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ABSTRACT

Time-delay cosmography with gravitationally lensed quasars plays an important role in anchoring the absolute distance scale and
hence measuring the Hubble constant, Hj, independent of traditional distance ladder methodology. A current potential limitation of
time-delay distance measurements is the mass-sheet transformation (MST), which leaves the lensed imaging unchanged but changes
the distance measurements and the derived value of Hy. In this work we show that the standard method of addressing the MST in time-
delay cosmography, through a combination of high-resolution imaging and the measurement of the stellar velocity dispersion of the
lensing galaxy, depends on the assumption that the ratio, D/ Dy, of angular diameter distances to the background quasar and between
the lensing galaxy and the quasar can be constrained. This is typically achieved through the assumption of a particular cosmological
model. Previous work (TDCOSMO IV) addressed the mass-sheet degeneracy and derived Hy under the assumption of the ACDM
model. In this paper we show that the mass-sheet degeneracy can be broken without relying on a specific cosmological model by
combining lensing with relative distance indicators such as supernovae Type Ia and baryon acoustic oscillations, which constrain
the shape of the expansion history and hence D,/Dys. With this approach, we demonstrate that the mass-sheet degeneracy can be
constrained in a cosmological model-independent way. Hence model-independent distance measurements in time-delay cosmography

under MSTs can be obtained.
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1. Introduction

The Hubble constant (Hj) is one of the most important param-
eters in cosmology. Its value directly sets the age, size, and
critical density of the Universe. Despite the great success of
the A cold dark matter (CDM) model (Komatsu etal. 2011;
Hinshaw et al. 2013; Planck Collaboration VI 2020), a stringent
challenge to the model comes from a discrepancy between the
extremely precise Hy (=67.4 + 0.5km s~ Mpc™!) value derived
from Planck measurements of the cosmic microwave back-
ground (CMB) anisotropies under the assumption of ACDM
(Planck Collaboration VI 2020) and the H, value from direct
measurements of the local Universe (Verde et al. 2019).

The recent direct Hy measurements (Hy = 74.03 +
1.42kms™! Mpc™") from Type Ia supernovae (SN1a), calibrated
by the traditional Cepheid distance ladder (SHOES collabora-
tion; Riess et al. 2019), show a 4.40 tension with the Planck
results. However, a recent measurement of Hy = 69.8+0.8(stat)+
1.7(sys)kms™' Mpc™! from SN1la calibrated by the tip of the
red giant branch (CCHP) agrees at the 1.20 level with Planck
and at the 1.70 with the SHOES results (Freedman et al. 2019).
The spread in these results, whether due to systematic effects
(Efstathiou 2020) or not, clearly demonstrates that it is crucial
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to test any single methodology by different and independent
datasets.

Time-delay cosmography (TDC; e.g., Treu & Marshall
2016; Suyu et al. 2018) provides a technique to constrain H at
low redshift that is completely independent of the traditional dis-
tance ladder approach. When a quasar is strongly lensed by a
galaxy, its multiple images have light curves that are offset by
a well-defined time delay, which depends on the mass profile
of the lens and cosmological distances to the galaxy and quasar
(Refsdal 1964). A critical aspect of this technique is a model that
describes the mass distribution in the lensing galaxy and along
the line of sight between the background object and the observer.
This model is constrained by the morphology of the lensed emis-
sion of the background object, the stellar velocity dispersion in
the lensing galaxy, and by deep imaging and spectroscopy of the
fields containing the lens system. This model is combined with
the time delays (e.g., Bonvin et al. 2018) to measure the charac-
teristic distances for the lens system: the angular diameter dis-
tance to the lens (Dy) and the time-delay distance, which is a
ratio of the angular diameter distances in the system, as follows:
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where z4 is the redshift of the lens, Dy is the distance to the back-
ground source, and Dy is the distance between the lens and the
source. In turn, these distances are used to determine cosmologi-
cal parameters, primarily Hy (e.g., Suyu et al. 2014; Bonvin et al.
2016; Birrer et al. 2019; Chen et al. 2019; Rusu et al. 2019;
Wong et al. 2019; Jee et al. 2019; Taubenberger et al. 2019;
Shajib et al. 2020).

A recent analysis with this technique, using a blind analy-
sis on data from six gravitational lens systems', inferred Hy =
73.3* 7 km s™' Mpc™!, which is a value that was 3.80 offset
from the Planck results (Wong et al. 2019; Millon et al. 2020).
This analysis used two common descriptions of the mass dis-
tribution of the lensing galaxy. The first description consists of
a NFW halo (Navarro et al. 1996) plus a constant mass-to-light
ratio stellar distribution, called the composite model. The sec-
ond description models the 3D total mass density distribution,
that is, luminous plus dark matter, of the galaxy as a power law
(i.e., p(r) oc r77; Barkana 1998); this description is called the
power-law model. These models yield Hy measurements that
are consistent within the errors for individual lens systems; the
final uncertainties on H, incorporate a marginalization over the
choice of mass model (Millon et al. 2020).

Although the power-law and composite models are well-
motivated by observations (e.g., Koopmans et al. 2006, 2009;
Suyuetal. 2009; Augeretal. 2010; Barnabeetal. 2011;
Sonnenfeld et al. 2013; Humphrey & Buote 2010; Cappellari
2016) and simulations (Navarro et al. 1996), there is a well-
known degeneracy in gravitational lensing known as the
mass-sheet transformation (MST). The MST leaves imag-
ing observables invariant, but biases the determination of H
(Falco et al. 1985; Gorenstein et al. 1988). The line-of-sight
mass distribution contributes to first order mass-sheet-like effect
(Fassnacht et al. 2002; Suyuetal. 2013; Greene et al. 2013;
Collett et al. 2013); we refer to this as an external MST. How-
ever, for the mass distribution of the lensing galaxy, there are
different models that can give the same lensing observables, but
would give different time delays. The most degenerate case is
that with spherical symmetry, in which the density profiles dif-
fer by a component that is uniform in within the radial ranges
probed by lensing. This component, which could be described
by a large-core mass distribution (Blum et al. 2020, see detail
in Sect. 2), changes the distribution of the mass density pro-
file of the lensing galaxy. This fits with recent works that
question whether that elliptical galaxies do not necessarily fol-
low a power-law or composite model to the desired precision
(Schneider & Sluse 2013; Xu et al. 2016; Gomer & Williams
2020; Kochanek 2020).

Birrer et al. (2020; hereafter Paper IV) show that allowing
for an internal MST on the power-law model increases the uncer-
tainty of the Hy measurement of a seven-lens sample from the
2.4% precision of Millon et al. (2020) to 8% in a ACDM cos-
mology. Interestingly, the central value of Hy remained almost
unchanged in this analysis (74.5f2'? kms~! Mpc™"). To improve
the precision of the Hy inference, Paper IV added data from the
SLACS sample (Bolton et al. 2004, 2006). In this lens sample,
the background objects are galaxies, not quasars, so they cannot
be used for TDC. However, the combination of high-resolution
imaging and kinematic measurements allows the SLACS sam-
ple to improve the constraints on the mass profiles of massive
elliptical galaxies. With the inclusion of the SLACS information

' Except the first lens, B1608+656, which was not done blindly, the
subsequent five lenses in HOLiCOW are analyzed blindly with respect
to the cosmological quantities of interest.
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(Shajib et al. 2021) and the assumption that the sample of time
delay and SLACS lenses are drawn from the same population,
the inference on H, shifted to 67.4f‘3‘ékms_1 Mpc_l, which
agrees with the Planck value and results from distance lad-
ders (Riess et al. 2019; Freedman et al. 2019). A comparison of
the galaxy population distributions shows that several observed
properties, such as central stellar velocity dispersion, are similar.
In addition, elliptical galaxies are a very homogenous popula-
tion, as evidenced by the tightness of correlations such as the
fundamental plane (Auger et al. 2010, and references therein).
However, two major differences between the samples are that
the SLACS lensing galaxies are at lower redshifts than those
in the time-delay sample and that the SLACS lensing galaxies
have smaller ratio of effective radius to Einstein radius than the
time-delay sample (see Fig. 16 in Paper IV). Possible potential
biases and limitations of using the SLACS sample are discussed
by Paper IV and Shajib et al. (2021).

In this work, we take a more general approach to con-
strain the internal MST by combining the time-delay lens sys-
tem with relative distance indicators without assuming a specific
parametrization of the cosmological model. We show that we can
hence constrain the internal MST in a cosmological-independent
way and obtain more broadly applicable distance posteriors.

In Sect. 2, we introduce the basics of the MST. In Sects. 3
and 4, we discuss the distance measurements under the effects
of the internal and external MST. In Sect. 5, we discuss error
propagation under MST. In Sect. 6, we provide a cosmological
model-independent way to constrain the internal MST. We sum-
marize our work in Sect. 7.

2. The mass-sheet transformation

The MST is a degeneracy affecting gravitational lens systems.
We can transform any projected mass distribution, k(6), into infi-
nite sets of k,(0) via

k1(0) = Ak(B) + 1 - 4, (2)

without degrading the fit to the lensed emission (Falco et al.
1985), although MST does change the source size accordingly.
In this equation, x(6) is a scaled 2D projected mass density distri-
bution, «(0) = X(0)/Zit, where 2(0) is the mass surface density
and X is the lensing critical density,

_ D
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The physical picture of MST comes from the environment
(a.k.a., an external MST, k.x) and the mass models of the lens-
ing galaxy (aka, an internal MST, Aj,). We separate these two
components of the MST because we use different observables
to assess their effects. For example, the estimation of the exter-
nal MST uses weighted number counts of galaxies and/or weak
gravitational lensing, based on spectroscopy and deep imag-
ing of the field containing the lens. This approach has been
extensively used in TDC (e.g., Fassnacht et al. 2006; Suyu et al.
2010; Collett et al. 2013; Greene et al. 2013; Rusu et al. 2017;
Tihhonova et al. 2018; Buckley-Geer et al. 2020). Information
about the internal MST is derived from high-resolution imaging
and the stellar velocity dispersion of the lensing galaxy.

The theoretical version of the internal MST, that is, a mass
sheet with infinite extent, is clearly nonphysical. Therefore, in
assessing the internal MST we need to find a physical model
that approximates the behavior of a mass sheet at small projected
distances from the center of the lensing galaxy, but that vanishes
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Fig. 1. Illustration of the transformed power-law profile in the mean
dimensionless enclosed projected mass distribution under the internal
MST with 6; = 10”. All the transformed mass profiles share the same
Einstein radius (red dashed line). All the mass distributions in this figure
produce essentially the same model images (i.€., the difference of the x>
is less than 0.001%) but a different unlensed size of the source, which
is not directly observable.

at large radii (see Fig. 7 in Schneider & Sluse 2013). Effectively,
such a mass model redistributes the mass in the region inside the
lensed images and in the region outside of the lensed image. This
effect, also called monopole degeneracy, was first proposed by
Saha (2000) and tested on the real data (e.g., Liesenborgs et al.
2008). Blum et al. (2020) propose a cored mass profile that is
also a type of monopole degeneracy. We adopt this cored mass
profile to study the impact of the internal MST as it cannot only
provide physical 3D mass distribution but also simultaneously
satisfy the MST effect.

Given this mass profile, the physical internal MST, which
redistributes any specific mass profile, x(6), should be written
as

Kmst,int(g) = Ainek(0) + (1 = Ainkc(0), “
where

6,
K (0) = (%)

and 6 is the scale radius. When we set 6, to a large value, for
example 10", k.(6) approximates the theoretical internal MST
very well over the region of interest (Paper V).

We illustrate the effects of adding such a mass-sheet profile
to the lensing galaxy mass distribution in Fig. 1, by plotting the
mean dimensionless enclosed projected mass distribution,

2’ 0 / / /
MEEIHMMWM- 6)
0

The Einstein radius of the lens system, 6, is defined as the angu-
lar radius for which k(6g) = 1.

Thus, the general MST accounting for both kex; and Ajne can
be written as

Ka(0) = (1 = Kext)Kmst,int(0) + Kext = Kirue(6), @)

where ke represents the true projected mass profile. In this
paper we set the stage for future investigations by dissecting

where the constraining power on the distance measurements in
TDC comes from and exploring what assumptions have to be
made and data have to be used to break the internal MST.

3. Measurement of D,; under the MST

Once the time delays between multiple images are observed, we
can measure the time-delay distance via

Am%mww, ®)

where c is the speed of light and 6, 8, and ¢(6) are the image coor-
dinates, source coordinates, and Fermat potential, respectively.
The form of Eq. (8) allows the inference of the cosmological
information contained in Dy, without any need for cosmological
priors on the lens modeling.

However, in the presence of a MST, given the same time
delays and imaging data, the transformed projected mass profile
produces a different time-delay distance via

Dy,
Dara = i )
Thus, additional information is required to constrain both the
internal and external MST, and thus to obtain unbiased Dx, mea-
surements.

4. Measurement of Dq under the MST

Once the velocity dispersion of the lensing galaxy is measured,
we can use high-resolution imaging of the lens system to mea-
sure the ratio Dg/Dys via

D

wW%ﬁ%M%wm&m (10)
ds

where o is the predicted line-of-sight luminosity-weighted

velocity dispersion that is predicted by the mass distribution
in the lensing galaxy. In this equation, J contains the angular-
dependent information including the parameters describing the
3D deprojected mass distribution, 7jeps, surface-brightness distri-
bution in the lensing galaxy, 7jigh, and stellar orbital anisotropy
distribution, B,,;. In a similar way to the time-delay distance, the
separability in Eq. (10) allows us to infer the cosmological dis-
tance ratio Ds/Dgs without the need of cosmological priors on
J. Since Dp; < Dyg(Dg/Dys), we can use the combination of the
Dj, measurement from the time delays and Dg/Dys from veloc-
ity dispersion to obtain Dq. We discuss the effect of ey and iy
on the Dy measurement in the following two sections.

4.1. External MST only

Jee et al. (2015) find that D4 is an invariant quantity under
an external MST. This is because kex: only contributes to the
change of the normalization of 3D mass profile and does not
affect its overall shape given any mass model (Suyu et al. 2013;
Chen et al. 2019). That is, the predicted velocity dispersion in
Eq. (10) changes to

quhM%?

)8Mmmm%& (11)
Kext

ds

where the minus sign means that we need to remove the mass
contributed from the environment (i.e., the mass along the line of
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Lens model of J0924+0219

".

.

Fig. 2. Multiple lensed images and extended arc around the lensing
galaxy from the background AGN and its reconstructed host galaxy.
The foreground main lens is located in the center of the lens system.
The solid horizontal line represents 1” scale. The detailed lens model-
ing will be presented in Chen et al. (in prep.). The study of this paper is
not limited to any specific configuration of the lens systems.

sight) inside the Einstein radius to obtain the mass of the lensing
galaxy.

In order for the predicted velocity dispersion to match the
observed value, D;/Dy, must transform under an external MST
via

D Dy Dy

( ) =(1—Kext>‘1( )=( ) : (12)
Dy Kext Das Ds true

Then the time-delay distance changes via

Dy = (1 = Kexl)ilDAt' (13)

Thus, by combining Egs. (1), (12), and (13), we can show that
Dy is invariant under the external MST,

(D), = Da. (14)

4.2. Internal MST plus external MST

Since the velocity dispersion depends on the enclosed 3D mass
of the lensing galaxy, whose shape is not conserved under an
internal MST, the constraint on the Dg/Dys ratio is not math-
ematically scaled by /l;'t under an internal MST. We therefore
must expand the Eq. (11) by including iy in the J term,

s)

D
(0-]3)2 = (I = Kext) (i) J(Miens» nlight,ﬁani, Aint),
S /true

since J contains the 3D deprojected dimensionless mass model
components, whose structure is affected by the value of Ajy.
Thus, Dq can be expressed as

1 DA[ C2
=————=J ns» //light» ni,/lin . 16
d 1+ Zd /lint O'% (7716 s> Mlight ﬁa t) ( )
Many previous investigations (e.g., Suyuetal. 2014;

Paper IV) show that the internal MST can be broken with a
single-aperture velocity dispersion, given a cosmological model.
This can be explained as follows: Firstly, the Einstein ring radius,
as defined in terms of the mean dimensionless enclosed pro-
jected mass distribution (k), is invariant under an internal MST
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(i.e., k(0g) = ka(Bg) = 1; see also Fig. 1), while the physical
mass inside the Einstein radius is unconstrained without assum-
ing a cosmological model. Secondly, from Eq. (15) we show
hereafter that if a cosmological model is not assumed, then the
values of Aiy; and Dg/Dgys, which affect the shape and normaliza-
tion respectively, are degenerate. Hence, even with a measured
velocity dispersion, the mass inside the effective radius is also
not constrained. Therefore, a single-aperture velocity dispersion
is insufficient to break the degeneracy and constrain the inter-
nal MST if we do not assume a cosmological model. Spatially
resolved kinematics of the lensing galaxy would be required
(Yildirim et al., in prep.).

In order to illustrate these dependences, we use the power-
law mass model, which was obtained by fitting to the real imag-
ing data of a four-image gravitational lens system (J0924+0219)
shown in Fig. 2 (see Chen et al., in prep. for details), and anal-
ysed this model in the context of an internal MST (i.e., added to
our model a MST component as described in Eq. (5)). For the
anisotropy component, we assume [,,; varies with radius and
parameterize this behavior in the form of an anisotropy radius,
Fani»> in the Osipkov-Merritt formulation (Osipkov 1979; Merritt
1985),

r2

,Bani = (17)

2 2’
T T 7

as an example. In this formulation, r,,; = O indicates pure radial
orbits and r,,; — oo is isotropic with equal radial and tangential
velocity dispersions. In our models, we use a scaled version of
the anisotropy parameter, danj = Fani/Teft, Where reg = Dq6eg, and
O.f is the effective radius. The redshift of the lens and source are
za = 0.393 and z; = 1.523, respectively. We note that the study
of this work is not limited to any specific configuration of the
lens systems. We set mock time delays (Afag = 10 = 1.5 days,
Atcg = 15 £ 1.5 days, Arpg = 10 + 1.5 days) and a mock veloc-
ity dispersion measurement (=279 + 15kms™") for the analysis.
The values of mock time delays and the velocity dispersion were
chosen to be roughly consistent with the model of J0924 so that
they would represent a physically plausible lens. Specifically,
given the mass model from the J0924+0219 lens imaging, the
mock time delay and velocity dispersion are created by assum-
ing Flat ACDM with fixed Q,, = 0.3, Hy = 70kms~' Mpc™!,
and A;; = 1 (i.e., no internal MST). The uncertainties on the
time delays and velocity dispersion are typical of time-delay lens
systems. We note that all the figures produced in this work are
based on this single lens. Since kexs does not affect the Dy mea-
surement and is well understood, we set kex; = O throughout the
paper for simplicity.

We consider two situations: one with a flat ACDM cosmol-
ogy and another in which we only use the velocity dispersion,
time delays, and imaging data without assuming any cosmolog-
ical model. We note that throughout the paper, for flat ACDM
cosmology, we assume Q, = [0.05,1.0], Qy = 1 - Qy, and
Hj uniform in [0, 150] km 7! Mpc’l. The results are shown in
Fig. 3, where the ACDM results are shown as points that are
color coded by the velocity dispersion to demonstrate the link
between o, and the other parameters. Figure 3 clearly demon-
strates that A;, can be constrained only when ACDM is assumed,
on the contrary, when the cosmological model constraint is
relaxed, Dy changes very little within the physically allowed
values of Ajy. Thus the J term in Eq. (15) can be very well
approximated as J(diy) = AineJ With <1% shift on the distance
measurement of Dy for 65 = 10” and with single aperture aver-
aged velocity dispersion. This approximation was also used by
Paper I'V.
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data: TD+VD-+imaging, model: no cosmological model is used
data: TD+VD+imaging, model: flat ACDM

310

300

290

260

250

240

Aani

Fig. 3. Comparison of the Dy, Dy;, Ay, and a,,; measurements with and without the assumption of the ACDM model from single time-delay mock
lens. The abbreviation “TD” represents time-delay information and “VD” represents velocity dispersion information. When ACDM model is not
assumed, the internal MST (4;,,) is not constrained. When ACDM model is assumed, the degeneracy can be broken and hence Dy, is constrained.
The anisotropy parameter is not constrained in either case. Color-coded velocity dispersion shows that Dy, is positively correlated with Dy but
anticorrelated with o,. The contours represent the 68.3% (shaded region) and 95.4% quantiles.

5. Error propagation in MST

5.1. Error propagation without assuming a cosmological
model

In the previous section, we showed that Dy, is directly affected
by both external and internal MST, while Dy is not affected by
Kext and is nearly invariant. Thus, based on Eq. (9) the error on
Dy, (0Dpy) given A and Ajy scales as

6DA; o4 6/lint

e (18)
Dy 4 Aint
while based on Eq. (16), the error of Dy scales as
6Dy ooy
=< .2 , 19
Dy o (19)

where o, is the measured line-of-sight velocity dispersion. Thus,
the uncertainties on Dy are dominated by the velocity dispersion
measurement errors, while the Dy, uncertainties are dominated

by both internal and external MST. Therefore, Hy inferred solely
from Dy is robust against the MST (Jee et al. 2019)2.

5.2. Error propagation under ACDM model

However, if one assumes a ACDM model, the error on Ay is
written as

S ding 260-v
Aint Ty ‘

(20)

By combining Eqs. (18)—(20), the correlations between the
errors on Dy, Dy, and o, are given by

~ % ~ _250—"

D, Dy oy

2D

In Fig. 3, we see that under the assumption of the ACDM model,
Dy, is positively correlated with Dy but anticorrelated with o,,.

2 We note that Jee et al. (2019) shows that different anisotropy model
may slightly shift the inferred Dy value.
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=+data: VD+imaging, model: flat ACDM _- 320
—data: TD+imaging, model: flat ACDM
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Fig. 4. Decomposition of the constraining power from time delays (TD), velocity dispersion (VD), and imaging data under the assumption of the
ACDM model. When only “TD+imaging” is used, the values of Dy and D,, are not constrained, and both of them are fully degenerate with Ajy,.
Since the velocity dispersion constrains the iy, the joint constraint (“TD+VD+imaging data”) breaks the degeneracy and hence constrains Dy,

and Dy. The anisotropy parameters are not constrained in all cases.

Most importantly, while Eqs. (20) and (21) tell us that Dy,
and Dy are anticorrelated with A;,, under ACDM model, Dy is
nearly uncorrelated with Ay, without assuming a cosmological
model inside the physically allowed range of Ajy.

6. Constraining the internal MST

In the previous sections of this paper, we have shown that in
the presence of an internal MST, parameterized by Ajy, the
time-delay distance measurement is poorly constrained unless
a specific cosmological model is picked. This situation is clearly
demonstrated in the Ay, versus Dy, panel in Fig. 3, where Ay is
essentially unconstrained without the assumption of a cosmo-
logical model. In turn, the large uncertainties in A;, translate
into imprecise inferences on Dy,. Therefore, in this section we
describe two approaches to improving the constraints on Ajy.
The first approach constrains A, in a fashion that depends on

A7, page 6 of 10

the cosmological model (Paper IV), while the second approach
works even if we are agnostic about the cosmological model. In
both cases, we assume that observations have provided measure-
ments of time delays and luminosity-weighted stellar velocity
dispersions with errors that are typical of those found in previ-
ous works in this field.

6.1. Method 1: Choosing a cosmological model

In Sect. 4.2, we demonstrated that Ds/Dgys and Ajy are degener-
ate quantities. However, once a cosmological model is assumed,
Dg/Dys can be determined up to a range depending on the other
cosmological parameters such as Qy, and € (Grillo et al. 2008),
since the unknown factor of H; cancels out in the ratio. This
means that the measurement of the velocity dispersion constrains
Aint, hence the mass inside the effective radius of the lensing
galaxy. Once Ay is constrained, Dy, is constrained and Dy can
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Fig. 5. Results of the reconstruction of E(z) (= H(z)/H,) using the
SN1a and BAO data, normalized by the values for our fiducial cosmol-
ogy given by the best-fitting parameters from the Planck analysis for
a ACDM model. Each thin line comes from a random draw among the
points in parameter space within 68% confidence level. The thick line in
the middle represents the best fit. The uncertainties are relatively large
at z = 1-1.5 since the error bars of the Baryon acoustic oscillations
(BAO) measurements at z = 0.8, and especially, at z = 1.5, are sig-
nificantly larger, while SN1a measurements are only powerful enough
to constrain the splines at z ~ 0.8—1. The shape of expansion history
is described by piecewise natural cubic splines. The splines constrained
by the data can be used to constrain D,/ Dy, and hence break the internal
MST.

be inferred from D,,. Hence the mass inside the Einstein radius
is assigned. Therefore, by assuming a cosmological model, the
internal MST can be broken to a level that depends on the preci-
sion of the velocity dispersion measurement. To further illustrate
the effect of assuming a cosmological model, we show the con-
straining power on Dy, Dy, Ay, and the anisotropy parameter
(auni) when setting the cosmological model to ACDM in Fig. 3.
We clearly see the correlation between Dy, and inferred Dy under
the assumption of the ACDM.

For the case in which no cosmological model is used in
Fig. 3, we see that Dy, is degenerate with Aj,. In contrast, by
assuming a cosmological model, we restrict the allowed range
of Ay and this places stronger constraints on the inferences on
the cosmological distances. We can decompose the black con-
tour in Fig. 3 into separate cases to examine the constraining
power from the velocity dispersion only (VD only), time-delay
measurements only (TD only), and a joint constraint from both
measurements (VD plus TD). Figure 4 clearly shows that the
velocity dispersion constrains Aj,; when assuming a cosmolog-
ical model (e.g., ACDM). In other words, the value of Ajy
depends on the cosmological model and the measurement of D,
in this case is not a cosmological model-independent quantity.

6.2. Method 2: Using external datasets to constrain Dg/Dgs

To break the internal MST without assuming a particular cosmo-
logical model (e.g., ACDM model), we require additional infor-
mation to constrain Dg/Dgs. This can be done by including data
on SN1la and BAO). The SN1a data are given as measurements

of the distance modulus

where m is the apparent magnitude, M is a fiducial absolute mag-
nitude, and Dy is the luminosity distance. When M is a free

Table 1. Summary of the BAO measurements that are used in this work.

Measurement Zeff Reference
rs/Dy 0.106 Beutler et al. (2011)
Dy /rs 0.15 Ross et al. (2015)

0.38
0.38
0.51
0.51
0.61
0.61

Dy (rssia/rs) (Mpc) Alam et al. (2017)
H(z2)(rs/rs5a) (kms™ Mpc™")
Dy (rssia/rs) (Mpe)
H(2)(rs /7y i) (kms™ Mpc™)
Dy (rssia/rs) (Mpc)
H(2)(rs/rs5a) (kms™ Mpc™)

Dy/rs 0.44 Kazin et al. (2014)

Dy /rg 0.6

Dy [rg 0.73

Dy /rs 0.698 Gil-Marin et al. (2020)

c/(H(z) = rs) 0.698

Dy /rs 1.48 Hou et al. (2021) and Neveux et al. (2020)
¢/(H(z) = ry) 1.48

Dy /rs 2.33 du Mas des Bourboux et al. (2020)
c/(H(z) * ry) 233

Notes. In our fiducial cosmology, r;sq = 147.78 Mpc.

parameter without calibration, SN1a only constrain the shape of
the expansion history. The BAO data provide measurements of
Dy [rs, the dilation scale normalized by the standard ruler length
(or Dy /rs and Hry in the anisotropic analysis), where

— 2 2 "
Dy =|Dym=| (23)

H(z)

Dy = (1 + 2)Dy, and Dy is the angular diameter distance. If we
vary M and r; freely, those data sets provide the information on
the shape of the expansion history (e.g., Cuesta et al. 2015) and
thus Dg/Dygs.

However, we still require a model for the redshift distance
relationship to connect these data. In this work, we choose piece-
wise natural cubic splines® to describe H(z) that fit to the data.
The spline method has been used in many studies to reconstruct
the expansion history (Bernal et al. 2016, 2019; Poulin et al.
2018; Aylor et al. 2019). The splines are set by the values they
take at different redshifts. These values can uniquely define the
piecewise cubic spline once we require continuity of H(z) and
its first and second derivatives at the knots, and set two bound-
ary conditions. We also require the second derivative to vanish at
the exterior knots. We set the minimal assumptions of this work:
(1) cosmological principle of homogeneity and isotropy (i.e.,
Friedmann-Lemaitre-Robertson-Walker metric); (2) assumption
of general relativity: the curvature density parameter is given
by Q = k[c/(RoHy)])? where k = {1,0,—1}, Ry denotes the
present value of the scale factor; (3) spline H(z) completely spec-
ifies the FLRW metric; and (4) cosmic distance duality relation:
Dy = Da(1 + )%

To get a good constraint on the cosmological model-
independent Dg/Dys at the redshift of the mock lens, we need
the data that cover the redshift up to the source redshift*
(zs = 1.523 in this case). Current existing data show that we
can constrain the shape of the expansion history up to ~z =
2.5 (see Fig. 3 in Bernal et al. 2019). Therefore, we update

3 We note that linear interpolation (e.g., Verde etal. 2017), Gaus-
sian processes (e.g., Joudaki et al. 2018; Liao et al. 2020), or smooth
Taylor expansion (e.g., Macaulay et al. 2019; Wojtak & Agnello 2019;
Arendse et al. 2020) are alternatives.

4 For the current seven TDCOSMO lenses, the source redshifts are all
below z, = 2.5.
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—data: TD+VD+imaging,
---data: TD+VD+imaging, model: flat wCDM
---data: TD+VD+imaging, model: flat ACDM
—data: TD+VD+imaging+Pantheon+BAO, model: Spline with free
—data: TD+VD+imaging+Pantheon+BAO, model: Spline with €, =0

model: no cosmological model is used

Ds/Dds

Fig. 6. Comparison of the inferred Dy, Ds/Dys, Da;, and Aiy in different cases. Case 1 (orange): The distance measurements directly from single
time-delay mock lens without assuming any cosmological model. Case 2 (blue): The distance measurements under the assumption of the flat
wCDM model with Q,, = [0.05,1.0], Qu = 1 = Qu, w = [-2.5,0.5], and H, uniform in [0, 150] kms™' Mpc’l. Case 3 (black): The distance
measurements under the assumption of the ACDM model with Q,, = [0.05,1.0], Q5 = 1 — Q,,, and Hj uniform in [0, 150] km s7! Mpc!. Case 4:
(green): The distance measurements from single time-delay mock lens, Pantheon dataset, and BAO dataset by using splines with free Q. Case 5
(red): The distance measurements from single time-delay mock lens, Pantheon dataset, and BAO dataset by using splines with Q; = 0. For the
cases (green and red) that do not assume a particular cosmological model, the constraining power on A;,, is comparable to the cases (blue and
black) with an assumption of having a underlying cosmological model.

the likelihood used in Bernal et al. (2019) and use the Pan-

theon datasets of SN1a (Scolnic et al. 2018), BAO from galax-

ies (Kazin et al. 2014; Alam et al. 2017; Gil-Marin et al. 2020),

quasars (Hou et al. 2021; Neveux et al. 2020), and the Lyman-«

forest (du Mas des Bourboux et al. 2020). For the eBOSS likeli-

hoods, we use the Gaussian approximation and that BAO can be .
used to apply cosmological models beyond LCDM (Bernal et al. 2
2020; Carter et al. 2020). We summarize the BAO measurements Q1000+
and the redshift information in Table 1. We set five “knots” at

different redshifts (zg = 0, z; = 0.25, o = 0.5, zz = 1.,

z4 = 2.5). The complete set of parameters for the Spline model is

{Hy, Hy, Hy, H3, Hy, 15, Q, M}. Uniform priors are assumed for

all parameters. We show the reconstructed E(z)(=H(z)/Hy) nor- 0
malised by the values for our fiducial cosmology given by the 00 05 w0 20 25
best-fitting parameters from the Planck analysis for a ACDM ~

EEl VD+TD-+imaging+Pantheon+BAO

20004

15004

5004

model in Fig. 5. The posterior of Ds/Dys can be obtained by
integrating E(z).

In Fig. 6, we show that by combining the inference from
the external datasets on H(z)/Hy, which constrain Dg/Dgys, with
time-delay strong lensing systems, we can obtain cosmological

A7, page 8 of 10

Fig. 7. Cosmological model-independent distance measurements from
combining single time-delay mock lens with Pantheon and BAO
datasets. Each thin line comes from a random draw among the points
in parameter space within 68% confidence level. The thick line in the
middle represents the best fit.
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Fig. 8. Percent difference between the median value of D,/ Dy, directly constrained from the SN1a and BAO, and the D/ Dy, under the assumption
of the ACDM model with Q,, = 0.298 + 0.022 (Scolnic et al. 2018), which was used in Paper IV. All 7 time-delay lenses show <1% deviation
validate the use of the Pantheon datasets that constrain the low-redshift expansion history and the use of ACDM model that extrapolates the

constraint on D/ Dy, at high redshift.

model-independent Dy and D, measurements that are compara-
ble to those obtained by assuming a ACDM or wCDM cosmol-
ogy. In addition, we also see that the values of A;,; under ACDM
and wCDM are slightly offset from the cases that include SN1a
and BAO datasets. This is because the flat priors on Q,, and w
in ACDM and wCDM models do not reflect the expansion his-
tory described by the SN1a and BAO datasets. Thus, it indicates
the importance of including the external datasets, which directly
constrain the expansion history to get distance measurements.

In Fig. 7, we show the distance measurements from combin-
ing a single time-delay lens with SN1a and BAO with free O
(the green contour in Fig. 6). This distance measurements can
be used to infer Hy in generic cosmological models. We empha-
size that this approach does not require the absolute calibration
of SN1a or BAO; thus, the derived constraint on H, remains
independent of the distance ladder and the sound horizon
scale.

6.3. Comparison with Paper IV

In the previous section, we demonstrate that Dg/Dys is fully
degenerate with Ay, which affects the time-delay distance mea-
surement. Therefore, we compare the redshift-dependent median
value of Dg/Dys, constrained directly by the SN and BAO data
at the redshift of the current seven TDCOSMO lens samples,
with the Dg/Dys in Paper IV, which used the prior based on
Pantheon sample with Q;, = 0.298 + 0.022 (Scolnic et al. 2018)
under the assumption of the ACDM model. These results shown
in Fig. 8 demonstrate that in the case of these seven lenses,
using the prior information from Pantheon datasets that con-
strain the low redshift expansion history and then using ACDM
model to extrapolate the constraint on Dg/Dgys to high redshift are
valid approaches, becausethe deviations from the median value
of Dg/Dys are all below 1%, thereby demonstrating that the shape
of the expansion history is described well by the ACDM model.
However, the time-delay distance measurements derived by the
method developed in this work are broadly applicable distance

posteriors, which can be used to infer Hy in various cosmologi-
cal models.

7. Conclusions

In this work, we use a mock gravitational lens system to study
the correlation between distance measurements under the MST
with or without assuming a cosmological model. We verify that
although Dy, is directly correlated with both the internal and
external MST, D4 is not only invariant under an external MST
but is also insensitive to the internal MST. Thus, without assum-
ing any particular cosmological model, the role of velocity dis-
persion is to obtain the angular diameter distance to the lens
(Dyq) rather than break the internal MST (A;,). To break Ay, in
addition to the velocity dispersion, we identify that constrain-
ing Dg/Dys is the key, which is typically achieved through the
assumption of a particular cosmological model, and hence Ay
and Dy, are both cosmological-model-dependent quantities. In
this work, we show that cosmological model-independent Dy,
measurement can be achieved when relative distance indicators
(e.g., SN1a and BAO) are used to constrain Dg/Dys and hence
Aint. These distance measurements with SN1a and BAO shown in
Fig. 7 can then be used to infer Hj in generic cosmological mod-
els. It is important to stress that this approach does not require
the absolute calibration of SN1a or BAO; thus, the derived con-
straint on Hy remains independent® of the distance ladder and
the sound horizon scale.
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