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Abstract 

 In the recent years, there is a growing interest in using quantum computers for solving 

combinatorial optimization problems. In this work, we developed a generic, machine learning-

based framework for mapping continuous-space inverse design problems into surrogate 

quadratic unconstrained binary optimization (QUBO) problems by employing a binary 

variational autoencoder and a factorization machine. The factorization machine is trained as a 

low-dimensional, binary surrogate model for the continuous design space and sampled using 

various QUBO samplers. Using the D-Wave Advantage hybrid sampler and simulated 

annealing, we demonstrate that by repeated resampling and retraining of the factorization 

machine, our framework finds designs that exhibit figures of merit exceeding those of its 

training set. We showcase the framework’s performance on two inverse design problems by 

optimizing (i) thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive 

meta-gratings for highly efficient beam steering. This technique can be further scaled to 

leverage future developments in quantum optimization to solve advanced inverse design 

problems for science and engineering applications. 

  



Introduction 

 Combinatorial optimization has recently seen tremendous progress with new algorithms and 

heuristics, such as simulated annealing, genetic algorithms, and adiabatic optimization1. 

Specifically, the quadratic unconstrained binary optimization (QUBO) formalism of 

combinatorial optimization has attracted significant interest due to its applicability to a broad 

range of physical and NP-hard (i.e., non-deterministic polynomial-time hard) combinatorial 

optimization problems2–4. For example, it has been demonstrated that QUBO can be used for 

factoring integers5, electronic structure calculations6, capital budgeting7, solving the maximum 

cut problem8,9, graph coloring10, traffic flow optimization11, number partitioning12, etc. Another 

key aspect that boosted interest in the QUBO formalism is its isomorphism to Ising 

Hamiltonians, commonly used in physics and chemistry13. This equivalence enables direct 

mapping of a broad range of physics/chemistry optimization problems into the combinatorial 

optimization domain and the use of various physical platforms to perform highly efficient 

QUBO-based optimization via physical processes14–16.  

 Recent progress in the development of various near-term quantum computing platforms 

opens up more efficient ways for addressing the aforementioned optimization problems in 

terms of time and computational resource requirements by leveraging the power of physical 

mechanisms, specifically, quantum mechanics, in the processing unit. For example, the D-

Wave’s quantum annealers are actively used for addressing the QUBO problems via encoding 

the QUBO parameters into a system of coupled superconducting qubits and retrieving the 

lowest energy configuration via quantum annealing17,18. Surmounting evidence is showing that 

quantum annealing offers a so-called quantum speedup over classical QUBO sampling 

methods19,20. The QUBO-based optimization consists of three main steps: (i) reformulating the 

optimization problem into a QUBO model; (ii) embedding the retrieved QUBO model 

parameters into the QUBO sampler; and (iii) retrieving the global solution of the problem. In 

most cases, the first step in QUBO-based optimization is realized by exploiting a one-to-one 

correspondence between the combinatorial problem under consideration and the architecture 

of the QUBO-solver21,22. On the one hand, this correspondence makes retrieving 

corresponding QUBO parameters of the problem trivial. On the other hand, it significantly 

reduces the types of problems considered, especially those outside the combinatorial domain.  

 Another important subfield of optimization problems is continuous optimization. 

Continuous optimization is built on the continuous domain, real-space parameters with 

differential, calculus-based relationships. Some simple continuous optimization problems can 

be solved analytically. However, many problems do not have analytic solutions and are solved 

numerically by employing search algorithms such as stochastic gradient descent and various 

heuristics, which cannot guarantee optimality. Many problems exist for which these search 

algorithms do not work well because of the vast continuous domain. Novel techniques that 



enable invertible mapping from continuous space optimization problems to QUBO problems 

may provide a way to take advantage of recent and future advancements in QUBO, including 

quantum optimization algorithms. Therefore, there is an apparent demand for a universal 

method of mapping continuous optimization problems into the QUBO formalism to generate 

better continuous space solutions. 

 Within this work, we developed a novel machine-learning assisted framework that maps a 

broad range of continuous optimization problems into QUBO problems and samples their 

optimized solutions using any available classical or quantum QUBO solver.  Specifically, we 

demonstrated a binary variational autoencoder (bVAE) assisted QUBO framework (bVAE-

QUBO) that encodes a continuous optimization problem into a binary, compressed space and 

samples this compressed space with quantum-assisted QUBO samplers. We showcase the 

performance of the developed framework on two practical, continuous optimization problems 

of nanophotonics: (1) optimization of a free-form thermal emitter for thermophotovoltaics 

(TPV) and (2) optimization of dielectric, free-form diffractive meta-grating for beam steering. 

Although the developed technique is showcased on inverse design problems of 

nanophotonics, it can be directly applied to a broad range of practical continuous optimization 

problems, e.g., in mechanical engineering, chemistry, material synthesis. By employing a 

quantum-assisted algorithm for continuous optimization, our framework provides a long-

sought-after example of a quantum-assisted, machine learning algorithm that has potential for 

quantum-supremacy23, uses noisy intermediate-scale quantum platforms for practical 

engineering problems24, and could fully leverage future developments in quantum and classical 

QUBO sampling25,26.  

Methods 

bVAE-QUBO General Framework 

 Motivated by the increasing number of qubits in D-Wave quantum annealers14,17,18 and the 

recent work by Hastings in proving a relativized speedup for stoquastic adiabatic quantum 

computing27, we developed a framework to map highly constrained continuous optimization 

problems into the QUBO model, which can be minimized by quantum annealers and other 

QUBO samplers. The first step of the developed technique is compressing a problem dataset 

from a discretized, continuous optimization problem onto a binary, compressed space by 

training a binary variational autoencoder (bVAE). We then map the binary, compressed space 

into an equivalent QUBO problem by training a second-order factorization machine and 

retrieving corresponding parameters of the QUBO model28. Finally, we optimize the retrieved 

QUBO problem to find an optimal binary vector via a QUBO sampler like the D-Wave quantum 



annealer. The factorization machine is retrained and resampled repeatedly using a QUBO 

sampler until it converges to produce good, continuous space solutions. Below we highlight 

each step of the process in more detail (Fig. 1.).  

Step #1 of the developed framework is to train the bVAE network and construct a binary, 

compressed representation of the optimization problem. This step maps the continuous 

optimization problem onto the binary domain and substantially reduces the dimension of the 

continuous space problem. Conventionally used variational autoencoders, which consist of two 

coupled neural networks (encoder and decoder), construct an invertible mapping between a 

lower-dimensional encoding of a dataset to the continuous-space solution29,30. Recently, it has 

been demonstrated that variational autoencoders can be generalized for categorical 

compression of complex 1D and 2D datasets, where the compressed space coordinates are 

discrete variable vectors31,32. Here, we use a limiting case of such categorical variational 

autoencoders – binary variational autoencoder, which allows the construction of binary, 

compressed space representation of the complex datasets33. A properly trained bVAE can be 

considered an invertible map, 𝑔 ∶ {0,1}𝑛 → ℝ𝑚×𝑚, between the binary, compressed space 

Figure 1. The developed general bVAE-QUBO framework steps: (Step 1) training of the binary 

variational autoencoder (bVAE) and construction of binary compressed space representation of the 

dataset (inset); (Step 2) mapping the resulting binary compressed space into the QUBO/Ising model 

via training of the second order factorization machine; (Step 3) embedding the retrieved Ising/QUBO 

model parameters into the hardware and sampling the optimized data from the QUBO sampler. 



vectors of size 𝑛 and the discretized, continuous space solutions of dimensionality 𝑚 × 𝑚. The 

bVAE network is trained by minimizing a reconstruction loss and the Kullback-Leibler 

divergence loss. The latter defines the deviation of the recognition distribution (obtained with 

the model data) from the pre-defined prior. The main difference between the bVAEs and the 

vanilla variational autoencoders is that the prior and recognition models are under different 

distributions. The bVAE is under a Bernoulli distribution, while the typical variational 

autoencoder’s distribution is assumed to be Gaussian. We used the Gumbel-Softmax re-

parameterization trick31 for backpropagating the error during training, enabling the derivative 

calculation on the stochastic nodes of the bVAE network. More details on the bVAE structure 

and the training process can be found in Supplementary Materials, Section S1.  

Step #2 of the bVAE-QUBO framework maps the bVAE’s compressed space into a QUBO 

problem or Ising Hamiltonian via training a second-order factorization machine. This step 

exploits the fact that second-order factorization machines are isomorphic to QUBO objective 

functions and Ising Hamiltonians. Factorization machines, introduced by Rendle for learning 

sparse feature interactions28, are low-capacity models that infer coupling coefficients, ⟨𝑣𝑖, 𝑣𝑗⟩, 

by a factorization matrix, 𝑉 ∈  ℝ𝑛×𝑘. The coupling coefficients, ⟨𝑣𝑖 , 𝑣𝑗⟩, are determined by 

taking the dot product of the ith and jth rows in 𝑉, which is equivalent to multiplying the 

factorization matrix by its transpose, 𝑉𝑉𝑇. A factorization machine acts on an input binary 

vector, 𝑥 ∈ {0,1}𝑛, and returns a figure of merit 𝑦 ∈ ℝ.   

𝑦(𝒙) = 𝒘𝟎 + ∑ 𝑤𝑖𝑥𝑖
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𝑤0 ∈ ℝ is a global bias, 𝑤 ∈ ℝ𝑛 defines the weights for the discrete components of 𝑥. All free 

parameters, 𝑤0, 𝑤, and ⟨𝑣𝑖, 𝑣𝑗⟩ are optimized via supervised training of the factorization 

machine. Specifically, the factorization machine is trained on a randomly sampled dataset of 

binary vectors 𝑋 and their corresponding figure of merit labels 𝑌 from the binary, latent space 

of the bVAE.  The figure of merit labels are calculated by passing a binary vector, 𝑥 ∈ 𝑋, 

through the bVAE’s decoder and calculating the figure of merit on its continuous-space 

solution.  

 A crucial benefit to restricting the factorization machine to a second-order model is that 

QUBO objective functions are only second-order polynomials. A QUBO sampler finds the 

minimum input binary vector to a second-order pseudo-boolean function via classical or 

quantum sampling algorithms. 
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here 𝒙 ∈ {0,1}𝑛 and 𝑄 is a 𝑛 × 𝑛  matrix containing local biases (diagonal terms) and coupling 

coefficients (off-diagonal terms). An alternative formulation of QUBO problems is the 

formulation via the Ising Hamiltonian. The restricted Ising Hamiltonian 𝐻(𝝈) used by quantum 

annealers contains local biases ℎ and a quadratic term proportional to a qubit coupling matrix 

𝐽.  

𝐻(𝝈) = ∑ ℎ𝑖𝜎𝑖
(𝑧)

𝑁
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𝜎𝑗
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 is a Pauli-Z matrix acting on the ith qubit’s spin state. The spin state must collapse to an 

eigenvalue of -1 or +1 upon measurement. So, one can loosely consider this collapsed 

measurement value as a spin variable, 𝑠𝑖 ∈ {−1, +1}. Quantum annealers employ the adiabatic 

algorithm to find the minimum input spin state, 𝒔, for (3) by encoding the magnetic field 

strengths of superconducting qubits with the local biases ℎ and the coupling matrix 𝐽. 

Comparing (1), (2), and (3), we can see a similarity between the parameters of the Ising 

Hamiltonian, factorization machine, and QUBO objective function: 

ℎ𝑖 ↔ 𝑤𝑖 ↔ 𝑄𝑖 , 𝐽𝑖𝑗 ↔ ⟨𝑣𝑖, 𝑣𝑗⟩ ↔ 𝑄𝑖,𝑗 (4) 

 All three of these models are equivalent for optimization under a simple change of basis 

between the spin domain of the Ising Hamiltonian and the Boolean domain of the QUBO, see 

Supplementary materials, S1. Hence, by training the factorization machine regression model 

and retrieving 𝒘𝟎, 𝒘, and coupling matrix ⟨𝒗𝒊, 𝒗𝒋⟩, we can create an equivalent Ising or QUBO 

model for a classical or quantum QUBO sampler.  

Step #3 embeds the retrieved QUBO/Ising problem from the factorization machine in Step #2 

into a sampler and retrieves optimized solutions. While this step depends on the type and 

architecture of the QUBO sampler, we used the D-Wave quantum annealers in our work. The 

virtual QUBO from the factorization machine is fully connected, meaning each bit has a pairwise 

coupling coefficient with every other bit, i.e., ∀𝑖, 𝑗 ∈ {1,2, . . . , 𝑁} ∶  𝑄𝑖,𝑗  ≠ 0.  However, to 

physically realize a quantum annealer, the physical Ising model cannot be fully connected, i.e., 

∃𝑖, 𝑗 ∈ {1,2, … , 𝑁}: 𝐽𝑖,𝑗 = 0.  

 There are two available Ising connectivity topologies for the D-Wave quantum annealers: 

Pegasus34 and Chimera35. By using minor-embedding techniques, one can convert any virtual 

QUBO into any physical Ising model at the expense of adding auxiliary variables. The D-Wave 

architectures have a fundamental limit in the number of fully connected qubit connections 

realized by these minor-embedding techniques. This limit is known as the ‘clique’ size of the 

Ising Hamiltonian’s connectivity graph. The D-Wave Advantage quantum annealer has a 

Pegasus connectivity graph with a maximum clique size of 180 qubits, while the D-Wave 

2000Q’s Chimera graph clique size is 64 qubits. Therefore, the factorization machine’s input 



vector size cannot be larger than 180 bits if one wants to use a quantum annealer. Fortunately, 

the D-Wave also provides simulated annealers and quantum-classical hybrid samplers, which 

can handle any clique size. While the quantum annealer may ensure asymptotic speedup over 

classical computers with respect to the QUBO size, simulated annealing and other classical 

QUBO samplers are not limited to connectivity requirements or maximum clique sizes. 

Nevertheless, we include more details on these topics in the Supplementary Materials, Section 

S1.  

 Once the factorization machine’s parameters are embedded into the QUBO sampler, the 

sampler will return a set of optimized binary vectors, 𝑥𝑛𝑒𝑤. The corresponding figure of merit 

labels, 𝒚𝑛𝑒𝑤, for the sampled vectors are assessed by generating their continuous-space 

solutions via the bVAE’s decoder and retrieving the corresponding figure of merit values 

through a direct solver. Finally, the (𝑿, 𝒀) set initially used for training the factorization machine 

during the previous iteration is updated with (𝒙𝑛𝑒𝑤, 𝒚𝑛𝑒𝑤) by appending the new vectors to 

the dataset. Step 3 concludes one iteration of the bVAE-QUBO, while the next iteration starts 

with retraining the factorization machine on the updated set (𝑋 ∪ 𝒙𝑛𝑒𝑤, 𝑌 ∪ 𝒚𝑛𝑒𝑤). Steps #2 

and #3 are looped until the figure of merit of the sampled solutions reaches saturation or the 

desired number of iterations is achieved. The main idea is that retraining the factorization 

machine on sampled vectors increases the variance of the model and forces it to be a better 

surrogate model for the continuous solution space. Sampling the newly trained factorization 

machine should not give any previous binary solution unless the sample has a high enough 

figure of merit, indicating a saturated factorization machine.  In the next section, we showcase 

the performance of the developed bVAE-QUBO framework on the optimization of meta-

structure designs for nanophotonic applications.  

Results 

bVAE-QUBO for Nanophotonic Inverse Design Problems  

 Recently, new optimization frameworks, such as topology optimization36–40 and 

metaheuristics41,42, for nanophotonics have emerged as powerful design algorithms. However, 

these techniques require significant computational resources and have exponential asymptotic 

complexity with respect to problem constraints and the dimensions of the optimization 

parametric space. In response, various machine learning and deep learning algorithms have 

been adapted to address optimization problems in nanophotonics43–52. For example, 

generative adversarial networks53,54 and adversarial autoencoders coupled with adjoint 

topology optimization techniques for optimizing meta-structures produced nonintuitive 

designs. It was also demonstrated that adversarial autoencoder-based optimization 

frameworks coupled with metaheuristic algorithms could perform global optimization searches 

within the compressed design spaces of a pre-trained adversarial autoencoder network55,56. 



However, due to the general complexity of the inverse design problems, such approaches may 

not be effective in the case of highly constrained problems, which demand multi-objective 

optimization within the high-dimensional latent spaces.  

  Within this section, we show empirical evidence that the developed bVAE-QUBO framework 

can address the aforementioned challenges. Specifically, we demonstrate that by using the 

Figure 2. Simulated annealing assisted bVAE-QUBO for thermal emitter design 

optimization. (a) Schematic of a thermophotovoltaic engine: a heater patterned with a thermal 

emitter array and a photovoltaic cell. Inset shows the base structure under consideration consists of 

a 300-nm-thick TiN back reflector, 30-nm-thick Si3N4 dielectric spacer, and 120-nm-thick top TiN 

patterned layer in 280×280 nm2 unit cell. The top TiN layer is set to be the optimization region. (b) 

Blackbody radiation of the bare heater (solid black curve) corresponding to emission of blackbody 

at 1800 °C. The grey rectangular region highlights the GaSb photovoltaic cell working band. Only 

in-band radiation is converted into electrical power (green area), while out-of-band radiation cases 

heating of the photovoltaic cell (red area). Black dashed contour corresponds to an ideal thermal 

emitter’s emissivity/absorption spectrum. (c) Two examples of input and reconstructed emitter 

designs by the trained bVAE network (top) and examples of randomly sampled thermal emitters 

(bottom). Patterns are top view of the optimization area, white color corresponds to TiN, while black 

corresponds to air. (d) Convergence plot of 30 iterations of the bVAE-QUBO framework. (e) 

Efficiency distribution of the training set used for bVAE training (5000 designs, blue histogram) and 

100 designs generated via bVAE-QUBO (orange). (f) Emissivity/absorption spectra of the best design 

sampled with bVAE-QUBO. Vertical dashed line shows the upper bound of the GaSb photovoltaic’s 

working band. Inset shows the schematic of the thermal emitter design. 



bVAE-QUBO framework, it is possible to construct a binary, compressed space representation 

of meta-devices with complex shapes and topologies and map it into a QUBO sampler for 

optimized, free-form design sampling. In the remainder of this section, we show the results 

from applying our framework to two case studies of optimizing (i) thermal emitters for 

thermophotovoltaics and (ii) dielectric, free-form diffractive grating for beam steering. 

Thermal Emitter for TPV Application.  

 The TPV engine generates electrical power via radiative heat transfer between a heater and 

an array of photovoltaic cells (Fig. 2a). High-efficiency power generation in a TPV system 

requires maximizing the portion of the emission that overlaps with the working band of the 

photovoltaic cell (in-band radiation, green area in Fig. 2b) and minimizing the rest of the 

spectra (out-of-band radiation, red area in Fig. 2b)57–59. There are three main requirements for 

implementing a high-efficiency TPV engine: (i) high temperature of the heater (>1000 °C), (ii) 

refractory material platform for the elements of the TPV system to ensure stable performance 

of the device at high temperatures, and (iii) pre-optimized emissivity properties of the heater. 

While the first two constraints can be addressed by choosing a suitable refractory material 

platform60–62, the third requirement can be fulfilled by patterning the surface with a properly 

designed thermal emitting metasurface. In the ideal case, the emissivity should completely 

overlap the working band of the photovoltaic cell (black dotted step-function, Fig. 2b). Such 

surface emissivity ensures total cancelation of the parasitic out-of-band radiation, which leads 

to the reduction of the photovoltaic efficiency due to the heating while maintaining the 

maximum possible free-carrier generation rate. We consider TPV systems utilizing GaSb 

photovoltaic cells with a working band ranging from 𝜆𝑚𝑖𝑛 to 𝜆𝑚𝑎𝑥 (shaded area in Fig. 2b).  

Within this work, we consider a gap plasmon metasurface63,64 configuration consisting of an 

optically thick back titanium nitride (TiN) reflector, a 30-nm-thick silicon nitride (Si3N4) spacer, 

and a 120-nm-thick top layer (optimization region), with a fixed 280-nm lateral periodicity 

(inset, Fig. 2a). The main goal of the optimization is to determine the topological shape of the 

material distribution (TiN and air) within the optimization region, which ensures spectral 

emissivity matching the emissivity of the ideal emitter. For quantification of the device 

performance, we define the efficiency of the thermal emitter as a product of in-band (𝑒𝑓𝑓𝑖𝑛 ) 

and out-of-band efficiencies (𝑒𝑓𝑓𝑜𝑢𝑡). 𝑒𝑓𝑓𝑖𝑛 is an in-band radiance of the emitter normalized 

to the in-band radiance of ideal emitter at 1800 C, while out-of-band efficiency 𝑒𝑓𝑓𝑜𝑢𝑡 is 

defined as a ratio of the out-of-band radiance of the back reflector and radiance of the 

optimized design.  

 The first step of bVAE-QUBO is realized by training the bVAE network on topology 

optimized thermal emitter designs. The training set consists of 5000 topology optimized 

designs obtained via a previously developed adversarial autoencoder-based optimization 



framework. A VGGnet regression model trained on the same dataset for rapidly estimating the 

thermal emitter’s efficiency based on its design. More information on training set generation is 

in Supplementary materials, S2. During the training of the bVAE, the encoder takes 64 × 64 

binary, greyscale topology images (top view of the antenna, Fig. 2c) as an input and trains to 

compress it into the 500-dimensional binary space. Likewise, the decoder trains to reconstruct 

the topology of the antenna design based on an inputted 500-dimensional binary vector. After 

training, the encoder can compress antenna designs into the compressed latent space while 

the decoder can act as a generator that maps latent vectors to novel meta-structures. Two 

examples of the reconstructed antenna designs are shown in Fig. 2c. Here one can see that 

the bVAE network ensures precise reconstruction of complicated antenna designs. Additionally, 

Fig. 2c shows some examples of the randomly sampled antenna designs using the bVAE’s 

decoder. Note that the Gaussian filtering with 20 nm blur size is applied to the generated 

patterns to eliminate small features introduced by the bVAE noise.  

 The second step of the bVAE-QUBO framework starts by training the factorization machine 

on the binary vectors (𝑋) and efficiency labels (𝑌) generated by the bVAE network. This data 

set is constructed by randomly sampling 11250 binary vectors from the binary, compressed 

space and calculating their corresponding efficiency labels. The efficiency labels are retrieved 

by generating their thermal emitter design using the decoder and calculating their efficiency 

using a pre-trained VGGnet. The (𝑿, 𝒀) set is constrained such that half of it corresponds to 

low-efficiency designs (70-80% efficiency), 30% of the designs in the set have moderate 

efficiencies (between 80% to 90% ), and 20% of them have more than 90% efficiency. The 

supervised training of the factorization machine is done using the adaptive gradient descent 

optimization with the mean square error loss function. 70% of the (𝑿, 𝒀) dataset is used for 

training, while 10% for validation and 20% is used for testing. The trained factorization machine 

ensures 𝑟2 = 72% and mean square error of 0.001. Additional information on the structure of 

the bVAE network and training the factorization machine can be found in Supplementary 

materials, S1.  

Simulated Annealing Assisted bVAE-QUBO Framework 

 Using simulated annealing as the QUBO sampler, the bVAE-QUBO framework executed 30 

iterations. Thermal emitter design efficiencies sampled during each of the bVAE-QUBO runs 

are shown in Fig. 2d. The data points and error bars show the mean efficiencies and 

corresponding standard deviations of 10 designs sampled during each of the bVAE-QUBO 

runs. We can see that updating QUBO parameters via retraining the factorization machine on 

the newly sampled vectors will significantly increase the quality of sampled designs (from ~40% 

of the initially trained factorization machine up to >90%). Figure 2e shows the efficiency 

distributions of the dataset used for bVAE training (5000 designs, blue bars) and the best 100 

designs sampled with bVAE-QUBO (orange bars). Finite difference time domain analysis 



(Lumerical FDTD) is used to assess the final efficiencies of each of the sets after running the 

framework. The best design in the training set ensures 94.3% efficiency, while one sampled via 

the simulated annealing-based bVAE-QUBO framework approach ensures 96.7%. The 

emissivity spectra of the best design in the bVAE-QUBO set are shown in Fig. 2f, while the inset 

shows the corresponding design of the thermal emitter.  

Quantum-Classical Hybrid Assisted bVAE-QUBO Framework  

 Along with the simulated annealer, we tested the bVAE-QUBO framework based on the 

quantum-classical hybrid sampler. The hybrid sampler is a high-quality server-side sampler 

hosted in the D-Wave Leap ecosystem that uses a mix of quantum annealing and classical 

sampling to sample from large QUBO’s. Figure 3a shows the convergence plot of emitter 

efficiencies generated with hybrid sampling. As in the previous case, retraining the factorization 

machine with a refined dataset substantially increases the bVAE-QUBO framework’s 

performance. We note that the main limitation of this approach is that the hybrid sampler 

returns one sample per bVAE-QUBO run. To augment the sampled dataset during the bVAE-

QUBO run, we copied the sample 10 times and flipped a single bit for each copy. This allows 

us to expand the number of samples per epoch while sacrificing variance in the resulting 

designs. The comparison of the efficiency distributions obtained via the hybrid and simulated 

annealing-assisted bVAE-QUBO framework is shown in Fig. 3b. Here, we can see that using 

the hybrid sampler ensures narrower efficiency distribution with the median at 96% and 

interquartile range (25th to 75th percentile) between 95.5% and 96.2%. For the comparison, the 

Figure 3. bVAE-QUBO assisted with a hybrid (quantum-classical) sampler for optimizating 

high-efficiency thermal emitter designs. (a) Convergence plot of 50 iterations of quantum-

classical hybrid sampler assisted bVAE-QUBO. (b) Efficiency distribution comparison of the top 100 

thermal emitter designs sampled via the hybrid (left) and simulated annealing (right) samplers. Box 

plot shows the median (red line), interquartile range (box) and outliers (red markers). Here, labeling 

indicates maximum efficiencies within each set. (c) Top view of the best thermal emitter designs 

sampled via the hybrid sampler (top) and simulated annealing (bottom) assisted bVAE-QUBO (white 

color corresponds to TiN, while black corresponds to air). 



efficiency distribution of the simulated annealing-based sampling has a 95.4% median and 

interquartile range between 94.2% and 96.2%. Both approaches provide almost identical 

maximum efficiencies, 96.5% (hybrid sampler) and 96.7% (simulated annealing). Corresponding 

thermal emitter designs are shown in Fig. 3c. Interestingly, both samplers lead to the designs 

with identical topologies, with slightly different lateral dimensions of the antenna components. 

Such narrow distribution of the sampled design efficiencies in the hybrid case might be a 

consequence of a better optimization search provided by the quantum annealing part of the 

sampler, which ensures a higher probability of locating an optimum in comparison with the 

classical simulated annealing algorithm.  

Inverse Design of Diffractive Meta-Gratings.  

 In the second case study, we optimize dielectric, free-form diffractive gratings for beam 

steering. Different types of dielectric meta-structures, metasurfaces, and meta-gratings have 

Figure 4. bVAE-QUBO based diffractive meta-grating optimization. (a) Schematics of the 

meta-grating optimization domain. The main goal of topology optimization is to determine 

material distribution inside the optimization region (highlighted by white box) placed on the silicon 

dioxide substrate that ensures highest possible deflection efficiency at 𝜃 deflection angle. The inset 

shows the configuration of the unit cell. (b) Best designs in the topology optimized training set and 

examples of bVAE sampled metagrating designs (white color - SiN, black - air). (c) Convergence 

plot for 50 runs of the simulated annealing-assisted bVAE-QUBO framework. (d) Efficiency 

distributions of the training set used for bVAE training (2000 designs, blue histogram) and 100 

designs generated via the bVAE-QUBO framework (orange). (e) Designs of best designs sampled 

by the bVAE-QUBO. 



been used for various imaging applications65, spectroscopy66, as well as integrated optics 

applications67–69. The development of the dielectric antenna designs is one of the major steps 

in the meta-structure design pipeline. It has recently been demonstrated that advanced 

optimization frameworks, such as genetic algorithms70 and adjoint topology optimization71, can 

be used to develop various types of dielectric meta-devices. We apply the bVAE-QUBO 

framework to optimize silicon nitride (SiN) meta-gratings for deflecting normally incident light 

to a pre-defined angle 𝜃. The main goal of the optimization is to determine binary (SiN and 

air) material distribution within the optimization region, which maximizes the transmitted 

energy of the normally incident plane wave into +1 diffraction order at a 60-degree deflection 

angle (Fig. 4a).  

Training the bVAE network On Topology Optimized Meta-grating Designs.  

 Adjoint topology optimization is used to generate 2000 SiN freeform meta-gratings 

(Supplementary Materials, Section S2)71. Figure 4b shows the best three designs in the training 

set. The bVAE network is trained on 100×100 pixelated patterns to compress the continuous-

space representation of meta-grating into 500-dimensional binary compressed space. Some 

of the generated meta-grating designs by the trained bVAE network are shown in Fig. 4b. The 

figure of merit labels are assessed with S4, a rigorous coupled-wave analysis (RCWA) solver72,73. 

The evolution of the efficiencies of the meta-grating sampled by the bVAE-QUBO framework 

is shown in Fig. 4c.  Similar to the previous example, gradual refinement of the QUBO 

parameters through retraining of the factorization machine significantly increases efficiencies 

of sampled designs. Within each iteration, the bVAE-QUBO samples ~10 meta-grating designs, 

generating 500 designs in total. Figure 4d shows a comparison of efficiencies of the bVAE 

training set (2000 topology optimized designs, blue bars) and the most efficient 100 designs 

sampled with the simulated annealing-assisted bVAE-QUBO framework (orange bars). The 

best designs in the topology optimized training set ensure 83% beam deflection efficiency, 

while the best design in the bVAE-QUBO set ensures 87.1 %. Figure 4e shows the meta-grating 

designs of the four highest efficiency designs sampled via the bVAE-QUBO framework. The 

figure indicates that similar to the previous case study, the bVAE-QUBO framework samples 

high-efficiency designs and produces significantly better designs than conventional topology 

optimization. 

 With regard to runtime performance, we highlight time requirements for each of the bVAE-

QUBO’s steps in our case studies. Training the bVAE network takes ~20 min using PyTorch, 

while training of the VGGnet regression model requires ~24 min on a standard desktop (Intel 

Core i7, 2.8 GHz CPU, 16 GB, Nvidia GeForce GTX 1050 GPU). Both the factorization machine 

training and execution of the bVAE-QUBO sampling are realized on the Google Colab 

platform. While the simulated annealing-assisted bVAE-QUBO requires only 3 s to sample at 

least one design, the hybrid sampler has a preset minimum annealing time of 10 s required to 



sample one design. The main bottlenecks come from the QUBO sampling time and 

determining the figure of merit of the device. More details are available in the Supplementary 

Materials, Section S3. 

Conclusion 

 Within this work, we developed a unique framework that maps a broad range of continuous 

optimization problems into QUBO problems, which can be optimized by any available QUBO 

sampler. The developed binary variational autoencoder assisted QUBO framework 

reformulates a continuous-space problem into a QUBO problem and maps the constructed 

binary, compressed space into a QUBO sampler through a factorization machine model. The 

performance of the developed technique is demonstrated on two case studies of inverse 

design problems in nanophotonics, (i) thermal emitter topologies for TPV applications and (ii) 

diffractive meta-gratings for high-efficiency beam steering. This work is inspired by a recent, 

factorization machine-assisted QUBO framework applied for optimization of “checkerboard” 

type multi-layer metamaterial structures by setting “one to one” mapping of material pixels of 

the structure into the system of qubits of the D-Wave machine21. In contrast to 21, the bVAE-

QUBO framework can (i) map continuous-space optimization problems without imposing 

those “checkerboard”-type solutions in the problem structure, and hence, (ii) reduce the 

dimension of the parametric space of the continuous domain by constructing a compressed 

binary space representation. Such generic formalism of the bVAE-QUBO framework opens up 

the possibility for mapping a broad range of highly constrained optimization problems of 

optics, chemistry, mechanics, finance, and computer science into any available QUBO sampler. 

While the current study showcased the performance of the bVAE-QUBO-based framework on 

classical and quantum-classical hybrid samplers, future work will focus on the realization of the 

bVAE-QUBO with a full quantum annealer or universal quantum computing. This work can be 

extended to similar frameworks with general, non-stoquastic Hamiltonians for adiabatic 

optimization. 
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Section S.1. Training the Binary Variational Autoencoder and Factorization 

Machine 

S.1.1 Structure and Training of a Binary Variational Autoencoder 

Within this work, we map the continuous design space found in many physically 

constrained problems into a binary design space. First, we construct an injective, invertible 

function, 𝑔 ∶ {0,1}𝑛 → ℝ𝑚×𝑚, that maps each binary vector, 𝒙 ∈ {0,1}𝑛, in the domain to only 

one design for the problem of interest in a discretized space ℝ𝑚×𝑚. Constructing 𝑔 can be 

done via training of a binary variational autoencoder (bVAE). The bVAE is a deep neural 

network consisting of an encoder and a decoder. The encoder is a network with one input 

layer of 𝑚 × 𝑚 dimensions and two hidden dense layers with 512 and 256 neurons and ReLU 

activation functions. The decoder has an inverted structure to the encoder, two layers with 256 

and 512 neurons, and one output layer. The structure of the network is shown in Fig. S1a. 

Specifically, the bVAE network learns how to compress continuous space designs into a binary, 

latent space and then reconstruct them. Naturally, the bVAE decoder acts as 𝑔, and the bVAE 

encoder acts as the inverse of 𝑔. The bVAE is trained by minimizing both the reconstruction 

loss for a design and the Kullback-Leibler divergence loss, ℒ𝑏𝑉𝐴𝐸  [1]. The latter defines the 

deviation of the recognition distribution (obtained with the model data) from the pre-defined 

prior, 

ℒ𝑏𝑉𝐴𝐸 = 𝐾𝐿[𝑞(𝑧|𝑦𝑚)|𝑝(𝑧)] − 𝑙𝑜𝑔[𝑝(𝑦𝑚|𝑧)] (𝑆1.1) 



The main difference between the bVAE and the typical VAE network is that the priors, 

p(z), and recognition model, q(z|y), are under different distributions. The bVAE is under a 

Bernoulli distribution, while the typical VAE‘s distribution is assumed to be Gaussian. The main 

problem with the bVAE, like with the VAE, is that a latent variable 𝑥 needs to be stochastically 

sampled with a pre-defined distribution to properly backpropagate the error for training the 

stochastic nodes in the network. This can be circumvented if we express the sample 𝑥~𝑝𝜃(z) 

such that the gradient can flow from the cost function to the set of the parameters 𝜃 (output 

of the encoder) without encountering stochastic nodes. For example, in a VAE network, the 

sampling of a latent variable with Gaussian distribution is realized by re-parameterization 

𝑥 ~ 𝑁(μ, σ) as 𝑥 = 𝜇 + 𝜎 ∙ 𝜀, where ε ~ 𝑁(0,1) and (μ, σ) are parameters of the encoder. This 

re-parameterization allows us to calculate their derivatives with respect to μ and σ and use ε 

as an additional input parameter sampled during each training epoch.  We used the Gumbel-

softmax re-parameterization trick to backpropagate the error in the bVAE, which is a similar 

re-parameterization to the standard VAE [1,2]. Specifically, Gumbel-softmax is a re-

parameterization trick for a distribution that we can smoothly deform into the categorical 

distribution during the training process. Gumbel-softmax samples the latent space vectors 𝑥𝑖̃ 

based on the class probabilities 𝜋1, 𝜋2 ⋯ 𝜋𝑛 of the categorical representation as: 

𝑥𝑖̃ =
exp [

log(𝜋𝑖) + 𝐺𝑖

𝜏
]

∑ exp [
log(𝜋𝑗) + 𝐺𝑗

𝜏
]𝑛

𝑗=1

,    𝑖 = 1, … , 𝑛 (S1.2) 

here 𝐺𝑖 are independent and identically distributed variables sampled from Gumbel distribution 

Gumbel(0,1). 𝜏 is a “temperature” parameter that controls how closely samples from Gumbel-

softmax distribution approximates those from the true categorical distribution. During the 

training process, 𝜏 is gradually “annealed” from 𝜏𝑚𝑎𝑥 down to 𝜏𝑚𝑖𝑛, which is a good 

approximation to a categorical latent space distribution. We swept the 𝜏 parameter from 

Figure S1. Binary variational autoencoder training. (a) Structure of the bVAE network and 

Gumbel-softmax re-parameterization of the binary latent variable. (b) Evolution of training 

and validation loss of bVAE network during training on thermal emitter design set. 



𝜏𝑚𝑎𝑥 = 5 to 𝜏𝑚𝑖𝑛 = 0.4 with annealing rate 𝛾 = 0.0003. The evolution of the temperature 

follows an iterative form, 𝜏epoch+1 = 𝜏epochexp (−𝛾 ∙ epoch). We used a stochastic gradient 

descent optimization method, Adam (Adaptive Moment Estimation) [3], available through the 

Keras, and TensorFlow Python API during the training loop of the bVAE. The evolution of the 

training and validation losses of the bVAE network trained on 5000 thermal emitter designs are 

shown in Fig. S1b. 85% of the design set is used for training and 15% for validation.  

S.1.2 Pseudo-Boolean Structure of the Factorization Machine  

Introduced by Rendle for learning sparse feature interactions, factorization machines 

are very useful, low-capacity models [4]. Consider a map, ℎ ∶ ℝ𝑚×𝑚 → ℝ , that calculates the 

figure of merit of a discretized, continuous space design. Then, ℎ(𝑔) ∶ {0,1}𝑛 → ℝ, where 𝑔 is 

the bVAE decoder, maps a binary vector in the compressed space of the bVAE to its figure of 

merit. Let 𝑦̃(𝑥)  =  ℎ[𝑔(𝑥)], then 𝑦̃(𝑥) is a pseudo-boolean function. If we restrict the domain 

of the factorization machine to a binary space, then its model equation is isomorphic to an 

exhaustive pseudo-boolean function, 

𝑦(𝑥) = ∑⟨𝑣𝑖
(1)

⟩𝑥𝑖

𝑛

𝑖=0

+ ∑ ∑ ⟨𝑣𝑖1

(2)
, 𝑣𝑖2

(2)
⟩𝑥𝑖1

𝑥𝑖2

𝑖2>𝑖1

 

𝑛

𝑖1=0

+

∑ ∑ …
𝑖2>𝑖1

∑ ⟨𝑣𝑖1

(2)
, … , 𝑣𝑖𝑛

(𝑛)
⟩𝑥𝑖1

… 𝑥𝑖𝑛

𝑖𝑛>𝑖𝑛−1

  

𝑛

𝑖1=0

(𝑆1.3)

 

For each polynomial degree, 𝑑, there exists a factorization matrix 𝑣(𝑑). Given a 

factorization matrix 𝑣(𝑑) ∈ ℝ𝑛×𝑘, we can define a coefficient for the polynomial 𝑥𝑖1
… 𝑥𝑖𝑑

 of 

degree 𝑑 as ⟨𝑣𝑖1

(𝑑)
, . . . , 𝑣𝑖𝑑

(𝑑)
⟩, which is a dot product between rows 𝑖1, 𝑖2, … , 𝑖𝑑 in 𝑣(𝑑). The 

advantage of factorization machines is that their polynomial coefficients are determined by 

row interactions in their factorization matrix, which couples a change in one coefficient to a 

change in all the rows associated with that coefficient. This makes them a lower capacity model 

than a model where each polynomial coefficient is unique and decoupled from every other 

coefficient. However, this means that the model can infer coefficients under sparse training 

sets.  

If a factorization machine is trained to approximate 𝑦̃(𝑥), then we can treat it as a 

surrogate model to 𝑦̃(𝑥) and sample its global optimum in place of 𝑦̃(𝑥), thereby sampling 

globally optimal designs within its highly compressed space. Naturally, this model’s space 

complexity can be exponentially large with respect to the size of 𝑥 if 𝑦̃(𝑥) is a full pseudo-

boolean function. We can make a calculated cut in the number of terms by noticing that given 

any polynomial of degree, 𝑑, the number of input strings where the coefficient of the 

polynomial contributes is 2𝑛−𝑑. So, we argue that the highest priority coefficients are the low 

order polynomials where the probabilities of any coefficient from first-order terms or second-



order terms contributing to the output value are 
2𝑛−1

2𝑛 =
1

2
 and 

2𝑛−2

2𝑛 =
1

4
 respectively. 

Additionally, sampling a second-order factorization machine as a surrogate model is much 

more feasible because QUBO solvers can minimize second-order/quadratic pseudo-boolean 

functions. By restricting the factorization machine to first and second-order terms, its model 

equation becomes, 

𝑦(𝑥) = ∑⟨𝑣𝑖
(1)

⟩𝑥𝑖

𝑛

𝑖=0

+ ∑ ∑ ⟨𝑣𝑖1

(2)
, 𝑣𝑖2

(2)
⟩𝑥𝑖1

𝑥𝑖2

𝑖2>𝑖1

 

𝑛

𝑖1=0

(𝑆1.4) 

A crucial benefit to restricting the factorization machine to a second-order model is that 

QUBO objective functions are only second-order polynomials. A QUBO sampler finds the 

minimum input string to a second-order pseudo-boolean function via classical or quantum 

sampling algorithms.  

𝑎𝑟𝑔𝑚𝑖𝑛
𝑥∈{0,1}𝑛

∑ 𝑄𝑖𝑥𝑖

𝑛

𝑖=0

+ ∑ ∑ 𝑄𝑖1,𝑖2
𝑥𝑖1

𝑥𝑖2

𝑖2>𝑖1

𝑛

𝑖1=0

(𝑆1.5) 

If we used a higher-order factorization machine, it would need to be quadratized to a 

second-order polynomial before being minimized by a QUBO sampler [5]. The scaling for this 

process can introduce an exponential number of variables or take an exponential amount of 

time with respect to the degree or input size of the QUBO. So, we restricted our framework to 

second-order factorization machines. Then we can directly map it to a QUBO without 

quadratization, where 𝑄𝑖 = ⟨𝑣𝑖
(1)

⟩ and 𝑄𝑖1,𝑖2
= ⟨𝑣𝑖1

(2)
, 𝑣𝑖2

(2)
⟩.  

S.1.3 Training the Factorization Machine 

For both nanophotonic applications, we found that binary vectors of size 500, i.e., 𝑥 ∈

{0,1}500, and factorization matrices of size 500 by 40, i.e., 𝑣(2)  ∈ ℝ500×40, were sufficient to 

find good designs. For factorization machine training, we constructed a training set of 11250 

unique vectors by randomly sampling from the binary, compressed space of the bVAE and 

assessing the performance of the design via a pre-trained convolutional neural network 

(thermal emitters) or a rigorous coupled-wave analysis (diffraction gratings). The evolution of 

the loss function of the factorization machine for the thermal emitter showcase example is 

shown in Fig. S2. It is also important to note for training that QUBO samplers minimize an 

objective function while we want to maximize the figure of merit for a problem. One can 

circumvent this issue by training the factorization machine on 𝑐 − 𝑦̃(𝑥), where ∀𝑥 ∈ {0,1}𝑛 ∶

𝑐 > 𝑦̃(𝑥). Then, the minimization of the factorization machine corresponds to the 

maximization of 𝑦̃(𝑥). 



 

  
  

S.1.4 Mapping a QUBO into an Ising Model 

The restricted Ising Hamiltonian 𝐻(𝝈) used by quantum annealers contains local biases 

ℎ and a quadratic term proportional to a qubit coupling matrix 𝐽 as:  

𝐻(𝝈) = ∑ ℎ𝑖𝜎𝑖
(𝑧)

𝑁

𝑖=1

+ ∑ 𝐽𝑖𝑗𝜎𝑖
(𝑧)

𝜎𝑗
(𝑧)

𝑁

⟨𝑖,𝑗⟩

(S1.6) 

𝜎𝑖
(𝑧)

 is a Pauli-Z matrix acting on the ith qubit’s spin state. The spin state must collapse to an 

eigenvalue of -1 or +1 upon measurement. So, one can loosely consider this collapsed 

measurement value as a binary variable, 𝑠𝑖 ∈ {−1, +1}.   

𝐻(𝒔) = ∑ ℎ𝑖𝑠𝑖

𝑁

𝑖=1

+ ∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗

𝑁

⟨𝑖,𝑗⟩

 (S1.7) 

Comparing (S1.5) and (S1.7), we can see the isomorphism between the parameters of the 

factorization machine and Ising model: 

ℎ𝑖 ↔ 𝑤𝑖 , 𝐽𝑖𝑗 ↔ ⟨𝑣𝑖 , 𝑣𝑗⟩ (S1.8) 

However, the domain of the Ising Hamiltonian is the spin vectors, {−1, +1}𝑛, and the 

domain of the factorization machine is Boolean, {0,1}𝑛. There does exist a trivial transformation 

between the two domains, namely the invertible substitution 𝑠𝑖 = 2𝑥𝑖 − 1. Hence, by training 

the factorization machine regression model and retrieving 𝒘𝟎, 𝒘, and coupling matrix ⟨𝒗𝒊, 𝒗𝒋⟩, 

it is possible to construct an equivalent Ising or QUBO model.  

 

 

Figure S2. Factorization machine training. 100 epochs of training a second-order 

factorization machine-based regression model for the thermal emitter application. We 

found in practice that exceeding past 30 epochs did not improve the model’s accuracy 

because it is a low-capacity model.  



S.1.5 Retrieving Optimal Vectors from a QUBO Sampler 

Once the factorization machine equation is mapped into an equivalent QUBO or Ising 

form, we employ a QUBO sampler to find an input vector that minimizes the model’s output. 

One thing to keep in mind is that the coupling matrix in a QUBO, 𝑄𝑖,𝑗, forms an undirected 

graph. Let 𝐺 =  {𝑉, 𝐸} be the connectivity graph for a QUBO coupling matrix, 𝑄, where 𝑉 =

 {1,2, … , 𝑛}  is the set of nodes in the graph, i.e. input bits, and 𝐸 =  { {𝑖, 𝑗} | 𝑖, 𝑗 ∈ 𝑉  𝑎𝑛𝑑 𝑄𝑖,𝑗 ≠

0 𝑎𝑛𝑑 𝑖 ≠ 𝑗 } is the set of edges in the graph. One would assume that the connectivity graph 

of a QUBO and its sampler must match to be compatible. However, this limitation only exists 

for QUBO samplers that use physical processes for sampling, such as quantum annealers. 

Additionally, minor-embedding techniques can convert 𝑄 to another graph, 𝑄’, that is 

compatible with the QUBO sampler and has the same minimum input vectors as 𝑄. 

Unfortunately, this process introduces many more nodes and edges, and it is possible that the 

number of nodes and edges in 𝑄’ exceeds that of the physical QUBO sampler.  

A special case for this embedding is when considering fully connected graphs. If 𝑄 is 

fully connected, such as with our factorization machine’s QUBO, then the maximum number 

of nodes for which a 𝑄’ exists for a given physical sampler is known as the “clique” size. The 

clique size for a QUBO sampler depends on the topology of the QUBO sampler and the 

number of available nodes. There are two available topologies for the D-Wave quantum 

annealer connectivity: Pegasus (D-Wave Advantage) [6] and Chimera (D-Wave 2000Q) [7]. The 

D-Wave Advantage quantum annealer has a Pegasus connectivity graph with a maximum 

clique size of 180 qubits, while the D-Wave 2000Q’s Chimera graph clique size is 64 qubits. 

Along with quantum annealing, the D-Wave Leap ecosystem supports simulated annealing 

and quantum-classical hybrid samplers, which can handle any clique size. Naturally, the 

quantum annealer may ensure asymptotic speed-up over classical computers with respect to 

the QUBO size.  

Unfortunately, we found in practice that our factorization machines required 500-

dimensional input vectors to be good models, which exceeds the maximum clique size of the 

D-Wave Advantage. It is also worth noting that this obstacle can be overcome by using the 

decomposition QUBO solver that divides large QUBO problems into sub-problems [8] or by 

additional regularization of the bVAE training process, which can adapt the distribution of the 

binary, compressed space to better match the factorization machine model. Due to the 

aforementioned restriction of maximum clique size, we resorted to using D-Wave’s simulated 

annealer and quantum-classical hybrid sampler.  

Section S.2. Section S2. Generating a Topology Optimized Training Set 

S.2.1 Thermal emitter.  

Within this work, we have used a previously developed adversarial autoencoder-based 

optimization framework to generate the training set for the bVAE-QUBO algorithm. The 

adversarial autoencoder network is initially trained on 200 topology optimized designs of a 



three-layered gap-plasmon structure. 200 topology optimized designs have been enlarged via 

a data argumentation technique developed in  [9].  

The adversarial autoencoder consists of three coupled neural networks: the encoder, 

the decoder/generator, and the discriminator [10]. The encoder takes a 4096-dimensional 

input vector (that corresponds to a 64 × 64 binary design pattern). The input is fed into the 

first of two fully connected, hidden layers with 512 neurons each and a ReLU activation function 

on the output of both layers. One batch normalization layer is coupled to the second hidden 

layer.  The output is a 15-neuron layer. The decoder has the same architecture as the encoder 

but with the reversed sequence. The decoder generates a 4096-element output vector based 

on 15-dimensional, binary input. For the output layer, we use the hyperbolic tangent activation 

function. The discriminator takes a 15-dimensional latent vector as an input and has one output 

neuron for binary classification (fake/real). Here we use two hidden linear layers with 512 and 

256 neurons. The two hidden layers use a ReLU activation function, and the output layer uses 

a sigmoid function. 

Once the adversarial autoencoder network is trained, the decoder generates an 

additional 5000 designs. Moreover, to avoid time-consuming full-wave analysis during the 

execution of the bVAE-QUBO, a VGGnet convolutional neural network is trained for rapid 

estimation of a thermal emitter’s efficiency based on its design. The VGGnet takes 64 by 64 

images of the design as an input and passes it through three hidden layers, consisting of 

convolutional layers with ReLU activation functions. Each hidden layer is followed by a max-

pooling layer, which ensures the down-sampling of the feature maps. The stack of 

convolutional layers is followed by one fully connected layer. The final layer has a linear 

activation function with a mean squared error loss function for efficiency prediction. The 

supervised training of the VGGnet is realized on the same 5000 designs. The VGGnet regression 

model ensures ~93% accuracy ( 𝑟2 coefficient) of predicting the design efficiency. Training the 

adversarial autoencoder and VGG networks is done similarly to  [9]. 

S.2.2 Diffraction Metagrating 

For the diffraction metagrating example, we developed a topology optimized dataset 

by the adjoint topology optimization method. Here we follow the optimization framework 

developed in  [11]. The main goal of the optimization is to determine binary material distribution 

(SiN in air) within the optimization region, which maximizes transmission into a +1-diffraction 

order at a 60-degree angle of a normally incident plane wave. The optimization region is set 

to be a 1 μm × 0.34 μm region with a thickness of 0.8 μm placed on top of the SiO2 substrate. 

A 1 μm wavelength plane wave excitation occurs from the substrate side. Topology 

optimization attempts to maximize the transmission efficiency of the incident light into a pre-

defined diffraction order via maximization of the overlap integral between total field induced 

by the incident [𝑬𝐟𝐰𝐝, 𝑯𝐟𝐰𝐝] and the field induced by backward propagating adjoint field 

[𝑬𝐛𝐰𝐝, 𝑯𝐛𝐰𝐝]. The overlap integral is calculated above the optimization region (𝑧 = 𝑧1).  



𝐹 = |∫ ∫ (
𝑬𝒇𝒘𝒅(𝒙, 𝒚, 𝒛𝟏) × 𝑯𝒃𝒘𝒅(𝒙, 𝒚, 𝒛𝟏) −

𝑬𝒃𝒘𝒅(𝒙, 𝒚, 𝒛𝟏) × 𝑯𝒇𝒘𝒅(𝒙, 𝒚, 𝒛𝟏)
) ∙ 𝒏𝑧𝑑𝑥𝑑𝑦

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

|

2

(𝑆2.1) 

The main goal of the adjoint formalism is to express the gradient 𝜕𝐹(𝑥, 𝑦)/𝜕𝜀 as a 

function of field distributions inside the optimization region induced by forward and backward 

(adjoint) excitation. Such formalism obtains gradients at each location of the optimization 

region via only two full-wave analyses. More details on the adjoint topology optimization 

formalism for dielectric metagrating optimization can be found in  [11]. 
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