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Abstract Network-based models of epidemic spread have become increasingly
popular in recent decades. Despite a rich foundation of such models, few low-
dimensional systems for modeling SIS-type diseases have been proposed that
manage to capture the complex dynamics induced by the network structure.
We analyze one recently introduced model and derive important epidemiolog-
ical quantities for the system. We derive the epidemic threshold and analyze
the bifurcation that occurs, and we use asymptotic techniques to derive an
approximation for the endemic equilibrium when it exists. We consider the
sensitivity of this approximation to network parameters, and the implications
for disease control measures are found to be in line with the results of existing
studies.

Keywords SIS epidemic · Pairwise Model · Epidemic Threshold · Endemic
Equilbrium

1 Introduction

In the past few decades, network-based models of epidemic spread have become
a central topic (Kiss et al, 2017; Pastor-Satorras et al, 2015) in epidemiology.
Their ability to capture mathematically the complex structure of transmission
interactions makes them an invaluable theoretical paradigm. Mathematically,
a network is modeled as a graph consisting of a set of nodes that are connected
by a set of links (called edges). In the context of epidemiology, typically nodes
represent individuals, and edges represent interactions that can transmit the
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infection. Used in conjunction with compartment models, the disease natural
history determines the number of possible states an individual node might be
in at any point in time. When disease spread is modeled as a continuous time
Markov chain, the network size and disease natural history can lead to high
dimensional state spaces. For example, in a network with N nodes where in-
dividual nodes can be in m possible states, the size of the state space for the
network is mN . Efforts to describe this process with a system of ordinary dif-
ferential equations are similarly hampered by size—the Kolmogorov equations
governing this system are exact, but prohibitively large. Thus, an important
goal in network-based modeling has been to find (relatively) low-dimensional
system that accurately approximates the underlying high-dimensional system.

Many approaches (Pastor-Satorras and Vespignani, 2001; Pastor-Satorras
et al, 2015; Miller et al, 2012; Barnard et al, 2019; Karrer and Newman, 2010)
in recent years have sought to introduce models with systems of a manageable
size. Pairwise models (Keeling, 1999; Eames and Keeling, 2002; House and
Keeling, 2011) have been a popular and fruitful approach to this question. De-
rived from the Kolmogorov equations and exact in their unclosed form (Taylor
et al, 2012), pairwise models consider the evolution of not just the expected
number of nodes in a given state, but also pairs and triples of nodes. The dy-
namical variables are of the form [A] (the expected number of nodes in state
A), [AB] (the expected number of pairs in state A− B), and [ABC] (the ex-
pected number of triples in state A−B−C). Higher-order groupings of nodes
are also considered but rarely written, as dimension-reduction efforts often
focus on approximating the expected number of triples in terms of pairs and
individuals nodes. Pairwise models have been successful with a variety of dif-
ferent network types, with models developed for networks with heterogeneous
degree (Eames and Keeling, 2002), weighted networks (Rattana et al, 2013),
directed networks (Sharkey et al, 2006), and networks with motifs (House et al,
2009; Keeling et al, 2016) to name a few. Moreover, pairwise models have been
developed for a variety of disease natural histories, with particular focus on
SIR (susceptible-infected-recovered) and SIS (susceptible-infected-susceptible)
models.

In this paper, we consider an SIS pairwise model for networks with hetero-
geneous degree. SIS dynamics are used to model diseases where no long term
immunity is conferred upon recovery, leading to their frequent application to
sexually transmitted infections such as chlamydia or gonorrhea (Eames and
Keeling, 2002). Contact networks for diseases of this type frequently involve
heterogeneity in the number of contacts for individuals, and thus node degree
becomes an essential concept. The degree of a node in a network is the num-
ber of edges to which the node is connected, and thus the number of potential
infectious contacts. In this way, heterogeneous networks can capture complex
disease dynamics. An essential tool when working with such networks is the
degree distribution, defined by pk which is the probability a randomly selected
node has degree k. The degree distribution has played an important role in
dimension reduction approximations for pairwise models.
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For the SIR-type diseases, accurate low-dimensional models have been de-
rived from the pairwise family using probability generating functions (Miller
et al, 2012), complete with conditions for finding the final size of the epidemic.
Despite the successes of the SIR case, the dimension reduction techniques in
Miller et al (2012) do not apply to the SIS case. Instead, the development
of low-dimensional models of SIS-type disease spread on networks have relied
on moment closure approximations. Under the assumption of a heterogeneous
network with no clustering, House and Keeling (2011) introduced an approxi-
mation reducing the system size from O(N2) to O(N), where N is the num-
ber of nodes in the network. Termed the compact pairwise model (CPW), it
has shown good agreement with stochastic simulations despite its consider-
ably smaller size. However, the number of model equations still grows as the
maximum degree of the network, making its application challenging for large
networks with significant degree heterogeneity. Perhaps the most successful
model in reducing the number of equations of the CPW for SIS-type diseases
is the super compact pairwise model (SCPW) (Simon and Kiss, 2016). The
system consists of only four equations, with network structure being encoded
to the model through the first three moments of the degree distribution. While
Simon and Kiss demonstrated excellent agreement between the CPW and the
SCPW, bifurcation analysis of the model and an explicit formula for the en-
demic steady state remain to be done.

This paper sets out on that analysis of the SCPW model. A common point
of investigation among models of SIS-type diseases is the disease-free equilib-
rium (DFE) that loses stability as a relevant parameter passes a critical value
known as the epidemic threshold (Pastor-Satorras and Vespignani, 2001, 2002;
Boguñá and Pastor-Satorras, 2002). The epidemic threshold serves as a divid-
ing point between two qualitatively different types of outbreaks. Below the
epidemic threshold, any outbreak will die out; above the epidemic threshold,
the system converges asymptotically to a stable equilibrium where the disease
remains endemic in the population. Many studies follow the “next generation
matrix” approach for the basic reproduction number R0 (van den Driessche
and Watmough, 2002) to characterize the epidemic threshold. We follow a more
conventional bifurcation analysis to derive the epidemic threshold and offer a
proof that the system undergoes a transcritical bifurcation, as one might ex-
pect. Perhaps more importantly, the SCPW’s small fixed number of equations
presents an excellent opportunity to investigate the endemic equilibrium for
SIS models on heterogeneous networks, which has been heretofore inhibited by
large system size. We present a novel asymptotic approach to approximating
the endemic equilibrium, leveraging the low-dimensionality of the model. The
results presented further our understanding of the SCPW model specifically,
and suggest potential new avenues in the challenging problem of analytically
determining the nontrivial steady state of pairwise models of SIS-type diseases.

The paper is structured as follows: in Section 2, we nondimensionalize the
model and reduce the number of equations to 3 to facilitate computations. In
Section 3, we derive the epidemic threshold and show that the system under-
goes a forward transcritical bifurcation. In Section 4, we tackle the endemic
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steady state that emerges through the bifurcation. We use asymptotic methods
to approximate the size of the endemic steady state under two regimes—the
system near the epidemic threshold and the system far away from the epi-
demic threshold—and give examples of the efficacy of these approximations
on prototypical networks. Finally, we examine the implications of these two ap-
proximations. In line with existing studies (Eames and Keeling, 2002), we find
that control measures for reducing the prevalence at the endemic equilibrium
may require different tactics depending on the regime.

2 Model

The essential characteristic of pairwise models of SIS epidemics is dynamical
equations for not just the expected number of nodes in each state, but also pairs
and triples of nodes. At the node level, [S] and [I] are the expected number
of susceptible and infectious nodes respectively. At the pair level, [SI] is the
expected number of connected pairs of susceptible and infectious nodes, while
[SS] and [II] are the expected numbers of connected susceptible-susceptible
and infectious-infectious pairs respectively. The full pairwise model further
requires equations for the expected number of triples ([SSI] and [ISI]) and
higher motifs as well:

˙[S] = γ[I]− τ [SI],

˙[I] = τ [SI]− γ[I],

˙[SI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]),

˙[SS] = 2γ[SI]− 2τ [SSI],

˙[II] = −2γ[II] + 2τ([ISI] + [SI]).

The CPW closes the system by approximating the expected number of triples
as

[ASI] ≈ [AS][SI]
S2 − S1

S2
1

,

where S1 and S2 are the first and second moments of the distribution of
susceptible nodes; that is

S1 =
∑
k

k[Sk] = [SS] + [SI], S2 =
∑
k

k2[Sk],

where [Sk] is the expected number of susceptible nodes with degree k. Un-
fortunately S2 cannot be expressed exactly in terms of [S], [I], [SI], [SS], and
[II] only, so the SCPW model offers an approximation that depends on these
variables and moments of the degree distribution.
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The SCPW model derived in Simon and Kiss (2016) is given as

˙[S] = γ[I]− τ [SI], (1)

˙[I] = τ [SI]− γ[I] (2)

˙[SI] = γ([II]− [SI])− τ [SI] + τ [SI]([SS]− [SI])Q, (3)

˙[SS] = 2γ[SI]− 2τ [SI][SS]Q, (4)

˙[II] = −2γ[II] + 2τ [SI] + 2τ [SI]2Q, (5)

where

Q =
1

nS [S]

(
〈k2〉(〈k2〉 − 〈k〉nS) + 〈k3〉(nS − 〈k〉)

nS(〈k2〉 − 〈k〉2)
− 1

)
, nS =

[SI] + [SS]

[S]
,

〈kn〉 is the nth moment of the degree distribution, τ is the transmission rate,
and γ is the recovery rate. Here, the quantity Q serves as an approximation of
(S2−S1)/S2

1 . As well, the quantities [S], [I], [SI], [SS], [II] satisfy conservation
equations

[S] + [I] = N, (6)

2[SI] + [SS] + [II] = 〈k〉N. (7)

With the goal of performing bifurcation and asymptotic analyses in mind,
nondimensionalizing the SCPW model is a natural first step. To do so, we will
rearrange the equations (3)-(5) so that the network parameters 〈k〉, 〈k2〉, 〈k3〉
are consolidated into more workable constants. First, we rewrite Q as

Q =
α[S]

([SI] + [SS])2
+

β

[SI] + [SS]
, (8)

where

α =
〈k2〉2 − 〈k〉〈k3〉
〈k2〉 − 〈k〉2

, β =
〈k3〉 − 〈k2〉〈k〉
〈k2〉 − 〈k〉2

− 1. (9)

A natural nondimensionalization of this system is to scale the number of nodes
and links in each state to the proportion of nodes and pairs in each state:
v = [S]/N,w = [I]/N, x = [SI]/(〈k〉N), y = [SS]/(〈k〉N), z = [II]/(〈k〉N). As
well, a natural rescaling of time is T = t/γ, which prompts the defining of the
transmission-recovery rate ratio δ = τ/γ. The introduction of δ consolidates
the two epidemiological parameters τ and γ into a single nondimensional pa-
rameter, so any changes to epidemiology of the disease will be captured in δ
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alone. With these substitutions, the system (1)-(5) becomes

v̇ = w − 〈k〉δx, (10)

ẇ = 〈k〉δx− w, (11)

ẋ = z − (δ + 1)x+
αδ

〈k〉
· vx(y − x)

(x+ y)2
+ βδ · x(y − x)

x+ y
, (12)

ẏ = 2x− 2αδ

〈k〉
· vxy

(x+ y)2
− 2βδ · xy

x+ y
, (13)

ż = −2z + 2δx+
2αδ

〈k〉
· vx2

(x+ y)2
+ 2βδ · x2

x+ y
, (14)

where the dot notation represents the derivative with respect to the nondi-
mensional time variable d

dT . The conservation equations (6) and (7) become

v + w = 1, (15)

2x+ y + z = 1, (16)

respectively.
At this point, the conservation equations can be used to reduce the sys-

tem to a mere 3 equations. However, the elimination of different equations for
different analyses will be convenient. For characterizing the bifurcation un-
dergone by the disease-free equilibrium (DFE), it is convenient to work with
variables that are 0 at the DFE. For approximating the endemic steady state
using asymptotic methods, the most parsimonious equations will make the al-
gebraic manipulation required easier. Thus, we will work with slightly different
(but equivalent) characterizations of (10)-(14) in the sections that follow.

3 Epidemic Threshold

To derive the epidemic threshold, we consider the stability of the DFE in
terms of the epidemiological parameter δ. We will show that as δ increases
through a critical value δc, the DFE loses stability. Typically as the DFE loses
stability, an asymptotically stable endemic equilibrium emerges. The SCPW is
no exception, and here we derive the epidemic threshold, with a proof that the
system undergoes a transcritical bifurcation (and thus an endemic equilibrium
emerges) when δ = δc included in Appendix A.

First, we use the conservation equations (15) and (16) to eliminate equa-
tions (10) and (13). The resulting system is

ẇ = 〈k〉δx− w, (17)

ẋ = z − (δ + 1)x+
αδ

〈k〉
· (1− w)x(1− 3x− z)

(1− x− z)2
+ βδ · x(1− 3x− z)

1− x− z
, (18)

ż = −2z + 2δx+
2αδ

〈k〉
· (1− w)x2

(1− x− z)2
+ 2βδ · x2

1− x− z
. (19)
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Though ostensibly a messier choice of equation reduction, we note that at the
DFE, [I] = [SI] = [II] = 0, so w = x = z = 0. The notation

ẋ =

ẇẋ
ż

 =

F1(w, x, z)
F2(w, x, z)
F3(w, x, z)

 = F(x) (20)

will be convenient moving forward. To determine the stability of the DFE, we
compute the Jacobian at x = ~0 :

DF =


−1 〈k〉δ 0

0

(
α

〈k〉
+ β

)
δ − (δ + 1) 1

0 2δ −2

 . (21)

A straightforward computation shows that

α

〈k〉
+ β =

〈k2〉 − 〈k〉
〈k〉

= k̄. (22)

We can write DF as a block triangular matrix as

DF =

[
−1 A
0 B

]
,

where the dimensions A and B respectively are 1×2 and 2×2. The properties
of determinants of block matrices tell us that the eigenvalues of DF are −1
and the eigenvalues of B, which will determine the stability of the DFE.

We appeal here to the trace-determinant theorem, which tells us the eigen-
values ξ of the 2× 2 matrix B are given by

ξ =
Tr(B)

2
±
√

(Tr(B))2 − 4 Det(B)

2
.

First, we observe that these eigenvalues are real, as

Tr(B)2 − 4 Det(B) = (δ(k̄ − 1) + 1)2 + 8δ, (23)

which is clearly positive. As a consequence, for the DFE to be stable we must
have Tr(B) < 0 and Det(B) > 0. The determinant can be written

Det(B) = 2(1− δk̄), (24)

and is thus positive if and only if δ < 1/k̄. Moreover, if δ < 1/k̄, then

Tr(B) < (k̄ − 1)/k̄ − 3 = −2− 1/k̄ < 0.

Therefore, we conclude that the DFE is stable for δ < 1/k̄ and unstable for
δ > 1/k̄. Thus, the epidemic threshold is the critical value of the bifurcation
parameter δ :

δc =
〈k〉

〈k2〉 − 〈k〉
. (25)
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Notably, this threshold value is identical to that of the CPW as shown in Kiss
et al (2017). However it remains to be shown that a bifurcation actually does
occur here, and that a asymptotically stable endemic steady state emerges.
To prove this, we apply a theorem of Castillo-Chavez and Song (2004) in
Appendix A.

4 The Endemic Equilibrium

With existence of an endemic steady state established, we turn to the question
of finding an approximate analytic expression for it. In general, this is a dif-
ficult proposition with epidemic models on networks owing to the frequently
high-dimensional nature of the dynamical systems. An exact closed-form ex-
pression for the endemic equilibrium of the SCPW model requires solving a
system of polynomial equations in multiple variables, which we do not attempt
here. However, with asymptotic techniques, a workable approximation can be
derived for two cases of δ: near the epidemic threshold (δ ≈ δc), and far away
from it (δ >> δc). Two challenges are apparent. First, how to eliminate equa-
tions to facilitate asymptotic expansions of the equilibrium and second, the
choice of small nondimensional parameter be in each case.

Unlike in Section 3, the most parsimonious characterization of (10)-(14)
is desirable. So we eliminate (11) and (14) with the conservation equations.
To promote the finding of a small nondimensional parameter, we rewrite the
resulting system using δ = δc · δδc and incorporate the constants σ = 〈k〉δc, λ =
αδc/〈k〉, µ = βδc. With these alterations, the system becomes

v̇ = 1− v − σ δ
δc
x, (26)

ẋ = 1− y −
(

3 + δc
δ

δc

)
x+ λ

δ

δc

vx(y − x)

(x+ y)2
+ µ

δ

δc

x(y − x)

x+ y
, (27)

ẏ = 2x− 2λ
δ

δc

vxy

(x+ y)2
− 2µ

δ

δc

xy

x+ y
. (28)

At the endemic equilibrium, v̇ = ẋ = ẏ = 0. We can solve (26) for v and
substitute into (27) and (28). With some rearrangement of terms (and adding
(28) to (27)) we arrive at the system of polynomial equations that determines
the endemic steady state:

0 =

(
δc
δ

)2

(1− y − 2x)(x+ y)2 +
δc
δ

(
δcx(x+ y)2 + λx2 + µx(x+ y)

)
+ λσx3 = P (x, y), (29)

0 =

(
δc
δ

)2

(x+ y)2 − δc
δ

(λy + µy(x+ y)) + λσxy = Q(x, y). (30)

For the endemic steady state, we are interested in knowing the prevalence
when the system is at equilibrium: w∗. We use the following procedure to
approximate the solution.
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1. Express δc/δ in terms of a small parameter.
2. Use the Implicit Function Theorem to linearize P (x, y) = 0 as

y ≈ ỹ − Px(x̃, ỹ)

Py(x̃, ỹ)
(x− x̃)

around a point (x̃, ỹ) that is mathematically and/or biologically justified
for the given regime.

3. Expand x, y, and other relevant quantities in terms of the small parameter.
4. Substitute the expansions into Q(x, y) = 0 and obtain a regular perturba-

tion problem and find an asymptotic solution for the equilibrium value x,
which approximates x∗.

5. Apply the relation w∗ = (δc/δ)
−1σx∗ to obtain an asymptotic series for

the prevalence at the endemic equilibrium.

We describe the results of this procedure for each case in the remainder of this
section–the details of the computations are included in Appendix B.

4.1 Case 1: Near the epidemic threshold (δ ≈ δc)

For δ ≈ δc, we choose η = 1−δc/δ as a small parameter. In terms of this small
parameter, (29) and (30) become:

0 = (1− η)2(1− y − 2x)(x+ y)2

− (1− η)
(
δcx(x+ y)2 + λx2 + µx2(x+ y)

)
+ λσx3, (31)

0 = (1− η)2(x+ y)2 − (1− η) (λy + µy(x+ y)) + λσxy. (32)

When δ ≈ δc, an endemic steady state has just emerged, so we can view
this equilibrium as a small perturbation to the steady state x = 0, y = 1.
Linearizing P (x, y) = 0 about this point gives

y ≈ 1−
(

2 +
δc

1− η

)
x. (33)

Expanding

2 +
δc

1− η
= 2 + δc(1 + η + η2 +O(η3)), (34)

x∗ = x0 + x1η + x2η
2 +O(η3), (35)

we have

y ≈ (1− (2 + δc)x0)− (δcx0 + (2 + δc)x1)η

− (δcx0 + (2 + δc)x2 + δcx1)η2 +O(η3). (36)

Substituting into (32) and equating coefficients to 0, we find an η-order ex-
pansion of the approximate equilibrium value x∗ as

x∗ ≈ 1

λσ + µδc + µ− δc
η +O(η2). (37)
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Fig. 1: Bifurcation diagrams for the δ ≈ δc case
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(a) Exact and approximate endemic equilibrium prevalence for a bi-
modal network with 5000 degree 3 nodes and 5000 degree 5 nodes.
Moments of the degree distribution are 〈k〉 = 4, 〈k2〉 = 17, 〈k3〉 = 76.
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(b) Exact and approximate endemic equilibrium prevalence for a
configuration-model network with a Poisson degree distribution with
〈k〉 = 10. Higher moments of the degree distribution are 〈k2〉 ≈
110, 〈k3〉 ≈ 1309.

Using the relation w∗ = σ
1−ηx

∗ = σx∗ +O(η), we have

w∗ ≈ σ

λσ + µδc + µ− δc
η +O(η2). (38)

To demonstrate the efficacy of this approximation, we compare the approxi-
mation (38) to the actual endemic equilibrium using bifurcation diagrams (Fig.
1). We consider two example configuration model random networks (Molloy
and Reed, 1995) with N = 10, 000. In Fig. 1a, a bimodal network is considered
with 5000 degree 3 nodes and 5000 degree 5 nodes. In Fig. 1b, a network with
a Poisson degree distribution (with average degree 〈k〉 = 10) is considered. As
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is clear in both examples, the agreement between the actual and approximate
endemic equilibrium is quite good near the epidemic threshold.

4.2 Case 2: Far away from the epidemic threshold (δ >> δc)

For δ >> δc, our small parameter of choice is ε = δc/δ. We can rewrite (29)
and (30) in terms of this parameter:

0 = ε2(1− y − 2x)(x+ y)2

− ε
(
δcx(x+ y)2 + λx2 + µx2(x+ y)

)
+ λσx3, (39)

0 = ε2(x+ y)2 − ε (λy + µy(x+ y)) + λσxy. (40)

When δ >> δc, the transmission rate τ is large relative to the recovery rate γ.
Thus, we expect the disease to affect much of the population, and consequently
there will be very few remaining [SS] links, and therefore y ≈ 0.

Solving P (φ, 0) = 0 for φ yields

φ(ε) =
ε2 − λε

2ε2 + (δc + µ)ε− λσ
, (41)

and slope of the linearization is then

ψ(ε) = −Px(φ, 0)

Py(φ, 0)
= − (ε− λ)(2ε2 + (δc + µ)ε− λσ)

ε(ε2 − (µ+ 5λ)ε− λ(2δc + µ− 2σ))
, (42)

so
y ≈ ψ(x− φ). (43)

Next, we seek to expand y in terms of ε only. The relevant expansions for φ, ψ,
and x are:

φ(ε) =
1

σ
ε+

δc + µ− σ
λσ2

ε2 +O(ε3), (44)

ψ(ε) =
λσ

2δc + µ− 2σ
ε−1 − 2δ2c + 3δcµ+ σ(5λ+ 2σ) + µ2

(2δc + µ− 2σ)2
+O(ε), (45)

x(ε) = x0 + x1ε+ x2ε
2 +O(ε2). (46)

To ease the writing of coefficients, we let φα and ψα refer to the coefficients
on εα for the respective series. From this, it follows that

y ≈ (ψ−1x0)ε−1 + (ψ−1x1 + ψ0x0 − ψ−1φ1)

+ (ψ−1x2 + ψ1x0 + ψ0x1 − ψ−1φ2 − ψ0φ1)ε+O(ε2). (47)

Substituting into (40), and equating the coefficients to 0, we find that we need
the coefficients up to order ε4 in order to find a ε2 order expansion of the
approximate equilibrium value of x∗. The result is

x∗ ≈ 1

σ
ε+

δc + µ− σ
λσ2

ε2 +O(ε3). (48)
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Fig. 2: Bifurcation diagrams for the δ >> δc case
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(a) Exact and approximate endemic equilibrium prevalence for a bi-
modal network with 5000 degree 3 nodes and 5000 degree 5 nodes.
Moments of the degree distribution are 〈k〉 = 4, 〈k2〉 = 17, 〈k3〉 = 76.
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(b) Exact and approximate endemic equilibrium prevalence for a
configuration-model network with a Poisson degree distribution with
〈k〉 = 10. Higher moments of the degree distribution are 〈k2〉 ≈
110, 〈k3〉 ≈ 1309.

Finally, as w∗ = σε−1x∗, we arrive at an ε−order approximation for size of
the endemic steady state as

w∗ ≈ 1 +
δc + µ− σ

λσ
ε+O(ε2). (49)

As with the δ ≈ δc case, we compare the approximation (49) to the actual
endemic equilibrium on the same networks as previously described. Again, the
agreement is quite good, even for relatively small values of δ.
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Table 1: Partial Derivatives for δ ≈ δc

∂w∗

∂〈k〉

∣∣∣∣
δ=δc

= −
〈k2〉

〈k〉 − 2〈k2〉+ 〈k3〉

∂w∗

∂〈k2〉

∣∣∣∣
δ=δc

=
〈k〉

〈k〉 − 2〈k2〉+ 〈k3〉

∂w∗

∂〈k3〉

∣∣∣∣
δ=δc

= 0

4.3 Sensitivity Analysis

With any model of infectious disease, its implications in preventing or miti-
gating spread should be considered. For network models, some pharmaceutical
and non-pharmaceutical interventions can alter the contact network structure
in the effort to contain or mitigate outbreaks (Salathé and Jones, 2010). For an
SIS-type disease, particularly when containment is impossible, one such goal
may be to decrease the size of the endemic equilibrium. To that end, we exam-
ine the sensitivity of our approximations of w∗ to network parameters in the
SCPW model. One benefit of explicit asymptotic expressions for the endemic
equilibrium is that sensitivity analyses are straightforward to implement.

For a fixed δ, we have a three-dimensional parameter space. To visualize
these parameter combinations, we use two-dimensional heat maps taken at
slices of the third network parameter. In this case, we have decided to look at
several fixed values of 〈k3〉, and draw sensitivity heat maps in the variables
(〈k〉, 〈k2〉). Further complicating matters is the fact that moments of a dis-
tribution are subject to many inequalities which restrict the domain of the
sensitivity heat maps. Two natural restrictions to include are the results of
Jensen’s Inequality and the Cauchy-Schwarz Inequality respectively:

〈k2〉 ≥ 〈k〉2,
〈k2〉2 ≤ 〈k3〉〈k〉.

For a fixed value of 〈k3〉, these restrictions give a wedge-shaped feasible region
of (〈k〉, 〈k2〉). We plot the sensitivities for 〈k3〉 = 20, 100, and 400 to display a
range of possible parameter combinations.

In the δ ≈ δc case, calculating the partial derivatives is straightforward. To
compute the sensitivities, we evaluate the partial derivatives at the epidemic
threshold: δ = δc. Table 1 shows the expressions for these sensitivities, and
Fig. 3 shows corresponding plots. Clearly ∂w∗

∂〈k〉 ≤ 0 and ∂w∗

∂〈k〉 ≥ 0, with more

extreme values near the upper-right corner of the feasible region.
For the δ >> δc case, the partial derivatives (Table 2) all depend on a factor

of 1/δ, so the choice of δ for computing sensitivities does not affect the relative
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Fig. 3: Sensitivities for the δ ≈ δc approximation

1 2 3 4 5 6 7
⟨k⟩

10

20

30

40

⟨k
⟩ ⟩

⟨k3⟩ = 20

1 2 3 4 5 6 7
⟨k⟩

10

20

30

40

⟨k
⟩ ⟩

⟨k3⟩ = 100

1 2 3 4 5 6 7
⟨k⟩

10

20

30

40

⟨k
⟩ ⟩

⟨k3⟩ = 400

−0.10

−0.05

0.00

0.05

0.10

(a) ∂w∗

∂〈k〉

1 2 3 4 5 6 7
⟨k⟩

10

20

30

40

⟨k
⟩ ⟩

⟨k3⟩ = 20

1 2 3 4 5 6 7
⟨k⟩

10

20

30

40

⟨k
⟩ ⟩

⟨k3⟩ = 100

1 2 3 4 5 6 7
⟨k⟩

10

20

30

40
⟨k

⟩ ⟩

⟨k3⟩ = 400

−0.10

−0.05

0.00

0.05

0.10

(b) ∂w∗

∂〈k2〉

Table 2: Partial Derivatives for δ >> δc

∂w∗

∂〈k〉
=

〈k3〉2 + 3〈k〉2〈k2〉2 − 2(〈k〉3〈k3〉+ 〈k2〉3)

(〈k2〉2 − 〈k3〉〈k〉)2
1

δ

∂w∗

∂〈k2〉
= −

2(〈k〉2 − 〈k2〉)(〈k〉〈k2〉 − 〈k3〉)
(〈k2〉2 − 〈k3〉〈k〉)2

1

δ

∂w∗

∂〈k3〉
=

(〈k〉2 − 〈k2〉)2

(〈k2〉2 − 〈k3〉〈k〉)2
1

δ

magnitudes of the partial derivatives. For convenience, we select δ = 1.5. The
sensitivity plots in Fig. 4 show that ∂w∗

∂〈k〉 ≥ 0, ∂w
∗

∂〈k2〉 ≤ 0, and ∂w∗

∂〈k3〉 ≥ 0,

with the greatest sensitivity near the curve 〈k2〉2 = 〈k3〉〈k〉, though the large
magnitude appears to be due to the partial derivatives being undefined there.

A significant observation from these sensitivities is that ∂w∗

∂〈k〉 and ∂w∗

∂〈k2〉
change signs depending on the regime considered. If the goal on an intervention
is to reduce the size of the endemic equilibrium, near the epidemic threshold,
this can be accomplished in principle by increasing 〈k〉 or decreasing 〈k2〉,
which will in effect increase δc as well. This is intuitive, as an effort to push
the system below the epidemic threshold would also decrease the endemic
equilibrium for a fixed δ. However, in the δ >> δc regime, the system is far
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Fig. 4: Sensitivities for the δ >> δc approximation
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from the epidemic threshold, and reducing the size of the endemic equilibrium
can be accomplished by decreasing 〈k〉 or increasing 〈k2〉. This suggests that
containment and mitigation strategies that depend on altering the structure
of the contact network may require different goals in terms of the moments of
the degree distribution.

5 Conclusion

In this paper, we have analyzed the super compact pairwise model presented
in Simon and Kiss (2016). A non-dimensional version of the model was consid-
ered, and a bifurcation analysis was performed demonstrating that the SCPW
and CPW models share an epidemic threshold. Moreover, we derived approx-
imate formulas for the endemic equilibrium in two regimes: when the trans-
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mission/recovery ratio is near the epidemic threshold, and far away from it.
While the asymptotic techniques used here are ad hoc, similar techniques may
prove fruitful in other low-dimensional models of infectious disease spread on
networks. However, an exact expression for the endemic equilibrium remains
elusive.

Before explaining the advantages of our approach, we acknowledge two
limitations of our approximation. First, approximations of the endemic equi-
librium for diseases between the two regimes is lacking. Second, while the
examples of simulated networks show good agreement between the exact and
approximate prevalence, we have not quantified the approximation error gen-
erally. As such, there may be types of networks for which our approximation
of the endemic equilibrium is less accurate or inappropriate.

Our approximation of the endemic equilibrium is very useful in providing
a more detailed look into the interactions of the moments of the degree dis-
tribution as they relate to the size of an outbreak. This has implication for
disease control measures, particularly those that work by altering the contact
network structure. Our results suggest that for SIS-type diseases, strategies to
contain (near the epidemic threshold) or mitigate (far away from the epidemic
threshold) an outbreak may require different goals. In the mitigation scenario
where the prevalence is high, measures might be employed that decrease the
first moment 〈k〉 of the degree distribution. In effect, this may mean initiatives
aimed at reducing the number of contacts of individuals alone. On the other
hand, in the containment scenario where the prevalence is low, decreasing
the second moment 〈k2〉 may be efficient. When couched in degree distribu-
tion terms this goal is hard to conceptualize, but using probability generation
functions (Newman et al, 2001) one can show that 〈k2〉 is the average number
of first and second neighbors of nodes in the network. Thus, measures that
reduce both the contacts of individuals and their partners are effective in this
scenario. This suggests the importance of contact tracing.

Our results complement the findings of Eames and Keeling (2002), who ob-
served that the effectiveness of two common control measures, screening and
contact tracing, depend on the prevalence at the endemic equilibrium. Screen-
ing, which targets and treats individuals, is efficient when the prevalence is
high. Contact tracing, which targets and treats individuals and their partners,
if efficient when the prevalence is low. Unlike this paper, Eames and Keeling
implement these measures through epidemiological parameters (rather than
through changing network structure). In this way, our results can be viewed
as a network-structure analog for their conclusions and confirm that control
measures appropriate in a network setting can be found. Further work in this
area may include investigating this phenomenon with alternative models of
SIS diseases on networks.
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Appendix A Bifurcation and Endemic Steady State

We begin with Theorem 4.1 from Castillo-Chavez and Song (2004), referring
to the specific conditions that will be relevant for this analysis. Consider a
system of ODEs with a parameter φ :

dx

dt
= F(x, φ), F : Rn × R→ Rn and F ∈ C2(Rn × R). (A.1)

Assume that 0 is an equilibrium for all values of φ. Assume further that

Dxf(0, 0) =
(
∂Fi

∂xj
(0, 0)

)
is the linearization matrix of (A.1) around the equi-

librium 0 and with φ = 0, and zero is a simple eigenvalue of this matrix with all
other eigenvalues having negative real parts. Assume as well that this matrix
has a nonnnegative right eigenvector w and left eigenvector v corresponding
to the zero eigenvalue. Let Fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2Fk
∂xi∂xj

(0, 0), (A.2)

b =
n∑

k,i=1

vkwi
∂2Fk
∂xi∂φ

(0, 0). (A.3)

If a < 0 and b > 0, then when φ changes from negative to positive, 0 changes
its stability from stable to unstable. Correspondingly, a negative unstable equi-
librium becomes positive and locally asymptotically stable.

We apply this theorem to (17) − (19), where the equilibrium occurs at
w = x = z = 0. Moreover, we define a bifurcation parameter φ = δ − δc,
so φ = 0 corresponds to δ = δc, and ∂

∂φ = ∂
∂δ . For consistency with previ-

ously established notation, we will treat δ as our parameter, with φ increas-
ing through 0 as δ increases through δc. The Jacobian given in (21) when
w = 0, x = 0, z = 0, and δ = δc is

J =

−1 〈k〉δc 0
0 −δc 1
0 2δc −2

 . (A.4)

and the characteristic polynomial is given by

0 = ξ(ξ + 1)(ξ − (−2− δc)). (A.5)

The left and right eigenvectors (v and w respectively) corresponding to the
eigenvalue ξ = 0 are

v =
[
0 2 1

]
,w =

[
〈k〉 δ−1c 1

]T
. (A.6)

To compute a and b, it is convenient to express (A.2) and (A.3) in matrix-
vector form:

a = wT (2H2 +H3)w, (A.7)

b = v
∂J

∂δ
(0, δc)w, (A.8)
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where H2 and H3 are the Hessians of F2 and F3 respectively at ~0. These
Hessians are

H2 =


0 −αδc

〈k〉
0

−αδc
〈k〉
−2− 2βδc

αδc
〈k〉

0
αδc
〈k〉

0

 , H3 =

0 0 0
0 4 0
0 0 0

 . (A.9)

Thus,

a =
[
〈k〉 δ−1c 1

]


0 −2αδc
〈k〉

0

−2αδc
〈k〉

−4βδc
2αδc
〈k〉

0
2αδc
〈k〉

0


〈k〉δ−1c

1



=
[
〈k〉 δ−1c 1

]


− 2α

〈k〉
−2αδc − 4β +

2αδc
〈k〉

2α

〈k〉


= −2α− 2α− 4β/δc + 2

α

〈k〉
+ 2

α

〈k〉

= −4

(
α

(
1

〈k〉
+ 1

)
+ β

(
〈k2〉
〈k〉

+ 1

))
= −4

(
〈k3〉
〈k〉
− 1

)
. (A.10)

As 〈k3〉 > 〈k〉, it follows that a < 0.
The computation for b is simpler. We note that

∂J

∂δ
(0, δc) =

0 〈k〉 0
0 δ−1c − 1 0
0 2 0

 . (A.11)

Thus

b =
[
0 2 1

] 0 〈k〉 0
0 δ−1c − 1 0
0 2 0

〈k〉δ−1c
1


=
[
0 2 1

] 0 〈k〉δ−1c 0
0 δ−1c (δ−1c − 1) 0
0 2δ−1c 0


= 2δ−1c (δ−1c − 1) + 2δ−1c = 2δ−2c > 0. (A.12)
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Finally, as a < 0 and b > 0, we conclude that as δ increases through δc,
a positive, asymptotically stable equilibrium emerges, which is the endemic
equilibrium.

Appendix B Asymptotic Approximations of the Endemic
Equilibrium

The full derivations of the approximations (38) and (49) are presented in this
appendix.

B.1 Near the epidemic threshold (δ ≈ δc)

We begin with (31) and (32) and seek the linear approximation of P (x, y) = 0
at (0, 1). We compute

∂P

∂x
= 2(1− η)2

(
(1− y − 2x)(x+ y)− (x+ y)2

)
− (1− η) (δc(x+ y)(3x+ y) + 2λx+ µx(3x+ 2y)) + 3λσx2, (B.1)

∂P

∂y
= (1− η)

(
−2δcx(x+ y)− µx2 + (1− η)(x+ y)(2− 5x− 3y)

)
. (B.2)

The slope of the linear approximation is then

−∂P/∂x
∂P/∂y

∣∣∣∣
(0,1)

= −−2(1− η)2 − δc(1− η)

−(1− η)2
= −2− δc

1− η
, (B.3)

and thus we approximate

y ≈ 1 +

(
−2− δc

1− η

)
x. (B.4)

We now expand x as x = x0 + x1η + . . . and δc
1−η = δc(1 + η + η2 + . . . )

as a geometric series. Incorporating these with (B.4), we get the approximate
expansion of y as

y ≈ 1−
(
2 + δc(1 + η + η2 + . . . )

)
(x0 + x1η + x2η

2 . . . )

= 1− (2 + δc)x0 − (δcx0 + (2 + δc)x1)η

− (δcx0 + δcx1 + (2 + δc)x2)η2 + . . . (B.5)

For easier bookkeeping, define yα to be the coefficient of ηα in (B.5). As well,
the following expansions will prove useful:

x2 = x20 + 2x0x1η + (x21 + 2x0x2)η2 + . . . , (B.6)

y2 = y20 + 2y0y1η + (y21 + 2y0y2)η2 + . . . , (B.7)

xy = x0y0 + (x0y1 + x1y0)η + (x0y2 + x1y1 + x2y0)η2 + . . . (B.8)
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Now, we apply (B.5)-(B.8) to (32) yielding

0 = (1− 2η + η2)
(
x20 + 2x0y0 + y20 + 2(x0x1 + x0y1 + x1y0 + y0y1)η + . . .

)
− (1− η) (λy0 + µy0(x0 + y0) + (λy1 + µ(x0y1 + x1y0 + 2y0y1))η + . . . )

+ λσ (x0y0 + (x0y1 + x1y0)η + . . . ) . (B.9)

Equating the O(1) terms to zero, we have

0 = x20 + 2x0y0 + y20 − λy0 − µy0(x0 + y0) + λσx0y0

= (1− (1 + δc)x0)2 − λ(1− (2 + δc)x0)

− µ(1− (2 + δc)x0)(1− (1− δc)x0)

+ λσx0(1− (2 + δc)x0)

= 1− 2(1 + δc)x0 + x20 − λ+ λ(2 + δc)x0 − µ(1− (3 + 2δc)x0)

− µ(1 + δc)(2 + δc)x
2
0 + λσx0 − λσ(2 + δc)x

2
0

= (1− λ− µ) + (λσ + λ(2 + δc) + µ(3 + 2δc)− 2(1 + δc))x0

+ (1− µ(1 + δc)(2 + δc)− λσ(2 + δc))x
2
0

= x0 [λσ + λ(2 + δc) + µ(3 + 2δc)− 2(1 + δc)

+ (1− µ(1 + δc)(2 + δc)− λσ(2 + δc))x0] . (B.10)

where we avail ourselves of (22) for the last equality. For the solution were
interested, we have x0 = 0 and y0 = 1.

We rewrite (B.9) as

0 = (1− 2η + η2) (1 + (x1 + 2y1)η + . . . )

− (1− η) (λ+ µ+ (λy1 + µ(x1 + 2y1))η + . . . )

+ λσ (x1η + . . . ) . (B.11)

Equating the coefficients of the O(η) terms to zero gives

0 = −2 + 2x1 + 2y1 + (λ+ µ)− (λy1 + µ(x1 + 2y1)) + λσx1

= −2 + 2x1 − 2(2 + δc)x1 + 1 + λ(2 + δc)x1

− µ(x1 − 2(2 + δc)x1) + λσx1

= −1 + x1 (2− 2(2 + δc) + λ(2 + δc)− µ(1− 2(2 + δc)) + λσ)

= −1 + x1 (λσ + µδc + µ− δc) . (B.12)

Thus,

x1 =
1

λσ + µδc + µ− δc
. (B.13)

Now that we have a first order approximation of x, we obtain an first order
approximation of the endemic equilibrium:

w∗ =
σ

1− η
x∗

= σ(1 + η + η2 + . . . )(x0 + x1η + . . . )

= σx1η +O(η2). (B.14)
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and thus
w∗ ≈ σ

λσ + µδc + µ− δc
η +O(η2). (B.15)

B.2 Far away from the epidemic threshold (δ >> δc)

We begin with (39) and (40) and seek the linear approximation of P (x, y) = 0
at (φ, 0) where φ is given by (41). We compute

∂P

∂x
= −2ε2(x+ y)(3x+ 2y − 1)

− ε
(
δc(3x

2 + 4xy + y2) + 2λx+ µx(3x+ 2y)
)

+ 2λσx2, (B.16)

∂P

∂y
= ε

(
−2δcx(x+ y)− µx2 − ε(x+ y)(5x+ 3y − 2)

)
. (B.17)

The slope of the linear approximation is then

−∂P/∂x
∂P/∂y

∣∣∣∣
(φ,0)

=
−2ε2φ(3φ− 1)− 3εδcφ

2 + 3λφ+ 3µφ2 + 2λσφ2

ε (−2δcφ2 − µφ2 − εφ(5φ− 2))

=
−(ε2 − ελ)φ

φ(−εφ(2δc + µ)− ε2(5φ− 2))

=
−(ε− λ)(2ε2 + ε(δc + µ)− λσ)

ε (ε2 − ε(µ+ 5λ) + 2λσ − λ(2δc + µ))
= ψ(ε). (B.18)

Thus, the linear approximation at (φ, 0) is

y ≈ ψ(x− φ). (B.19)

We now expand ψ and φ in powers of ε :

ψ(ε) = ψ−1ε
−1 + ψ0 +O(ε)

=
λσ

2δc + µ− 2σ
ε−1 − 2δ2c + 3δcµ+ σ(5λ+ 2σ) + µ2

(2δc + µ− 2σ)2
+O(ε), (B.20)

φ(ε) = φ1ε+ φ2ε+O(ε3)

=
1

σ
ε+

δc + µ− σ
λσ2

ε2 +O(ε3). (B.21)

Now, we expand x as well and reorganize to express y as a power series in ε :

y ≈
(
ψ−1ε

−1 + ψ0 + . . .
) ((

x0 + x1ε1 + x2ε
2 + . . .

)
−
(
φ1ε+ φ2ε

2 + . . .
))

= ψ−1x0ε
−1 + (ψ−1x1 + ψ0x0 − ψ−1φ1)

+ (ψ−1x2 + ψ0x1 + ψ1x0 − (ψ−1φ2 + ψ0φ1)) ε+O(ε2). (B.22)
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For easier bookkeeping, we define yα to be the coefficient of εα in (B.22).
Again, the following expansions will prove useful:

x2 = x20 + 2x0x1ε+ (x21 + 2x0x2)ε2 + . . . , (B.23)

y2 = y−1ε
−2 + 2y−1y0ε

−1 + (y20 + 2y−1y1) + . . . , (B.24)

xy = x0y−1ε
−1 + (x0y0 + x1y−1) + (x0y1 + x1y0 + x2y−1)ε+ . . . . (B.25)

We now apply (B.22)-(B.25) to (40) and multiply by ε, yielding

0 = ε3
(
y2−1ε

−2 + (2y−1y0 + 2x0y−1)ε−1

+
(
x20 + x0y0 + x1y−1 + y20 + 2y−1y1

)
+2 (x0x1 + x0y1 + x1y0 + x2y−1 + y−1y2 + y0y1) ε+ . . . )

− ε2
(
µy2−1ε

−2 + (λy−1 + µ(x0y−1 + 2y−1y0))ε−1

+ λy0 + µ(x0y0 + x1y−1 + y20 + 2y−1y1)

+ (λy1 + µ (x0y1 + x1y0 + x2y−1 + 2y−1y2 + 2y0y1))ε

+(λy2 + µ
(
x0y2 + x1y1 + x2y0 + x3y−1 + y21 + 2y−1y3 + 2y0y2

)
)ε2

+ . . . )

+ ελσ
(
x0y−1ε

−1 + (x0y0 + x1y−1) + (x0y1 + x1y0 + x2y−1)ε

+ (x0y2 + x1y1 + x2y0 + x3y−1)ε2

+ (x0y3 + x1y2 + x2y1 + x3y0 + x4y−1)ε3 . . .
)
. (B.26)

Equating the O(1) terms to zero, we have

0 = λσx0y−1 − µy2−1 = x20(λσψ−1 − µψ2
−1), (B.27)

and thus x0 = y−1 = 0. Equating the O(ε) terms to zero, we have

0 = y2−1 + λy−1 + µ(x0y−1 + 2y−1y0) + λσ(x0y0 + x1y−1), (B.28)

which is seen to be trivially satisfied as a result of (B.27). Therefore, we look
to the O(ε2) terms to determine x1. Equating those coefficients to zero leads
to

0 = 2y−1y0 + 2x0y−1 − λy0 − µ(x0y0 + x1y−1 + y20 + 2y−1y1)

+ λσ(x0y1 + x1y0 + x2y−1)

= −λy0 − µy20 + λσx1y0

= −ψ−1(x1 − φ1)(λ− µψ−1φ1 + (µψ−1 − λσ)x1). (B.29)

Of the two solutions to this equation, we are interested in x1 = φ1 = 1/σ,
which in turn implies that y1 = 0.

Looking now for x2, we equate the O(ε3) coefficients to zero:

0 = x20 + x0y0 + x1y−1 + y20 + 2y−1y1

− λy1 − µ(x0y1 + x1y0 + x2y−1 + 2y−1y2 + 2y0y1)

+ (x0y2 + x1y1 + x2y0 + x3y−1). (B.30)
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which is also trivially satisfied as all terms either cancel with another or contain
a factor of x0, y−1, or y0. Thus, we turn to O(ε4) to determine x2. Equating
the coefficients to zero gives

0 = 2(x0x1 + x0y1 + x1y0 + x2y−1 + y−1y2 + y0y1)− λy2
− µ

(
x0y2 + x1y1 + x2y0 + x3y−1 + y21 + 2y−1y3 + 2y0y2

)
+ λσ(x0y3 + x1y2 + x2y1 + x3y0 + x4y−1)

= y1(−µ(x1 + y1) + λσx2). (B.31)

The solution we’re interested in for x2 comes from y1 = 0, which can be
expressed in terms of x2 as

0 = ψ−1(x2 − φ2), (B.32)

and thus

x2 = φ2 =
δc + µ− σ

λσ2
. (B.33)

At this point, we have a second order expansion of the approximate equilibrium
x∗ :

x∗ ≈ 1

σ
ε+

δc + µ− σ
λσ2

ε2 +O(ε3). (B.34)

Now with the relation w∗ = σ
ε x
∗, we conclude that

w∗ ≈ 1 +
δc + µ− σ

λσ
ε+O(ε2). (B.35)
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