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Abstract

Reinforcement learning (RL) models have advanced our understanding of how animals learn and
make decisions, and how the brain supports learning. However, the neural computations that are
explained by RL algorithms fall short of explaining many sophisticated aspects of human
learning and decision making, including the generalization of behavior to novel contexts, one-
shot learning, and the synthesis of task information in complex environments. Instead, these
aspects of behavior are assumed to be supported by the brain’s executive functions (EF). We
review recent findings that highlight the importance of EF in instrumental learning. Specifically,
we advance the theory that EF sets the stage for canonical RL computations in the brain,
providing inputs that broaden their flexibility and applicability. Our theory has important
implications for how to interpret RL computations in both brain and behavior.

Introduction

Our ability to learn rewarding actions lies at the core of goal-directed decision-making. Reward-
driven choice processes have been extensively modeled using reinforcement learning (RL)
algorithms [1]. This formalized account of learning and decision making has contributed
significantly to expanding the frontiers of artificial intelligence research [2], our understanding
of clinical pathologies [3, 4], and research on developmental changes in learning [5, 6].

A key reason for the success of the RL framework is its ability to capture learning not only at the
behavioral level, but also at the neural level. The neural foundations of reward-dependent
learning [7], and its various successors [8], have established a well-defined brain network that
performs key RL computations. In particular, cortico-striatal loops enable state-dependent value-
based choice [9]. Furthermore, dopaminergic signaling of reward-prediction errors (RPEs) in the
midbrain and striatum induces neural plasticity consistent with RL algorithms, incrementally
increasing/decreasing the value of actions that yield better/worse than expected outcomes.

Despite its tremendous success, there are well known limitations of canonical RL algorithms
[10]. Historically, many insights provided by RL research have been demonstrated in relatively
simplistic learning tasks, casting doubt on how useful classic RL models are in explaining how



humans learn and make choices in everyday life. To solve this problem, recent research often
augments RL algorithms with learning and memory mechanisms from other cognitive systems.

Executive functions (EF) have been identified as a key set of psychological faculties that appear
to interact with RL computations. For instance, working memory (WM), as a short-term cache
which allows us to retain and manipulate task-relevant information over brief periods [11, 12,
13], occupies a central position in our ability to organize goal-directed behavior. A related core
EF, attention, also contributes to behavioral efficiency through selective processing of subsets of
environmental features relevant for learning [14, 15, 16]. Research on WM and attention points
to the prefrontal cortex (PFC) as the primary site of these processes [17, 18], suggesting that this
network shapes information processing in the RL system during learning.

Several straightforward experimental manipulations have revealed that an isolated RL system
fails to effectively capture human instrumental learning behavior. For example, while online
maintenance of representations in WM is capacity-limited [19], standard RL models have no
explicit capacity constraints. This property of RL suggests that if individuals rely on RL alone,
learning should not be affected by the number of rewarding stimulus-response associations they
are required to learn in a given task. However, humans learn much less efficiently when the
number of associations to be learned in parallel exceeds WM capacity [ 20, 6, 21], suggesting
that RL operates side by side with working memory during learning. Other work has similarly
shown that EF-dependent planning contributes to choice alongside core RL computations
implemented in the brain [22, 23].

However, there is also evidence that EF does not only contribute as a distinct learning system
operating independently of the brain’s RL network: Additionally, EF may interact with RL by
directly contributing to RL computations in the brain. Models of PFC-striatal loops [24, 25],
which posit that brain regions associated with EF and RL interact directly, has inspired
behavioral experiments and computational models aimed at identifying EF-RL interactions [20,
21, 14, 5]. The advent of these modeling tools has shown that an interaction of multiple
neurocognitive domains (e.g., RL, WM, attention) may provide a more robust account of goal-
directed behavior, one that still maintains the centrality of canonical RL computations in
instrumental learning [26, 27].

In this paper, we review recent work that provides converging evidence for direct, functionally
coherent contributions of EF to RL computations. More specifically, we review how EF (WM
and attention in particular) might set the stage for RL computations in the brain by defining the
relevant state space, action space, and reward function (Figure 1). The ideas reviewed here can
help inform future computational modeling efforts and experimental designs in the study of goal-
directed behavior. Furthermore, it may shift our interpretations of past and future findings
focused on isolated RL computations towards a broader framework that also considers EF
contributions.



The ingredients of RL computations

Past work suggests that a specific brain network (primarily cortico-striatal loops) supports RL
computations, such as temporal difference learning [28, 29] and actor-critic learning [30, 31].
These learning algorithms update estimates of values via reward prediction errors (RPEs). In
machine learning, such algorithms are defined not only by how they estimate value, but also by
(at least) three fundamental components: 1) the state space (reflecting the possible states s or
contexts an agent may be in), 2) the action space (reflecting the possible choices a to be made in
a given state), and 3) the reward function R(s,a)(signaling reinforcing outcomes). The
specification of these variables can dramatically impact the behavior of a decision-making agent,
but how these three variables are supplied to the brain’s RL network is poorly understood.
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Figure 1. Schematic of EF contributions (WM, attention) to the brain’s RL computations. EF
can optimize RL computations in the domain of 3 relevant RL-components: state space, reward
functions, and action space. Q(s,a) reflects the estimated value of a state and action. RPE is the
reward prediction error used to update Q(s,a). Additional RL-independent contributions of EF to

learning are not shown.

State space

The RL framework defines a state space over which learning occurs. A state can be a location in
the environment, a sensory feature of the environment (e.g., the presence of a stimulus, such as a
light), or a more abstract, internally represented context (such as a point in time). At each state, a
decision-making agent enacts a choice in pursuit of rewards [1]. The specification of the state
space significantly impacts the behavior of artificial RL agents. For example, in a large state
space, RL performance is limited by what is known as the curse of dimensionality [1,10]:
Learning a vast number of state-action values quickly becomes computationally intractable.
Defining a smaller state space limited to only task-relevant states is one path toward overcoming
this challenge.
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several dimensions (e.g. color, shape), with only one dimension predicting reward, an optimized
learning agent would 1) identify that dimension, and 2) specify it as the relevant state space for
RL. That way, an agent can avoid computing values over a larger state space containing all
possible features [35]. Computationally, this can be achieved by implementing Bayesian
inference to discover relevant task features that RL operates over [14]. In addition to attention
affording the reduction of task complexity, attentional mechanisms serve another purpose: Many
tasks share overlapping/competing state spaces, leading to potential interference in correct action
selection (e.g., the Stroop Task). Here again, defining a low-dimensional representation that can
be applied to multiple tasks in the service of goal attainment makes learning simultaneously
more flexible and more robust [36].

Importantly, the relevant state space is not always signaled by explicit sensory cues. Thus, an
agent often has to make an inference about their current state [37]. Recent work in animals
suggests that RL computations in the striatum are likely performed over these latent belief states
[38, 39]. For example, markedly different dopamine dynamics are observed if an expected
reward is sure to arrive (e.g., 100% chance) versus almost sure to arrive (e.g., 90% chance) [40].
In this example, an inference about the latent state, which indicates the probability that a reward
will arrive or not, dramatically alters RL computations. It is hypothesized that RL computations
over these belief states may be mediated by input from frontal cortices involved in the discovery



and representation of state spaces (e.g., orbitofrontal cortex), further supporting a link between
EF and RL [41].

Action space

Above we reviewed a role for EFs, such as working memory and attention, in attending to and
carving out the appropriate state space for RL. A complementary idea is that EF also plays a role
in specifying (or simplifying) the action space for the RL system (Figure 3). The action space in
the RL formalism is defined as the set of choices an agent can make. The choice can take the
form of a simple motor action (e.g., a key press), a complex movement (e.g., walking to the
door), or an abstract choice not defined by specific motor actions (e.g., choosing soup vs. salad).
Defining the relevant action space is arguably as essential for learning as defining the relevant
state space.

Recent studies indicate that the action space is a separable dimension for RL. First, behavioral
evidence suggests that reward outcomes can simultaneously be assigned to task-relevant choices
in addition to task-irrelevant motor actions (i.e., reinforcing a right-finger button press regardless
of the stimulus that was present) [42]. Moreover, this process appears to be negatively related to
the use of goal-directed planning strategies, suggesting that EF enables RL to focus in on the
task-relevant action space. Similarly, recent modeling work suggests that a stateless form of
action values — that is, action values computed independently of any specific context — can exert
an influence on both choices and reaction times [43], particularly when cognitive load is high.
One hypothetical consequence of independently learning over the action dimension is that when
executive functions are disrupted or taxed, and thus cannot properly conjoin states and actions,
action values may be learned in a vacuum. Speculatively, this could lead to actions being
performed perseveratively even when they are maladaptive in certain states, which could be
further linked to pathological forms of habitual behavior, such as addiction [44].

Because actions link predicted choice values with observed outcomes, one natural question
beyond the selection of actions is how the RL system differentiates choice errors (e.g., which is
the best object?) from choice execution errors (e.g., did I grasp the desired object?). In RL tasks
that require reaching movements, behavioral data and fMRI responses in the striatum suggest
that perceived action errors influence RPEs. That is, if the credit for a negative outcome is
assigned to the motor system, the RL system appears to eschew updating the value of the choice
that was made [45, 46]. These results suggest that simple cognitive inferences about the cause of
errors (e.g., choice errors versus action execution errors) are incorporated into RL computations.
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Figure 3. Contribution of executive functions in action
selection.

In more complex situations with a
large action space, EF can aid the
learning process by attempting to
reduce the size of this space. That
is, the brain can create “task-sets”,
or selective groupings of state-
action associations and use
contextual cues to retrieve the
appropriate task set. To illustrate,
if one learns the motor commands
for copying text on both a PC and
a Mac, to avoid interference it is
beneficial to associate the specific
motor sequences (ctrl-c versus
command-c) with their respective
contexts (typing on a PC keyboard

versus a Mac keyboard). Indeed, humans appear to cluster subsets of actions with associated
sensory contexts during instrumental learning [47, 48], and they do so in a manner which
suggests that high-level inferences about task structure shape low-level reinforcement learning
computations over actions. Moreover, such behaviors echo the important role of affordances
[49], which describe the link between specific environmental states and the actions they afford.

This concept has recently been proposed as a novel method for making RL more efficient in

complex state-spaces [50].

Selecting a task-set can itself be seen as a choice made in an abstract, high-level context.
Learning to make this abstract choice may also involve RL, such that RL computations occur
over two different state-action spaces in parallel — an abstract context and task-set space, and a
more concrete stimulus-action space [51, 52]. There is recent computational, behavioral, and
neural evidence that stacked hierarchies of RL computations happen in parallel over more and
more abstract types of states and choices, facilitating complex learning abilities [53, 54, 51].

Such learning may be supported by hierarchies of representations in prefrontal cortex [55, 56].
This again highlights a role for EF in setting the stage for RL computations to solve complex

learning problems.

Rewards & expectations

Goal-directed behavior is dependent on making correct predictions about the outcome of our
choices. RPEs, which serve as a teaching signal, occupy a central position in the RL framework,

linking midbrain dopaminergic activity with RL computations [7]. Most RL research since has
focused on simple forms of learning from outcomes that act as primary or secondary rewards,
such as food, money, or numeric points in a game. However, the path to an RPE is not always so



straightforward: For instance, recent work departs from the role of dopaminergic signaling in
standard RPEs based on scalar rewards, extending the domain of RL to learning from indirect
experiences (e.g., secondary conditioning) and more abstract learning of associations based on
sensory features [57, 58]. These findings suggest that RL value computations integrate
information beyond primary and secondary rewards. There is early evidence that EF could be
implicated in signaling what information is treated as a reinforcer by the brain’s RL network.

One such example relates to the value of information. Humans are motivated to reduce
uncertainty about their environment [59]. Thus, acquisition of novel information should in itself
function as reinforcement. Most information-seeking mechanisms, however, are not accounted
for in the traditional RL framework. By contrast, recent work has shown that uncertainty
reduction and information gain are indeed reflected in neural RL computations [60]. Evidence
from fMRI studies suggests that corticostriatal circuits incorporate the utility of information in
reward computations, such that information is conceptualized as a reward that reinforces choices
[61], even when it is not valenced [59]. The prefrontal cortex also appears to track information
and uncertainty [40], which can be held in working memory to influence decision making [62]
(Figure 4).

The theoretical framework of hierarchical RL also dissociates the role of exploiting information
about the environment from the role of primary/secondary rewards, while emphasizing that both
act as a teaching signal [63]. In particular, when learning a multi-step policy that ultimately leads
to a rewarding goal, agents identify and use subgoals en route to terminal rewards. In the
hierarchical RL framework, reaching these subgoals generates pseudo-rewards, and appears to
drive activity in canonical reward-processing regions in the brain, even though these rewards are
1) not inherently rewarding, and 2) are clearly distinguished from terminal rewards [64, 65]. The
processing of pseudo-rewards is additionally assumed to be driven by the prefrontal cortex,
suggesting a link to EF [66].
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. . . . expectations of reward that are learned
mechanisms involved in reward learning suggests )
that the RPE, are primarily driven by the primary faster than in the RL system, and thus
and/or secondary reinforcement. More recent work weaken RPEs [21, 20]. Similar results
posits that RPEs are also influenced by the are observed in planning tasks, where
an EF-dependent planned expectation
of reward modulates the classic representation of RPEs in the striatum [22]. Taken together,
these results demonstrate a key role for EF in defining the reward function for the RL system,
and in contributing to the value estimation process.

Conclusions & discussion

We have reviewed and summarized computational, behavioral and neural evidence which
collectively suggest that (1) executive function shapes reinforcement learning computations in
the brain, and (2) neural and cognitive models of this interaction provide useful accounts of goal-
directed behavior. We discussed the EF-RL interaction vis-a-vis the specification of the state
space, action space, and reward function that RL operates over.

This new framework has important implications for applying both neural and cognitive
computational models to study individual differences in learning. Although it is tempting to
study individual differences with simple RL models, it is essential that we carefully consider the
role of alternative neurocognitive systems in learning. Evidence of individual learning
differences captured by an RL model might not reflect differences in the brain’s RL process, but
rather in upstream EF that shapes RL. Indeed, recent work on development [5, 34], schizophrenia
[68], and addiction [69, 3] has shown that individual variability in learning might be driven by



both EF and RL, and/or the interaction of the two. Thus, building improved models of the
interplay between different neurocognitive systems should help us better understand individual
differences across the lifespan and in clinical disorders. This expansion of the RL theoretical
framework can deepen our understanding of how learning is supported in the brain and inform
future interventions and treatments.
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