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Abstract

In the recent years, there is a growing interest in using quantum computers for solving
combinatorial optimization problems. In this work, we developed a generic, machine learning-
based framework for mapping continuous-space inverse design problems into surrogate
quadratic unconstrained binary optimization (QUBO) problems by employing a binary
variational autoencoder and a factorization machine. The factorization machine is trained as a
low-dimensional, binary surrogate model for the continuous design space and sampled using
various QUBO samplers. Using the D-Wave Advantage hybrid sampler and simulated
annealing, we demonstrate that by repeated resampling and retraining of the factorization
machine, our framework finds designs that exhibit figures of merit exceeding those of its
training set. We showcase the framework’s performance on two inverse design problems by
optimizing (i) thermal emitter topologies for thermophotovoltaic applications and (i) diffractive
meta-gratings for highly efficient beam steering. This technique can be further scaled to
leverage future developments in quantum optimization to solve advanced inverse design
problems for science and engineering applications.



Introduction

Combinatorial optimization has recently seen tremendous progress with new algorithms and
heuristics, such as simulated annealing, genetic algorithms, and adiabatic optimization'.
Specifically, the quadratic unconstrained binary optimization (QUBO) formalism of
combinatorial optimization has attracted significant interest due to its applicability to a broad
range of physical and NP-hard (i.e., non-deterministic polynomial-time hard) combinatorial
optimization problems®™. For example, it has been demonstrated that QUBO can be used for
factoring integers, electronic structure calculations®, capital budgeting’, solving the maximum
cut problem®?, graph coloring', traffic flow optimization", number partitioning®, etc. Another
key aspect that boosted interest in the QUBO formalism is its isomorphism to Ising
Hamiltonians, commonly used in physics and chemistry™. This equivalence enables direct
mapping of a broad range of physics/chemistry optimization problems into the combinatorial
optimization domain and the use of various physical platforms to perform highly efficient
QUBO-based optimization via physical processes™ .

Recent progress in the development of various near-term quantum computing platforms
opens up more efficient ways for addressing the aforementioned optimization problems in
terms of time and computational resource requirements by leveraging the power of physical
mechanisms, specifically, quantum mechanics, in the processing unit. For example, the D-
Wave's quantum annealers are actively used for addressing the QUBO problems via encoding
the QUBO parameters into a system of coupled superconducting qubits and retrieving the
lowest energy configuration via quantum annealing®. Surmounting evidence is showing that
quantum annealing offers a so-called quantum speedup over classical QUBO sampling
methods™®°. The QUBO-based optimization consists of three main steps: (i) reformulating the
optimization problem into a QUBO model; (i) embedding the retrieved QUBO model
parameters into the QUBO sampler; and (iii) retrieving the global solution of the problem. In
most cases, the first step in QUBO-based optimization is realized by exploiting a one-to-one
correspondence between the combinatorial problem under consideration and the architecture
of the QUBO-solver???  On the one hand, this correspondence makes retrieving
corresponding QUBO parameters of the problem trivial. On the other hand, it significantly
reduces the types of problems considered, especially those outside the combinatorial domain.

Another important subfield of optimization problems is continuous optimization.
Continuous optimization is built on the continuous domain, real-space parameters with
differential, calculus-based relationships. Some simple continuous optimization problems can
be solved analytically. However, many problems do not have analytic solutions and are solved
numerically by employing search algorithms such as stochastic gradient descent and various
heuristics, which cannot guarantee optimality. Many problems exist for which these search
algorithms do not work well because of the vast continuous domain. Novel techniques that



enable invertible mapping from continuous space optimization problems to QUBO problems
may provide a way to take advantage of recent and future advancements in QUBO, including
quantum optimization algorithms. Therefore, there is an apparent demand for a universal
method of mapping continuous optimization problems into the QUBO formalism to generate
better continuous space solutions.

Within this work, we developed a novel machine-learning assisted framework that maps a
broad range of continuous optimization problems into QUBO problems and samples their
optimized solutions using any available classical or quantum QUBO solver. Specifically, we
demonstrated a binary variational autoencoder (bVAE) assisted QUBO framework (bVAE-
QUBO) that encodes a continuous optimization problem into a binary, compressed space and
samples this compressed space with quantum-assisted QUBO samplers. We showcase the
performance of the developed framework on two practical, continuous optimization problems
of nanophotonics: (1) optimization of a free-form thermal emitter for thermophotovoltaics
(TPV) and (2) optimization of dielectric, free-form diffractive meta-grating for beam steering.
Although the developed technique is showcased on inverse design problems of
nanophotonics, it can be directly applied to a broad range of practical continuous optimization
problems, e.g., in mechanical engineering, chemistry, material synthesis. By employing a
quantum-assisted algorithm for continuous optimization, our framework provides a long-
sought-after example of a quantum-assisted, machine learning algorithm that has potential for
quantum-supremacy?, uses noisy intermediate-scale quantum platforms for practical
engineering problems?*, and could fully leverage future developments in quantum and classical
QUBO sampling®>®.

Methods
bVAE-QUBO General Framework

Motivated by the increasing number of qubits in D-Wave quantum annealers™"® and the
recent work by Hastings in proving a relativized speedup for stoquastic adiabatic quantum
computing?’, we developed a framework to map highly constrained continuous optimization
problems into the QUBO model, which can be minimized by quantum annealers and other
QUBO samplers. The first step of the developed technique is compressing a problem dataset
from a discretized, continuous optimization problem onto a binary, compressed space by
training a binary variational autoencoder (bVAE). We then map the binary, compressed space
into an equivalent QUBO problem by training a second-order factorization machine and
retrieving corresponding parameters of the QUBO model?®. Finally, we optimize the retrieved
QUBO problem to find an optimal binary vector via a QUBO sampler like the D-Wave quantum
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Figure 1. The developed general bVAE-QUBO framework steps: (Step 1) training of the binary
variational autoencoder (bVAE) and construction of binary compressed space representation of the
dataset (inset); (Step 2) mapping the resulting binary compressed space into the QUBO/Ising model
via training of the second order factorization machine; (Step 3) embedding the retrieved Ising/QUBO
model parameters into the hardware and sampling the optimized data from the QUBO sampler.

annealer. The factorization machine is retrained and resampled repeatedly using a QUBO
sampler until it converges to produce good, continuous space solutions. Below we highlight
each step of the process in more detail (Fig. 1.).

Step #1 of the developed framework is to train the bVAE network and construct a binary,
compressed representation of the optimization problem. This step maps the continuous
optimization problem onto the binary domain and substantially reduces the dimension of the
continuous space problem. Conventionally used variational autoencoders, which consist of two
coupled neural networks (encoder and decoder), construct an invertible mapping between a
lower-dimensional encoding of a dataset to the continuous-space solution®®*°. Recently, it has
been demonstrated that variational autoencoders can be generalized for categorical
compression of complex 1D and 2D datasets, where the compressed space coordinates are
discrete variable vectors®"*?. Here, we use a limiting case of such categorical variational
autoencoders — binary variational autoencoder, which allows the construction of binary,
compressed space representation of the complex datasets®. A properly trained bVAE can be
considered an invertible map, g : {0,1}" - R™ ™ between the binary, compressed space



vectors of size n and the discretized, continuous space solutions of dimensionality m x m. The
bVAE network is trained by minimizing a reconstruction loss and the Kullback-Leibler
divergence loss. The latter defines the deviation of the recognition distribution (obtained with
the model data) from the pre-defined prior. The main difference between the bVAEs and the
vanilla variational autoencoders is that the prior and recognition models are under different
distributions. The bVAE is under a Bernoulli distribution, while the typical variational
autoencoder’s distribution is assumed to be Gaussian. We used the Gumbel-Softmax re-
parameterization trick®' for backpropagating the error during training, enabling the derivative
calculation on the stochastic nodes of the bVAE network. More details on the bVAE structure
and the training process can be found in Supplementary Materials, Section ST1.

Step #2 of the bVAE-QUBO framework maps the bVAE's compressed space into a QUBO
problem or Ising Hamiltonian via training a second-order factorization machine. This step
exploits the fact that second-order factorization machines are isomorphic to QUBO objective
functions and Ising Hamiltonians. Factorization machines, introduced by Rendle for learning
sparse feature interactions®®, are low-capacity models that infer coupling coefficients, (v;, vj),
by a factorization matrix, V€ R™k. The coupling coefficients, (v;, v;), are determined by
taking the dot product of the i and /" rows in V, which is equivalent to multiplying the
factorization matrix by its transpose, VVT. A factorization machine acts on an input binary

vector, x € {0,1}", and returns a figure of merit y € R.

y(x) = wo + Z wix; + Z Z Vi, Vj)Xi%j, (D

i=1j=i+1

wy € R is a global bias, w € R™ defines the weights for the discrete components of x. All free
parameters, wo,w, and (v;, v;) are optimized via supervised training of the factorization
machine. Specifically, the factorization machine is trained on a randomly sampled dataset of
binary vectors X and their corresponding figure of merit labels Y from the binary, latent space
of the bVAE. The figure of merit labels are calculated by passing a binary vector, x € X,
through the bVAE's decoder and calculating the figure of merit on its continuous-space
solution.

A crucial benefit to restricting the factorization machine to a second-order model is that
QUBO objective functions are only second-order polynomials. A QUBO sampler finds the
minimum input binary vector to a second-order pseudo-boolean function via classical or
quantum sampling algorithms.

argmlnz Q;x; + Z Z Qi i, %i, Xi, » (2)
xe{0,1}"

i1=0i>i4



here x € {0,1}" and Q is a n X n matrix containing local biases (diagonal terms) and coupling
coefficients (off-diagonal terms). An alternative formulation of QUBO problems is the
formulation via the Ising Hamiltonian. The restricted Ising Hamiltonian H (@) used by quantum
annealers contains local biases h and a quadratic term proportional to a qubit coupling matrix

J.

N N
H@) = ) ho®+ ) Jyo e, 3)
i=1 (i.j)

o is a Pauli-Z matrix acting on the i qubit's spin state. The spin state must collapse to an
eigenvalue of -1 or +1 upon measurement. So, one can loosely consider this collapsed
measurement value as a spin variable, s; € {—1,+1}. Quantum annealers employ the adiabatic
algorithm to find the minimum input spin state, s, for (3) by encoding the magnetic field
strengths of superconducting qubits with the local biases h and the coupling matrix J.
Comparing (1), (2), and (3), we can see a similarity between the parameters of the Ising
Hamiltonian, factorization machine, and QUBO objective function:

hiow o Q, Jijo(vv) e Q (4)

All three of these models are equivalent for optimization under a simple change of basis

between the spin domain of the Ising Hamiltonian and the Boolean domain of the QUBO, see

Supplementary materials, S1. Hence, by training the factorization machine regression model

and retrieving wg, w, and coupling matrix (v, v]-), we can create an equivalent Ising or QUBO
model for a classical or quantum QUBO sampler.

Step #3 embeds the retrieved QUBO/Ising problem from the factorization machine in Step #2
into a sampler and retrieves optimized solutions. While this step depends on the type and
architecture of the QUBO sampler, we used the D-Wave quantum annealers in our work. The
virtual QUBO from the factorization machine is fully connected, meaning each bit has a pairwise
coupling coefficient with every other bit, ie, Vi,j € {1,2,...,N}: Q;; # 0. However, to
physically realize a quantum annealer, the physical Ising model cannot be fully connected, i.e.,
3i,j €{1,2,..,N}:J;; = 0.

There are two available Ising connectivity topologies for the D-Wave quantum annealers:
Pegasus®* and Chimera®. By using minor-embedding techniques, one can convert any virtual
QUBO into any physical Ising model at the expense of adding auxiliary variables. The D-Wave
architectures have a fundamental limit in the number of fully connected qubit connections
realized by these minor-embedding techniques. This limit is known as the ‘clique’ size of the
Ising Hamiltonian’s connectivity graph. The D-Wave Advantage quantum annealer has a
Pegasus connectivity graph with a maximum clique size of 180 qubits, while the D-Wave
2000Q’s Chimera graph clique size is 64 qubits. Therefore, the factorization machine’s input



vector size cannot be larger than 180 bits if one wants to use a quantum annealer. Fortunately,
the D-Wave also provides simulated annealers and quantum-classical hybrid samplers, which
can handle any clique size. While the quantum annealer may ensure asymptotic speedup over
classical computers with respect to the QUBO size, simulated annealing and other classical
QUBO samplers are not limited to connectivity requirements or maximum clique sizes.
Nevertheless, we include more details on these topics in the Supplementary Materials, Section
S1.

Once the factorization machine’s parameters are embedded into the QUBO sampler, the
sampler will return a set of optimized binary vectors, x,ew. The corresponding figure of merit
labels, ¥new, for the sampled vectors are assessed by generating their continuous-space
solutions via the bVAE's decoder and retrieving the corresponding figure of merit values
through a direct solver. Finally, the (X, Y) set initially used for training the factorization machine
during the previous iteration is updated with (Xpew, ¥Ynew) Py appending the new vectors to
the dataset. Step 3 concludes one iteration of the bVAE-QUBO, while the next iteration starts
with retraining the factorization machine on the updated set (X U Xpew, Y U Ynew). Steps #2
and #3 are looped until the figure of merit of the sampled solutions reaches saturation or the
desired number of iterations is achieved. The main idea is that retraining the factorization
machine on sampled vectors increases the variance of the model and forces it to be a better
surrogate model for the continuous solution space. Sampling the newly trained factorization
machine should not give any previous binary solution unless the sample has a high enough
figure of merit, indicating a saturated factorization machine. In the next section, we showcase
the performance of the developed bVAE-QUBO framework on the optimization of meta-
structure designs for nanophotonic applications.

Results

bVAE-QUBO for Nanophotonic Inverse Design Problems

Recently, new optimization frameworks, such as topology optimization®** and

metaheuristics*"*, for nanophotonics have emerged as powerful design algorithms. However,
these techniques require significant computational resources and have exponential asymptotic
complexity with respect to problem constraints and the dimensions of the optimization
parametric space. In response, various machine learning and deep learning algorithms have
been adapted to address optimization problems in nanophotonics®™2. For example,
generative adversarial networks®*>* and adversarial autoencoders coupled with adjoint
topology optimization techniques for optimizing meta-structures produced nonintuitive
designs. It was also demonstrated that adversarial autoencoder-based optimization
frameworks coupled with metaheuristic algorithms could perform global optimization searches
within the compressed design spaces of a pre-trained adversarial autoencoder network>>°.
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Figure 2. Simulated annealing assisted bVAE-QUBO for thermal emitter design
optimization. (a) Schematic of a thermophotovoltaic engine: a heater patterned with a thermal
emitter array and a photovoltaic cell. Inset shows the base structure under consideration consists of
a 300-nm-thick TiN back reflector, 30-nm-thick SisN4 dielectric spacer, and 120-nm-thick top TiN
patterned layer in 280x280 nm? unit cell. The top TiN layer is set to be the optimization region. (b)
Blackbody radiation of the bare heater (solid black curve) corresponding to emission of blackbody
at 1800 °C. The grey rectangular region highlights the GaSb photovoltaic cell working band. Only
in-band radiation is converted into electrical power (green area), while out-of-band radiation cases
heating of the photovoltaic cell (red area). Black dashed contour corresponds to an ideal thermal
emitter's emissivity/absorption spectrum. (c) Two examples of input and reconstructed emitter
designs by the trained bVAE network (top) and examples of randomly sampled thermal emitters
(bottom). Patterns are top view of the optimization area, white color corresponds to TiN, while black
corresponds to air. (d) Convergence plot of 30 iterations of the bVAE-QUBO framework. (e)
Efficiency distribution of the training set used for bVAE training (5000 designs, blue histogram) and
100 designs generated via bVAE-QUBO (orange). (f) Emissivity/absorption spectra of the best design
sampled with bVAE-QUBO. Vertical dashed line shows the upper bound of the GaSb photovoltaic’s
working band. Inset shows the schematic of the thermal emitter design.

However, due to the general complexity of the inverse design problems, such approaches may
not be effective in the case of highly constrained problems, which demand multi-objective
optimization within the high-dimensional latent spaces.

Within this section, we show empirical evidence that the developed bVAE-QUBO framework
can address the aforementioned challenges. Specifically, we demonstrate that by using the



bVAE-QUBO framework, it is possible to construct a binary, compressed space representation
of meta-devices with complex shapes and topologies and map it into a QUBO sampler for
optimized, free-form design sampling. In the remainder of this section, we show the results
from applying our framework to two case studies of optimizing () thermal emitters for
thermophotovoltaics and (i) dielectric, free-form diffractive grating for beam steering.

Thermal Emitter for TPV Application.

The TPV engine generates electrical power via radiative heat transfer between a heater and
an array of photovoltaic cells (Fig. 2a). High-efficiency power generation in a TPV system
requires maximizing the portion of the emission that overlaps with the working band of the
photovoltaic cell (in-band radiation, green area in Fig. 2b) and minimizing the rest of the
spectra (out-of-band radiation, red area in Fig. 2b)>"°. There are three main requirements for
implementing a high-efficiency TPV engine: (i) high temperature of the heater (>1000 °C), (ii)
refractory material platform for the elements of the TPV system to ensure stable performance
of the device at high temperatures, and (iii) pre-optimized emissivity properties of the heater.
While the first two constraints can be addressed by choosing a suitable refractory material
platform®%-2, the third requirement can be fulfilled by patterning the surface with a properly
designed thermal emitting metasurface. In the ideal case, the emissivity should completely
overlap the working band of the photovoltaic cell (black dotted step-function, Fig. 2b). Such
surface emissivity ensures total cancelation of the parasitic out-of-band radiation, which leads
to the reduction of the photovoltaic efficiency due to the heating while maintaining the
maximum possible free-carrier generation rate. We consider TPV systems utilizing GaSb

photovoltaic cells with a working band ranging from Apin t0 Amay (Shaded area in Fig. 2b).

Within this work, we consider a gap plasmon metasurface®®* configuration consisting of an

optically thick back titanium nitride (TiN) reflector, a 30-nm-thick silicon nitride (SisN4) spacer,
and a 120-nm-thick top layer (optimization region), with a fixed 280-nm lateral periodicity
(inset, Fig. 2a). The main goal of the optimization is to determine the topological shape of the
material distribution (TIN and air) within the optimization region, which ensures spectral
emissivity matching the emissivity of the ideal emitter. For quantification of the device
performance, we define the efficiency of the thermal emitter as a product of in-band (ef f™)
and out-of-band efficiencies (eff°%t). ef fi™ is an in-band radiance of the emitter normalized
to the in-band radiance of ideal emitter at 1800 C, while out-of-band efficiency ef fo%¢ is
defined as a ratio of the out-of-band radiance of the back reflector and radiance of the
optimized design.

The first step of bVAE-QUBO s realized by training the bVAE network on topology
optimized thermal emitter designs. The training set consists of 5000 topology optimized
designs obtained via a previously developed adversarial autoencoder-based optimization



framework. A VGGnet regression model trained on the same dataset for rapidly estimating the
thermal emitter’s efficiency based on its design. More information on training set generation is
in Supplementary materials, S2. During the training of the bVAE, the encoder takes 64 x 64
binary, greyscale topology images (top view of the antenna, Fig. 2¢) as an input and trains to
compress it into the 500-dimensional binary space. Likewise, the decoder trains to reconstruct
the topology of the antenna design based on an inputted 500-dimensional binary vector. After
training, the encoder can compress antenna designs into the compressed latent space while
the decoder can act as a generator that maps latent vectors to novel meta-structures. Two
examples of the reconstructed antenna designs are shown in Fig. 2c. Here one can see that
the bVAE network ensures precise reconstruction of complicated antenna designs. Additionally,
Fig. 2c shows some examples of the randomly sampled antenna designs using the bVAE's
decoder. Note that the Gaussian filtering with 20 nm blur size is applied to the generated
patterns to eliminate small features introduced by the bVAE noise.

The second step of the bVAE-QUBO framework starts by training the factorization machine
on the binary vectors (X) and efficiency labels (Y) generated by the bVAE network. This data
set is constructed by randomly sampling 11250 binary vectors from the binary, compressed
space and calculating their corresponding efficiency labels. The efficiency labels are retrieved
by generating their thermal emitter design using the decoder and calculating their efficiency
using a pre-trained VGGnet. The (X,Y) set is constrained such that half of it corresponds to
low-efficiency designs (70-80% efficiency), 30% of the designs in the set have moderate
efficiencies (between 80% to 90% ), and 20% of them have more than 90% efficiency. The
supervised training of the factorization machine is done using the adaptive gradient descent
optimization with the mean square error loss function. 70% of the (X,Y) dataset is used for
training, while 10% for validation and 20% is used for testing. The trained factorization machine
ensures r2 = 72% and mean square error of 0.001. Additional information on the structure of
the bVAE network and training the factorization machine can be found in Supplementary
materials, S1.

Simulated Annealing Assisted bVAE-QUBO Framework

Using simulated annealing as the QUBO sampler, the bVAE-QUBO framework executed 30
iterations. Thermal emitter design efficiencies sampled during each of the bVAE-QUBO runs
are shown in Fig. 2d. The data points and error bars show the mean efficiencies and
corresponding standard deviations of 10 designs sampled during each of the bVAE-QUBO
runs. We can see that updating QUBO parameters via retraining the factorization machine on
the newly sampled vectors will significantly increase the quality of sampled designs (from ~40%
of the initially trained factorization machine up to >90%). Figure 2e shows the efficiency
distributions of the dataset used for bVAE training (5000 designs, blue bars) and the best 100
designs sampled with bVAE-QUBO (orange bars). Finite difference time domain analysis
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Figure 3. bVAE-QUBO assisted with a hybrid (quantum-classical) sampler for optimizating
high-efficiency thermal emitter designs. (a) Convergence plot of 50 iterations of quantum-
classical hybrid sampler assisted bVAE-QUBO. (b) Efficiency distribution comparison of the top 100
thermal emitter designs sampled via the hybrid (left) and simulated annealing (right) samplers. Box
plot shows the median (red line), interquartile range (box) and outliers (red markers). Here, labeling
indicates maximum efficiencies within each set. (c) Top view of the best thermal emitter designs
sampled via the hybrid sampler (top) and simulated annealing (bottom) assisted bVAE-QUBO (white
color corresponds to TiN, while black corresponds to air).

(Lumerical FDTD) is used to assess the final efficiencies of each of the sets after running the
framework. The best design in the training set ensures 94.3% efficiency, while one sampled via
the simulated annealing-based bVAE-QUBO framework approach ensures 96.7%. The
emissivity spectra of the best design in the bVAE-QUBO set are shown in Fig. 2f, while the inset
shows the corresponding design of the thermal emitter.

Quantum-Classical Hybrid Assisted bVAE-QUBO Framework

Along with the simulated annealer, we tested the bVAE-QUBO framework based on the
quantum-classical hybrid sampler. The hybrid sampler is a high-quality server-side sampler
hosted in the D-Wave Leap ecosystem that uses a mix of quantum annealing and classical
sampling to sample from large QUBO's. Figure 3a shows the convergence plot of emitter
efficiencies generated with hybrid sampling. As in the previous case, retraining the factorization
machine with a refined dataset substantially increases the bVAE-QUBO framework's
performance. We note that the main limitation of this approach is that the hybrid sampler
returns one sample per bVAE-QUBO run. To augment the sampled dataset during the bVAE-
QUBO run, we copied the sample 10 times and flipped a single bit for each copy. This allows
us to expand the number of samples per epoch while sacrificing variance in the resulting
designs. The comparison of the efficiency distributions obtained via the hybrid and simulated
annealing-assisted bVAE-QUBO framework is shown in Fig. 3b. Here, we can see that using
the hybrid sampler ensures narrower efficiency distribution with the median at 96% and
interquartile range (25" to 75" percentile) between 95.5% and 96.2%. For the comparison, the
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Figure 4. bVAE-QUBO based diffractive meta-grating optimization. (a) Schematics of the
meta-grating optimization domain. The main goal of topology optimization is to determine
material distribution inside the optimization region (highlighted by white box) placed on the silicon
dioxide substrate that ensures highest possible deflection efficiency at 8 deflection angle. The inset
shows the configuration of the unit cell. (b) Best designs in the topology optimized training set and
examples of bVAE sampled metagrating designs (white color - SiN, black - air). (c) Convergence
plot for 50 runs of the simulated annealing-assisted bVAE-QUBO framework. (d) Efficiency
distributions of the training set used for bVAE training (2000 designs, blue histogram) and 100
designs generated via the bVAE-QUBO framework (orange). (e) Designs of best designs sampled
by the bVAE-QUBO.

efficiency distribution of the simulated annealing-based sampling has a 95.4% median and
interquartile range between 94.2% and 96.2%. Both approaches provide almost identical
maximum efficiencies, 96.5% (hybrid sampler) and 96.7% (simulated annealing). Corresponding
thermal emitter designs are shown in Fig. 3c. Interestingly, both samplers lead to the designs
with identical topologies, with slightly different lateral dimensions of the antenna components.
Such narrow distribution of the sampled design efficiencies in the hybrid case might be a
consequence of a better optimization search provided by the quantum annealing part of the
sampler, which ensures a higher probability of locating an optimum in comparison with the
classical simulated annealing algorithm.

Inverse Design of Diffractive Meta-Gratings.

In the second case study, we optimize dielectric, free-form diffractive gratings for beam
steering. Different types of dielectric meta-structures, metasurfaces, and meta-gratings have



been used for various imaging applications®, spectroscopy®®, as well as integrated optics
applications®-%°. The development of the dielectric antenna designs is one of the major steps
in the meta-structure design pipeline. It has recently been demonstrated that advanced
optimization frameworks, such as genetic algorithms’® and adjoint topology optimization’', can
be used to develop various types of dielectric meta-devices. We apply the bVAE-QUBO
framework to optimize silicon nitride (SiN) meta-gratings for deflecting normally incident light
to a pre-defined angle 6. The main goal of the optimization is to determine binary (SIN and
air) material distribution within the optimization region, which maximizes the transmitted
energy of the normally incident plane wave into +1 diffraction order at a 60-degree deflection
angle (Fig. 4a).

Training the bVAE network On Topology Optimized Meta-grating Designs.

Adjoint topology optimization is used to generate 2000 SiN freeform meta-gratings
(Supplementary Materials, Section S2)". Figure 4b shows the best three designs in the training
set. The bVAE network is trained on 100 x100 pixelated patterns to compress the continuous-
space representation of meta-grating into 500-dimensional binary compressed space. Some
of the generated meta-grating designs by the trained bVAE network are shown in Fig. 4b. The
figure of merit labels are assessed with S4, a rigorous coupled-wave analysis (RCWA) solver’?’.
The evolution of the efficiencies of the meta-grating sampled by the bVAE-QUBO framework
is shown in Fig. 4c. Similar to the previous example, gradual refinement of the QUBO
parameters through retraining of the factorization machine significantly increases efficiencies
of sampled designs. Within each iteration, the bVAE-QUBO samples ~10 meta-grating designs,
generating 500 designs in total. Figure 4d shows a comparison of efficiencies of the bVAE
training set (2000 topology optimized designs, blue bars) and the most efficient 100 designs
sampled with the simulated annealing-assisted bVAE-QUBO framework (orange bars). The
best designs in the topology optimized training set ensure 83% beam deflection efficiency,
while the best design in the bVAE-QUBO set ensures 87.1 %. Figure 4e shows the meta-grating
designs of the four highest efficiency designs sampled via the bVAE-QUBO framework. The
figure indicates that similar to the previous case study, the bVAE-QUBO framework samples
high-efficiency designs and produces significantly better designs than conventional topology
optimization.

With regard to runtime performance, we highlight time requirements for each of the bVAE-
QUBOQO's steps in our case studies. Training the bVAE network takes ~20 min using PyTorch,
while training of the VGGnet regression model requires ~24 min on a standard desktop (Intel
Core i7, 2.8 GHz CPU, 16 GB, Nvidia GeForce GTX 1050 GPU). Both the factorization machine
training and execution of the bVAE-QUBO sampling are realized on the Google Colab
platform. While the simulated annealing-assisted bVAE-QUBO requires only 3 s to sample at
least one design, the hybrid sampler has a preset minimum annealing time of 10 s required to



sample one design. The main bottlenecks come from the QUBO sampling time and
determining the figure of merit of the device. More details are available in the Supplementary
Materials, Section S3.

Conclusion

Within this work, we developed a unique framework that maps a broad range of continuous
optimization problems into QUBO problems, which can be optimized by any available QUBO
sampler. The developed binary variational autoencoder assisted QUBO framework
reformulates a continuous-space problem into a QUBO problem and maps the constructed
binary, compressed space into a QUBO sampler through a factorization machine model. The
performance of the developed technique is demonstrated on two case studies of inverse
design problems in nanophotonics, (i) thermal emitter topologies for TPV applications and (ii)
diffractive meta-gratings for high-efficiency beam steering. This work is inspired by a recent,
factorization machine-assisted QUBO framework applied for optimization of “checkerboard”
type multi-layer metamaterial structures by setting “one to one” mapping of material pixels of
the structure into the system of qubits of the D-Wave machine?'. In contrast to ', the bVAE-
QUBO framework can (i) map continuous-space optimization problems without imposing
those “checkerboard”-type solutions in the problem structure, and hence, (i) reduce the
dimension of the parametric space of the continuous domain by constructing a compressed
binary space representation. Such generic formalism of the bVAE-QUBO framework opens up
the possibility for mapping a broad range of highly constrained optimization problems of
optics, chemistry, mechanics, finance, and computer science into any available QUBO sampler.
While the current study showcased the performance of the bVAE-QUBO-based framework on
classical and quantum-classical hybrid samplers, future work will focus on the realization of the
bVAE-QUBO with a full guantum annealer or universal quantum computing. This work can be
extended to similar frameworks with general, non-stoquastic Hamiltonians for adiabatic
optimization.
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Section S.1. Training the Binary Variational Autoencoder and Factorization
Machine

S.1.1 Structure and Training of a Binary Variational Autoencoder

Within this work, we map the continuous design space found in many physically
constrained problems into a binary design space. First, we construct an injective, invertible
function, g : {0,1}" - R™™ that maps each binary vector, x € {0,1}", in the domain to only
one design for the problem of interest in a discretized space R™ ™. Constructing g can be
done via training of a binary variational autoencoder (bVAE). The bVAE is a deep neural
network consisting of an encoder and a decoder. The encoder is a network with one input
layer of m x m dimensions and two hidden dense layers with 512 and 256 neurons and RelL.U
activation functions. The decoder has an inverted structure to the encoder, two layers with 256
and 512 neurons, and one output layer. The structure of the network is shown in Fig. Sla.
Specifically, the bVAE network learns how to compress continuous space designs into a binary,
latent space and then reconstruct them. Naturally, the bVAE decoder acts as g, and the bVAE
encoder acts as the inverse of g. The bVAE is trained by minimizing both the reconstruction
loss for a design and the Kullback-Leibler divergence loss, Lyyag [1]. The latter defines the
deviation of the recognition distribution (obtained with the model data) from the pre-defined
prior,

Lyvap = KL[q(z|ym)|p(2)] — log[p(ym|2)] (51.1)
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Figure S1. Binary variational autoencoder training. (a) Structure of the bVAE network and
Gumbel-softmax re-parameterization of the binary latent variable. (b) Evolution of training
and validation loss of bVAE network during training on thermal emitter design set.

The main difference between the bVAE and the typical VAE network is that the priors,
p(z), and recognition model, q(z|y), are under different distributions. The bVAE is under a
Bernoulli distribution, while the typical VAE's distribution is assumed to be Gaussian. The main
problem with the bVAE, like with the VAE, is that a latent variable x needs to be stochastically
sampled with a pre-defined distribution to properly backpropagate the error for training the
stochastic nodes in the network. This can be circumvented if we express the sample x~py(z)
such that the gradient can flow from the cost function to the set of the parameters 8 (output
of the encoder) without encountering stochastic nodes. For example, in a VAE network, the
sampling of a latent variable with Gaussian distribution is realized by re-parameterization
x~N(uo)asx =u+o-¢ wheree~N(0,1) and (y, o) are parameters of the encoder. This
re-parameterization allows us to calculate their derivatives with respect to u and ¢ and use ¢
as an additional input parameter sampled during each training epoch. We used the Gumbel-
softmax re-parameterization trick to backpropagate the error in the bVAE, which is a similar
re-parameterization to the standard VAE [1,2]. Specifically, Gumbel-softmax is a re-
parameterization trick for a distribution that we can smoothly deform into the categorical
distribution during the training process. Gumbel-softmax samples the latent space vectors X,

based on the class probabilities 4, 7, -+ 7, Of the categorical representation as:
exp [lOg('lT;-) + Gl]

~

X, =

- [log(ﬂ,%) m Gj], i=1,..,n (S1.2)
here G; are independent and identically distributed variables sampled from Gumbel distribution
Gumbel(0,1). T is a “temperature” parameter that controls how closely samples from Gumbel-
softmax distribution approximates those from the true categorical distribution. During the
training process, T is gradually “annealed” from T, down to T, which is a good

approximation to a categorical latent space distribution. We swept the t parameter from



Tmax = 5 10 Tmin = 0.4 with annealing rate y = 0.0003. The evolution of the temperature
follows an iterative form, Tepoch+1 = Tepoch€XP(—Y * epoch). We used a stochastic gradient
descent optimization method, Adam (Adaptive Moment Estimation) [3], available through the
Keras, and TensorFlow Python API during the training loop of the bVAE. The evolution of the
training and validation losses of the bVAE network trained on 5000 thermal emitter designs are
shown in Fig. STb. 85% of the design set is used for training and 15% for validation.

S.1.2 Pseudo-Boolean Structure of the Factorization Machine

Introduced by Rendle for learning sparse feature interactions, factorization machines
are very useful, low-capacity models [4]. Consider a map, h : R™™ — R, that calculates the
figure of merit of a discretized, continuous space design. Then, h(g) : {0,1}"* - R, where g is
the bVAE decoder, maps a binary vector in the compressed space of the bVAE to its figure of
merit. Let §(x) = h[g(x)], then F(x) is a pseudo-boolean function. If we restrict the domain
of the factorization machine to a binary space, then its model equation is isomorphic to an
exhaustive pseudo-boolean function,

00 _Z( (1)>xl Z Z< (2), (2)>x11xi2 n

=0 lz>l1

Z Z Z < (2)""'”i(:)>xi1 Xy (51.3)

i1=010>i7 Iip>ip—q

For each polynomial degree, d, there exists a factorization matrix v(®. Given a
factorization matrix v(® € R™¥, we can define a coefficient for the polynomial Xi, - X, Of

degree d as <v.(d) @

ATy > which is a dot product between rows iy, iy, ..., ig in v®. The
advantage of factorization machines is that their polynomial coefficients are determined by
row interactions in their factorization matrix, which couples a change in one coefficient to a
change in all the rows associated with that coefficient. This makes them a lower capacity model
than a model where each polynomial coefficient is unique and decoupled from every other
coefficient. However, this means that the model can infer coefficients under sparse training
sets.

If a factorization machine is trained to approximate ¥(x), then we can treat it as a
surrogate model to #(x) and sample its global optimum in place of F(x), thereby sampling
globally optimal designs within its highly compressed space. Naturally, this model's space
complexity can be exponentially large with respect to the size of x if y(x) is a full pseudo-
boolean function. We can make a calculated cut in the number of terms by noticing that given
any polynomial of degree, d, the number of input strings where the coefficient of the
polynomial contributes is 2"~%. So, we argue that the highest priority coefficients are the low
order polynomials where the probabilities of any coefficient from first-order terms or second-



n-1 1 2n—2

order terms contributing to the output value are Zzn =7 and — :% respectively.

Additionally, sampling a second-order factorization machine as a surrogate model is much
more feasible because QUBO solvers can minimize second-order/quadratic pseudo-boolean
functions. By restricting the factorization machine to first and second-order terms, its model

equation becomes,
y(0) —Z( e+ Z > (o2 0@, (514)

11—0 12>11

A crucial benefit to restricting the factorization machine to a second-order model is that
QUBO objective functions are only second-order polynomials. A QUBO sampler finds the
minimum input string to a second-order pseudo-boolean function via classical or quantum

sampling algorithms.
argmmz Qix; + z Z Qi,i,Xi, Xi, (51.5)
x€{0,1}"

i1=01iy>iq

If we used a higher-order factorization machine, it would need to be quadratized to a
second-order polynomial before being minimized by a QUBO sampler [5]. The scaling for this
process can introduce an exponential number of variables or take an exponential amount of
time with respect to the degree or input size of the QUBO. So, we restricted our framework to
second-order factorization machines. Then we can directly map it to a QUBO without

quadratization, where Q; = <vi(1)> and Qq, i, = <v.(2) v.(2)>,

11 771

S.1.3 Training the Factorization Machine

For both nanophotonic applications, we found that binary vectors of size 500, i.e., x €
{0,1}°°°, and factorization matrices of size 500 by 40, i.e, v® € R590%40 were sufficient to
find good designs. For factorization machine training, we constructed a training set of 11250
unique vectors by randomly sampling from the binary, compressed space of the bVAE and
assessing the performance of the design via a pre-trained convolutional neural network
(thermal emitters) or a rigorous coupled-wave analysis (diffraction gratings). The evolution of
the loss function of the factorization machine for the thermal emitter showcase example is
shown in Fig. S2. It is also important to note for training that QUBO samplers minimize an
objective function while we want to maximize the figure of merit for a problem. One can
circumvent this issue by training the factorization machine on ¢ — J(x), where vx € {0,1}" :
¢ > y(x).Then, the minimization of the factorization machine corresponds to the
maximization of y(x).
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Figure S2. Factorization machine training. 100 epochs of training a second-order
factorization machine-based regression model for the thermal emitter application. We
found in practice that exceeding past 30 epochs did not improve the model’s accuracy
because it is a low-capacity model.

S.1.4 Mapping a QUBO into an Ising Model
The restricted Ising Hamiltonian H (@) used by quantum annealers contains local biases
h and a quadratic term proportional to a qubit coupling matrix J as:

N N
H(o) = z hiUi(Z) + z]ijﬂi(z)aj(z) (51.6)
i=1 @.J)
ai(z) is a Pauli-Z matrix acting on the " qubit's spin state. The spin state must collapse to an

eigenvalue of -1 or +1 upon measurement. So, one can loosely consider this collapsed
measurement value as a binary variable, s; € {—1,+1}.

N N
H(S) = ZhiSi +Z]ij5i5j (817)
i=1 (L.

Comparing (51.5) and (S1.7), we can see the isomorphism between the parameters of the

factorization machine and Ising model:
hiow, o (v,v) (51.8)
However, the domain of the Ising Hamiltonian is the spin vectors, {—1,+1}", and the
domain of the factorization machine is Boolean, {0,1}". There does exist a trivial transformation
between the two domains, namely the invertible substitution s; = 2x; — 1. Hence, by training
the factorization machine regression model and retrieving wg, w, and coupling matrix (v;, v]-),
it is possible to construct an equivalent Ising or QUBO model.



S.1.5 Retrieving Optimal Vectors from a QUBO Sampler

Once the factorization machine equation is mapped into an equivalent QUBO or Ising
form, we employ a QUBO sampler to find an input vector that minimizes the model’s output.
One thing to keep in mind is that the coupling matrix in a QUBO, Q;;, forms an undirected
graph. Let G = {V, E} be the connectivity graph for a QUBO coupling matrix, Q, where V. =
{1,2,...,n} isthe setof nodes in the graph, i.e. input bits, and E = {{i,j}|i,j €V and Q;; #
O0and i # j } is the set of edges in the graph. One would assume that the connectivity graph
of a QUBO and its sampler must match to be compatible. However, this limitation only exists
for QUBO samplers that use physical processes for sampling, such as quantum annealers.
Additionally, minor-embedding techniques can convert Q@ to another graph, Q’, that is
compatible with the QUBO sampler and has the same minimum input vectors as Q.
Unfortunately, this process introduces many more nodes and edges, and it is possible that the
number of nodes and edges in Q’ exceeds that of the physical QUBO sampler.

A special case for this embedding is when considering fully connected graphs. If Q is
fully connected, such as with our factorization machine’s QUBO, then the maximum number
of nodes for which a Q’ exists for a given physical sampler is known as the “clique” size. The
clique size for a QUBO sampler depends on the topology of the QUBO sampler and the
number of available nodes. There are two available topologies for the D-Wave quantum
annealer connectivity: Pegasus (D-Wave Advantage) [6] and Chimera (D-Wave 2000Q) [7]. The
D-Wave Advantage quantum annealer has a Pegasus connectivity graph with a maximum
clique size of 180 qubits, while the D-Wave 2000Q’s Chimera graph clique size is 64 qubits.
Along with quantum annealing, the D-Wave Leap ecosystem supports simulated annealing
and quantum-classical hybrid samplers, which can handle any clique size. Naturally, the
quantum annealer may ensure asymptotic speed-up over classical computers with respect to
the QUBO size.

Unfortunately, we found in practice that our factorization machines required 500-
dimensional input vectors to be good models, which exceeds the maximum clique size of the
D-Wave Advantage. It is also worth noting that this obstacle can be overcome by using the
decomposition QUBO solver that divides large QUBO problems into sub-problems [8] or by
additional regularization of the bVAE training process, which can adapt the distribution of the
binary, compressed space to better match the factorization machine model. Due to the
aforementioned restriction of maximum clique size, we resorted to using D-Wave's simulated
annealer and quantum-classical hybrid sampler.

Section S.2. Section S2. Generating a Topology Optimized Training Set
S.2.1 Thermal emitter.

Within this work, we have used a previously developed adversarial autoencoder-based
optimization framework to generate the training set for the bVAE-QUBO algorithm. The
adversarial autoencoder network is initially trained on 200 topology optimized designs of a



three-layered gap-plasmon structure. 200 topology optimized designs have been enlarged via
a data argumentation technique developed in [9].

The adversarial autoencoder consists of three coupled neural networks: the encoder,
the decoder/generator, and the discriminator [10]. The encoder takes a 4096-dimensional
input vector (that corresponds to a 64 x 64 binary design pattern). The input is fed into the
first of two fully connected, hidden layers with 512 neurons each and a ReLU activation function
on the output of both layers. One batch normalization layer is coupled to the second hidden
layer. The output is a 15-neuron layer. The decoder has the same architecture as the encoder
but with the reversed sequence. The decoder generates a 4096-element output vector based
on 15-dimensional, binary input. For the output layer, we use the hyperbolic tangent activation
function. The discriminator takes a 15-dimensional latent vector as an input and has one output
neuron for binary classification (fake/real). Here we use two hidden linear layers with 512 and
256 neurons. The two hidden layers use a ReLU activation function, and the output layer uses
a sigmoid function.

Once the adversarial autoencoder network is trained, the decoder generates an
additional 5000 designs. Moreover, to avoid time-consuming full-wave analysis during the
execution of the bVAE-QUBO, a VGGnet convolutional neural network is trained for rapid
estimation of a thermal emitter's efficiency based on its design. The VGGnet takes 64 by 64
images of the design as an input and passes it through three hidden layers, consisting of
convolutional layers with RelLU activation functions. Each hidden layer is followed by a max-
pooling layer, which ensures the down-sampling of the feature maps. The stack of
convolutional layers is followed by one fully connected layer. The final layer has a linear
activation function with a mean squared error loss function for efficiency prediction. The
supervised training of the VGGnet is realized on the same 5000 designs. The VGGnet regression
model ensures ~93% accuracy ( r? coefficient) of predicting the design efficiency. Training the
adversarial autoencoder and VGG networks is done similarly to [9].

S.2.2 Diffraction Metagrating

For the diffraction metagrating example, we developed a topology optimized dataset
by the adjoint topology optimization method. Here we follow the optimization framework
developed in [11]. The main goal of the optimization is to determine binary material distribution
(SIN in air) within the optimization region, which maximizes transmission into a +1-diffraction
order at a 60-degree angle of a normally incident plane wave. The optimization region is set
to be a 1 um X 0.34 um region with a thickness of 0.8 um placed on top of the SiO; substrate.
A 1um wavelength plane wave excitation occurs from the substrate side. Topology
optimization attempts to maximize the transmission efficiency of the incident light into a pre-
defined diffraction order via maximization of the overlap integral between total field induced
by the incident [ET™Y4, H™"4] and the field induced by backward propagating adjoint field
[EPWd, HP™d] The overlap integral is calculated above the optimization region (z = z;).
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F = (52.1)

ijafomax Ede(x, y, Zl) X wad(x' y, Zl) _
E"e(x,y,z,) x H"%(x,y,2,)

> ‘n,dxdy
Ymin Xmin

The main goal of the adjoint formalism is to express the gradient dF (x,y)/de as a
function of field distributions inside the optimization region induced by forward and backward
(adjoint) excitation. Such formalism obtains gradients at each location of the optimization
region via only two full-wave analyses. More details on the adjoint topology optimization
formalism for dielectric metagrating optimization can be found in [11].
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