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Advances in low cost and reliable sensing, connectivity (Internet of Things), computational power, and
advanced analytics, are leading to a new wave of innovation in machinery status sensing and condition
monitoring. Significant research efforts are directed towards cloud computing architectures. However,
given the latency, bandwidth, cost, security, and privacy concerns, further supported by the ever-
increasing capabilities of edge computing devices, there is a need to consider both edge and cloud com-
puting together to make informed decisions based upon context and performance. We present an edge-
cloud performance evaluation for IoT based machinery vibration monitoring, to foster deployment for the
contexts considered.
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1. Introduction

Increased visibility into industrial machinery and assets offers
the first step towards realizing smart manufacturing. Low-cost
and reliable sensors, connectivity (Internet of Things), edge and
cloud computing, and data analytics enable the leveraging of
real-time data for inferring actionable insights to improve perfor-
mance metrics [1,2]. Weiss et al. have provided a cost benefit anal-
ysis of manufacturing machinery maintenance, underscoring the
vast potential and opportunity [3]. Helu et al. highlight the oppor-
tunities for and barriers to the deployment of digital and Prognos-
tics and Health Management (PHM) technologies for Small and
Medium Enterprises (SME). They conclude a strong SME interest
towards basic equipment performance and other capabilities like
predictive maintenance and dynamic scheduling. They recommend
implementation of appropriate use cases to address various
research questions [4].

Vibration monitoring is the most important and commonly
used method in machinery condition monitoring [5]. Both, signal
processing and deep learning-based approaches are available and
are being proposed for machinery vibration monitoring and other
similar applications. Much of this practice has involved data acqui-
sition and pre-processing on the edge device and analytics on a
more powerful remote computing device or cloud [2,6], while
some work has been carried out on the edge device itself [7,8].

Considering the low latency requirements, bandwidth availabil-
ity, cost, security, and privacy concerns, there is a need for deploy-
ment of edge platforms that can operate at the source of the data
[9]. In an attempt to study commercial edge IoT platforms, Das
et al. [10] have compared the performance of Amazon AWS Green-
grass and Microsoft Azure IoT edge with their cloud-only imple-
mentations. They report that edge computing is a promising
alternative to cloud computing for CPU light workloads, like image
recognition (using a small size model and low compute footprint
classifier) and scalar values (sensor emulator). Further, they
observe that both the platforms do not handle very high through-
put messaging well yet. There is a need for vendor-agnostic perfor-
mance evaluation of edge IoT hardware and software from first
principles, to stimulate rapid innovation in the open-source com-
munity for best performance and architecture identification. This
will help foster smart manufacturing capabilities for legacy machi-
nes and SME, which are important intended beneficiaries of smart
manufacturing technologies [11,12]. Leiserson et al. have identified
software performance engineering, new algorithms and hardware
streamlining as three themes for computing speed-ups post-
Moore era. They expect more special purpose devices for different
application domains [13]. Concurrently, advanced analytics such as
deep learning are gaining momentum to be deployed at the edge.
Therefore, it is important to evaluate edge computing performance.
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This requires a benchmarking study to (i) identify the metrics
for performance evaluation and, (ii) compare edge and cloud
platforms.

In this paper, we demonstrate a benchmarking study using an
IoT-based machinery vibration monitoring use-case. We use a tri-
axial MEMS accelerometer (ADXL-345) sampled at 1600 Hz, inter-
faced with a Raspberry pi 3 [14] (edge device). 100 experimental
runs of 10 s each were carried out, generating approximately
350 KB of data in each 10 s sampling interval. The study has been
carried out using commercial off-the-shelf hardware and open-
source software (Python), which is in compliance with industry
4.0 ideas of transparency, interoperability and scalability. For time
performance evaluation of edge and cloud platforms; we calculate
the following:

1. Time-domain features

(Mean, maximum, minimum, range, root mean square, kurtosis,
skewness).

2. Fast-Fourier Transform

The main contributions of this work are (i) proposing the per-
formance metrics for edge and cloud computing, for machinery
condition monitoring (ii) validation of the proposed architecture
using a machinery vibration monitoring case study. A schematic
of the benchmarking architecture developed in this work is shown
in Fig. 1.
2. Computing methodology

2.1. Edge computing

A Raspberry-pi 3 (RPi) (Quad-Core 1.2 GHz Broadcom BCM2837
64bit CPU 1 GB RAM) running Raspbian operating system, with a
16 GB microSD memory card is the edge device used for interfacing
the ADXL-345 using i2c protocol [15]. A Python program running
in the RPi was used to acquire the data, compute the time-
domain features and the Fast-Fourier Transform (FFT). FFT was
plotted on a Virtual Network Computing (VNC) device using
Python’s Matplotlib library.

The following times are considered for edge computing perfor-
mance evaluation:

(i) Time for loading libraries
(ii) Time overhead for data acquisition
(iii) Time for computing time-domain features
(iv) Time for computing FFT
(v) Time for plotting graph
Fig. 1. Edge-cloud benchmarking architecture.
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For establishing performance metrics on the edge, time for load-
ing libraries and time for plotting graphs are not included. The
rationale for excluding the time for loading task specific libraries
is that they are loaded only once when the code is executed. The
average time for loading libraries on the RPi is observed to be
1.72 s. Further, the time for plotting graphs is also excluded from
performance metrics as it depends on their type (rendering
requirements) and quantity. Moreover, graphs may not be always
necessary, as fault classification on the edge using deep learning
will return only a class label. The average time for plotting FFT
plots in this work is 0.54 s. The edge computing performance met-
rics are shown as a boxplot in Fig. 2. A large variance is found in the
computing time for FFT, whereas the computing time for time-
domain features is small and consistent in comparison to the for-
mer. The variation of the FFT compute time is due to the fact that
the FFT algorithm is run on the processor at a lower priority than a
number of service routines, and a variable number of service rou-
tine interrupts may occur during the FFT calculations.
2.2. Cloud computing

To maintain consistency in experimentation, data acquisition is
performed for the same specifications as mentioned in the intro-
duction. Next, the raw data collected in batches of 10 s (approxi-
mately 350 KB data per batch) are sent to a PostgreSQL [16]
open-source database using wi-fi. These data are then retrieved
from the database, the time-domain features and FFT are com-
puted on Heroku [17] cloud platform, running on an Amazon Elas-
tic Compute Cloud (EC2) instance [18]. The entire process is
designed accounting for the real-time capabilities required for
machinery vibration monitoring and is written in Python, to keep
consistency and ease of a single open-source language.

As the raw data leave the edge device, the following times are
considered for cloud computing performance evaluation:

(i) Time for insertion into database (Ti)
(ii) Time for retrieval from database (Tr)
(iii) Time for computing time-domain features
(iv) Time for computing FFT

The cloud computing performance metrics are shown as a box-
plot in Fig. 3. Insertion time (Ti) includes the data transmission
time (from Raspberry pi to the database), and the time to insert
into the database. Retrieval time denotes the time taken to retrieve
Fig. 2. Edge computing metrics.



Fig. 3. Cloud computing metrics.

Fig. 4. Variation in end-to-end latency with algorithm(s).
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data from the database. Large variance is observed in the database
insertion and retrieval times, which may be attributed to transmis-
sion and database related reasons. The time for computing FFT and
time-domain features was observed to be similar in their central
tendencies, unlike that on the edge device. This implies that in
our experiments, cloud is better than edge for computing FFT.

3. Performance comparison

The end-to-end latencies for computing time-domain features
and FFT, on edge and cloud platforms are shown in Fig. 4.

In our experiments, it is observed that the end-to-end latency
for computing time-domain features is less on the edge in compar-
ison to cloud, while this trend reverses in the case of FFT. As the
edge computation time (Ta(edge)) increases, the overheads associ-
ated with cloud (Ti + Tr) diminish in comparison to the increase in
edge computation time, making cloud the favorable choice. Con-
sidering only end-to-end latency as the metric, edge computing
can be preferred over cloud if:

Ta edgeð Þ < Ti þ Tr þ Ta cloudð Þ; ð1Þ
41
where Ta (device) = computation time of an algorithm on that
device.

4. Conclusions

The benchmarking of edge and cloud computing latencies for an
IoT-based machinery vibration monitoring case study was per-
formed using commercial-off-the-shelf hardware and open-
source software. The study shows that the choice of edge or cloud
platform depends on the computation time of an algorithm and
overheads, considering end-to-end latency as the metric. Further-
more, this study identifies the edge and cloud performance metrics
from first principles, which can be used for other similar applica-
tions in smart manufacturing. There is a need to test the time per-
formance of different existing and new algorithms on various edge
devices, given the proliferation of deep learning frameworks for
edge analytics. Comparing different edge device performances
with the proposed platform and establishing best architectures
for different use-cases will enable rapid innovation in the develop-
ment and deployment of open platforms.
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