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ABSTRACT

With the aim of pushing the limiting magnitude of interferometric instruments, the need\for-wide-band
detection channels and for a coordinated operation of different instruments has considerably grown in the
field of long-baseline interferometry. For this reason, the Center for High Angular Resolution Astronomy
(CHARA), an array of six telescopes, requires a new configuration of longitudinal dispersion compensators
to keep the fringe contrast above 95% simultaneously in all spectral bands, while preserving the transmission
above 85 Y%. In this paper, we propose a new method for defining the longitudinaljdispersion compensators
(LDC) suited for multi-band observations. A literal approximation of the,contrast loss resulting from the
dispersion residues enables us to define a general criterion for fringe«contrast maximisation on several bands
simultaneously. The optimization of this criterion leads to a simple solution with only two LDC stages per
arm and existing differential delay lines, to the glass choice and“a Simplelinear formula for thickness control
of all these media. A refined criterion can also take into acCeunt glass transmission. After presenting this
criterion, we give the optimal solution (medium, configuration) and‘its expected performance for the planned
observing modes on CHARA.

Key words: atmosphericceffects — instrumentation: interferometers — techniques: interfero-
metric — methods: observational

1 INTRODUCTION not only geometric: the coherence envelop multiplying the interfer-
ometric fringes is chromatically shifted and the fringes are blurred
within a spectral channel as it gets wider.

This problem has been identified and solved from the very first
stellar interferometer with the introduction of LDC, usually made of
pieces of glass of variable thickness to compensate the air thickness
(Labeyrie 1975). Another solution, currently being implemented
at Magdalena Ridge Optical Interferometer (Creech-Eakman et al.
2018), is to use evacuated delay lines.

The recent years have seen important developments of
the interferometric instrumentation (Gravity Collaboration et al.

Ground-based long-baseline optical interferometers combine the
light from an array of telescopes distant by tens to” hundreds of
meters. The combination of the electromagnetic fields creates an
interferometric pattern whose characteristics depend on the inter-
ferometer configuration and the source properties. It gives access
to the angular resolution of a single telescope of diameter equal to
the maximum distance between thetelescopes in the array. Because
they are operated on broadband\sources, performance of these in-
terferometers intendedtormeasure the spatial coherence is critically
affected by temporal coherence. The current generation of optical

long-baseline interferometers, schematically represented in Fig. 1,
uses main delay lines (MDL) to equalize the optical paths, which
achromaticdifference is mostly introduced in vacuum outside the at-
mosphere. However, if this equalization is done in air, the dispersion
law of\this'medium introduces a dispersion at the interferometric
focusy, The equalization of the optical path becomes chromatic and
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2017; Lopez et al. 2014; Anugu et al. 2020; Monnier et al. 2018;
Mourard et al. 2018). For measuring visibilities on fainter
objects, the need for large spectral channels instruments
(Gravity Collaboration et al. 2017; Mourard et al. 2018) and for a
coordinated operation of different instruments (Matter et al. 2010;
Mourard et al. 2017; Lopez et al. 2014) has considerably grown. In-
deed, this coordination not only enables to track fringes in one band
while integrating in all other bands but also increases the available
observing time of all instruments. For example, the Gravity Fringe
Tracker (Lacour et al. 2019) working in the K band is now used to
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stabilize the fringes of the instrument MATISSE (Lopez et al. 2014)
in the L and M band, with the introduction of a correction of the
chromatic group-delay with the internal delay lines of MATISSE.

CHARA is located at Mount Wilson (California, USA).
It has been designed by the University of Georgia and en-
tered into service in 1999. Its six 1-meter telescopes are dis-
tant from each others by 33 to 330 meters. From 2007, the
VEGA instrument was used in the R-band (Mourard et al. 2012)
in medium to high spectral resolution. Another instrument, CLAS-
SIC/CLIMB (ten Brummelaar et al. 2013), observes mainly in the
K band at low spectral resolution. These two instruments can operate
together thanks to the first and still in place LDC in CHARA (Berger
2003). But a new generation of instruments has been arriving on
CHARA since 2018. CHARA/SPICA (Stellar Parameters and Im-
ages with a Cophased Array, Mourard et al. (2018)), is an instrument
operating mainly in low spectral resolution mode (R=140) over a
large band in the visible range from 0.6 to 0.9 pm. It is assisted
by a fringe tracker using a low spectral resolution (R=20) sensor in
the H band (1.65 pum) controlling the fast stages of the main delay
lines. Moreover, the coordinated operation of SPICA in the visible,
MIRCx (Anugu et al. 2020) (and the fringe sensor) at R=20 in the
H-band, as well as MYSTIC (Monnier et al. 2018) at R=20 in the
K band is considered, leading to a very wide interferometric band
from 0.6 to 2.45 pm. However, the current implementation of the
LDC in CHARA presents two main limitations. First, it implies a
transmission loss of 1 magnitude in the K-band. Second, for the
planned simultaneous observations in the four bands at low spec-
tral resolutions, this solution canAAZt reach the level of dispersion
correction required by the instruments as we will see in Sect. 3.2.
Thus, it is clear that a new optimised LDC solution is mandatory.

The longitudinal dispersion compensation has been very well
described by Tango (1990) with the introduction of as many
LDCs as necessary for an optimized correction. However, it
turns out that the solutions that have been proposed and im-
plemented (ten Brummelaar 1995; Lawson & Davis 1996; Berger
2003) have always simplified the problem because of practical con-
siderations (limited number of LDCs, limited number of spectral
bands). On CHARA, we need to maximise the fringe contrast-on
up to four separated spectral bands simultaneously. Howeyer, con-
sidering the available space on the optical tables and‘the usual
transmission in the K band of glasses well adapted, tothe correc-
tion of dispersion, we decided to limit the correction'to two stages.
This prevents us from optimising each band individually, as do the
approaches relying on Tango’s formalism. In‘this paper, we propose
a rewriting of the criterion for the minimiization\of the dispersion
on as much spectral bands as wanted for a given/number of LDCs.
It permits us to achieve the best oyerall performance that the set of
LDCs in presence can reach.

We first develop in Sect."2.the new theoretical approach of
longitudinal dispersion compensation. Then, in Sect. 3, we present
the optimal solution and its‘expected performance for the planned
observing modes on CHARA."A discussion in Sect. 4 on the possible
other applications ofithis\study and the future limits of dispersion
compensation  on long-baseline interferometers is proposed.

2-=DISPERSION COMPENSATION
2.1 Problematic

In stellar interferometry, the phase-delay is the phase difference
between the electromagnetic fields coming from the two arms and

x>0

Space (n=1)

Atmosphere (n,)

H and R bands

superimposed
1
VR
ZGD (¢ ~ 0)
LDC| T 1
[ i
x,(0) >0
1
MDL l E}q(a) <0

Figure 1. Representation of the geometric delay (xg) and theicorrection
of the chromatic delay between the H and R bands en a ground<based
interferometer. The chromatism of the optical delay lines corfection (z1 (o))
is compensated with the chromatism of the LDC (%2 (o)) made’of a suitable
glass with thickness such that the group-delay. of all spectral channels is
close to the one of the tracking band, resulting in_the superimposition of the
coherence envelops.

recorded=by the detector. The group-delay (GD), proportional to
the chromatic gradient of the phase-delay, is what governs the con-
trast ofithe/interferometric fringes. These two quantities will be
expressed mathematically in the subsection 2.2. When the GD is
nully,the phase-delay is locally achromatic and all the fringes at
different wavelengths in the considered spectral channel superim-
pose such that the polychromatic fringe contrast is maximum. This
is the zero group-delay (ZGD) position. However, since the LDC
can’t match perfectly the air dispersion, this local achromatism may
not be maintained on a large waveband and the group-delay can’t
be nulled for all wavelengths. Therefore, the residual chromatism
within a given spectral band generates a loss of contrast due to the
blurring caused by the non-coherent addition of fringes of different
wavelengths. Considering the needs for sensitivity (large spectral
bands, increasing the limiting magnitude) and for the optimal use
of the large interferometric arrays, it is therefore critical to correct
this effect.

It is important to note that no glass presents exactly the same
dispersion law as the air. Therefore, each additional medium enables
to improve the coherent addition of the fringes inside a given spectral
band only. At the same time, the MDL shifts the fringes to the
ZGD by nulling the residual group-delay introduced by the LDCs.
After compensation with the LDCs, the interferometer modulates
the fringes to observe them.

Our goal is to maximize the fringe contrast on the detector,
while keeping the highest possible transmission. The purpose of
the study presented in this paper is to determine the nature and
thickness of the glasses mounted on the LDCs. We neglect the
atmospheric phase disturbance and we present the formalism in a 2-
beam configuration, the extension to N-beam being straightforward.
Finally, we assume unit visibility fringes for simplicity.
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2.2 Classical solution

We consider two beams crossing N media of dispersion law n; (o).
We define the optical path difference (OPD) as:

X(o) = Zni(a)a:i (D

where the wavenumber o is the inverse of the wavelength of the
electromagnetic field and x; is the algebraic differential thickness
of the i-th medium between the two arms. By convention, an excess
thickness is positive when it is in the same arm than the geometrical
delay noted xo. The differential thickness of the MDL is noted x;.
A simplified illustration is presented in Fig. 1.

The phase-delay is defined by:

®(0) =2w0X (o) @3]

The group-delay is defined as the gradient of the phase-delay,
expressed as a vacuum length for convenience:

1 do
£(o) = o do

which leads to the simple expression:

§(o) = ani(a)l'i @

(o) 3

where ngy; is the group index of the ¢-th medium, defined as:

dni
do
Under the condition of a low phase variation ® over a small

spectral distance s from the mean wavenumber &, the Taylor expan-
sion of the phsae-delay is:

ngi(o) =ni(o) + o

(o) )

®(5+45) = ®(5)+27[(x0+b1.X)s+ba.xs> +bz.xs” +O(s)],
(0)

with O being the asymptotic notation and where the vectors
(b;);en are such that the 5" component of the vector b, is.the
4™ coefficient of the Taylor expansion of the quantity on;(¢). We
identify three different terms:

o the phase-delay ®(&) at the wavenumber &,
e the group-delay at the wavenumber & responsible for the
fringe’s position shift:

E=x0+bi1.x )
e the pure dispersion function:

U (s) = 2m(ba.xs” + bz.xs%) + O(5") (8)

responsible for the residual.fringe contrast within a spectral channel.

Tango (1990) demonstrates that the fringe contrast at the ZGD,
resulting from the pure dispersion function on a spectral channel 3,
can be approximated by;

Cy 5 =Cg »(€=0) ~ 1 — Var[T]. )

From the equation (9), Tango concludes that maximizing the
fringe contrast at the ZGD on a given spectral channel means mini-
mizing the variance of the residual dispersion.

After development of the standard deviation of the dispersion
function ¥, and without forgetting the null group-delay condition,
it turns out that to maximize the fringe contrast we need to verify
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by order of priority the following equations:

b1.X = —Xo

bg.X =0

bs.x =0 (10)
by.x=0

This set of conditions proposed by Tango (1990) is very con-
venient both for its simplicity of use and its clarity. Albeit suitable
for maximising the fringe contrast on a given spectral band, it is no
longer adapted to a wide band with many sub-channels and different
resolutions. Indeed, let’s assume that we want to observe with four
instruments distributed on four different bands, each one equipped
with a differential delay line (DDL). In addition to thes¢ DDL,
we add LDCs. To optimize the fringe contrast for all instruments
together, we thus need to verify for each spectral bandyas many
equations as possible. The common and differential optical”delay
lines enable us to null the group-delay (first equation) at the center
of each band. Then, with two LDCs, we can null the first equation of
only two of the four bands. Adding more LDCs may unfortunately
generate important transmission loss{ Sesif we want to solve our
multi-bands problem, we need another criterion.

2.3 A method for multi‘bands.fringe contrast maximization

A solution would be to'minimize the equations of the system (10)
rather than null them. In.order to get a low dispersion at the center
of all bands, we minimize-the expression (8). Weights with positive
reals (W1, Wispld/3\, W) could also be introduced in this minimi-
sation to weight.differently the spectral bands.

L(x)= Wy (b12.X)°+Wa(ba2.x)°+ W3 (baz.x)* 4+ Wi (ba2.x)?,
1D

where’byx: is the second Taylor coefficients vector of the =™ spectral
band. Doing that, we can maximise the fringe contrast at the center
of each band. However, the use of the Taylor coefficients b; makes
it necessary to choose one precise wavenumber per spectral band.
Thus, we lose information about the rest of the dispersion law and we
are not guaranteed to find the best overall contrast. This difference
gets larger as the individual spectral bands get wider.

For this reason, we decided to use a maximisation method
that takes all the spectral information into account. In particular,
we do not distinguish the group-delay from the dispersion function
anymore. This new criterion focuses on the overall minimization
of the dispersion on the whole bands. It means that we do not try
to null all the high-order derivatives at a given somehow arbitrary
point like suggests the system (10) but rather directly maximize the
fringe contrast over the whole band of interest.

We show in appendix A that the fringe contrast of a polychro-
matic interferogram resulting from the phase-delay ® (o) over the
spectral channel 3 is:

Co,x ~ exp(—Varg[®]/2) (12)

The new expression of the fringe contrast in equation (12)
differs from the equation (17) of Tango (1990) (eq. 9 in this paper)
by two facts. First, & contains the group-delay counterpart, which
enables us to make the overall optimisation that we are looking
for. Second, the exponential approximation remains true at a higher
order than the 2" order Taylor expansion in Tango’s equation (17).

For a given phase-delay ® (o), the equation (12) enables us
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deriving the associated fringe contrasts C'p 2 in each considered
spectral channel . The goal is to optimize the fringe contrast on as
many spectral channels 3 as possible. Thus, we need to minimise
L(x) defined as:

L(x) = —ZWg log Cx, (13)
>

where Wy are weights making possible to favour an instrument
before another. By default, they are all put to 1.

The logarithmic expression, classical for multiplicative losses,
is introduced for giving a higher weight to high losses. The criteria
L(x) is a quadratic function of the vector x. This means its min-
imisation is linear and, as detailed in appendix B, leads to the linear
matrix equation:

M- -x'=d (14)
where we introduced:

o the vector x' = (6x1, z2, T3, ..., Tn) Where z; is the excess
thickness of the i-th media as already defined before and dx; is
the additional thickness of the MDL that adds up to the first order
excess thickness

Zo
ng,1(00)

Ty = — 5s)
that corrects the group-delay for an arbitrary wavenumber og. So
xr1 = CCll + 533 1.

o the vector d = (d:);e[1, N, made of the covariances between
the residual phase dispersion after the first-order correction by the
MDL and the dispersion laws of the additional media, defined as

& == 20 YW [ (o) = () (o) = (1) do
> ¥ (16)
dz‘ = — 20 Z WEAOECOV[fLé, fLi]E

o and the matrix M = (mi;)(; j)e1,v)2> made of the covari-
ances between the dispersion laws of all additional medium, defined
as

W=Z%/@w4mmw%wwc
- b>

17)
mij = Z WEAGECOV[ﬁi, ﬁj]z

The two last variables also use notationsthat we need to define:

e the quantity 72;(c’) = II;(0)on; (o) that concerns the ™ glass
where II;(0) is a "flag" function equal to 1 on the spectral range
that sees the medium and O elsewhere. This enables to model the
case of the DDL or LDC placed in a specific spectral band.

e n.(o) =1—ni1(0)/ng,1(go)is the "extra" index of air with
respect to vacuum that remains after the correction of the ZGD for
the arbitrary wavenumbersag. 7. follows the same definition than
M.

e (.) is the,chromatic average.

To stay as general as possible, we could have kept the MDL
length-®; rather than dz; in the vector x’. However, in prac-
tice;“this_approach is sensitive to numerical noise due to the
high, disproportion between the components of the resulting vec-
tor x = (z1, 2, ...,xn). Indeed, in this general approach, the first
component x; of x is meter-scaled whereas its N-1 last components,
corresponding to the medium compensating the residual dispersion,
are only millimeter or micrometer scaled. This same disproportion

is present in M and d. The matrix M is ill-conditioned, leading
to numerical errors at its inversion. Introducing this intermediate
dispersion correction with the MDL length z; enables to put all the
dispersion residues at closer scales for every medium. The condi-
tioning of M doesn’t change but the resulting errors are sufficiently
low to get robust results.

Yet, as no medium perfectly matches the air dispersion law, the
problem is not degenerated. The inverse M ™" of the matrix M exists
and this equation (14) admits only one solution that corresponds to
the control equation for the N media that form the dispersion control
in addition to the first order correction 7} :

Xy =M~ d (18)

2.4 Estimating the final fringe contrast

The equation (12) gives the fringe contrast in a spectral channel
3. at the center of the instrument modulation range. As itiis pro-
cessed from the total phase-delay ® (o), it takes into aceount the
fringe contrast due to the group-delay &. If the group-delay is higher
than the modulation range of the instrument, the equation (12) is a
good approximation of the fringe contrast measured. However, if £
remains into the modulation range, the.measurement still benefits
from the highest fringe contrast’of the coherence envelop. In this
case, assuming that the second and higher orders of the dispersion
law vary very slowly inside"thesmodulation range, the final fringe
contrast is given by:

C\I;Ayg ~ exp(—Varg[\Pg]/Q) (19)
where
Us(0) = @(0)s (D), + 0®'(0)) (20)

is thé,pure dispersion function analog to W defined in the equa-
tion, 20.

Thanks to the two expression of the fringe contrast C's and
C'g,jincluding or not the group-delay, we are able to estimate the
final fringe contrast on the detector.

This tool has finally two usages:

e Selecting the best configuration for the next LDC: we can try
many different configurations from a single glass to a combination
of mediums located on different spectral bands and compare the
final fringe contrasts.

e Setting all the media thicknesses during an observation.

2.5 Introducing the transmission loss in the signal-to-noise
ratio estimation

In the previous sections, we demonstrated a formalism for estimat-
ing the fringe contrast due to dispersion residues. However, the final
signal-to-noise ratio (SNR) of the measurement of the fringe visi-
bilities is impacted both by the dispersion and the transmission of
the media. As the media involved in the correction are expected to
be transmissive in the considered wavebands, the dispersion is the
major contributor to the SNR loss. Yet, to reflect this additional
contribution, the transmission loss of the media can be introduced
in the formalism. This section demonstrates this refined formalism.
The details can be found in appendix C.
We define I, the attenuation factor on the SNR:

LE) =TE) - Cs(X)? 1)

where T'(X) and C3(X) are respectively the total transmission of
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the media and the fringe contrast as defined in equation (12). The
square factor on the fringe visibility comes from the fact that this
observable is calculated by averaging the squared modulus of the
image Fourier transform. The higher is the I" factor, the higher is
the final SNR of the measurement.

The logarithmic attenuation of the transmission 7'(X) is de-
fined as:

L' = Z Wi e - t° (22)
>

where t° is the vector of the average positions of the LDCs,
a = (ai)ie[L ~] is the vector of the averaged extinction coeffi-
cients of the media and Wy, the weights analog to the Wy, of the
dispersion quantity. To respect the contributions of the visibility loss
and transmission loss to the SNR, as given by the equation (21),
these two weights should be linked by the relation

W = W /2 23)

such that maximising I' is equivalent to minimising the quantity
Lot defined as:

Livt =L+ L (24)

following equations (13) and (22).

3 APPLICATION TO CHARA

The formalism derived in Sect. 2 has been applied to the definition
of a chromatism corrector for the CHARA array. In the following
subsection, we present the new generation of instruments that will
benefit from the new LDC solution and why it is necessary.

3.1 Presentation of the CHARA instruments

In CHARA, the transportation from the telescope to the lab is done
in evacuated pipes but the MDL are in air over their total stroke
of 44.5 m. A difference of about 90 m of air appears in the.most
unfavourable cases, introducing a group-delay of more than{l0 mm
between the visible fringes and the infrared ones. For compensating
the group delay between the spectral bands R and K, a first EDC was
designed by Berger (2003). It consists in two wedged ‘glasses’'made
of SF10 whose total thickness can be tuned by changingtheir relative
positions (see Fig. 2). Fig. 3 shows that these\LDCs, can keep the
fringe contrast in the major part of both“instrument spectral range
above 95%. But this is done at the price ofian’important loss of
transmission in the infrared bands:

Since 2003, new instruments have been installed on CHARA.
The current and coming instruments are gathered in Table 1. Most
of them include differential delay lines (DDL) in air to equalize the
mean group-delay. In 2018,"MIRCx (Kraus et al. 2018) has been
installed to observe in*H-band with the possibility to get data also
in J-band. It will bevfollowed by MYSTIC (Monnier et al. 2018)
that observes'in K-band. A new fringe tracker named SPICA-FT
(Pannetierfet ‘al. 2020) has been plugged into the MIRCx instrument,
as an integrated-optics device in H-band and a fast piston controller.
It aims at performing fringe-tracking at a frequency of 200 Hz,
enabling, integrations of 1 to many seconds for all instruments.
As for R-band, SPICA-VIS (Mourard et al. 2017) is currently in
development to replace VEGA (Mourard et al. 2012).

The fact that these three instruments work at low spectral res-
olution make the measured fringe contrast more sensitive to the
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Figure 2. Illustration of the CHARA focal laboratory/ with its different
instruments, their DDLs and the LDCs. This drawing only,shows one over
the six arms that counts the array.
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Figure 3. Group-delays (dashed lines) and associated fringe contrasts (solid
lines) as seen by the instrument VEGA in the R-band (blue area) and the
instrument CLIMB in the K-band (pink area) when the LDC made of SF10
is used along with the differential delay line of CLIMB. As the spectral
resolution of VEGA is 6000 and the one of CLIMB is 20, we must favour
the correction of dispersion in K band before R-band. That is why the group-
delay in the R-band varies very far from the null value but stays close to zero
in the K-band.

temporal coherence losses due to the longitudinal chromatism in-
duced by the optical delay lines.

In 2019, the CHARA organization considered changing the
LDC made of SF10, a glass that suffers from absorption in the
infrared, in order to improve the sensitivity in H and K bands.

3.2 The LDC configuration for CHARA multi-band
observation

The DDLs play the important role of shifting the group-delay of
the equipped band to the ZGD position, generally imposed by the
fringe tracker in its dedicated spectral band, without introducing
any transmission loss. The presence of DDLs on all instruments is
thus of great interest for longitudinal dispersion compensation as
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6  C. Pannetier et al.

Table 1. Summary of the configurations of the different instruments in
presence on CHARA.

Instrument Year ‘Waveband DDL | Resolution
CLASSIC/ CLIMB 2013 | J,HorK Y Broadband
MIRCx 2018 | J,H Y 20
MYSTIC 2018 | K Y 20
SPICA-FT 2021 H Y 20

PAVO 2008 | 630-900 nm Y 30

VEGA 2007 | 450-850 nm N 3000
SPICA-VIS 2021 | 600-900 nm Y 140

each one releases one degree of freedom for the LDC to correct the
higher order dispersion residues.

To reach the requirements of SPICA in terms of visibility
measurements, a fringe contrast better than 95% must be guaran-
teed by the LDC in R-band. The requirements are the same for the
H-band where for the fringe-tracker SPICA-FT, to guarantee a pre-
cise and fast phase tracking benefiting to all instruments. We wish
also to reach the best dispersion correction possible in K-band to
guarantee good performance for MYSTIC. Finally, the instrument
MIRCx is now able to record the J and H bands on the same de-
tector (Anugu et al. 2020) so we must maintain the fringe contrast
higher than 95 % on this whole band to get the best performance
from the instrument. Verifying all these conditions, we guarantee
fringes observation on R, J, H and K bands simultaneously. Addi-
tionally, in the focal laboratory of CHARA, the reserved area for
the LDC is limited. By construction, no LDC can be set in the J, H
or K bands only and the maximal thickness of the glass is limited
to 20 mm for the correction of 90 m of air.

The focal laboratory that hosts the main delay lines and the
instruments (Fig. 2) is filled with an air under controlled pressure
(810 mbar) and temperature (298 K). Its typical relative humidity
and its CO, content are about 15% and 450 ppm respectively. The
refractive index of the air in this state was modelled from Ciddor
(1996) below 1.5 um and Mathar (2007) above 1.5 pm. Yet, the
refractive index and the group-index of the air, whatever the chosen
model, does not deviate by more than 10~ from the values given by
Ciddor’s model. In the worst case, this leads to discrepancies/of the
group-delay of 10 um for 100 meters long delay lines which'remains
lower than the coherence length of the less resolved instrument. The
higher orders of the dispersion models have even less‘consequences.

Using the Python package ZemaxGlass', we pickep up the
refractive indices of most of the visible and infrared glasses avail-
able from the main suppliers (SCHOTTQ, OHARA?, CDGM4),
representing 340 glasses in total. Then, using the equation (18), we
optimised the fringe contrast on all configurations involving one or
two stage(s) of LDC(s) available with ourglass database. However,
Table 2 shows that a single stage of LDCis not sufficient to correct
on all bands. Moreover, two stages 0f: LDCs on the common optical
path attenuate too much toguarantee a high enough SNR. Finally,
the only acceptable .solution.within our constrain of transmission
and available space,in €HARA is with one stage of LDC in the
main optical path (M-LDC) and another one confined to the R-band
optical path (R-LDC), after the first dichroic plate as illustrated on
Fig. 2.

Thus, we,optimised on all the pairs of glasses present in our

1 https://github.com/nzhagen/zemaxglass

2 https://www.schott.com/english/index.html
3 https://www.oharacorp.com/

4 http://cdgmglass.com/

Table 2. Performance of the two best glasses (SF66 and P-SF68) and the
current one (SF10) for simultaneous observations in R, J, H and K bands
when the MDL are 90 meters long. We show also the high dispersion
correction performance of ZnS Broad. It is given the excess thickness x
(in mm) and the fringe contrasts FC. The transmission is calculated for the
maximal excess thickness with the addition of 7 mm owing to the LDC
design. The average fringe contrast is calculated on the whole bands.

M-LDC SF66 | P-SF68 | SFI0 | ZnS Broad
Excess thickness x 7 10 9 3
Average FC 091 | 088 | 073 0.98
Minimal FC 033 | 025 | 025 0.58
(band) ) (@) ) (R)
Transmission 0995 | 099 | 0.997 0.92
0.75 pm
Transmission 0982 | 0.983 | 0.980 0.99
1.63 pm
Transmission 087 | 087 | 0875 099
2.19 ym

Table 3. Performance for simultaneous observations in R, J, H and K bands
when the MDL are 90 meters long and the M-EDC (top lin€) and the R-LDC
(left column) are set to their nominal thickness. The notations and conditions
are the same as in Table 2. SF66 and S-NPH3'used forthe R-LDC give similar
performance.

[ RLDC || M-LDC | SF66\] P-SF68 | SF10 | ZnS Broad
z (M-LDC) 7 7 15 3
z (R.ILDO) 3 25 33 5
Average FC 0.97 0.95 0.84 0.99
Minimal EC._| 078 | 063 | 0.63 0.95
(band) (K) (K) (K) (R)
SF66 Transmission | 505 | 0997 | 0.992 0.92
0.75yum
Transmission | g5 | 0987 | 0.972 0.99
1.63 ym
Transmission | o7 | 057 | 0835 0.99
2.19 ym
z (M-LDC) 7 10 15 3
Z (R.ILDC) 17 2 27 05
Average FC 0.97 0.95 0.84 0.99
078 | 063 | 063 047
Minimal FC
(K) (K) (K) (R)
S-NPH3 || Transmission | o5, | 996 | 0.992 0.92
0.75 ym
Transmission | 5> | 0983 | 0.972 0.99
1.63 ym
Transmission | o7 | 557 | 0835 0.99
2.19 ym

database. Table 3 shows the results for the best of these configura-
tions with their fringe contrast and the associated transmission of
the media.

A complete and easily accessible database of extinction coeffi-
cients of all the tested glasses was harder to find than their refractive
index. For this reason, we couldn’t get an exhaustive ranking of the
SNR associated with all configurations, as would permit the I" fac-
tor accounting for the SNR attenuation. Instead of that, we got an
exhaustive ranking of the dispersion residuals of each configura-
tions after minimization with our code of the respective quantities
L (equation 13). Then, with the reduced list of the configurations
offering the best dispersion correction properties, we used the ab-
sorption factor of the glasses to estimate their corresponding SNR
attenuation, allowing us to choose the best configuration.

Among the most transmissive optical glasses, SF66 offers the
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best performance in terms of dispersion compensation, the average
fringe contrast being of 97%, most of the contribution owing to the
lower performance in K-band. The two other glasses P-SF68 and S-
NPH3 have close performance also. Fortunately, SF66 is also totally
transmissive from 0.5 to 1.5 um. Its transmission starts getting down
in the K-band but the thickness of glass necessary for the correction
remains small and enables to keep 87% of internal transmission up
to 2.2 um, accounting for the total thickness of the static and mobile
prisms.

It can be compared to another solution in Table 3 that makes use
of the infrared material ZnS Broad for the M-LDC. The study has
pointed out this same excellent dispersion compensation properties
for many infrared glasses but ZnS Broad has the advantage of the
stability as it is not hygroscopic. This solution is very interesting for
the infrared instruments, since the throughput remains above 99%
along with a close-to-perfect correction of the dispersion on the R, J
and H band at the same time. But it costs 8% of transmission losses
in the middle of the R-band when accounting for the total thickness
of the static and mobile prisms.

Finally, we chose the solution using SF66 both in M-LDC and
R-LDC for two reasons. First, our primary goal is to maximise the
sensitivity of SPICA. Second, as discussed later, the low disper-
sion in H and K bands makes possible synchronized observation
without the LDC for saving photons, to the cost of fringe tracking
performance. The infrared material ZnS Broad could be the subject
of a future completing upgrade where the M-LDC is relocated in
the JHK-band (becoming a JHK-LDC) just after the first dichroic of
Fig. 2 and the SF66 replaced with this material.

3.3 Expected performance

The chosen configuration can be seen on Fig. 2 with unrealistic
scales. Each LDC is made of two wedged (11.3°) windows of SF66
including a static piece of thickness 8 mm. The second piece of the
M-LDC is 15,4 mm thick at its maximum to allow the maximal
differential thickness of 7,4 mm. The second piece of the R-LDC'is
10 mm thick to allow the maximal differential thickness of 2/mm.

In the following subsections, we detail the expected perfor-
mance of the new LDC solution in the different combinations)of
instruments on CHARA. The related performance4s summarised
in Table 4.

3.3.1 SPICA-VIS (R-band) with fringe tracking in H-band

The Fig. 4 shows the fringe contrast expectation after maximisation
in the R and H bands with or ‘without the M-LDC. The R-LDC is
always present. The maximal group-delay in the K-band is about
20 pm (respect. 2 pm) in absence of M-LDC (respect. in presence
of M-LDC) whichdeads, in case of low spectral resolution R=22,
to a fringe contrast below)70% at the extreme channels whereas it
remains over/99% in presence of the M-LDC. This encourages the
use of thedtwo,LDCs in this observing mode in order to guarantee
a fringe,contrast higher than 95% (respect. 99%) for SPICA-VIS
(respect, SPICA-FT). In addition, we keep an excellent throughput
in“both bands since it is about 99% (counting the two LDCs) in
R-band and 98% (only the M-LDC) in H-band, only considering
the internal transmission of the glass. Assuming an anti-reflection
coating reducing the Fresnel losses to 1% at each interface, the total
transmission losses are around 5% in R-band and 6% in H-band.
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Figure 4. Group-delays (dashed lines) and associated fringe contrasts’(solid
lines) for SPICA-VIS in R-band (blue area) and MIREx inyH-band (orange
area) with the R-LDC and with (black) or without/(blue lines)the M-LDC.
When there is the M-LDC, MIRCx gets better fringe contrast.

3.3.2 SPICA-VIS (R-band), MIRCx (J,H bands) and MYSTIC
(K-band).

Fig. 5 shows that the double"EEDCs solution guarantees a fringe
contrast higher than 95% in R*band and J-band, 97% in H-band and
80% in K-band (but highetsthan 95% on half the waveband). The
high improvementiin the three first bands goes with transmission
losses in the longest wavelengths, but lower than with the previous
LDC. The transmission throughput of the M-LDC in this band (its
thicknesssis equalto 15 mm for 90 meters of MDL, when taking
intoaccount its structural minimal thickness of 7.5 mm) is 85%.
Moreover, the Fig. 6 shows that the SF66 doesn’t degrade the fringe
contrast in this band compared to no LDC at all. Fig. 7 shows the
evolution of the SNR attenuation with the geometrical delay for the
extreme spectral channels in the H and K bands. We focus this figure
on these two bands as the glass absorption generates an important
attenuation of the SNR in K-band and because the K-band operations
are linked to the fringe tracker operation in H-band. We see that,
without M-LDC, T" falls down in H-band very quickly whereas it
stays above 70% in K-band until 90 m of geometrical delay. With M-
LDC, the SNR attenuation remains higher than 95% in H-band and
higher than 63% in K-band. The high performance in H-band with
the M-LDC will permit longer coherent integration for the observing
instruments. This will compensate for the transmission loss in K-
band and even increase the final sensitivity of the instrument.

3.3.3 MYSTIC (K-band) and MIRCx (J-band and H-band)

MYSTIC (Monnier et al. 2018) and MIRCx (Kraus et al. 2018) are
expected to work alongside during many nights. Both instruments
can supply the fringe tracking for the other one, depending on the
science goal.

In this H-K configuration (see fig. 6), the M-LDC folds the
phase in the H-band such that there is almost no fringe contrast loss
on this whole band. The differential delay line nulls the group-delay
of MYSTIC.

But the C-RED One detector equipping MIRCx is also sensitive
to the J-band and measurements in this band with the two other
bands are considered. Due to the configuration of the LDC, this
leads to the exact same situation as the R,J,H and K configuration.
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Figure 5. Group-delays (dashed lines) and associated fringe contrasts loss
factor (solid lines) in R (blue area), J (green area), H (orange area) and K
(pink area) band with the DDLs of SPICA and MYSTIC and the M-LDC
and the R-LDC made of SF66.

Wavelengths [pm]
1.9 .75

2.40 1.50

154 1 1.00

10 L 0.95

= 54 L 0.90
5 i
ey 5
K 0 0.85 ;
g 2
2 frad

O 5 0.80

-10 L0.75

-15 4 Fo.70

\
0.45 0.50 0.55 0.60 0.65
Wavenumbers [um-1]

Figure 6. Group-delays (dashed lines) and associated fringe contrasts loss
factor (solid lines) for MIRCx in H-band (orange area) and MYSTIC in
K-band (pink area) with (black) and without (blue) the M=LDC:MYSTIC’s
DDL are always used to compensate for the 57 pm (0r.24 pm with M-LDC) of
group-delays between the two instruments. Wedsee that,the’M-LDC doesn’t
improve MYSTIC’s fringe contrast but improves‘a lot the fringe contrast of
MIRCx.

The performance in K-band are almost the same than in the H-K
configuration with a fringe contrast higher than 80%.

3.3.4 PAVO (R-band) with fringe tracking in H-band

PAVO. (Ireland et al. 2008) is a temporally modulating spectro-
interferometer optimised for high sensitivity in the R-band (spectral
resolution 30). Just like SPICA-VIS, it will benefit from the two
LDCs and Fig. 8 shows that the fringe contrast remains high in the
whole band while benefiting from a second advantage: the fringe
tracking provided by SPICA-FT in H-band.

10 === ————— e e
0.9 1 S
S —
Sl
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0.8 A \\\ \\\
S \\\
0.7 4 N NS
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O N S
'ﬁ 0.6 ~S ~C
= ~ ~,
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——- DDLonly AN \\
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0.3 1.95 - 2.05 uym \\
— 2.14-2.26 um AN
0.2 2.29-2.41 ym
0 20 40 60 80

Geometrical delay [m]

Figure 7. Estimation of the SNR attenuation in the extreme spectral channels
in the H and K bands. The middle spectral channel-of the K-band is also
plotted for additional information. I' = T'C? is plétted as a fufiction of the
geometrical delay to be corrected. I' is computed, using the transmission
of the SF66 at the center of the respective spectral,channels and the fringe
contrast on these same spectral channels.
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Figure 8. Group-delays (dashed lines) and associated fringe contrasts (solid
lines) for PAVO in R-band (blue area) and MIRCx in H-band (orange area)
with the new solution optimised for maximisation of the fringe contrast in
H-band and between 0.65 and 0.9 um.

4 DISCUSSION

The double LDCs solution gives excellent fringe contrast (with
high transmission) in the R, J and H bands simultaneously. Thanks
to the dispersion law of SF66, the dispersion in the J and H bands
can be very well corrected, enabling to reach fringe contrasts close
to 100% in the whole bands, while not increasing the dispersion
residues in the K-band. The fringe contrast in K-band, maximal
around its center, remains above 90% on more than half the spectral
channels. The good transmission of SF66 in this band and the small
thickness necessary for the correction enables keeping a reasonable
throughput higher than 87% at 2.2 pm.

To improve even more the transmission in K-band without
impacting the R-band, the only solution we found is to replace the
M-LDC by a LDC made of infrared medium like ZnS and located
on the JHK optical path. The performance of this solution is close
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Table 4. Summary of the expected performance for the different observing modes for the worst dispersing case corresponding to 90m-long MDLs. When
MIRCx is working, it implies also SPICA-FT. R-DDL and K-DDL account respectively for SPICA and MYSTIC’s DDL. In the case of PAVO operating with
H band, MIRCx’s DDL would be used with the excess thickness opposite to the one given in the R-DDL line.

Involved bands or RJHK HK JHK SPICA-VIS,FT PAVO,SPICA-FT
instruments
Figure 5 6 5 4 8
Differential thicknesses (um)
R-DDL 3810 - - 6664 6664
K-DDL -27.4 -23.4 -27.4 - -
M-LDC 7320 8319 7322 8831 8831
R-LDC -1980 - - -3488 -3488
Spectral band R J H K H K J H K R H 0.65-0.9 H
Spectral resolution 140 20 20 20 20 20 20 20 20 140 20 30 20
Absolute max GD 12 15 16 37 9 40 17 16 37 12 6 56 6
[% of coherence
length]
Minimal contrast (%) 95 97 98 79 99 81 95 98 79 97 99 80 99
Spectral range where All All All 2.1-23 All 2.1-23 All All 2.1-23 All All 0,65 - 0.85 All
contrast exceeds 95%
Mid-band 0.992 | 0.987 | 0.982 0.87 0.982 0.87 0.987 | 0.982 0.87 0.992 | 0.982 0.992 0.982
throughput
Minimal SNR 0.90 0.93 0.94 0.47 0.96 0.52 0.89 0.94 0.50 0.93 0.96 0.63 0.96
attenuation (I")
Wavelengths [um] 5 CONCLUSION
2.40 1.751.50 1.30 1.15 0.90 0.60
15— : =} 1.00 We have proposed a general methodology to address the problem of
\ dispersion compensation in:a 2‘beams interferometer, resulting in a
101 ':' L 0.95 single matrix equation whose coefficients can be easily computed
\ :’I from instrumental data (index variation of the material involved and
T 57 S /l 090 bounds of spectralibands). It has been applied to the simultaneous
= S K £ correction, of longitudinal dispersion in R, J, H and K bands on
IR SN 085 8 CHARA.
e e 2 We identified SF66 as being the most suitable glass (among
s _5 L 0.80 « standard glass catalogs SCHOTT, OHARA, CDGM and some in-
frared/glasses) for the compensation of the longitudinal chromatism
~104 L 0.75 in the visible and near-infrared bands R, J and H while keeping an
excellent throughput in K. A low spectral resolution simultaneously
_151 L 0.70 on these four bands (R=140 in R-band, R=20 in the three others) is
0.4 06 08 10 12 14 16 reachable for a differential air thickness up to 90 m with the DDLs

Wavenumbers [um-1]

Figure 9. Group-delays (dashed lines) and associated fringe contrasts (solid
lines) in R (blue area), J (green area), H (orange area)-and K'(pink-area) band
when the ZnS is introduced in the J,H,K bands and'\SF66.is in the R-band.
It implies (Zn.S) ~ 3 mm and z(SF66),4 5 mm, The same level of
performance is observed for infrared glasses suchias CsBr, KCl, AgCl, KBr.

to perfect like we seeyon Fig. 9. However, two practical constrains
prevent us from using if. First, as this glass has a lower transmission
in the visible it has to be installed after the infrared/visible dichroic,
but the-available space on CHARA doesn’t allow this at that time.
Second, the manufacturers can’t guarantee a polishing flatness better
thamya quarter of a wavelength, which involves wavefront flatness
of the same order because of the high refractive index of ZnS. This
prevents us from using it after the adaptive optics system, i.e. after
the infrared/visible dichroic plate, to keep a high injection factor in
the fibered instruments.

and two LDCs: a first one in the common path for maximizing con-
trast in J and H bands while keeping it high in K-band and a second
one in the visible path only for maximizing contrast between 0.6
and 0.9 pym without degrading the transmission in the K band. With
this solution the residual dispersion and the transmission losses of
the two LDC stages after correction for 90 meters of MDL are
responsible for an attenuation of 0.90, 0.93 and 0.94 on the SNR
in respectively R, J and H bands. With the same considerations,
the attenuation on the SNR in K-band is 0.47 with our solution
and 0.43 in absence of LDC correction (owing exclusively to the
dispersion residuals). These values account for the most impacted
spectral channels of each spectral band. Since the presence of LDC
also increases the SNR for the fringe-tracker in H-band, whose high
performance is critical for the instrument MYSTIC in the K band,
the use of LDC is clearly benefiting to this instrument.

6 ACKNOWLEDGMENTS

The CHARA/SPICA instrument is funded by CNRS, UniversitAl
CAfte d’Azur, Observatoire de la CAfte d’Azur, and by the RAI-
gion Sud. The CHARA Array is supported by the National Science

120z 1snBny oz uo Jasn AlsisAlun el eibioss) Aq 66/91£9/22Z6 L 9BIS/S_IUW/EE0] 0 L /I0p/3]01lIB-90UuBAPER/SEIUW/WOo2 dNO"dIWapee//:sdly Woll PaPEojUMO(]



10  C. Pannetier et al.

Foundation under Grant No. AST-1636624 and AST-1715788. In-
stitutional support has been provided from the GSU College of Arts
and Sciences and the GSU Office of the Vice President for Re-
search and Economic Development. The doctoral fellowship of CP
is co-funded by OCA and ONERA.

7 DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding author.

REFERENCES

Anugu N., et al., 2020, arXiv e-prints, p. arXiv:2007.12320

Berger 2003, Preliminary results from the longitudinal dispersion compen-
sation system for the CHARA array, https://ui.adsabs.harvard.
edu/abs/2003SPIE.4838..974B

Ciddor P. E., 1996, Applied Optics, 35, 1566

Creech-Eakman M., et al., 2018, in MAlrand A., Creech-Eakman M. J.,
Tuthill P. G., eds, Optical and Infrared Interferometry and Imaging VI.
SPIE, Austin, United States, p. 5, doi:10.1117/12.2314155

Gravity Collaboration et al., 2017, A&A, 602, A9%4

Ireland M. J., et al., 2008, in Optical and Infrared Interferometry. Marseille,
France, p. 701324, doi:10.1117/12.788386, http://proceedings.
spiedigitallibrary.org/proceeding.aspx?doi=10.1117/
12.788386

Kraus S., et al., 2018, arXiv:1807.03794 [astro-ph]

Labeyrie A., 1975, The Astrophysical Journal, 196, L71

Lacour S., et al., 2019, Astronomy & Astrophysics, 624, A99

Lawson P. R., Davis J., 1996, Applied Optics, 35, 612

Lopez B, et al., 2014, The Messenger, 157, 5

Mahajan V. N., 1983, J. Opt. Soc. Am., 6, 860

Maréchal A., 1947, Rev. d’Opt., 26, 257

Mathar R. J., 2007, Journal of Optics A: Pure and Applied Optics, 9, 470

Matter A., Vannier M., Morel S., Lopez B., Jaffe W., Lagarde S., Petrov
R. G, Leinert C., 2010, A&A, 515, A69

Monnier J. D, et al., 2018, arXiv:1807.11569 [astro-ph]

Mourard D., et al., 2012, in Delplancke F., Rajagopal J. K., Malbet
F., eds, proc. SPIE Vol. 8445, Optical and Infrared Interferometry
III. Amsterdam, Netherlands, p. 84450K, doi:10.1117/12825223]
http://proceedings.spiedigitallibrary.org/proceeding.
aspx?doi=10.1117/12.925223

Mourard D., et al., 2017, Journal of the Optical Society of\America A, 34,
A37

Mourard D., et al., 2018, in MAlrand A., Creech-Eakman M. J., Tuthill P. G.,
eds, Optical and Infrared Interferometry and Imaging VI. SPIE, Austin,
United States, p. 55, doi:10.1117/12.2311869

Pannetier C., et al., 2020, in Mérand AuywsSallum S., Tuthill
P. G, eds, Optical and< Infrared Interferometry and
Imaging VII. SPIE, Online Only, / United States, p. 26,
doi:10.1117/12.2560625, https://www.spiedigitallibrary.
org/conference-proceedings-of-spie/11446/2560625/
Progress-of-the-CHARASPICA-project/10.1117/12.
2560625. full

Ruilier C., Cassaing'Fy, 2001, J. Opt. Soc. Am. A, 18, 143

Tango W. J., 1990, Applied Optics, 29, 516

ten Brummelaar T. AZ;'1995, Applied Optics, 34, 2214

ten Brummelaar T. A., et al., 2013,
Journal of'Astronomical Instrumentation, 02, 1340004

APPENDIX A: WIDE-BAND FRINGE CONTRAST

In this section, we detail the calculations that lead to the wide-band
fringe contrast given by equation (12).

The phase-delay between two arms of the interferometer al-
ready defined in the equation (2) is:

®(0) =270 Z(m(a)ml) (AD)

We introduce the vector x = (z;);¢[o, ) made up of the geometrical
delays and the N media in presence. To observe fringes on the
detector, we need to introduce a modulation phase 6,,,.

For a given wavenumber o, the monochromatic interferogram
resulting from the phase-delay dispersion and modulation between
two coherent beams is:

I(0,%,0m) = R {j(a) (1 + Cref(o.)ei(@x(U)Jr@yn(U)))} (A2)
where:

e ®, (o) is the phase-delay as given in equation (2) fordifferen-
tial thicknesses (xi)ie[o, ~N] = x gathered in the vector:

e 0., (o) is the modulation phase necessary for obsetvingfringes.
It can either be introduced spatially (spatial modulatien)-er-dynam-
ically (temporal modulation).

o I(0) is the incoherent intensity measured on thé detector.

e Crcf(0) is the fringe contrast.

e i is the complex number defined as 1> = 1.

On the detector, each pixelaneasures the incoherent addition of
the monochromatic interferograms at all wavenumbers within the
spectral channel. The polychromatic interferogram of a given spec-
tral channel X is thus only the centinuous addition of the monochro-
matic interferograms given inequation (A2).

I (O, x) = R { / (o) (1 + cref(o)e“‘bx“)*"m(”))) da}
) (A3)

which canbe rewritten:

Is(0,,x) = Is + Ix (O, x) (A4)

where

I =R { /E (o) da} (AS)

is the polychromatic incoherent intensity on the detector and
I5(0m,x) =R { / I(0)Ches(0)e'®x()F0m () da} (A6)
=

is the coherent term of the interferogram, responsible for the fringe
pattern.

For a function f, let’s define (f)y, its normalised weighted
mean on a wavenumber set 3 with chromatic weights w(o) such
that:

o) = fzw(o)f(o)da
o)y = 0

Now, let’s apply it to the function f(o) = exp(i®x(c)) on
the set of wavenumbers ¥ where the weights w(o) are the product
of the detector incoherent illumination /(o) and the modulation
function exp(i0m (0)):

(A7)

- [ ; A8
fE I(U)Cref(a')e"em(f’) do ( )

<eiq>x((,)> s 1(0)Crep(0)ei®m(@)ei®x(@) 4o
b

This is the ratio of the actual interferogram divided by the
interferogram in absence of dispersion (i.e. when Vo, ®x(0) = 0
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and thus giving the highest contrast possible). We note this perfect
interferogram Io,x;(6:,).

To.s(0m) = / [(0)Cres (o)€@ do (A9)
b
Using this new notation, the equation (A8) gives us:
7 _ 7 i ()
Is(0m, x) = éR{Io,E(em) <e >E} (A10)

Since the goal is to minimize the contrast loss, we expect a
small phase residue after minimization. So, for the identification of
the best x, we can assume a small dispersion and use the approxi-
mation:

<ei<1>x<a>> ~ H(®x(0)) ;= Vars[®x(0)]/2 (A11)
b

A second-order Taylor expansion in Eq. (A11) would lead to
1 — Vars [®]/2. This is a classical computation in optics known as
the Marechal approximation for the Strehl Ratio Maréchal (1947),
but it has been shown later that the formula exp(—Vars[®]/2)
is much better Mahajan (1983): the two formulas have the same
second-order behavior, but the presence of higher-order terms in the
second one considerably enlarges its validity domain. In particular,
if ® has a Gaussian distribution, then Eq. (A11) strictly holds. The
detailed derivation of Eq. (A11) can be found in Ruilier & Cassaing
(2001).

Finally, this enables us to rewrite the modulated polychromatic
interferogram:

I (O, %) ~ m{fo,z(em)ei@x(“”z} O (x) (A12)
where:

° f()’g(ﬁm), defined in equation (A9). It fits in a coherence en-
velop shaped by the spectrograph’s spectral channel shape.

o exp(i (Px(0))y) makes appear the phase shift due to the mean
phase-delay introduced by the set of media, weighted with the instru-
ment throughput, the spectrum of the source and the monochromatic
fringe contrast.

e and an attenuation factor

Cs(x) = exp(—Vars[Px(0)]/2) < 1 (A13)

It is responsible for the attenuation of contrast on the specttal band
and includes the losses induced by the mean group-delay. andithe
dispersion.

Of course, by definition of the modulation.@.,, We ‘want to
observe the maximum contrast for ,, =~0. We can put aside
the mean phase difference (®x (o)), when calculating the contrast
Cs 5 of the fringes. Finally, in the total pelychromatic interfero-
gram of a given spectral channel 3, the continue part I is not
impacted by the dispersion effects while the contrast of the modu-

lated part $ {fo,g(ﬁm) exp(? (@x(a)>2)} is reduced by the loss
factor Cs (x).

APPENDIX B:"MULTI-BAND FRINGE CONTRAST
MAXIMIZATION EQUATION

From the appendix’A, we know the dependency of the fringe contrast
with(the/ dispersion residues. Let’s take a spectro-interferometer
observing on several spectral channels Y, disjoint or not. We want
to maximize the contrast of all the interferograms given by these
spectral channels. For doing that, we can minimise L (x) defined as:

L(x) = —ZWE log Cx(x) BD
5
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where Wy is the weight arbitrary given to the spectral channel X to
favour an instrument before another.

According to the average defined in equation (A7), the compu-
tation of the variance should take into account the source intensity,
the fringe contrast and the instrument throughput. For simplicity,
we assume all these values unitary on the whole spectral bands.

The equation (B1) leads to:

L(x) =2r% Y "Wy

J

L is quadratic in the space of the differential thicknesses/@;.
The minimum of this function of N+1 variables (xo, ... &) is

N 2 (B2)
Zﬂi(U)(ni(U)U —(ni(o)o)g)zi| do

found at the position x,,: where the partial derivatives =y (Xopt)
X

are equal to zero. These derivatives can be written:

oL 2
pr (x) =8 ; Ws

N (B3)
[ 630) = (20) 3 atabie T i) do
§=0
with 77;(0) = II;(0)on;(o) using the "flag" function
1 if o . S
() = { if medium % contributes to 3, (B4)
0 otherwise

The geometrical delay x is a known entrance variable. A first
order and trivial cotreetion of the group-delay can be done by setting
the ODL to:

—20
n4,1(00)
such that,the group-delay is minimised at an arbitrary wavenumber
ool Therefractive index n; is thus less interesting than the refractive
index n. defined as:

ne(o) =1 —n1(0)/ng1(00) (B6)

which accounts for the "extra" index of air with respect to vac-
uum that remains after the correction of the ZGD for the arbitrary
wavenumber 0. Note that i follows the same definition introduced
for the n;.

This leads us to introduce a new vector x’ = (5931, T2, .eny :cN)
where 21 = x + dx1 such that 51 corresponds to the (algebraic)
excess thickness of ODL necessary for nulling the group-delay.

The equation (B3) can be rewritten on its vector form that
clearly distinguishes the residual dispersion and the correction that
needs to be done:

M x'=d (B7)

(BS)

/
xr =

where:

o the vector d = (d:);e[1,n], made of the covariances between
the spectral deviation and the phase dispersion introduced by the
additional media, where

&= =20 YW [ (o) = (7)) ~ ) do (B8)
5 b))

e the matrix M = (m.;)(; jyep, N2> Made of the covariances
between all additional media’s phase dispersion, where

miy =3 Ws / (7:(0) — (i) (7;(0) — (i) do (BY)
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12 C. Pannetier et al.

The equation B7 is sensitive to numerical noise due to the
fact that the matrix M is ill-conditioned. For the best corrector, its
conditioning is typically between 10~ and 10~8. It gets higher as
the spectral band to correct gets thinner. Indeed, the majority of
the correction is done by putting the average group-delay to zero.
However, albeit ill-conditioned, the inverse M~ of the matrix M
still exists and this equation admits only one solution

X =M™ d (B10)

that corresponds to the control equation for the /N media that form
the dispersion control in addition to the first order correction .

APPENDIX C: ACCOUNTING FOR THE TRANSMISSION

For a wide band LDC, glasses with good transmission all across
the band are difficult to find. This appendix shows how to add
transmission losses in the dispersion criterion from appendix B to
help identifying the best glasses for the LDC.

For a 2-beam interferometer, the vector of LDC thicknesses on
arms 1 and 2, t* and t? respectively, can always be written as

t* =t° +e*x/2 (C1)

where a € {1,2} is the arm index, €* = —(—1)® and t° is the
common vector of average positions, which does not impact on
the visibility since only the differential delays x between the arms
matter. This offset t° results from the LDC geometry (cf fig. 2) and
the necessity to always have positive thicknesses despite the fact
that x can have both positive and negative values for maximum sky
coverage.
The global transmission 7, on each arm a is thus

Ty ~ exp(—as - t%), (C2)

where as; is the vector of absorption coefficients at the central
wavenumber in each (small) channel.

Maximizing the fringe attenuation factor, proportional to
\/T& T2 in each channel, boils down to minimizing a new critef
rion L', in logarithmic scale as the visibility attenuation in Eq. (13),
which writes:

L = Z W e - t° (€3)
>

where W7, are weights, analogous to those introduced for'dispersion.

For a 2-beam interferometer, L’ is only-affected by t° and not
by x, since when reducing thickness on one arm;,the’same length is
added on the other arm with the symmetric'command of Eq. (C1).
To minimize the transmission loss,t° has to be minimized at each
command, such that

min(ty) = ) i (C4)

where a runs over all the sub-aperture indexes and the minimum
value t?’min for each ¢%. results from the diameter D; and angle (3;
of the i LDC prism\(Figy2):

t3 min = D tan B;. (C5)

The angle [J; is a free LDC parameter, only constrained by the
maximum correction to apply |z max| and the stroke B; of the i
translation stage. Its minimum value is

Bi.mif = arctan (%ﬂ) . (C6)

i

With more than two beams, control equations similar to

Egs. (C1) and (C4) can be derived. But for simplicity, the crite-
rion L’ can be computed only for the baseline leading to the largest
||, |Xmax|, which dominates performance.

The effect of intensity losses, assuming optimal design and
equal diameters (D) and stroke (B) for all LDC glasses, is thus
bounded by

1

, D
L (xmax) = (§ + E) ZWé ay - |xmax|~ (C7)
=

This term can be used to compute a total criterion L + L’
taking the LDC transmission into account.

This paper has been typeset from a TEX/IATEX file prepared by the authot.
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