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Abstract—Recent advances in control, coupled with an expo-
nential growth in data gathering capabilities, have made feasible
a wide range of applications that can profoundly impact society.
Yet, achieving this vision requires addressing the challenge of
extracting control relevant information from large amounts of
data, a problem that has proven to be surprisingly difficult. While
modern machine learning techniques can handle very large data
sets, most control oriented learning algorithms struggle with a
few thousand points. The goal of this paper is to point out the
reason why dynamic data is challenging and to indicate strategies
to overcome this challenge. The main message is twofold (i)
computational complexity in control oriented learning is driven
both by system order and the presence of uncertainty, rather
than the dimension of the data, and (ii) exploiting the underlying
sparsity provides a way around the “curse of dimensionality”.

Index Terms—Identification for Control, Machine Learning,
Robust Control, Switched Systems, Uncertain Systems

I. INTRODUCTION

RECENT advances in sensing and data collection capabil-
ities provide access to exponentially increasing amounts

of data. This data availability opens up a wide range of appli-
cations –from safer, self-aware environments and smart cities
to autonomous vehicles– that have the potential to profoundly
impact society. However, in order to realize this potential,
control algorithms will need to extract control relevant infor-
mation from large amounts of data, often in real time, using
computational and power budgets compatible with on-board
resources. Unfortunately, in most scenarios, this is beyond
the capacity of “traditional” algorithms. For instance, even in
well established areas such as Linear Time Invariant (LTI)
systems identification, recent results indicate that the sample
complexity of finding a state space realization of an nth order
system scales as O(n(error in realization)−2), when the states
are directly measurable, and as O(n5(error in realization)−4)
for the general case. When taking into account the cost of the
identification algorithm, the overall computational complexity
grows as n3(error in realization)−2 for state measurements
and n8(error in realization)−4 for the general case.

The goal of this paper is to point out the specific features
that make the problem of control oriented information extrac-
tion harder than other “big data” type problems and point out
to alternatives to mitigate the “curse of dimensionality”. In
particular, data generated by dynamical systems is temporally
correlated through the underlying dynamics. On one hand,
this correlation renders the learning problem harder, since it
limits the use of statistical independence arguments commonly
used in machine learning. In fact, the need to account for
this correlation is what drives the sample complexity of

This work was supported in part by NSF grants CNS–1646121, CMMI–
1638234, IIS–1814631, ECCS–1808381 and CNS–2038493, and AFOSR
grant FA9550-19-1-0005. The author is with the ECE Department, North-
eastern University, Boston, MA 02115. email: msznaier@coe.neu.edu

identification. On the other hand, this same correlation induces
an underlying sparse structure that can be exploited to mitigate
computational complexity. These observations motivate the
main messages of the paper (i) computational complexity in
control oriented learning is driven both by system order and
the presence of uncertainty, rather than the dimension of the
data itself, and (ii) exploiting the underlying sparsity provides
a way to mitigate the “curse of dimensionality”.

The paper starts by revisiting LTI systems identification,
examining the sample and computational complexity of ex-
isting methods and potential mitigation strategies that exploit
connections to learning in Reproducing Kernel Hilbert Spaces
(RKHS). In particular, we show that the problem of identifying
parsimonious LTI models can be recast as a regularized
atomic norm minimization. In turn, this minimization can
be efficiently solved by using a randomized version of the
Frank-Wolfe algorithm [1], whose complexity scales linearly
with the number of data points. Further, these results can be
easily extended to dynamical graphical models, representing
dynamic interactions between multiple agents. We conclude
the analysis of LTI systems by briefly examining data-driven
control methods, where a controller is designed directly from
the data, without identifying the plant, by learning a control
Lyapunov function [2], [3]. As before, computational complex-
ity is driven both by the order of the system and the presence
of uncertainty, with a substantial increase in complexity when
only noisy data is available.

We then move to the nonlinear case. Non-linear identifica-
tion and its connections to machine learning techniques such
as manifold embedding and deep learning are currently very
active research topics. We argue that, as in the in the LTI
case, computational complexity is still driven by the memory
of the system and offer some thoughts on how to mitigate this
complexity. We start by considering switched linear systems,
since as universal approximators [4] they provide tractable
approximations to general nonlinear control problems. While
identification of switched linear systems is generically NP-
hard, we show that it is possible to obtain tractable convex
relaxations that scale linearly with the number of data points
by exploiting a connection to semi-algebraic optimization. We
conclude the paper by briefly examining Koopman operator
based methods for identifying generic non-linear dynamics.

The paper is not intended to serve as a comprehensive
survey of control oriented learning, a daunting task given the
large volume of research carried out in the past decade. In
particular, we do not cover reinforcement learning (RL) based
methods (see for instance [5], [6] for results related to the
performance of model based versus model free RL approaches
in LQR/LQG problems). Rather, our goal is to examine a suite
of approaches, both for well established areas such as LTI
identification and for ones still being developed (e.g. nonlin-



ear identification), that highlight the fact that computational
complexity is related to system order and uncertainty, rather
than merely the number of data points or their dimension.

II. IDENTIFICATION OF LTI SYSTEMS

In this section we revisit some classical results on LTI
identification from the perspective of computational com-
plexity, and use recent results on the sample complexity of
identification to link this computational complexity to the
identification error.

A. Finding realizations via Least Squares

The simplest “control oriented learning” problem is the clas-
sical LTI realization problem: given the first nM + 1 Markov
parameters of an LTI system, Gk ∈ Rp×m, k = 0, . . . , nM ,
find a minimal state space model:

xk+1 = Axk + Buk + wk

yk = Cxk + Duk + vk
(1)

such that Gk = CAk−1B, k = 1, . . . , nM . This problem can
be solved by using a variant of Ho’s algorithm based on a
factorization of the Hankel matrix with (block) entries Hi,j =
Gi+j−1 [7]. Specifically, consider a Hankel matrix H with n1

(block) rows and n2 +1 (block) columns, with n1 +n2 = nM .
Assume that n .

= rank(H) < min{n1, n2 + 1} and define the
matrices:

←−
H

.
= last mn2 columns of H

−→
H

.
= first mn2 columns of H

U,Σn,V
.
= reduced svd of

−→
H, e.g.

−→
H = UΣnVT

Ko
.
= UΣ

1
2
n , Kc

.
= Σ

1
2
nVT ,

Then, a minimal realization of (1) is given by:

B = first m columns of Kc, C = first p rows of Ko,

A = K†o
←−
HK†c, D = G0

(2)

where K†o
.
= (KT

o Ko)
−1KT

o and K†c
.
= KT

c (KcK
T
c )−1. The

computational complexity of the algorithm is dominated by the
cost of computing the svd of

−→
H Assuming that the order of the

system is n (either given as a prior or estimated from building
Hankel matrices with more than n columns) and that p ≥ m,
(more sensors than controls), complexity can be minimized
by choosing a “very rectangular” H, with n1 ∼ nM − n and
n2 ∼ n, resulting in a computational complexity O((nM −
n)2p2mn+ n3m3) ∝ n3 when nM = 2n.

Note that the bound above is asymptotic, for a fixed number
of points, and assuming that the Markov parameters Gk are
known. An interesting question is the sample complexity of
learning these parameters from experimental data, that is the
number of points needed to guarantee, with high probabil-
ity, a given error bound. As shown in [8], the first nM
Markov parameters can be learned, with a computational cost
O(Nn3

Mm
2), by performing N experiments, each of length

nM , and solving a least squares problem of the form:

G = argmin
X∈Rp×mnM

‖Y −XU‖2F = YUT (UUT )−1 (3)

where

G
.
=
[
G1 . . .GnM

]
Y

.
=
[
y(1) . . .y(N)

]
, U

.
=
[
T

(1)
u . . .T

(N)
u

]
Here T

(i)
u denotes the Toeplitz matrix formed from the input

used in the ith experiment and y(i) .
=
[
y

(i)
1 . . .y

(i)
nM

]
the

corresponding output.
In terms of sampling complexity, given 0 < δ < 1, assume

that N ≥ 8mnM + O(log(nMδ
−1)). Then, with probability

greater than 1− δ:

‖G−Gtrue‖ ≤ N−
1
2nM (K1σv +K2σwn

1
2

M )log
1
2 (nMδ

−1)

+O(N−
1
2nM log

1
2 (nMδ

−1))

where σv and σw denote the covariances of the measurement
and process noise. Combining this bound with the results in
[9], keeping only the leading terms and choosing n1 = n2 +
1 = n+1 (the smallest dimensions that allow for estimating a
state space realization with n states) shows that the number of
experiments N needed to estimate the system matrices within
a given error bound satisfies:

N ∝
n5(K1σv +K2σwn

1
2 )2log nδ

(error in matrices)4
(4)

Thus, even in the absence of process noise, the computational
complexity of finding a state space model with (probabilistic)
error bounds by first learning the Markov parameters and then
factoring the corresponding Hankel matrix is dominated by
the cost of the learning phase. This complexity roughly scales
as O(n8σ2

v(error in matrices)−4), highlighting the role played
by system order and uncertainty.

In the special case where noisy measurement of the states
are directly available (e.g. C = I,D = 0), the matrices A,B
can be directly estimated by solving a least squares problem,
avoiding the Hankel factorization step. In this scenario, [10]

has shown that the estimation error ∝ σw
√

(n+m) log δ−1

N , and
thus the overall computational cost is O(N(n + m)2 + (n +

m)3) ∝ σ2
w(n+m)3 log δ−1

(error in matrices)2 .
An alternative approach that seeks to directly estimate the

realization from a single lenght T execution, rather than from
N roll-outs, has been proposed in [9]. As shown there, in
the case of stable systems, and assuming that the number
of Markov parameters estimated is large enough so that
‖CAnM−1‖ ∼ 0, the first nM Markov parameters can be
computed in O(n3

Mm
3 + Tn2

Mm
2), with an approximation

error ∝
√

nMm
T . The corresponding error in the estimated

realization is, with probability ≥ 1 − δ, ∝ (n3nMm)
1
4T−

1
4 .

Assuming that nM is a fixed multiple of n, it follows that, by
exploiting stability, the cost of estimating a realization with a
given error bound is ∝ n6m3

(error in matrices)4 + n3m3.

B. Enforcing Stability

A potential problem with the methods discussed above
is that the resulting system may not be stable, even if the
underlying system generating the data is. In addition, the
probabilistic error bounds provided by the sample complexity



analysis are not well suited to be used by robust control
methods such as H∞ that rely on worst case uncertainty
bounds. These issues can be addressed using control oriented
identification methods (see e.g. [11]), based on interpolation
theory. Given np = nt+nf time and frequency domain inputs
{uti}

nt
i=1, {uf (zk)}nfk=1, where zk = e−jωk , let yti , y

f
k denote

the measurements of the corresponding outputs, corrupted by
bounded `∞ noise with bounds εt, εf . It can be shown [12]
that existence of a system with all poles in |z| ≤ ρ < 1
that interpolates the experimental data points within the noise
level is equivalent to feasibility of the following semi-definite
program (SDP):

minK≥0,h,ξK
2 subject to:

Z
.
=

[
M−1

0 X
X∗ K2M0

]
� 0

|yfk − ξku
f
k | ≤ εf , k = 1, . . . , nf

|yti − (T(u)h)i| ≤ εt, i = 1, . . . , nt

(5)

where

M0 =

[
P S0R

2

R2S∗0 R2

]
, X =

[
Ξ 0
0 TT (h)

]
S0 =

[
(z1−j
i )∗

]
ij
, i = 1, . . . , nf , j = 1, . . . , nt

Ξ = diag
[
ξ1 . . . ξnf

]
R = diag

[
1 ρ ρ2 . . . ρnt−1

]
,

P =
[

z∗i zj
z∗i zj−ρ2

]
ij
, i, j = 1, . . . , nf

h =
[
h1 . . . hnt

]T
T(h) =

 h1 . . . 0
...

. . .
...

hnt . . . h1

, T(u) =

 u1 . . . 0
...

. . .
...

unt . . . u1


where X∗ denotes Hermitian conjugate. As shown in [12], if
(5) is feasible, then the set of all systems that have the first
nt elements of the impulse response given by h, frequency
response at zk given by ξk and gain ≤ K is described by
Sξ,h = {G : G = F`[L(z), Q(z)]} where F`(., .) denotes
lower fractional transformation. Here L(z) depends only on
ξ and h, and Q is any transfer function with all poles in
|z| < ρ and such that max|z|=ρ|Q(z)| ≤ 1. In particular,
the choice Q = 0 (so called central interpolant) leads to the
model Gcentral(z) with order no larger than nt + nf [12]1.

In this context, the worst case identification error is bounded
by the diameter of the set Sξ,h [11]. For a purely time
domain impulse response experiment or a frequency domain
experiment with equally spaced data, this error is bounded by

‖G(z)−Gtrue(z)‖H∞ ≤

 2(ntεt +K ρnt

1−ρ ) time domain

2(εf + 2K ρπ
nf (1−ρ2)

)
freq. domain
nf � 4

While this approach is guaranteed to yield stable systems,
if (5) is solved using a standard interior point solver, its com-
plexity grows as O(n6

p), and thus can only handle short data
records. Even when using a first order Alternating Direction
Method of Multipliers (ADMM) algorithm [14], which brings
down the complexity of each iteration to O(n3

p), a typical
laptop is limited to ≈ 103 data points.

1The minimum order interpolant can be obtained by using the degrees of
freedom available in Q to minimize the rank of a Loewner matrix [13].

C. Regularization based methods

Recently proposed alternatives to subspace and interpolation
based approaches are motivated by the success of kernel based
methods and Tikhonov regularization in machine learning (see
for instance [15] for an excellent tutorial). Consider again
the least squares estimator (3) and assume for simplicity
that only white Gaussian measurement noise with covari-
ance σ2I is present. Then, the estimate G has covariance
E
{

(G−Gtrue)
T (G−Gtrue)

}
= σ2(UUT )−1. It can be

shown that the estimator (3) is asymptotically efficient, that is,
as N → ∞ its covariance approaches the Cramer-Rao limit,
so no other unbiased estimator can outperform it [15]. On the
other hand, in many scenarios it is advantageous to trade off
bias versus variance by incorporating additional degrees of
freedom. Consider a Tikhonov type regularized regression

θ̂ = argmin
θ

‖y − θΦ‖22 + γθP−1θT (6)

where Φ is known, θ is a vector of parameters to be estimated
and where P � 02 and γ ≥ 0 are the additional degrees
of freedom. In the SISO case, problem (3) directly fits this
formalism by setting θ = G and Φ = U, while the MIMO
case can be accommodated by vectorizing G and Y and
rearranging the elements of U. It can be shown [15] that in
this case, the minimum variance estimator of θtrue is obtained
by setting γ = σ2 and P = θTtrueθtrue, yielding

θ̂ = yΦTP(ΦΦTP + σ2I)−1

Πθ
.
= E{(θ̂ − θtrue)T (θ̂ − θtrue)} = σ2(ΦΦT + σ2P−1)−1

(7)

While this result points out to the advantages of using regular-
ized regression, it is mainly of theoretical importance, since the
regularization term depends on the unknown θtrue. However,
it provides a bridge to the case where the unknown parameters
are random variables, with known covariance. Assume that
the parameter θ is a Gaussian random vector with distribution
N (θo,P) and that the noise is white Gaussian, with covari-
ance σ2. The vector z =

[
θ − θo y − θoΦ

]
is Gaussian

with zero mean and covariance Σ
.
=

[
P PΦ

ΦTP ΦTPΦ + σ2I

]
.

Next, recall that if two variables x1,x2 have a joint Gaus-
sian distribution with mean

[
µ1 µ2

]
and covariance Σ =[

Σ11 Σ12

ΣT
12 Σ22

]
, then x1|x2 ∼ N (µ,Π) with:

µ = µ1 + (x2 − µ2)Σ−1
22 ΣT

12

Π = Σ11 −Σ12Σ
−1
22 ΣT

12

(8)

Using this formula to compute the posterior distribution of
(θ − θo)|y yields: (θ − θo)|y ∼ N (θ̂,Πθ), where θ̂ and
Πθ are given in (7), with y replaced by y − θoΦ. Thus, in
a Bayesian framework, θ̂ can be considered as the maximum
a-posteriori estimate (MAP) of θ given its a-priori mean θo
and covariance P, and the observations y.

An interesting open question is whether the use of regular-
ization can improve the sample complexity of learning via least

2For a singular P
.
= V

[
Σ 0
0 0

]
VT , P−1 .

= V

[
Σ−1 0

0 0

]
VT .



squares. An affirmative answer has been given in [16] where
the regularization penalty is given in terms of the nuclear norm
of the Hankel matrix, leading to a problem of the form

θ̂ = argmin
θ

1

2
‖y − θΦ‖22 + λ‖H(θ)‖∗ (9)

where y ∈ RNreg contains data collected from Nreg roll-outs. In
this context, if Nreg ≥ min{n2, nM} then ‖H(θ − θ)true‖∗ ∝√

nM
Nreg

log nM and thus the number of roll-outs Nreg ∝
n3 log2 n

(error in the realization)4 compared against N ∝ n5 lognδ−1

(error in the realization)4

for regular least squares. On the other hand, while (3) has an
explicit solution, (9) entails solving a semi-definite program.
This SDP can be efficiently solved using the ADMM based
method proposed in [14], at a cost of ∝ n5log2n

(error in matrices)4 to set
up the problem, plus O(n3) per iteration compared against an
overall cost ∝ n8 (n6 for stable systems) when using least
squares. Note that this computational complexity reduction is
partially due to the fact that the regularized approach uses just
one data point from each roll-out, versus all data points for
the approaches discussed in Section II-A.

D. Connections with Reproducing Kernel Hilbert Spaces

The optimization (6) can also be viewed in the context
of learning functions in a RKHS. Briefly, given a set X , a
symmetric function K : X ×X → R is a Mercer kernel if it is
positive definite, that is, for all finite subsets {xi1 , . . . , xin} ⊂
X the matrix K with entries K(xi, xj) is positive definite
[17]. Each Mercer kernel defines a unique Hilbert space
HK of functions of the form f(.) =

∑s
i=1K(xi, .)fi, for

some scalar s and xi ∈ X , equipped with the inner product
〈f, g〉 .=

∑
i,j figjK(xi, xj) [17].

In this context, given data, one can attempt to learn a
function g ∈ HK by solving:

ĝ = argmin
g∈HK

L(g(x1), g(x2), . . . , g(xnp)) + γ‖g‖HK (10)

Here L(.) is a loss function that depends on g(.) only through
g(xi) and ‖.‖HK is the norm associated with the inner product
induced by the kernel. Problem (6) fits this formalism by
defining X = {1, .. . . . , n}, K(i, j) = Pij , g(xi) = θi and
L = ‖y−gΦ‖22. With this choice of kernel, the corresponding
Hilbert space consists of elements of the form g = agK,
equipped with the inner product 〈f ,g〉 = afKagT . Thus
‖g‖HK = gK−1gT and we recover (6).

Let φj(.) denote the (normalized) eigenfuctions of K(., .),
with corresponding eigenvalues λj . Since φj(.) forms an
orthonormal basis of HK , it follows that its elements admit
a description g(.) =

∑
k ckφk(.). Further, from Mercer’s

theorem [17], it follows that ‖g‖2HK =
∑
k
c2k
λk

. Thus, an
alternative, “dictionary based” formulation of (6) is

ĉ = argmin
c

‖y − cDΦ‖22 + γcΛ−1c (11)

where the jth row of the dictionary DΦ is φj , Λ= diag (λr)
and ĝ = ĉDΦ. An advantage of the formulation (10) (or its
atomic counterpart (11)) is that the kernel K can be used to
enforce desirable properties for g such as stability. A review of

different kernels and their properties can be found in [18], [19].
In particular, the first order stable spline (FOSS) kernel [18],
given by K(s, t) = E(gsgt) ∝ αmax{s,t} where 0 < α < 1,
is attractive because it enforces exponential stability of the
impulse response, while having a single tunable parameter.
Further, its eigenfunctions have the explicit form [20]:

φj(k) =
√

2 sin
αk√
ζj
, ζj =

1

(jπ − π
2 )2

(12)

where ζj is the eigenvalue associated with φj .
Kernel based approaches are desirable due to their ability to

impose properties on g with a computational complexity that
scales as n3

g +n2
gnp, where ng is the number of elements of g

penalized in (10). However, using g to predict future values of
the output or to design a controller requires finding a model, a
step with comparable computational complexity. Alternatively,
(11) leads to an expansion that can be used to predict future
values of the output. However, since there is no sparsity prior
on c, (11) is infinite dimensional. Thus, obtaining tractable
approximations requires truncating the dictionary DΦ. In ad-
dition, in the case of the FOSS Kernel, the resulting expansion
cannot be used directly for control design.

E. Atomic Norms and Sparse Optimization
As noted in the last section, the regularized problem (10)

leads to expansions of g in terms of the atoms φi. However, a
sparsity prior is needed in order to obtain tractable problems.
To further explore this approach, we will consider the problem
of finding sparse representations of a given object in terms of
the elements of a dictionary A (the “atoms”). If A is centrally
symmetric (a ∈ A ⇒ −a ∈ A), we can assign to each point
in space an “atomic norm” ‖g‖A defined as [21]:

‖g‖A = inf{t > 0 : g ∈ t · convex hull(A)} (13)

Atomic norms play a key role when seeking sparse solutions
to optimization problems of the form:

min
g
f(g) subject to ‖g‖A ≤ τ (14)

where τ is used to promote sparsity [21]. Note that (14) can be
considered a constrained version of the regularized problem:

min
g
f(g) + λ‖g‖A (15)

which is similar to (11) by taking f(g) = ‖y −Tug‖2. The
advantage of the formulation (14) over (15) is that it can be
solved using a first order Frank-Wolfe type algorithm [22],
which has an optimality gap of O( 1

number of iterations ). Recasting
system identification into an atomic norm framework requires
a suitable set of atoms where the representation is sparse. As
shown in [1] one such set is given by: A = A1∪A2∪A3∪A4,
where:

A1 =

{
Ψp(z) = ± (1− |p|2)

2
(

1

z − p
+

1

z − p∗
) : p ∈ D

}
A2 =

{
Ψp(z) = ± (1− |p|2)

2
(
−j
z − p

+
j

z − p∗
) : p ∈ D

}
A3 = {Ψp(z) = ±1}

A4 =

{
Ψp(z) = ± (1− |p|2)

z − p
: p ∈ [−ρ, ρ]

}
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Fig. 1: Cost of Hankel norm regularized LS
solved using ADMM against randomized Frank
Wolfe. The cost of each ADMM iteration is
O(n3

M ) versus O(nM log(nM )) for FW.

and D is a
suitable subset
of the unit disk.
A potential
difficulty here is
that this set of
atoms is infinite
dimensional.
In the case of
well damped
plants, this
difficulty can
be overcome by
simply gridding the unit disk [23]. However, plants with poles
close to the stability boundary require using dense grids. This
can be avoided using a randomized Frank-Wolfe algorithm
(Algorithm 1), proposed in [1], to solve (14). As shown
there, this algorithm retains the rate of convergence (albeit
now in expected value) of its deterministic counterpart, that
is, E{‖Tu(g − gopt)‖22} ≤ O( 1

number of iterations ). In terms of
computational complexity, Step 4 involves inner products of
the form 〈∇f(gk),a〉 and Step 5 admits the closed form
solution αk = max(0,min(αu, 1), where

αu =
(Tugk − y)T (Tu(τak − gk))

(Tu(τak − gk))T (Tu(τak − gk))

The computational complexity of these steps is dominated
by computing products of the form Tux and TT

ux. While
in principle this requires O(n2

M ) multiplications, the Toeplitz
structure of Tu can be exploited to compute these products in
O(nM log nM ) ( [24], Chapter 4). Thus, the overall compu-
tational complexity per iteration is O(npnM log nM ) and the
algorithm can comfortable handle O(106) data points [24].

Algorithm 1 Randomized FW algorithm for LTI identification

1: Initialize g0 ← τ{a0} for arbitrary a0 ∈ A
2: for k = 0,1,2,3,..., kmax do
3: Pick np poles uniformly distributed over Dρ, denote

the set of these poles Sk
4: ak ← {argmina∈A{Sk}〈∇f(gk),a〉}
5: αk ← argminα∈[0,1]f(gk + α[τak − gk])
6: gk+1 ← gk + αk[τak − gk]
7: end for

F. Respecting Structure: Dynamical Graphical Models

Fig. 2: A dynamical graphical
model. Nodes represent time se-
ries and edges are dynamical sys-
tems operating on these.

So far, we have consid-
ered only unstructured mod-
els. However, in many prac-
tical scenarios unstructured
models may fail to cap-
ture the structure of the in-
teractions between physical
agents, allowing for non-
realistic interactions. Exam-
ples of these scenarios range
from models of tightly interacting infrastructures (e.g. the

power and communication grids) to biological systems and
crowd behavior. Structured interactions can be captured by
considering dynamical graphical models, represented by a
directed graph structure G = {V, E}, where each node V
corresponds to a given time series (the behavior of a specific
agent), and the edges E are operators relating the values
of these series at different time instants, accounting for the
dynamics arising from agent interactions (see Fig. 2). The
corresponding equations are

xj(t) =
∑n
i=1

∑r
k=1 cji(k)xi(t− k) + ηj(t),

t ∈ [r + 1, Tf ], j = 1, . . . , n
(16)

where xj(.) denotes the time series at the jth node, cji(.) are
the coefficients of an ARX model relating the present value of
the time series at node j to the past values measured at node
i, and ηj(t) represents measurement noise. The goal of this
section is to briefly discuss the problem of identifying these
models from experimental data. Note in passing that, unless
a regularization criteria is added, the problem is ill posed,
since an infinite number of topologies can explain a given set
of finite, noisy observations. In the absence of other priors, a
suitable regularization is penalizing |E|, the number of edges of
the graph, reflecting the fact that usually the simplest solution
is the correct one. Let

xj
.
=

[
xj(Tf ), . . . , xj(r + 1)

]T
, X

.
=
[
x1, . . . ,xn

]
Hi

.
=


xi(Tf − 1) xi(Tf − 2) . . . xi(Tf − r)
xi(Tf − 2) xi(Tf − 3) . . . xi(Tf − r − 1)

... . . . . . .
...

xi(r) . . . . . . xi(1)


H

.
=

[
H1 . . . Hn

]
ηj

.
=

[
ηj(T ), . . . , ηj(r + 1)

]T
, Ξ

.
=
[
η1, . . . ,ηn

]
cji

.
=

[
cji(1), . . . , cji(r)

]T
,

cj
.
=

[
cTj1 . . . , c

T
jn

]T
, C

.
=
[
c1, . . . , cn

]
With this notation, the equations describing the complete
model can be written in compact form as:

X = HC + Ξ (17)

and the problem of interest here reduces to:

min
∑
i

‖{ci}‖0 s. t. (17) and ‖ηi‖2 ≤ ε, i = 1, . . . , n

where ci ∈ Rr and ‖{ci}‖0 denotes the number of non-zero
elements of the vector sequence ci. The value of the objective
function is precisely |E| and, due to its structure, the problem
decouples into n subproblems of the form:

min ‖{ci}‖0 s. t. ‖ηj‖2 ≤ ε and xj =
∑
i

Hici + ηj (18)

A computationally efficient solution to this problem can be
obtained by expanding the concept of atomic norm to encom-
pass the case where it is desired to block-sparsify a vector
sequence. Given a set of atoms A = {a} ⊆ X , assume that it
can be partitioned into N centrally symmetric subsets Ai (the
super-atoms), such that A = ∪iAi and Ai ∩Aj = ∅, ∀ i 6= j
and associate to each super-atom Ai = {ai1, ..aini} the matrix
Ai having as its jth column aij , the coordinates of the atom aij



in a suitable basis in X . Given a point x ∈ X , its super-atomic
norm is defined as:

‖x‖sA = minc

∑N
i=1 ‖ci‖∞ s.t x =

∑
i Aici (19)

Since the convex envelope of the cardinality of a vector
sequence {c}, ‖ci‖∞ ≤ 1 is given by ‖{c}‖0,env =∑
i ‖ci‖∞ it follows that, minimizing the super-atomic norm

indeed promotes block-sparsity. Further, problems involving
the minimization of a function subject to super-atomic norm
constraints can be efficiently solved by using the following
variant of Frank-Wolfe [25]:

Algorithm 2 Minimization of f(x) subject to super-atomic
norm constraints

1: Data: set of super-atoms A = {A1, . . . ,Ai, . . . }
2: Initialize x(0) ← τa for some arbitrary a ∈ A
3: for k = 0,1,2,3,..., kmax do
4: L ← arg minm

{
min‖c‖∞≤1〈∂f(x(k)),

∑
aimci〉 s.t.

aim ∈ Am}
5: c← arg min

‖c‖∞≤1
〈∂f(x(k)),

∑
aiLci〉 s.t. aiL ∈ AL.

6: a←
∑
i aiLci

7: αk ← argminα∈[0,1]f(x(k) + α[τa− x(k)])

8: x(k+1) ← x(k) + αk[τa− x(k)]
9: end for

The ideas discussed above can be used to solve (18) by sim-
ply defining each super-atom as Ai = {Hi(:, t)}, t = 1, . . . r,
the collection of columns from the matrices Hi, leading to a
super-atomic norm minimization of the form

min ‖z‖sA subject to ‖xj − z‖2 ≤ ε (20)

where z =
∑
i Hici. Finally, imposing soft, rather than hard

constraints on the fitting error leads to:

min ‖xj − z‖2 subject to ‖z‖sA ≤ τ (21)

which can be efficiently solved using Algorithm 2. As before,

Fig. 3: Identifying causally interacting
groups in a video clip [25]

this approach only
requires computing
inner products and
thus can handle large
data sets. Further, as
shown in [25], it can
be easily extended
to handle unknown
inputs, modeling
for instance the
interaction of the system with its environment. An application
of these ideas to find causal interactions between human
agents is shown in Fig. 3 [25].

G. Learning a controller directly from data

Many practical scenarios involve designing controllers when
a model is not a-priori available. An interesting question is
whether the observed data can be used as a proxy for the
unknown model, leading to controllers designed directly from
the data. Of particular interest to this paper are methods that

learn a control Lyapunov function (CLF) directly from the
data, since these techniques guarantee closed loop stability.

Consider data generated by an (unknown) LTI system:

xk+1 = Axk + Buk, x ∈ Rn,u ∈ Rm (22)

Assume that the system is excited with a suitable input uk, k =
0, . . . , np and xk is measured. The goal is to find a stabilizing
feedback law u = Kx directly from this measured data. The
key observation is that, as noted in Willems’ fundamental
lemma [26], if the input is persistently exciting, then, in the
noiseless case any input/output trajectory of an LTI system can
be represented as a linear combination of collected data. Let
Ui,np

.
=
[
ui, . . . ,unp+i−1

]
, Xi,np

.
=
[
xi, . . . ,xnp+i−1

]
, and

assume that u is such that rank(Hu,np) = m(n + 1), where
Hu,np denotes the Hankel matrix associated with u, with n+1

block rows. As shown in [3], if rank(

[
U0,np

X0,np

]
) = n + m

then, in the noiseless case, given a state feedback control law
u = Kx, the closed loop system satisfies:

A + BK = X1,npGK (23)

where GK ∈ Rnp×n is any matrix satisfying[
K
In

]
=

[
U0,np

X0,np

]
GK (24)

Using this description to search for a quadratic CLF via
Lyapunov’s equation leads to one of the main results in [3]:
Let zk

.
= xk + wk denote noisy measurements of the states

of (22). If the noise wk satisfies[
0

W0,np

] [
0

W0,np

]T
� γ1

[
U0,np

Z0,np

] [
U0,np

Z0,np

]T
W1,npW

T
1,np � γ2Z1,npZ

T
1,np

(25)

for some 0 < γ1 < 0.5, 0 < γ2 and there exist Q ∈
Rnp×n, α ≥ 0 such that[

Z0,npQ− αZ1,npZ
T
1,np Z1,npQ

QTZT1,np Z0,npQ

]
� 0[

Inp Q
QT Z0,npQ

]
� 0

6γ1 + 3γ2

1− 2γ1
<

α2

2(2 + α)

(26)

Then, the controller K = U0,npQ(Z0,npQ)−1 stabilizes (22).
It can be shown [3] that if wk ≡ 0, one can take α = 0 and
ignore the second and third inequalities in (26). If wk 6≡ 0,
these results hold if the signal to noise ratio is large enough.

An interesting point is that, in the noiseless case, the
computational complexity of identifying

[
A B

]
, using for

instance least squares, isO((n+m)3), while the computational
complexity of an LMI based controller synthesis is roughly
O(n3(0.5n + m)3), when using an ADMM based algorithm
to solve the SDP. On the other hand, the LMI (26) has nnp de-
cision variables and hence its complexity is roughly O(n3n3

p).
Since for the noiseless case one can take np = (m+1)n+m,
it follows that in this scenario, data driven control and the two
step process have roughly the same computational complexity
(≈ n6). In the case of measurements corrupted by Gaussian



noise, as shown in [10] for LQR control, a two step procedure
based on a combination of LS identification over N roll-outs
and a system-based parameterization of all controllers satisfies

J − J∗

J∗
∝
√

(n+m) log δ−1

N
with probability > 1− δ

where J, J∗ denote the actual and optimal H2 cost, respec-
tively. The cost of identifying A,B with identification errors
bounded (with probability 1−δ) by εA, εB is O(N(n+m)2 +
(n + m)3), while a robust static controller that renders the
closed loop robust to these errors, can be found by solving
a parametric SDP with O(n(n + 2m)) decision variables.
On the other hand, approximating the stochastic noise with
deterministic noise satisfying an IQC type bound and using
the S-Lemma based approach proposed in [27], allows for
designing a data driven controller guaranteed to stabilize all
plants compatible with the observed data by finding a feasible
solution to an LMI of size (n + 3m) × (n + 3m). This LMI
has O(n(n + m)) decision variables, with an initial cost of
O((n+ np)

2(3n+m)), to set it up. Thus, as in the noiseless
case, the complexity of the two step approach and data driven
control (dominated in both cases by the number of decision
variables) is similar. In the case of `∞ bounded noise, worst-
case sufficient conditions guaranteeing closed loop stability of
all plants compatible with the observed data can be obtained by
formulating a robust super-stabilization problem and exploit-
ing duality to reduce it to a linear program [28]. However,
the ability to handle `∞ bounded noise comes at the price of
increased complexity, since this LP has O(n3np) variables and
O(n4+n3m) constraints and thus a computational complexity
of at least O(n10) since np should be at least n2.

The data driven approaches covered so far can be considered
“model based”, in the sense that they leverage the existence of
an underlying model, even though in some cases this model
is never found explicitly. This raises the question of whether
“model free” approaches that directly learn and optimize a
value function can outperform model based ones. A negative
answer to this question for the case of LQR control has
been given in [5]. As shown there, the sample complexity
of estimating the value function using least squares temporal
difference learning is ∝ O( n√

N
), at a computational cost of

O((n+m)6) per iteration, which is comparable to the cost of a
model-based approach. However, as noted in [5], convergence
of the model free approach is substantially slower, typically
requiring an order of magnitude more iterations.

III. IDENTIFICATION OF SWITCHED SYSTEMS

In the previous sections we have addressed identification
of LTI systems and argued that computational complexity is
driven by the order of the system. In this section we extend
these ideas to the case of switched linear systems. These
systems are interesting in their own, since they appear in many
scenarios, and as tractable approximations to more complex
non-linear dynamics. Due to the large volume of research in
this area, in the sequel we will cover only a few approaches
that highlight the connection between computational complex-
ity, system order and uncertainty. The interested reader is

referred for instance to [29] for a comprehensive list of the
various switched systems identification techniques that have
been proposed in the past two decades. It has been recently
shown [30] that finding a switching model that interpolates
the data with the minimum number of switches is solvable in
polynomial (in np) time. On the other hand, many scenarios
require fitting the data with a minimum (or known) number
of subsystems. Examples of these situations include not only
control applications (fault tolerant control and anomaly detec-
tion), but also, among others, computer vision and machine
learning ones (e.g. activity recognition and subspace clustering
of dynamic data). Unfortunately, the minimum number of
subsystems scenario leads to a very challenging NP hard
problem. Nevertheless, as described below, convex relaxations
whose complexity scale linearly with the number of data points
can be obtained by exploiting a connection to semi-algebraic
geometry, positive measures and positive polynomials.

Consider an error-in-variables switched auto-regressive ex-
ogenous (SARX) linear model

yt + ζt =

na∑
k=1

ak(γt)(yt−k + ζt−k) +

nc∑
k=1

bk(γt)(ut−k + ηt−k)

(27)
where γt is the mode variable indicating which subsystem
is active at time t. The goal is to identify the parameters
{anak=1(j), bnck=1(j)} that characterize each of the subsystems
in (27) from the input/output experimental data (uk, yk) and
the a-priori information {ns, na, nc}, where ns is the number
of subsystems and na and nc are their orders.

A. Algebraic Reformulation With a Stochastic Perspective

Consider a trajectory of (27) corresponding to a given
known input and an unknown switching sequence. Define

rt = [−yt, yt−1, ..., yt−na , ut−1, ..., ut−nc ]
T

bi = [1, a1(i), ..., ana(i), b1(i), ..., bnc(i)]
T

(28)

In the noise free case, bTi rt = 0 holds for all time instants ti
where γt = i. Thus, the corresponding regressors rti live in a
subspace normal to bi and the vanishing ideal of the arrange-
ment of subspaces defined by the vectors bi, i = 1, . . . , ns is
generated by the polynomial [31]:

ps(rt) =

ns∏
i=1

(bTi rt) = cTnsvns(rt) = 0 (29)

where vns(.) ∈ Rms , with ms
.
=
(
na+nc+ns

ns

)
, denotes the

Veronese map of degree ns:

vns(rt) =
[
ynst . . . (yα1

t yα2
t−1 . . . u

αna+nc+1

t−nc ) . . . unst−nc
]T

and where the entries of the vector cns are only functions of
the entries of the vectors bi. Evaluating this polynomial at
each data point and collecting the results in a matrix leads to:

Vnscns
.
= [vns(r1) · · ·vns(rnp)]T cns = 0

⇐⇒ Mnscns = 0

where Mns
.
= 1

np
VT
nsVns ∈ Rms×ms is the empirical

moments matrix of rt. In the noise free case, the identification



problem can be solved by using the Generalized Principal
Component Algorithm (GPCA) [31], [32]: find a vector cns
in the null space3 of Mns and then recover the parameters
of each subsystem via polynomial differentiation. The cost of
this approach is roughly O(m2

snp +m3
s), where the first term

accounts for the cost of computing Mns and the second cns .
Thus, it scales linearly with np, but combinatorially with the
number of subsystems ns and their order na + nc.

While the approach above works well for noiseless data, a
small amount of noise can lead to large identification errors.
[34]. In the case where the distribution of the noise depends on
a few unknown parameters, [35] proposed to “denoise” Mns

by noting that its entries are affine functions of the moments of
the noise and searching for the values of these parameters that
render Mns rank defficient. This approach is very effective
when the noise distribution depends on just a few parameters
(e.g. zero mean with unknown variance), and the number of
systems and their order is relatively small. On the other hand,
the problem becomes challenging beyond these cases.

An alternative that does not involve an explicit optimization
can be obtained by exploiting a connection between the
moment matrix Mns and the Christoffel polynomial that
approximates the support of a probability density supported on
the unknown subspaces. Consider an arrangement of subspaces
A(S)

.
= S1 ∪ S2 ∪ . . . ∪ Sns , Si ⊂ Rd, where the normal to

each subspace is bi and let µ denote a probability measure
supported in this arrangement. Given a point xo 6∈ A(S),
define the following polynomial optimization problem:

P ∗xo,ns(x) =

{
argmin
P∈Pnsd,h

∫
µ

P 2(ξ)dµ subject to P (xo) = 1

}
(30)

where Pnsd,h denotes the set of homogeneous polynomials
of degree ns in d variables. P ∗xo,ns(x) can be written as
vTns(x)c∗(x0), where an explicit expression for c∗ in terms
of the singular vectors ui and singular values σi of Ms is:

c∗(x0) =
1∑ms

i=1( 1√
σi

uTi vns(x0))2

ms∑
i=1

1

σi
uTi vns(x0)ui

As noted in [36], P ∗ provides an approximation to the
complement of the support set of the measure µ, in the sense
that |P ∗xo(x)| is small in points where µ(x) is large. Similarly,
Qns(xo)

.
= 1

E{(P∗xo,ns (x))2} = vTns(xo)M
−1
ns vns(xo), the

inverse of the Christoffel function corresponding to the Kernel
induced in Pnsd,h by the measure µ, is large where µ is small.
Specifically, from Markov’s inequality it can be shown that

prob(Qns(xo) > tQms) <
1

tQ
and

prob ((P ∗xo,ns(x)2) >
tp

Qns(xo)
) <

1

tp

(31)

These properties can be used to find the subspaces Si “one-at-
a-time” proceeding as outlined in Algorithm 3 [37]. Let µ̂S̄j
denote the distribution of the points supported in S̄j

.
= ∪i 6=jSi.

3Under mild conditions this vector is unique up to a scaling constant, since
the vanishing ideal of the arrangement is a principal ideal [33].

The idea is to select a point xo ∈ Sj and treat this as
an outlier to the distribution µ̂S̄j so that P ∗xo(x) locally
approximates the support of Sj . Hence points where P ∗xo(x)
is large can be assigned to Sj . These points are then removed
from the population and the algorithm proceeds to the next
subsystem. Step 3 selects as the next point to be considered an
“outlier” the one having the lowest Q. Intuitively, this choice
corresponds to the point that has more mass around it and
thus, the highest number of remaining points in the same
subspace. Step 4 uses P ∗xo(x) to find other points in the same
subspace. These points are removed from the population and
the process continues with one less subspace. Finally, step 10
assigns unassigned points to the subspaces where they have the
highest probability of being inliers. The overall complexity of
the method is comparable with that of GPCA.

Algorithm 3 One at a time algebraic SARX identification

1: Inputs:

Xy ← Hyt ∈ R(na+1)×(N−na−1)

Xu ← Hut ∈ Rnc×(N−na−1)

Xa ←
[
Xy

Xu

]
,ns ← number of subsystems, k ← 1

2: for k := ns to 2 do
3: Set xo = argminx vTk−1(x)Mk−1vk−1(x).
4: Compute Px∗o,k(x).
5: Select tp and assign points where P 2

xo,k
(x) ≥

tp
Qk−1(xo) ) to the subspace Sk.

6: end for
7: for j := 1 to ns do
8: Compute Q1,Sj (x) for each subspace
9: end for

10: Assign each point x to the cluster j corresponding to the
smallest Q1,Sj (x)/‖Q1,Sj (.)‖

B. A spectral clustering based approach

An alternative to the algebraic approach outlined above
is to approach the switched systems identification problem
from a clustering viewpoint and use tools developed in the
machine learning community to solve these problems. In
particular, we will focus on spectral clustering techniques that
recast the problem into a (generalized) eigenvalue problem. In
this context the data is represented using a similarity graph
G = (V, E ,W) where each node Vi ∈ V corresponds to a
data point xi, E is the set of edges connecting these nodes,
and each element Wij of the weighting matrix W ∈ Rnp×np
measures the similarity between Vi and Vj . The corresponding
Degree and Laplacian matrix are given by:

D = diag{d1, . . . , dn}; L = D−W where di =
∑
j

Wij

It can be shown [38] that L is positive semi-definite and
always has an eigenvalue at zero. In the ideal case where
wi,j = 0 if xi,xj belong to different connected components
in the graph, the multiplicity of this zero eigenvalue equals



the number of connected components in the graph and the
corresponding eigenspace is spanned by the indicator vectors
of those components. In the non-ideal case, if wij is small
when xi,xj do not belong to the same component, then the
number of close-to-zero eigenvalues indicates the number of
components [29], [38], with the corresponding eigenvectors
characterizing each of the clusters.

In principle these ideas can be used to segment the experi-
mental data into clusters where a single system is active and
then using any LTI identification method to recover a model
from these clusters. However, implementing this approach
requires defining a suitable similarity measure between two
data segments ds

.
= {yk, uk}s+h−1

k=s and dt
.
= {yk, uk}t+h−1

k=t

such that wt,s is large only if both segments where generated
by the same subsystem. A suitable similarity measure that
respects the underlying dynamics can be obtained form the
Hankel matrices corresponding to dt, ds as follows. Given
positive semidefinite matrices X,Y the regularized Jensen-
Bregman log det divergence is defined as:

Jld,σ(X,Y) = log
|0.5(X + Y) + σI|
|(X + σI)(Y + σI)|

1
2

(32)

As shown in [39], limσ→0 Jld,σ(X,Y) < ∞ if and only
if X,Y share the same null space. Further, if ‖X‖∗ =
‖Y‖∗ = 1, then there exists σ > 0 that depends only
on the angle between the null spaces of X,Y such that
for σ ≤ σ, there exists τ such that Jld,σ(X,Y) < τ
if X,Y have the same null space and Jld,σ(X,Y) > τ
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Figure 1: Simulate a new signal with computed parameters and subsystem identity.
Compare with the original signal.
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Fig. 4: Top: Sample frames of a sub-
ject walking and squatting. Bottom:
Assigned labels (blue) versus ground
truth (red). The Jld based segmenta-
tion achieved 95.35% accuracy with a
modest computational burden (0.29s to
process 130 frames).

otherwise.
Consider now two

data segments ds, dt
such that the corre-
sponding Hankel matri-
ces, Hs,Ht, each hav-
ing n = na + nc +
1 rows and ncol ≥ n
colums, are rank de-
ficient (and hence the
data has been gener-
ated by a system of
order at most n). Un-
der appropriate mini-
mality and persistence
of excitation hypothe-
sis, ds, dt are generated
by the same system if
and only if the corre-
sponding Hankel matri-
ces, and hence the Gramians G

.
= HHT

‖HHT ‖∗ , share the same left
null space. It follows that a suitable similarity score is given
by wt,s

.
= e−Jld,σ(Gs,Gt). In the ideal, noiseless case, when

σ → 0, Jld → ∞ and hence wt,s → 0 unless ds, dt have
been generated by the same subsystem. Thus wt,s provides
perfect separation between clusters This observation leads to
a two step procedure for segmenting the data and identifying
clusters generated by the same subsystem. In the first step, a
sliding window is used to segment the data by searching for
points where there is a sharp increase in the Jld, indicating a

switch. Next, segments are grouped into clusters generated
by a single subsystem by performing a spectral clustering
step using the similarity score wt,s. Under suitable dwell time
constraints, this approach is guaranteed to correctly cluster all
segments corresponding to the same underlying dynamics even
in the presence of noise, provided that the noise level is below
a given threshold related to the subspace angle between the
subspaces spanned by each subsystem [29]. An application of
these ideas to the problem of segmenting a video containing
multiple activities into sub-activities, each characterized by an
affine model is shown in Fig. 4.

In terms of computational complexity, the Jld can be
computed in O(n3), and this computation has to be performed
O(np) times, to segment the data. Once the data is segmented,
the cost of the spectral clustering step is O(n3

s), where ns
is the number of segments, or, equivalently, the number of
switches. Thus, the overall cost of the algorithm is roughly
O(n3

s+npn
3). Hence computational complexity scales linearly

with the number of data points but, contrary to algebraic
approaches, only polynomially, rather than combinatorial, in
the number of subsystems and their order. On the other hand,
this approach requires a dwell time T > 3na + nc, while the
algebraic approach can be applied to arbitrarily fast switching.

C. A moments based approach

An alternative approach to SARX identification is to recast
the problem into a quadratically constrained feasibility prob-
lem. This approach does require neither dwell time nor small
noise assumptions and is interpolatory, at the price of increased
computational burden.

Let bi and rk be defined as in (28) and introduce a variable
si,j ∈ {0, 1} that indicates whether the submodel Si is active
at time j. Then, there exist bi, i = 1, . . . , ns such that for all
k, |bTi rk| ≤ ε for at least one i if and only if the following
set of inequalities in the indicator variables sij is feasible:

|si,jbTi rj | ≤ εsi,j ,∀nsi=1∀
np
j=1 (33a)

s2
i,j = si,j , ∀nsi=1∀

np
j=1 (33b)

Σnsi=1si,j = 1,∀npj=1 (33c)

bTi bi = 1,∀nsi=1 (33d)

Here (33a) is equivalent to |bTi rj | ≤ ε if si,j 6= 0 (hence
xj ∈ Si) and trivially satisfied otherwise; (33b) imposes that
si,j ∈ {0, 1} and (33c) forces each sample ri to be assigned
to exactly one subspace; Thus, if (33) is feasible, then the
identified sub-systems are characterized by the models {bi}.
On the other hand, infeasibility of (33) indicates that the
observed data cannot be explained (within the noise level)
using ns submodels. Collecting all variables in a vector v

v
.
= [bT1 , · · · ,bTns , s1,1, · · · , sns,1, · · · , s1,np , · · · , sns,np ]T

and defining the rank 1 matrix M =

[
1 vT

v vvT

]
, the inequal-

ties in (33) can be written in compact form as Trace(QkM) ≤
0,∀Kk=1 where K = ns + np(ns + 1) (the constraints (33b)
are enforced by simply using the same variable for sij and



s2
ij in M). Thus, the SARX problem can be reduced to the

following constrained rank minimization:

min rank(M)subject to:

{
Tr(QkM) ≤ 0,∀Kk=1

M � 0, M(1, 1) = 1
(34)

Clearly, the original problem is feasible if and only if this
problem admits a rank-1 solution. Interestingly, as shown in
[40], forcing Mo, the top left submatrix of M involving
only the variables bi, to be rank 1 is sufficient to enforce
rank(M) = 1. Replacing rank by its convex surrogate, trace
[41], leads to the following relaxation:

min Tr(Mo) subject to:

{
Tr(QkM) ≤ 0,∀Kk=1

M � 0, M(1, 1) = 1
(35)

b11	 b12	

s11	

1	

b21	 b22	

s21	 s21	 s22	

Fig. 5: Correlative sparsity graph
corresponding to (33) for points in
two lines in R2, showing a sample
clique (enclosed by the doted line).
For simplicity only the portion cor-
responding to two points is shown.

The approach outlined
above works well for
moderately sized problems.
However, the computational
complexity of solving (34)
is O(n4

sn
4
p), if using an

interior point method, or
O(n3

sn
3
p) per iteration, in

the case of an ADMM
based algorithm, limiting
the approach to relatively
few points. As shown next,
these difficulties can be circumvented by exploiting the
sparse structure of the problem. To this effect, partition the
constraints in (33) into the np + 1 sets Pj , j = 0, 1, . . . , np:

P0 :
{

bTi bi = 1,∀nsi=1

∀npj=1,Pj :


|si,jbTi rj | ≤ εsi,j ,∀nsi=1

s2
i,j = si,j , si,j ≥ 0, ∀nsi=1∑ns
i=1 si,j = 1.

It is easily seen that P0 is only associated with variables
v0 = [bT1 , . . . ,b

T
ns ]

T ∈ Rnns and Pj is only associated
with variables vj = [vT0 , s1,j , . . . , sns,j ]

T ∈ R(n+1)ns . It
can be shown that the sets vj provide a clique decom-
position of the correlative sparsity graph4 associated with
(35). Hence, from Grone’s Theorem (see the Appendix), the
constraint M � 0 can be replaced by Mj � 0, where

Mj =

[
1 mj(v

T
j )

mj(vj) mj(vjv
T
j )

]
for j = 0, 1, . . . , np, and

where mj(•) is a variable located in the same position as

• in
[

1 vTj
vj vjv

T
j

]
The advantage of this reformulation is that,

contrary to (34), it involves np + 1 matrices of dimension at
most [(n + 1)ns + 1] × [(n + 1)ns + 1]. Hence, it can be
solved using an ADMM algorithm with cost O(npn

3n3
s), per

iteration, which scales linearly with the number of data points.

IV. PROSPECTS FOR NONLINEAR SYSTEMS

Learning the parameters of non-linear systems with a given
structure is considerably more involved, even if a portion of

4This graph has one vertex per variable with edges connecting vertices
corresponding to variables that appear in the same constraint.

the model is known. For example, [42] established that worst
case identification of the linear portion of a Wiener model
from noisy data is generically NP hard in the number of data
points even if the nonlinearity is known. On the other hand,
depending on the scenario, it may suffice to learn a predictive
black box model, without any attempt to impose a specific
structure. This approach leads to nonlinear autoregressive
models (NARX), where the next output is expanded in terms
of given functions of its past values, and the goal is to learn the
parameters of this expansion. A difficulty here is determining
the correct basis functions while avoiding overfitting. Recently,
substantial interest has been devoted to the use of Koopman
operator based methods [43]–[45] as an alternative to NARX
approaches. Given a non-linear discrete time system of the
form:

ξk+1 = f(ξk) where ξk =
[
xTk−n+1 . . . xTk

]T
, xj ∈ Rd

(36)

let H denote a Hilbert space of functions ψ(ξ) : Rdn →
Rmn(the observables). The Koopman K operator acts on the
elements of H, by propagating their values one step into the
future:

(K ◦ψ)(ξk) = (ψ ◦ f)(ξk) = ψ(ξk+1) (37)

K is a linear operator, albeit typically infinite dimensional.
When it has a countable set of eigenfunctions φi(.) with
eigenvalues µi, the observables ψ(.) can be propagated as
follows. Let a =

[
a1 . . .

]T
denote the coordinates of ψ(.) in

the basis spanned by φ(.), that is

ψ(.) =
∑

aiφi(.)
.
= Φ(.)a, where: Φ(.) =

[
φ1(.) . . .

]
Then

(K ◦ψ)(.) =
∑

aiµiφi(.) = Φ(.)Ma,where M = diag(µi)

In particular, if the state ξ ∈ span{φi}, then ξk+1 =
Φ(ξk)Ma. While this approach allows for finding linear rep-
resentations of (36), identifying the Koopman eigenfunctions
from data is not trivial. Recent Deep Learning motivated
approaches [44], [45] proposed encoder/decoder type archi-
tectures that map states ξ to latent variables y and impose
approximately linear dynamics for the evolution of the latter.
A salient feature of these approaches is that the states ξ
are no longer required to be in the span of the Koopman
eigenfuctions. As shown in [45], the use of a nonlinear
decoder to map y back to ξ avoids overfitting. Still, at the
moment there is no systematic way of selecting some of the
parameters (e.g dimension of the latent variables, order of the
dynamics). As an alternative, the recent work in [46] proposes
a convex optimization approach to data-driven identification of
Koopman operators. This approach uses delay coordinates and
kernel based methods to identify a manifold of latent variables
where the dynamics are linear. As shown in [46], the problems
of finding the embedding manifold, the associated Koopman
operators and the mapping back to state-space can be recast
as rank-constrained SDPs. In turn, these can be relaxed to
convex optimizations using the standard weighted nuclear



norm surrogate for rank. Interestingly, these SDPs exhibit
chordal sparsity where the size of the cliques is now related
to both the “memory” of the system and the local geometry of
the nonlinearity, allowing once again for algorithms that scale
linearly with the number of data points, but polynomially with
the order of the dynamics

In terms of data driven control of nonlinear systems, [47]
has shown that if the dynamics admit an expansion

f(x, u) =
∑
i

aiφi(x) + biγi(x)u

in terms of a know basis, and noisy measurements of the
state x are available for training, then a controller guaranteed
to stabilize all plants compatible with the a-priori informa-
tion and experimental data can be synthesized by learning
a scalar density function via a sum-of-squares optimization.
While successful, at this point this technique is limited to
relatively simple systems, due to the computational complexity
of this optimization. The issue of whether this computational
complexity can be mitigated by searching for descriptions (and
associated controllers) with probabilistic, rather than worst-
case, correctedness guarantees is wide open.

V. CONCLUSIONS

A wide range of applications with potential for profound
societal impact have become feasible thanks to the ease of
collecting data. However, achieving their full potential requires
addressing the challenge of extracting control relevant infor-
mation from large amounts of data. This problem has proven
to be surprisingly difficult, compared to other “big data”
scenarios that can be routinely handled by modern machine
learning. As pointed out in this paper, this difficulty arises
from the “interconnectivity” of data generated by dynamical
systems. Indeed, one of the main messages of the paper is that
the limiting factor in control oriented learning is the “memory”
of the system. This validates the common wisdom of using low
order models, if need be with higher fitting error to be handled
by a robust controller. Low order models are desirable not only
because the order of the model is reflected in the order of the
controller, but also because the computational complexity of
control oriented learning increases at least polynomially with
the order of the model. On the other hand, the interconnectivity
of the data offers a way to mitigate this complexity by
exploiting the underlying structure (reflected for instance in the
chordal sparsity of an associated graph) to develop algorithms
that scale linearly with the number of data points.
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APPENDIX: SOLVING LARGE SDPS

Many learning problems reduce to an SDP of the form:

min
X�0

Trace (CX) subject to

Trace (AiX) = bi, i = 1, . . . ,m, X,Ai ∈ Rn×n
(38)

In the case of unstructured X, this problem can be efficiently
solved using interior point methods. These methods converge
in few iterations, each having a computational complexity of

m2n2 +mn3 [48]. Alternatively, ADMM based methods [49]
avoid computing the Hessian, thus reducing computational
complexity to mn2 + n3 per iteration, at the cost of more
iterations. An advantage of ADMM methods is that they can
be easily adapted to handle structured variables [14], and, as
discussed below, to exploit sparsity.

Typically, in most problems arising in this paper, only a
small number of entries of X appear in the objective and
trace constraints, while the role of the other entries is just
to enforce that X � 0. Thus, these variables do not have to
be explicitly found, allowing for a substantial computational
complexity reduction. Specifically, to the optimization (38) one
can associate a graph G(V, E) with n vertices in V and edge
set E , where there is an edge between vertices j and ` if the
element (j, `) of C or any of the matrices Ai is nonzero.
Given a graph G, define the cone

Sn+(E , ?)
.
= {X ∈ Sn+ : Xi,j given if (i, j) ∈ E}

that is, the cone of matrices with entries fixed over the edges
E than can be completed to be PSD. When the graph G is
chordal, the cone Sn+(E , ?) can be characterized using the
following result (Grone’s Theorem):

Theorem 1 (Grone [50]). Let G(V, E) be a chordal graph with
a set of maximal cliques {C1, . . . , Cnc}. Then, X ∈ Sn+(E , ?)

if and only if Xk = ECkXET
Ck ∈ S|Ck|+ , k = 1, . . . , nc, where

the 0/1 matrix ECk selects the variables of X corresponding
to edges in the clique Ck.

This results allows for decomposing the large PSD con-
straint into a collection of smaller ones, reducing the compu-
tational complexity of an ADMM based method to O((m +
nc)n

2 +
∑nc
i=1 |Ck|3) per iteration [51]. A similar complexity

reduction applies to rank minimization problems of the form:

min
X�0

rank (X) subject to

Trace (AiX) = bi, i = 1, . . . ,m, X,Ai ∈ Rn×n
(39)

In this case the minimum rank over all possible matrix
completions over the cone Sn+(E , ?) has an explicit expression,
given by Dancis’ Theorem:

Theorem 2 (Dancis [52]). Let G(V, E) be a chordal graph
with a set of maximal cliques {C1, C2, . . . , Cnc}. Then, for any
X ∈ Sn+(E , ?) there exist at least one minimum rank PSD
completion where rank(X) = max1≤k≤nc rank(ECkXET

Ck)

Combining the theorems above leads to the following result:

Corollary 1. The optimization (39) is equivalent to:

min
∑
k

rank (ECkXET
Ck ) subject to

ECkXET
Ck � 0

Trace (AiX) = bi, i = 1, . . . , nc

(40)

Since rank minimization problems are generically NP-hard,
a standard convex relaxation is to replace rank by its convex
envelope, trace [41]. This substitution leads to a structured
SDP that can be solved using the chordal decomposition
described above.


