins enabled extracellular secretion of the fused protein by
129 T6SS although direct injection into a target bacteria was not demonstrated [28]. While further
130 work will be needed to assess carrying capacity and extend it towards diverse protein
131 substrates, these examples clearly demonstrate the potential of T6SS as a generalizable
132 platform for interbacterial protein delivery. To improve specificity of cell targeting in a mixed

133 population, Ting *et al.* sought to develop “programmed inhibitor cells” (PICs) expressing
134 synthetic protein binders that can interact with bacterial surface antigens on target cells to
135 enhance selective killing (**Figure 1c**) [29]. In this study, camelid-derived single domain
136 antibodies (nanobodies) were displayed on the cell surface of T6SS-active *Enterobacter*
137 *cloacae* to direct the antibacterial activity of the T6SS against *E. coli* cells either in synthetic
138 or natural microbial communities, resulting in specific killing of the target cells at >90%
139 efficiency. While such nanobody cell-surface binders have many desirable characteristics,
140 such as small size, high stability, and strong antigen binding affinity, generation of potent
141 nanobodies against specific novel bacterial strains remains challenging. We expect that
142 ‘reverse genomics’ [30] and continuous directed evolution [31] approaches will be useful to
143 identify surface-exposed target antigens and expedite the discovery and affinity maturation of
144 nanobodies against these antigens. Furthermore, metagenomic mining and characterization
145 of natural binding proteins against diverse microbes, such as phage/prophage receptor
146 binding domains [32,33], could expand the binding repertoire for programmable T6SS
147 antagonism.

148 The T4SS is arguably the most versatile family of protein secretion systems with
149 functionally diverse subtypes depending on both the class of molecules they export and their
150 biological roles, including contact-dependent interbacterial antagonism [11]. T4SSs are found
151 in both gram-negative and gram-positive bacteria as well as in archaea, and can mediate
152 translocation of cargo molecules including monomeric as well as multi-subunit protein toxins
153 and nucleoprotein complexes. The canonical T4SS systems are all encoded by 12 conserved
154 genes, *virB1* through *virB11* and *virD4*. For conjugative DNA transfer to occur, DNA transfer
155 and replication (Dtr) proteins bind to a cognate origin-of-transfer (*oriT*) sequence to form a
156 DNA-protein complex, termed the relaxosome, and process the DNA into a single-stranded
157 DNA substrate (T-strand) [34]. The T-strand further interacts with Type IV coupling protein
158 VirD4 to be transferred through the T4SS channel. Protein effector substrates interact with
159 VirD4 via a positively charged, C-terminal signal sequence that is hydrophilic and has a net
160 positive charge with a consensus motif of R-X(7)-R-X-R-X-R-X(n) [11].

161 The T4SS’s broad target range and unique capability for DNA transfer have enabled
162 its use for genetic manipulation of diverse microbes and microbial communities (**Figure 1d**).
163 In a recent example, Brophy *et al.* demonstrated T4SS-based DNA transfer from an
164 engineered donor *B. subtilis* strain, called XPORT, into diverse gram-positive bacteria isolated
165 from human gut, skin, and soil samples using integrative and conjugative elements (ICE) [35].
166 Among 55 bacterial strains tested, 35 gram-positive bacterial strains spanning 26 species and
167 9 genera yielded mini-ICE transconjugants using XPORT. A 10-kb nitrogen fixation gene
168 cluster could be delivered by the mini-ICE system into four *Bacillus* species. Similarly, our lab
169 developed a technique called “metagenomic alteration of gut microbiome by in situ conjugation”

170 (MAGIC), where mobile plasmids are delivered from a donor *E. coli* probiotic strain to resident
171 microbes in the mammalian gut *in situ* through broad host range RK2/RP4-based T4SS
172 conjugation system [36]. MAGIC could deliver genetic payloads (e.g. a green fluorescent
173 protein or an antibiotic-resistance gene) into over 5% of the diverse murine gut microbiota
174 spanning multiple major bacterial phyla. Beyond these general T4SS gene transfer
175 applications, CRISPR-Cas systems can also serve as programmable effectors when delivered
176 by T4SS to mediate directed antagonism (**Figure 1e**). CRISPR-Cas9, Cas13a, as well as
177 recently characterized CRISPR-transposon systems, could be delivered as vectors encoding
178 Cas genes and associated guide RNAs against specific genomic loci to mediate sequence-
179 specific killing or enrichment of target cells [37-40].

180 Bacterial cells can also interact with each other by direct outer membrane exchange
181 (OME). OME was first identified and most extensively studied in *Myxococcus xanthus* [41].
182 Neighboring cells in the Myxobacterial population transiently fuse their outer membrane using
183 TraA-TraB cell surface proteins. The outer membrane fusion allows diffusion of outer
184 membrane lipids and proteins between cells, homogenizing the cell populations with
185 heterogeneous outer membranes until they get separated again [42]. Interestingly, it was
186 shown that this bacterial social behavior improves the overall fitness of mixed populations of
187 healthy and damaged cells by complementation of cellular damage or mutational defects in
188 the damaged subpopulation. Furthermore, this multicellular cooperation is precisely limited to
189 their kin through polymorphic toxin, SitA, that is transferred during OME and requires a
190 cognate immunity gene, SitI, for neutralization [13]. OME-based interbacterial interaction
191 mechanisms are seemingly widespread given that other bacteria have also been found to
192 exchange their membrane and associated contents between cells either directly [43] or even
193 remotely through outer membrane vesicles (OMVs) or membrane-derived nanotubular
194 structures [44]. The unique capabilities associated with direct modification of outer
195 membranes of target cells and translocation of diverse substrates, including protein, DNA, and
196 metabolites, suggest potential utility of OME mechanisms for modulating microbial
197 communities in manners distinct from protein secretion systems.

198

199 **Diffusion-based microbial antagonism**

200 Fierce interbacterial competition has led to the evolution of long-range warfare systems
201 in bacteria, such as soluble small molecules, peptides, proteins, and even viral particles that
202 can diffuse into surrounding environments and mediate interactions between distant bacterial
203 cells [12]. Diffusion-based antagonistic systems have long been used as antimicrobials in
204 medical therapeutics and the food industry. Beyond traditional antibiotics, peptide- or protein-
205 based diffusible antagonistic systems are poised to become next-generation antimicrobials for
206 microbiome modulation owing to their relatively simple production process, adjustable target

207 spectrum, widespread natural biodiversity, and vast combinatorial sequence space (**Figure**
208 **2a**) [45].

209 Bacteriocins represent a broad and large family of ribosome-synthesized bacterial
210 toxins with bactericidal or bacteriostatic effects, found in all major phyla including archaea [12].
211 Bacteriocins can antagonize target cells at the cell envelope (e.g. pore formation and inhibition
212 of cell wall synthesis) or in the cytoplasm (e.g. inhibition of DNA gyrase and RNA polymerase)
213 [45] and are generally classified into either small peptide and larger protein groups. Peptide
214 bacteriocins either undergo extensive post-translational modifications (class I or lantibiotics
215 from gram-positive bacteria and class I microcins from gram-negative bacteria) or are
216 unmodified (class II from gram-positive bacteria and class II microcins from gram-negative
217 bacteria) [12]. Nisin, produced by *Lactococcus lactis*, is a representative pore-forming class I
218 peptide bacteriocin that effectively inhibits wide range of bacteria. Nisin-like class I
219 bacteriocins range from 21 to 38 amino acids in size and are generated from gene clusters
220 that encode the prepeptide (*nisA*), modification of amino acids (*nisB*, *nisC*), cleavage of leader
221 peptide (*nisP*), secretion (*nisT*), immunity (*nisI*, *nisFEG*), and gene regulation (*nisR*, *nisK*) [46].
222 Unmodified class II bacteriocins, ranging from 30 to 60 amino acids, have relatively simple
223 biosynthesis due to limited post-translational modifications and constitute the largest group of
224 bacteriocins. Class II bacteriocins act on a variety of essential cellular machineries, such as
225 sugar transporters and ribosomal subunits [45]. Colicin, produced by *E. coli*, is a
226 representative group of protein bacteriocins [13]. Colicins are typically encoded on plasmids
227 as a gene cluster that produces the colicin toxin, a cognate immunity protein, and a lysis
228 protein for release of the toxin. Colicins are divided into many different subtypes, but generally
229 composed of three functional domains, an N-terminal domain for translocation through the
230 membrane of the target bacteria, a central receptor binding domain for recognition of specific
231 surface receptors on target bacteria, and a C-terminal domain responsible for the toxic
232 activities such as pore formation or nucleic acid degradation [13].

233 Currently, the throughput to characterize and engineer natural and synthetic
234 bacteriocins is limited because individual bacteriocins need to be assayed in individual wells.
235 Droplet-based miniaturization and parallelization of assay reactions offers a greatly improved
236 and less expensive approach to characterize a large number of bacteriocins simultaneously
237 [47]. Alternatively, the cells themselves could act as such microassay reactors. Tucker *et al.*
238 devised a technique called “surface localized antimicrobial display” (SLAY) where individual
239 antimicrobial peptides are anchored on the surface of bacterial cells, only affecting the viability
240 of the expressing cells [48]. SLAY allowed up to 800,000 peptides to be assayed in a single
241 tube using multiplexed sequencing readouts. The method identified thousands of fully
242 synthetic peptide sequences with antimicrobial activities. Interestingly, in contrast to natural
243 antimicrobial peptides that are dominated by cationic and amphipathic residues, the synthetic

244 peptides covered a wider sequence space with potentially different inhibitory mechanisms.
245 While 20-mer random peptides against *E. coli* were tested in the study, we expect that SLAY
246 and similar approaches could be applied to natural bacteriocins and their variants with cell
247 envelope-associated mechanisms against diverse bacterial species (**Figure 2b**). Furthermore,
248 host genetic determinants of bacteriocin sensitivity could also be systematically investigated
249 using barcoded transposon-insertion mutant libraries [49]. To improve bacteriocin production,
250 which is often very challenging due to their cellular toxicity, Liu *et al.* demonstrated a rapid
251 cell-free framework for reconstructing and screening multi-gene biosynthetic pathways for
252 nisin and its analogs [50]. Such cell-free approaches that decouple cell viability from
253 production provide an alternative and powerful route to synthesize and screen toxins at scale
254 that are otherwise difficult to generate.

255 Long-range interbacterial interactions can also be mediated by prophages integrated
256 in bacterial genomes that are conditionally activated. The wide prevalence of temperate
257 bacteriophages and prophages in nature suggests that lysogenic phages might increase host
258 competitiveness in the ecosystem, despite a fitness burden of prophage carriage [51]. For
259 example, in the two-species microbial community of slow-growing *Curvibacter* sp. and fast-
260 growing *Duganella* sp. that colonize *Hydra vulgaris*, an inducible prophage in the *Curvibacter*
261 sp. that can lytically infect *Duganella* sp. plays a key role in coexistence of the two bacterial
262 species by switching its life cycle between lysogenic and lytic pathways (**Figure 2c**) [52]. In
263 addition, recent studies have shown that dietary compounds, such as sugars, and microbiota-
264 derived short-chain fatty acids can often induce prophages from various bacterial species in
265 a species-selective manner [53,54]. Given that phage genomes can now be extensively
266 engineered with synthetic lytic-lysogenic regulatory circuits [55], modified host ranges (**Figure**
267 **2d**) [56,57], or diverse genetic payloads for any desired functions [38,58], new prophage
268 activation mechanisms could be used as a system for phage-mediated microbial interactions
269 by leveraging lysogenic bacteria as a stable and programmable vehicle for natural or
270 engineered phages to modulate microbial communities.

271

272 **Antagonistic modulation of synthetic microbial communities**

273 Bottom-up approaches have gained recent attention for assembling synthetic
274 communities with defined microbes and their interactions [59]. Beyond their utility as a minimal
275 model system to study the organization and dynamics of complex natural microbiomes,
276 synthetic communities with unique qualities, such as specific divisions of labor or spatial
277 organization, can be useful in a variety of biotechnological applications. Furthermore, synthetic
278 complex communities could be used to replace dysbiotic microbiota in certain applications,
279 such as during pathogen infections in the gut, for safer and more predictable therapeutic
280 outcomes [60]. In practice, however, the utility of such synthetic microbial communities

281 depends heavily upon the robustness, scalability, and programmability of the underlying
282 interbacterial interactions among the members, which require extensive characterization and
283 engineering.

284 Interbacterial antagonistic mechanisms have recently been adopted to address
285 challenges in assembling and modulating robust synthetic microbial communities. In a recent
286 example, Kong *et al.* demonstrated that synthetic communities of *L. lactis* could be
287 programmed with all possible modes of pairwise microbial interactions (i.e., commensalism,
288 amensalism, neutralism, cooperation, competition, and predation) by reconfiguring
289 biosynthetic pathways for bacteriocins [61]. Both signaling and antimicrobial features of nisin
290 were extensively utilized to design and construct these pathways. To create a cooperative
291 two-strain community, the multi-gene nisin biosynthetic pathway was divided into two steps:
292 (i) synthesis and secretion of precursor, and (ii) post-translational modification. Each strain in
293 the community was assigned with a single synthetic step so that they could produce active
294 nisin and survive in tetracycline-supplemented media by nisin-inducible tetracycline resistance
295 only when they cooperate. Quantitative models derived from the two-strain synthetic
296 communities was used to design and build more complex ecosystems with three and four
297 members. In another work, Liao *et al.* showed that cyclical 'rock-paper-scissor' ecology among
298 three bacterial strains can extend the lifetime of genetic integrity and community-wide function
299 of the system [62]. Each strain of the community was designed to produce both a toxin (colicins)
300 that can kill one of the other strains and the corresponding immunity proteins to protect
301 themselves. Serial introduction of a strain that can displace a previously existing strain
302 population prolonged the desired function of the microbial community by removing potential
303 mutants with nonfunctional genetic circuits and effectively resetting the gene pool. While these
304 examples clearly demonstrate the utility of interbacterial antagonism in building robust and
305 functional synthetic microbial communities, further work will be needed to assemble
306 communities at much larger scales for different applications. We expect high-throughput
307 methods that can rapidly resolve microbial interaction mechanisms will accelerate the
308 discovery and characterization of novel antagonistic mechanisms [63,64].

309

310 **Outlook and conclusions**

311 Engineered bacteria with programmable antagonistic capabilities to target and
312 manipulate any specific bacteria at the strain level in complex microbial communities will be
313 an enabling platform for microbiome engineering. Engineered interbacterial antagonistic
314 systems could be used for: (i) killing or growth inhibition, (ii) engraftment or growth activation,
315 (iii) replacement, (iv) spatial structuring, and (v) genetic engineering of bacteria in their native
316 environments. We expect that building upon the previous approaches using protein binders,
317 modular domain swapping or mutagenesis, and programmable sequence-specific nucleases

318 will be key to modulating target specificity of both contact-dependent and diffusion-based
319 antagonistic mechanisms [17,29,33,37-39,57]. Selecting a suitable antagonistic system for
320 specific applications will be needed as spatial scale of interference is a critical parameter that
321 determines organization of microbial ecosystems [65]. For example, interaction scales of
322 contact-dependent antagonistic systems are highly limited compared to those of diffusion-
323 based antagonistic systems due to their requirement for direct cell-to-cell contact. However,
324 the *cis*-antagonistic systems generally exhibit stronger interference within their confined
325 spatial niches as they are less prone to dilution effects that often reduce the efficacy of trans-
326 antagonistic systems. It is also important to consider interbacterial interactions when
327 engineering microbiomes. Recently, Hsu *et al.* showed phages with narrow target spectrum
328 can significantly impact even species that are not directly targeted [66]. Better understanding
329 of the functional mechanisms and ecological roles of antagonistic systems in shaping
330 microbial communities will be needed for further development of programmable cellular and
331 molecular microbiome engineering tools while considering such collateral damages that can
332 be induced from manipulating target bacteria in complex microbial communities. Recent
333 advances in high-throughput DNA synthesis and sequencing technologies as well as
334 massively parallel assays will facilitate the systematic exploration of the vast biodiversity of
335 the antagonistic systems and will provide a foundation for a variety of new powerful tools to
336 modulate diverse natural and synthetic microbial communities.

337

338 **Conflict of interest**

339 H.H.W. is a scientific advisor to SNIPR Biome and Kingdom Supercultures. The authors
340 declare no additional competing interests.

341

342 **Acknowledgements**

343 We thank A. Kaufman and members of the Wang laboratory for advice and comments on the
344 manuscript. H.H.W. acknowledges funding support from the DOE (47879/SCW1710), NSF
345 (MCB-2025515), NIH (1R01AI132403, 1R01DK118044, 1R21AI146817), and the Burroughs
346 Wellcome Fund (1016691). S.S.Y. is grateful for support from Basic Science Research
347 Program through the National Research Foundation of Korea funded by the Ministry of
348 Education (NRF-2017R1A6A3A03003401).

349

350 **REFERENCES AND RECOMMENDED READING**

351 1. Little AE, Robinson CJ, Peterson SB, Raffa KF, Handelsman J: **Rules of engagement:**
352 **interspecies interactions that regulate microbial communities.** *Annu Rev*
353 *Microbiol* 2008, **62**:375-401.

354 2. Coyte KZ, Schluter J, Foster KR: **The ecology of the microbiome: Networks,**
355 **competition, and stability.** *Science* 2015, **350**:663-666.

356 3. Garcia-Bayona L, Comstock LE: **Bacterial antagonism in host-associated microbial**
357 **communities.** *Science* 2018, **361**:eaat2456.

358 4. Peterson SB, Bertolli SK, Mougous JD: **The Central Role of Interbacterial Antagonism**
359 **in Bacterial Life.** *Curr Biol* 2020, **30**:R1203-R1214.

360 5. Inda ME, Broset E, Lu TK, de la Fuente-Nunez C: **Emerging Frontiers in Microbiome**
361 **Engineering.** *Trends Immunol* 2019, **40**:952-973.

362 6. Lawson CE, Harcombe WR, Hatzenpichler R, Lindemann SR, Loffler FE, O'Malley MA,
363 Garcia Martin H, Pfleger BF, Raskin L, Venturelli OS, et al.: **Common principles and**
364 **best practices for engineering microbiomes.** *Nat Rev Microbiol* 2019, **17**:725-741.

365 7. Tshikantwa TS, Ullah MW, He F, Yang G: **Current Trends and Potential Applications of**
366 **Microbial Interactions for Human Welfare.** *Front Microbiol* 2018, **9**:1156.

367 8. Hutchings MI, Truman AW, Wilkinson B: **Antibiotics: past, present and future.** *Curr Opin*
368 *Microbiol* 2019, **51**:72-80.

369 9. LaCourse KD, Peterson SB, Kulasekara HD, Radey MC, Kim J, Mougous JD: **Conditional**
370 **toxicity and synergy drive diversity among antibacterial effectors.** *Nature*
371 *Microbiology* 2018, **3**:440-446.

372 10. Kelsic ED, Zhao J, Vetsigian K, Kishony R: **Counteraction of antibiotic production and**
373 **degradation stabilizes microbial communities.** *Nature* 2015, **521**:516-519.

374 11. Klein TA, Ahmad S, Whitney JC: **Contact-Dependent Interbacterial Antagonism**
375 **Mediated by Protein Secretion Machines.** *Trends Microbiol* 2020, **28**:387-400.

376 12. Riley MA, Wertz JE: **Bacteriocins: evolution, ecology, and application.** *Annu Rev*
377 *Microbiol* 2002, **56**:117-137.

378 13. Ruhe ZC, Low DA, Hayes CS: **Polymorphic Toxins and Their Immunity Proteins:**
379 **Diversity, Evolution, and Mechanisms of Delivery.** *Annu Rev Microbiol* 2020,
380 **74**:497-520.

381 14. Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA: **Contact-dependent**
382 **inhibition of growth in *Escherichia coli*.** *Science* 2005, **309**:1245-1248.

383 15. Meuskens I, Saragliadis A, Leo JC, Linke D: **Type V Secretion Systems: An Overview**
384 **of Passenger Domain Functions.** *Front Microbiol* 2019, **10**:1163.

385 16. Ruhe ZC, Subramanian P, Song K, Nguyen JY, Stevens TA, Low DA, Jensen GJ, Hayes
386 **CS: Programmed Secretion Arrest and Receptor-Triggered Toxin Export during**
387 **Antibacterial Contact-Dependent Growth Inhibition.** *Cell* 2018, **175**:921-933 e914.

388 17. Ruhe ZC, Nguyen JY, Xiong J, Koshiniemi S, Beck CM, Perkins BR, Low DA, Hayes CS:
389 **CdiA Effectors Use Modular Receptor-Binding Domains To Recognize Target**
390 **Bacteria.** *mBio* 2017, **8**:e00290-00217.

391 18. van Ulsen P, Rahman S, Jong WS, Daleke-Schermerhorn MH, Luirink J: **Type V secretion:**
392 **from biogenesis to biotechnology.** *Biochim Biophys Acta* 2014, **1843**:1592-1611.

393 19. Willett JL, Gucinski GC, Fatherree JP, Low DA, Hayes CS: **Contact-dependent growth**
394 **inhibition toxins exploit multiple independent cell-entry pathways.** *Proc Natl Acad*
395 *Sci U S A* 2015, **112**:11341-11346.

396 20. Coulthurst S: **The Type VI secretion system: a versatile bacterial weapon.**
397 *Microbiology (Reading)* 2019, **165**:503-515.

398 21. Trunk K, Peltier J, Liu YC, Dill BD, Walker L, Gow NAR, Stark MJR, Quinn J, Strahl H,
399 **Trost M, et al.: The type VI secretion system deploys antifungal effectors against**
400 **microbial competitors.** *Nat Microbiol* 2018, **3**:920-931.

401 22. Sana TG, Lugo KA, Monack DM: **T6SS: The bacterial "fight club" in the host gut.** *PLoS*
402 *Pathog* 2017, **13**:e1006325.

403 23. Hecht AL, Casterline BW, Earley ZM, Goo YA, Goodlett DR, Bubeck Wardenburg J: **Strain**
404 **competition restricts colonization of an enteric pathogen and prevents colitis.**
405 *EMBO Rep* 2016, **17**:1281-1291.

406 24. Unterweger D, Kostiuk B, Pukatzki S: **Adaptor Proteins of Type VI Secretion System**
407 **Effectors.** *Trends Microbiol* 2017, **25**:8-10.

408 25. Ross BD, Verster AJ, Radey MC, Schmidtke DT, Pope CE, Hoffman LR, Hajjar AM,
409 Peterson SB, Borenstein E, Mougous JD: **Human gut bacteria contain acquired**
410 **interbacterial defence systems.** *Nature* 2019, **575**:224-228.

411 26. Jiang F, Waterfield NR, Yang J, Yang G, Jin Q: **A *Pseudomonas aeruginosa* type VI**
412 **secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.**
413 *Cell Host Microbe* 2014, **15**:600-610.

414 27. Ma AT, McAuley S, Pukatzki S, Mekalanos JJ: **Translocation of a *Vibrio cholerae* type**
415 **VI secretion effector requires bacterial endocytosis by host cells.** *Cell Host*
416 *Microbe* 2009, **5**:234-243.

417 28. Wettstadt S, Filloux A: **Manipulating the type VI secretion system spike to shuttle**
418 **passenger proteins.** *PLoS One* 2020, **15**:e0228941.

419 29. Ting SY, Martinez-Garcia E, Huang S, Bertolli SK, Kelly KA, Cutler KJ, Su ED, Zhi H, Tang
420 Q, Radey MC, et al.: **Targeted Depletion of Bacteria from Mixed Populations by**
421 **Programmable Adhesion with Antagonistic Competitor Cells.** *Cell Host Microbe*
422 2020, **28**:313-321 e316.

423 30. Cross KL, Campbell JH, Balachandran M, Campbell AG, Cooper SJ, Griffen A, Heaton M,
424 Joshi S, Klingeman D, Leys E, et al.: **Targeted isolation and cultivation of**
425 **uncultivated bacteria by reverse genomics.** *Nat Biotechnol* 2019, **37**:1314-1321.

426 31. Wellner A, McMahon C, Gilman MSA, Clements JR, Clark S, Nguyen KM, Ho MH, Shin
427 JE, Feldman J, Hauser BM, et al.: **Rapid generation of potent antibodies by**
428 **autonomous hypermutation in yeast.** *bioRxiv* 2020.

429 32. Mageeney CM, Sinha A, Mosesso RA, Medlin DL, Lau BY, Rokes AB, Lane TW, Branda
430 SS, Williams KP: **Computational Basis for On-Demand Production of Diversified**
431 **Therapeutic Phage Cocktails.** *mSystems* 2020, **5**.

432 33. Ando H, Lemire S, Pires DP, Lu TK: **Engineering Modular Viral Scaffolds for Targeted**
433 **Bacterial Population Editing.** *Cell Syst* 2015, **1**:187-196.

434 34. Alvarez-Martinez CE, Christie PJ: **Biological diversity of prokaryotic type IV secretion**
435 **systems.** *Microbiol Mol Biol Rev* 2009, **73**:775-808.

436 35. Brophy JAN, Triassi AJ, Adams BL, Renberg RL, Stratis-Cullum DN, Grossman AD, Voigt
437 CA: **Engineered integrative and conjugative elements for efficient and inducible**
438 **DNA transfer to undomesticated bacteria.** *Nat Microbiol* 2018, **3**:1043-1053.

439 36. Ronda C, Chen SP, Cabral V, Yaung SJ, Wang HH: **Metagenomic engineering of the**
440 **mammalian gut microbiome in situ.** *Nat Methods* 2019, **16**:167-170.

441 37. Hamilton TA, Pellegrino GM, Therrien JA, Ham DT, Bartlett PC, Karas BJ, Gloor GB,
442 Edgell DR: **Efficient inter-species conjugative transfer of a CRISPR nuclease for**
443 **targeted bacterial killing.** *Nat Commun* 2019, **10**:4544.

444 38. Kiga K, Tan XE, Ibarra-Chavez R, Watanabe S, Aiba Y, Sato'o Y, Li FY, Sasahara T, Cui
445 B, Kawauchi M, et al.: **Development of CRISPR-Cas13a-based antimicrobials**
446 **capable of sequence-specific killing of target bacteria.** *Nat Commun* 2020,
447 **11**:2934.

448 39. Rubin BE, Diamond S, Cress BF, Crits-Christoph A, He C, Xu M, Zhou Z, Smock DC,
449 Tang K, Owens TK, et al.: **Targeted Genome Editing of Bacteria Within Microbial**
450 **Communities.** *bioRxiv* 2020.

451 40. Vo PLH, Ronda C, Klompe SE, Chen EE, Acree C, Wang HH, Sternberg SH: **CRISPR**
452 **RNA-guided integrases for high-efficiency, multiplexed bacterial genome**
453 **engineering.** *Nat Biotechnol* 2020.

454 41. Nudleman E, Wall D, Kaiser D: **Cell-to-cell transfer of bacterial outer membrane**
455 **lipoproteins.** *Science* 2005, **309**:125-127.

456 42. Vassallo C, Pathak DT, Cao P, Zuckerman DM, Hoiczyk E, Wall D: **Cell rejuvenation and**
457 **social behaviors promoted by LPS exchange in myxobacteria.** *Proc Natl Acad Sci*
458 *U S A* 2015, **112**:E2939-2946.

459 43. Zhou X, Rodriguez-Rivera FP, Lim HC, Bell JC, Bernhardt TG, Bertozzi CR, Theriot JA:
460 **Sequential assembly of the septal cell envelope prior to V snapping in**
461 **Corynebacterium glutamicum.** *Nat Chem Biol* 2019, **15**:221-231.

462 44. Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, Bischofs IB, Kost C:
463 **Metabolic cross-feeding via intercellular nanotubes among bacteria.** *Nat*
464 *Commun* 2015, **6**:6238.

465 45. Cotter PD, Ross RP, Hill C: **Bacteriocins - a viable alternative to antibiotics?** *Nat Rev*
466 *Microbiol* 2013, **11**:95-105.

467 46. Cheigh CI, Pyun YR: **Nisin biosynthesis and its properties.** *Biotechnol Lett* 2005,
468 **27**:1641-1648.

469 47. Lei W, Demir K, Overhage J, Grunze M, Schwartz T, Levkin PA: **Droplet-Microarray:**
470 **Miniaturized Platform for High-Throughput Screening of Antimicrobial**
471 **Compounds.** *Adv Biosyst* 2020, **4**:e2000073.

472 48. Tucker AT, Leonard SP, DuBois CD, Knauf GA, Cunningham AL, Wilke CO, Trent MS,
473 Davies BW: **Discovery of Next-Generation Antimicrobials through Bacterial Self-**
474 **Screening of Surface-Displayed Peptide Libraries.** *Cell* 2018, **172**:618-628 e613.

475 49. Carim S, Azadeh AL, Kazakov AE, Price MN, Walian PJ, Chakraborty R, Deutschbauer
476 AM, Mutualik VK, Arkin AP: **Systematic Discovery of Pseudomonad Genetic Factors**
477 **Involved in Sensitivity to Tailocins.** *bioRxiv* 2020.

478 50. Liu R, Zhang Y, Zhai G, Fu S, Xia Y, Hu B, Cai X, Zhang Y, Li Y, Deng Z, et al.: **A Cell-**
479 **Free Platform Based on Nisin Biosynthesis for Discovering Novel**
480 **Lanthipeptides and Guiding their Overproduction In Vivo.** *Adv Sci (Weinh)* 2020,
481 **7**:2001616.

482 51. Kim MS, Bae JW: **Lysogeny is prevalent and widely distributed in the murine gut**
483 **microbiota.** *ISME J* 2018, **12**:1127-1141.

484 52. Li XY, Lachnit T, Fraune S, Bosch TCG, Traulsen A, Sieber M: **Temperate phages as**
485 **self-replicating weapons in bacterial competition.** *J R Soc Interface* 2017, **14**.

486 53. Boling L, Cuevas DA, Grasis JA, Kang HS, Knowles B, Levi K, Maughan H, McNair K,
487 Rojas MI, Sanchez SE, et al.: **Dietary prophage inducers and antimicrobials:**
488 **toward landscaping the human gut microbiome.** *Gut Microbes* 2020, **11**:721-734.

489 54. Oh JH, Alexander LM, Pan M, Schueler KL, Keller MP, Attie AD, Walter J, van Pijkeren
490 JP: **Dietary Fructose and Microbiota-Derived Short-Chain Fatty Acids Promote**
491 **Bacteriophage Production in the Gut Symbiont Lactobacillus reuteri.** *Cell Host*
492 *Microbe* 2019, **25**:273-284 e276.

493 55. Atsumi S, Little JW: **A synthetic phage lambda regulatory circuit.** *Proc Natl Acad Sci U*
494 *S A* 2006, **103**:19045-19050.

495 56. Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MT, de la Fuente-Nunez C, Lu TK:
496 **Engineering Phage Host-Range and Suppressing Bacterial Resistance through**
497 **Phage Tail Fiber Mutagenesis.** *Cell* 2019, **179**:459-469 e459.

498 57. Yosef I, Goren MG, Globus R, Molshanski-Mor S, Qimron U: **Extending the Host Range**
499 **of Bacteriophage Particles for DNA Transduction.** *Mol Cell* 2017, **66**:721-728 e723.

500 58. Lu TK, Collins JJ: **Dispersing biofilms with engineered enzymatic bacteriophage.** *Proc*
501 *Natl Acad Sci U S A* 2007, **104**:11197-11202.

502 59. Rapp KM, Jenkins JP, Betenbaugh MJ: **Partners for life: building microbial consortia**
503 **for the future.** *Curr Opin Biotechnol* 2020, **66**:292-300.

504 60. Xiao Y, Angulo MT, Lao S, Weiss ST, Liu YY: **An ecological framework to understand**
505 **the efficacy of fecal microbiota transplantation.** *Nat Commun* 2020, **11**:3329.

506 61. Kong W, Meldgin DR, Collins JJ, Lu T: **Designing microbial consortia with defined**
507 **social interactions.** *Nat Chem Biol* 2018, **14**:821-829.

508 62. Liao MJ, Din MO, Tsimring L, Hasty J: **Rock-paper-scissors: Engineered population**
509 **dynamics increase genetic stability.** *Science* 2019, **365**:1045-1049.

510 63. Hsu RH, Clark RL, Tan JW, Ahn JC, Gupta S, Romero PA, Venturelli OS: **Microbial**
511 **Interaction Network Inference in Microfluidic Droplets.** *Cell Syst* 2019, **9**:229-242
512 e224.

513 64. Sheth RU, Li M, Jiang W, Sims PA, Leong KW, Wang HH: **Spatial metagenomic**
514 **characterization of microbial biogeography in the gut.** *Nat Biotechnol* 2019,
515 **37**:877-883.

516 65. Celik Ozgen V, Kong W, Blanchard AE, Liu F, Lu T: **Spatial interference scale as a**
517 **determinant of microbial range expansion.** *Sci Adv* 2018, **4**:eaau0695.

518 66. Hsu BB, Gibson TE, Yeliseyev V, Liu Q, Lyon L, Bry L, Silver PA, Gerber GK: **Dynamic**
519 **Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a**
520 **Mouse Model.** *Cell Host Microbe* 2019, **25**:803-814 e805.

521

522 **Special interest (●)**

523 [3] Garcia-Byona L, Comstock LE, *Science* 2018, 361:eaat2456 – This review focuses on
524 bacterial antagonistic interactions in host-associated microbial communities.

525

526 [4] Peterson SB, Bertolli SK, Mougous JD, *Curr Biol* 2020, 30:R1203-R1214 – This review
527 details the diversity and ubiquity of interbacterial antagonistic pathways.

528

529 [6] Lawson et al., *Nat Rev Microbiol* 2019, 17:725-741 – A review of current methods used for
530 engineering microbiomes, including top-down and bottom-up design approaches and
531 emerging tools to analyze microbiome functions.

532

533 [11] Klein TA, Ahmad S, Whitney JC, *Trends Microbiol* 2020, 28:387-400 – A review of contact-
534 dependent antagonistic mechanisms based on protein secretion machineries detailing current
535 knowledge about the secretion mechanisms and effector repertoire used by each system.

536

537 [13] Ruhe ZC, Low DA, Hayes CS, *Annu Rev Microbiol* 2020, 74:497-520 – This review details
538 structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate
539 interbacterial antagonism.

540

541 **Outstanding interest (●●)**

542 [26] Ting et al., *Cell Host Microbe* 2020, 28:313-321 – This study demonstrates modulating
543 target specificity of T6SS activity using cell surface-displayed nanobodies that are specific to
544 surface receptors on target bacteria.

545

546 [36] Rubin et al., *bioRxiv* 2020 – This study demonstrates the use of CRISPR-transposon
547 systems for targeted genome editing of specific bacteria within microbial communities.

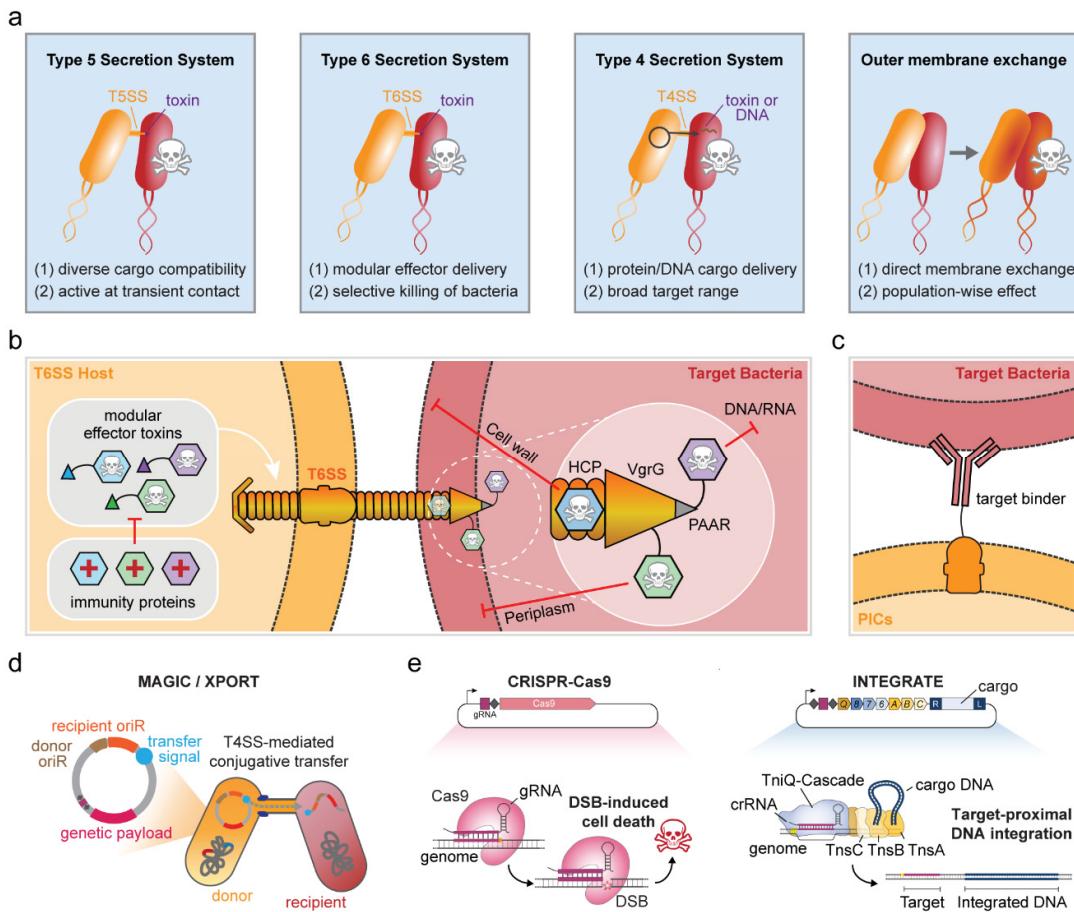
548

549 [45] Tucker et al., *Cell* 2018, 172:618-628 – The authors describe highly multiplexed assay for
550 screening hundreds of thousands of peptides for antimicrobial activity.

551

552 [46] Carim et al., *bioRxiv* 2020 – This study demonstrates high-throughput screening of host
553 genetic factors involved in sensitivity to bacteriocins.

554

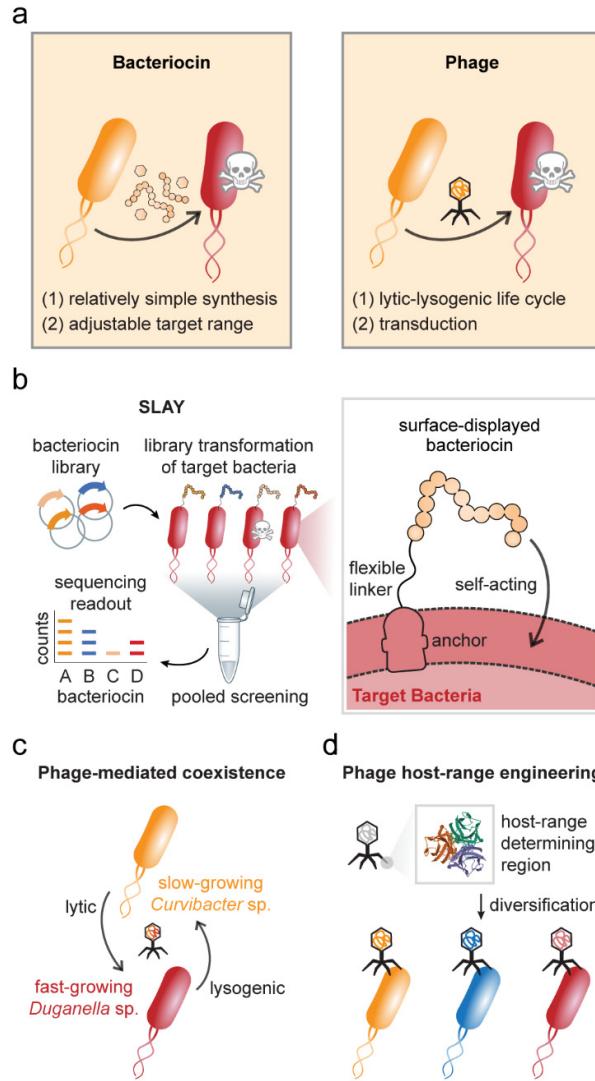

555 [47] Liu et al., *Adv Sci* 2020, 7:2001616 – The authors show the development of a cell-free
556 platform to synthesize and screen nisin and its analogs.

557

558 [53] Yehl et al., *Cell* 2019, 179:459-469 – This study describes structure-informed engineering
559 of tail fiber domains to alter host range of phages.

560

561 [59] Liao et al., *Science* 2019, 365:1045-1049 – The authors demonstrate three-strain
562 microbial ecosystem where each strain could kill or be killed by one of the other two strains
563 for prolonged stability of genetic circuit functionality.



564

565

566 **Figure 1. Representative contact-dependent interbacterial antagonistic systems and**
 567 **their applications. (a)** Schematic diagram of the systems and their key features. **(b)** Modular
 568 effector delivery mechanisms of T6SS. **(c)** Target specificity of T6SS can be modified by
 569 introducing binding protein specific to target bacteria. **(d)** T4SS-based conjugative gene
 570 transfer has been applied to engineering of diverse microbes in their native environments. **(e)**
 571 CRISPR-based systems can be delivered as genetic payloads for sequence-specific
 572 manipulation of microbial communities.

573

574

575

576 **Figure 2. Representative diffusion-based interbacterial antagonistic systems and their**
 577 **applications. (a)** Schematic diagram of the systems and their key features. **(b)** SLAY method
 578 could be applied to high-throughput characterization of natural and synthetic bacteriocins
 579 against diverse bacteria. **(c)** Coexistence of slow-growing *Curvibacter* sp. and fast-growing
 580 *Duganella* sp. are mediated by an inducible prophage in *Curvibacter* sp. that can lytically infect
 581 *Duganella* sp.; **(d)** Phage host-range can be modulated by diversification of tail fiber proteins.