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CONFIGURATION SETS WITH NONEMPTY INTERIOR

ALLAN GREENLEAF, ALEX IOSEVICH AND KRYSTAL TAYLOR

ABSTRACT. A theorem of Steinhaus states that if £ C R? has positive Lebesgue
measure, then the difference set £ — E contains a neighborhood of 0. Similarly, if
E merely has Hausdorff dimension dimy (E) > (d + 1)/2, a result of Mattila and
Sjolin states that the distance set A(E) C R contains an open interval. In this
work, we study such results from a general viewpoint, replacing £ — E or A(FE)
with more general ® -configurations for a class of ® : R? x R* — R and showing
that, under suitable lower bounds on dimy(E) and a regularity assumption on the
family of generalized Radon transforms associated with @, it follows that the set
Ag(E) of ®-configurations in E has nonempty interior in R¥. Further extensions
hold for @ -configurations generated by two sets, E and F, in spaces of possibly
different dimensions and with suitable lower bounds on dimy (E) + dimy (F).

1. INTRODUCTION

A classical theorem of Steinhaus [38] states that if £ C RY d > 1, with positive
Lebesgue measure, |E|; > 0, then the difference set £ — E C R contains a neigh-
borhood of the origin. £ — E can interpreted as the set of two-point configurations,
x — 1y, of points of £ modulo the translation group. A variant of this was obtained
by Mattila and Sjolin [27] for thin sets, i.e., E with |E|; = 0 but satisfying a lower
bound on the Hausdorff dimension, dimy (E), in the context of the Falconer distance
problem: if A(FE) is the distance set of E, A(F) := {|Jxr —y| : z,y € E} C R,
then if dimy(E) > 41, it follows that A(E) contains an open interval. The pur-
pose of the current paper is to generalize these results in two ways: to two-point
configurations in F as measured by a general class of ®-configurations, which can
be nontranslation-invariant, and indeed not even in Euclidean space, and to allow
asymmetric configurations between sets in different spaces, e.g., between points and
lines or points and circles in R?, or lines and lines in R3. In the process, we shall
establish non-empty interior results for some configuration sets for which previously
it was not even known that the configuration space has positive Lebesgue measure.

In order to formulate these more general results, consider the models £ — E and
A(FE) as the images of F x E under the maps (z,y) — z—y and (x,y) — |x—y|, resp.
Now consider a C* function ® : R? x R — R* k < d, which is a defining function

(vector-valued if £ > 1) in the sense that the differential D®(z,y) has maximal rank
1
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everywhere. Thus, ® is a submersion and hence for each t € R*, the level set
(1.1) Zy = {(z,y) e R x R : &(z,y) =1t}

is a smooth, codimension & surface in R? x R?, and the Z; form a family of incidence
relations on R?, indexed by #. (For k = 1, the scalar will be denoted by ¢.) More
generally, since many ® of interest, such as those defining the generalized distance
sets discussed below in Sec. 2, have points in the domain where they fail to be
smooth, or have critical values in the codomain, it is useful to restrict the domain or
codomain and consider ® : X x Y — W, where (for now) X, Y Cc R? and W cC RF.

If the assumption that rank(D® (z,y)) = k is strengthened slightly to the condi-
tion (which is standard in integral geometry) that

(1.2) rank(D,®) = k and rank(D,®) =k
everywhere, then each of the two projections,
X, Ty - Ztﬂ_>Rd7 WX(xvy> =7, WY(xvy) =Y,

are submersions, and Z; is a double fibration in the sense of Gelfand (see [14]) and
Helgason [16]. In particular, for each £ € W and z € X,

(1.3) t={y:(r,y)€Z;} CY

is a smooth surface of codimension k. As in the paper [10] by Grafakos, Palsson
and the first two authors, for a compact subset F C RY, we define the (two-point)
®-configuration set of E as

(1.4) Ag(E) = {®(z,y): 2,y € E} C R".

Thus, if ¥ = d and ®(z,y) = = — y, then Ag(E) = F — E, while if £ = 1 and
O(x,y) = |z —y|, Ap(F) is the distance set of £ '. We give further examples below.

Our goal is to find a threshold, so = so(®P), such that if dimy(E) > so then Ag(F)
has nonempty interior. Similar questions have been studied in, or are accessible to
the methods of, a number of works, e.g., [11, 2, 5, 23, 24, 21]. (There is of course
an extensive literature on the related Falconer distance problem [8], and its gener-
alizations to configurations, where the question is what lower bound on dimy(FE)
ensures that Ag(£) has positive Lebesque measure [41, 7, 6, 15].) We will show that
a sufficient value of so(®) can be expressed in terms of d, k and a4, the amount of
smoothing on L?-based Sobolev spaces satisfied by the family of generalized Radon
transforms Ry defined by ®.

'In applications, one can easily localize away from singularities of ® at degenerate configurations
(at © = y for this ).
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There are a number of results in the configuration literature, such as Henriot-
Laba-Pramanik [17], Chan-Laba-Pramanik [5], and Fraser-Guo-Pramanik [9], which
make a Fourier dimension assumption on the set E. In some sense, the Sobolev
regularity assumption we make here is analogous to a Fourier decay estimate, but
on the family of configurations rather than on E, since in the translation-invariant
case the Sobolev regularity of the R; corresponds to the uniform Fourier decay of
the measures that are the convolution kernels of the R;. This allows our condition
on the set E to be solely in terms of the Hausdorff dimension.

The amount ag of smoothing on L2(R%) is defined as follows. For each t € W,
choose a compactly supported smooth density dpy on Z; (such as the Leray density
induced by @), and define the generalized Radon transform

(1.5 Ref(o) = [ fo)
Thus, the Schwartz kernel of Ry is dpy(x,y). It is known that each Ry is a Fourier
integral operator (FIO), of order —(d — k)/2 and associated to a canonical relation
Cy, where Cp = N*Z. C T *R? x T*R?, the conormal bundle of Z;; see Guillemin
and Sternberg [13], and also Phong and Stein [33].

If Cy, is a local canonical graph (see the more extended discussion in Sec. 3 below),

then so are all the C; for £ close to £, and, for s € R, Ry : L? — L2, (4_py» uniformly

as t ranges over V. However, general canonical relations need not be local canonical
graphs and there may be a loss of derivatives relative to this estimate; it is thus
useful to describe the amount of smoothing both in terms of the absolute number,
g, of derivatives that the Ry add on L?, and also in terms of the loss, (s, relative
to the optimal possible smoothing. Hence, for our first result, we state the regularity
assumption on the R; as either of the equivalent conditions that

(1) there is an absolute smoothing ag, 0 < ag < (d—k)/2 such that, for any s € R
one has

(1.6) IRell2ey—r2

s+a¢(Rd) S CS’
with Cy bounded as ¢ varies over W; or

(ii) for some relative loss Be, 0 < [ < (d — k) /2,
(17) Rellzzrsz, s

which holds iff (1.6) does, with S¢ = (d — k)/2 — cvg. Sharp values of ag and g are
known in a number of degenerate geometries, but in most for the examples below
the canonical relations are nondegenerate, so that 8¢ = 0. Our first result is the
following.

< (s,

L2(RY) L



CONFIGURATION SETS WITH NONEMPTY INTERIOR 4

Theorem 1.1. Suppose that ® : RxR? — R¥ satisfies (1.2) and that the generalized
Radon transforms Ry in (1.5) satisfy (1.6), (1.7). Then, if E C R? is a compact set
with dimy(E) > d — g = BE + B, it follows that Ag(E) has nonempty interior.

Corollary 1.2. (Mattila-Sjolin [27); Tosevich-Mourgoglou- Taylor [22]) Let E C R¢
be a compact set and let A(E) be its distance set, A(F) = {|z —y| : z,y € E}.
More generally, let A(E) be defined by the translation-invariant metric induced by a
norm || - || on R? whose unit sphere has strictly positive Gaussian curvature. Then,
if dimy(E) > (d+1)/2, it follows that A(E) contains an open interval.

This follows from Thm. 1.1 by taking & = 1 and ®(x,y) = || — y||, so that
Ag(E) = A(E). For 0 <t < 0o, the generalized Radon transform R; is the spherical
mean operator for radius ¢ with respect to || - ||; as is well- known (see, for example,
[37]), this is an FIO of order —(d — 1)/2 associated with a canonical graph, so that,
on L*(RY), R; is smoothing of order ag = (d —1)/2 and Bs = 0. Hence, in the same
range as in [27], namely for s > (d+1)/2 (also the same range as in Falconer’s original
result for the distance set problem [8]), the distance set has nonempty interior, i.e.,
contains an open interval. ( For certain specific thin sets below the (d+41)/2 threshold,
it has been shown that the distance set has nonempty interior; see for example [35]
by Simon and the third author of the current paper.)

Corollary 1.3. Let (M,g) be a d-dimensional Riemannian manifold, U C M an
open set on which there are no conjugate points, and identify U with an open subset
of RY. Setting ®(z,y) = d,(z,y), the Riemannian distance and, for E C U, the
Riemannian distance set A9(E) := {d,(z,y) : z,y € U}, if dimy(E) > (d+1)/2,
then AY(E) contains an open interval.

This follows from Thm. 1.1 in the same way as for Cor. 1.2: the operators R; are
the Riemannian spherical means, which are still FIO of order —(d — 1)/2 associated
with canonical graphs [39], so that again ag = (d —1)/2, B = 0.

One can also prove a result for multi-parameter distance sets (cf. [20]):

Corollary 1.4. Suppose d = dy + -+ + dy., with all d; > 1, and write x € R? as
= (zb, ..., 2%) with 29 e RY%, 1< j<k. For ECR? compact, define

AP(E) = {(Jz" =y',....[2" = ¢*|) r 2,y € E} C R~

Then, if dimy(E) > d — L min{d; — 1} = $ max{d — d; + 1}, it follows that A®(E)
has nonempty interior in R”.

This follows by noting that, for ¢ € R¥, t; > 0 for all j, the operator R; is
convolution with a product of surface measures on spheres and thus has Fourier
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multiplier that decays uniformly as (1 + |¢[)"2 ™4 ~1} (and no better), so that
Thm. 1.1 applies with the same k and g = § min{d; — 1}.

Thm. 1.1 is subsumed in a more general version with two sets, whose proof is
essentially the same. For £, F C R?, define the ®-configuration set of E and F' as

(1.8) Ag(E,F) :={®(z,y) v € E, y € F} C R".
Then we have

Theorem 1.5. Suppose that ® : R¢xR? — R¥ satisfies (1.2) and that the generalized
Radon transforms Ry in (1.5) satisfy (1.6), (1.7). Then, if E, F C R% are compact
sets with dimy(F) and dimy(F) satisfying

it follows that Ag(F, F') has nonempty interior.

The method for proving Thm. 1.5 is flexible and allows one to obtain the nonempty
interior of Ag in asymmetric settings, where not only are E and F' possibly different,
but (i) Ag is determined by ‘points’ x and y which may belong to different spaces,
of possibly different dimensions; and (i) ® can be manifold-valued.

To make this precise, let W, X and Y be smooth manifolds, of dimensions & > 1
and dy > dy > 1, resp.; note that the notion of Hausdorff dimension for compact
subsets of X or Y is well-defined. Let ® : X XY — W be a C'*° function satisfying the
double-fibration condition (1.2), at least away from a lower dimensional subvariety.
If FC X, FCY are compact, define

(1.10) Ao(E,F) :={P(z,y):x € E,ye F} C W.

Our goal is to find a lower bound on dimy(E) + dimy(F') ensuring that Ag(E, F)
has nonempty interior in W. For ¢t € W, the operators Ry are now FIO of order

m:=0+k/2 = (di + dy) /4= —(dy — k) /2 = (d1 — dy) /4,

where we have written the order on the right (a way that is standard for FIO between
spaces of different dimensions) so as to the isolate the best possible smoothing order
of the operator, namely (dy — k)/2 (see Sec. 3 below). The analogue of (1.6), (1.7)
is then

(L.11) [IR¢l2(vy—r2

s+a¢

(X) = ||R{||L§(Y)—>L2 ok (X) S 087 for all F € W() C VI/,
s+ 52— By

for some 0 < ag, Bo < (dy — k)/2, related by ag = (dy — k)/2 — Bo. When the Cy

are nondegenerate canonical relations, ag = (dy — k)/2, Be = 0. In this generality,

the following holds, and also implies Thm. 1.5 and thus Thm. 1.1.
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Theorem 1.6. Let W, X and Y be smooth manifolds, of dimensions k > 1 and
dy > dy > 1, resp. Suppose that ® : X x Y — W satisfies condition (1.2) and the
Ry in (1.5) satisfy (1.11) for some 0 < ag, fo < (da —k)/2. IfEC X, F CY are
compact sets, then Ag (E, F') defined in (1.10) has nonempty interior in W if

(112) dzmH(E)—l—dzmH(F) > dl—l—dg—QOécp :dl—i—k’—i—Qﬁ@

2. EXAMPLES

Before proving Thm. 1.6, we state a series of corollaries which follow by applying
Thms. 1.5 or 1.6 to the relevant ®, deferring of some of the details to Sec. 5.

2.1. Generalized distance sets. A diverse class of examples with & = 1 arises
when the z and y are points, subspaces or even submanifolds of some ambient R?
or Riemannian manifold (M, g). Suppose X and Y are smooth families of closed
submanifolds (or possibly subvarieties) in R? or (M, g), and let ® : X x Y — R be
the standard distance between subsets,

(2.1) O(z,y) = dist(x,y) = aeixngey la—b| [or infd,(a,b)].

In many cases, ® is C* on X x Y, and (1.2) holds (with k& = 1), away from a lower
dimensional variety, corresponding to degenerate configurations. (Note that, even if
X =Y, the function & is typically not a metric, since ®(z,y) = 0 does not imply
that z = y, but only that Ny # ().) Then, for sets E C X, F C Y, let Ag(E, F) be
defined by (1.8). Applications of Thm. 1.6 to configuration sets of this type include
the following:

Lines—points in R? and hyperplanes-points in R?: Let Y = R* and X = M, 5,
the space of all affine lines in R?. As with the Radon transform [16], it is convenient
to parametrize Mo as S! x R, with (w,s) +» {y € R* : w-y —s = 0}. (Since
(—w, —s) and (w, s) correspond to the same line, there is a 2-1 redundancy, but this
is harmless.) Then dist((w, s),y) = |w -y — s| =: ®((w, s),y), which is smooth away
from the incidence relation Z,. The question of interest is: for collections £ C M; o
and F C R? of lines and points, resp., what lower bounds on dimy(F) and dimy(F)
ensure that Ag(F, F') contains an interval? (Finite field Falconer-type problems for
this geometry were studied in [40, 32, 4, 34, 3].)

The operators R, are sums of translates by 4t of the Radon transform in the
s variable so that the C} are local canonical graphs and e = 0. Similarly, for
d>3,let Y =R and X = My 4, the Grassmannian of all affine hyperplanes in
RY. As for d = 2, we may parametrize My 14 as S ! x R and, with k& = 1, take
O((w,s),y) = dist((w, s),y) = |w-y — s|. Then the C; are again local canonical
graphs, so that 83 = 0 and a consequence of Thm. 1.6 is
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Corollary 2.1. If E C My 14, F C R? with dimy (E) + dimy (F) > d + 1, then
Ag(E, F) contains an interval.

Circles—points in R? and spheres-points in R?: For a family of non-equidimen-
sional examples, again let Y = R? and now let X = S, be the space of all circles
in R?, which is 3-dimensional. We may parametrize S, by the center and radius of
each circle, Sy = {(a,7) : @ € R?, r > 0}. Then ®((a,r),y) := |y — a| — r defines the
circle-point relation; for each ¢t € R, ZF = {((a,7),y) : |y — a| = r £t} is smooth
away from the singular set at » = Ft. The operator R; € [ _%_%(Ct) where (Y,
which is the same canonical relation as for the forward solution of the wave equation
(with r playing the role of time), but translated by 4t in the r variable. Since this is
nondegenerate, 3¢ = 0 and so it follows that if £ C Sy, a set of circles, and F' C R?,
a set of points, satisfy dimy (F)+dimy(F') > 4, then Thm. 1.6 applies. This extends
to higher dimensions:

Corollary 2.2. If Sy is the (d + 1)-dimensional space of all spheres in RY, and
E C Sq F C RY satisfy dimy(E) + dimy(F) > d + 2, then Ag(E, F) C R has
nonempty interior.

Lines-points in R?, d > 3: Let X = M, 4 be the (2d —2)-dimensional Grassman-
nian of all affine lines in Y = RY. For L € M; 4 and y € R3, let ®(L,y) = dist(L, ).
One can show (see Sec. 5) that for ¢ > 0, R; is an FIO with a nondegenerate
canonical relation and thus B¢ = 0. From Thm. 1.6 we obtain

Corollary 2.3. If E C M, 4 and F C R? satisfy dimy(E) + dimy(F) > 2d — 1, then
Ag(E, F) has nonempty interior.

Lines-lines in R?, d > 3: Now let X =Y = M, 4. For L, L' € M, 4, the distance
dist(L, L) as in (2.1) is positive if L N L' = (), and is a smooth function, satisfying
the double fibration condition, away from the lower dimensional incidence variety
{(L,L): LNL # 0}. For t > 0, the R; are FIO associated with canonical graphs,
so that B¢ = 0, yielding

Corollary 2.4. If E, F' C M, 4 are sets of lines with dimy(E) + dimy(F) > 2d —1,
then Ag(E, F') has nonempty interior.

2.2. Higher dimensional configuration sets. Values of k greater than 1 arise
when configurations are encoded by vector-valued (or manifold-valued) data.

Configurations determined by ensembles of quadratic forms: Let @), ..., Qx
be quadratic forms on R?. Define the ensemble Cj = (Q1,...,Q) to be nonsingular
if ¢;Q1+ - -+ cxQy is nonsingular for all = (cy,...,cx) € R¥\ 0. The sharp restric-
tions on k and d in order that such ensembles to exist were found by Adams, Lax
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and Phillips [1]: there exists such a k-dimensional nonsingular family of quadratic
forms on R? iff k < p(d/2) + 1, where p(-) are Radon-Hurwitz numbers, defined by

Def. If n is a positive integer, write n = (21 + 1) - 2™, the factorization of n into
the product of an odd integer and an integral power of 2. Express m modulo 4 as
m =p+4q, 0 < p < 3. Then the Radon-Hurwitz number of n is p(n) := 2P + 8¢. If
n is a half-integer, then p(n) := 0.

Corollary 2.5. If Cj is a nonsingular family on R, define ® : RY x R? — R* by
®(x,y) = Q(x—y). Thenif E, F C RY are compact and dimy,(E)+ dimy (F) > d+k,
it follows that

A@(EvF): {(Ql(x_y)quk(x_y» eRk3$€an€F}
has nonempty interior in R”.

If d is odd, only k& = 1 is possible. For d = 2, p(d/2) + 1 = 2, and Qy(z) =
22 — 12, Qy(x) = w125 is a nonsingular ensemble, but for this @ Thm. 1.5 is vacuous,
since it requires dimy (E) + dimy(F) > 4. However, note that for d = 4, one has
p(d/2) +1 = 2+ 1 = 3, so that there exist nonsingular ensembles for which Cor.
2.5 yields a nontrivial result; e.g., with k£ = 3, if dimy(F) > 7/2 then Ag(FE, E) has
nonempty interior.

Heisenberg circles and spheres: Let H' be the 3-dimensional Heisenberg
group, H' ~ R? x R with product

1 0 —1
(' 23) - (¥ ys) = (55/ +y, x5+ ys + §(I/)TJ?/), J = [1 0 } .

Define ® : H! x H' — R? by

(2.2) O(z,y) =1 = <|95/ — Y|, x3 — y3 + % (T1y2 — Izyl)) S

where ¢; is the distance from the origin in the first two coordinates of x - y~" and
ty is the ‘height’ of x - 4y~ above the ‘plane of good directions’, {3 = 0}. For each
t € Ry xR, the corresponding Ry is the generalized Radon transform which averages
over group translates of the origin-centered circle of radius t; C {x3 = 0}, translated
in the central direction by 5. Such operators (for t, = 0) have been studied by Nevo
and Thangavelu [31] and Miiller and Seeger [30]. Here, in the notation of Thm. 1.5,
d =3,k = 2, and it is known (see [30] and Sec. 5) that each Cr is a two-sided
fold (or folding canonical relation in the sense of Melrose and Taylor [28]), so that
Po = 1/6 by [28]. Hence, from Thm. 1.5 we obtain

Corollary 2.6. If E, F C H' with dimy(E)+dimy(F) > 16/3, then Ag(E, F) C R?
has nonempty interior.

1
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This generalizes to the more general setting of [30], with H' replaced by a nonde-
generate step-two nilpotent group G and S! replaced by a hypersurface 3 with strictly
positive Gaussian curvature in the step 1 space: Suppose g = g;Pgs is a graded nilpo-
tent Lie algebra, with dim(g;) = n, dim(g2) = m, and G = exp(g) ~ R"™™ is the
resulting connected, simply-connected Lie group, with projections m : G — g; ~ R”
and m : G — go ~ R™. We assume that g satisfies the nondegeneracy condition
that the skew-linear form

(2.3) Be(u,v) := ((, [u,v]) is nondegenerate on g;, V¢ € g3\ 0.

(In particular, n must be even.) Let || - || be a C* norm on g; whose unit sphere ¥
has everywhere positive Gaussian curvature, and define ® : G x G — R™*! by

(2.4) ®(z,y) =1 = (llm(z -y )l ma(z-y7)).

Then, one can show that the the canonical relations Cy of the Ry are associated
with two sided folds, so that again 3 = 1/6, and the required lower bound on
dimy (E) + dimy(F) is (n+m) + (m + 1) + 5 = n + 2m + 3, implying

Corollary 2.7. If E, F C G with dimy,(E)+ dimy(F) > n+2m+3, then Ag(E, F)
has nonempty interior.

Configurations determined by a curve: Let v : R — R? be a smooth
curve. Writing x = (z1,2’), etc., we assume = is of the form v(7) = (7,9(7)), g =
(g2,...,94) : R — R¥L Define @ : R? x R — R4! by

(2.5) (z,y) =2 —y' — g(z1 —y1),

which measures the displacement of x off of y + . All of the operators Ry are
translates of Rg and thus have the same structure and satisfy the same estimates.
For example, if v is the moment curve v(7) = (7,72,...,7%), then ag = é, and from
Thm. 1.5 we obtain

Corollary 2.8. If v is the moment curve and compact sets E, F C R satisfy
dimy (E) + dimg(F) > 2d — 2, then Ag(E, F) has nonempty interior.

3. BACKGROUND

We give a brief survey of the Fourier integral operator theory needed, referring to
Hormander [18, 19] for more background and further details.

Let X be a smooth manifold of dimension d. The cotangent bundle T*X is a
symplectic manifold with respect to the canonical two-form, w =3 d&; A dz; (with
respect to any local coordinates). We denote the zero-section of T*X, {& = 0},
by 0. A conic Lagrangian submanifold of T*X is a smooth, conic (i.e., invariant
under (x,&) — (z,7€) for 0 < 7 < o0) submanifold A C 7*X \ 0 of dimension
dim(A) = d = 5dim(7*X) such that w|, = 0.
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Now let X and Y be smooth manifolds of dimensions d;, ds, resp. Then T* X, T*Y
are each symplectic manifolds, with canonical two-forms we denote by wr«x, wry,
resp. Equip T*X x T*Y with the difference symplectic form, wp«x — wrsy. For our
purposes, a canonical relation will mean a submanifold, C' C (7*X \ 0) x (T*Y \ 0)
(hence of dimension d; +ds), which is conic Lagrangian with respect to wrsx —wp«y.

For some N > 1,1let ¢ : X x Y x (RV\ 0) — R be a smooth phase function which
is positively homogeneous of degree 1 in 8 € RY | ie., ¢(z,y,70) = 7 - ¢(z,y,0) for
all 7 € Ry. Let Yy be the critical set of ¢ in the 6 variables,

Y = {(z,y,0) € X x Y x (RV\ 0) : dyop(z,y,0) = 0},
and
0(25 = {(LU, dm¢(x7 Y, 9)7 Y, _dy¢(x7 Y, 9)) : (flf, Y, 9) € 2(1)}7
both of which are conic sets. If we impose the first order nondegeneracy conditions
dx¢(x> Y, 9) 7& 0 and dy¢(x> Y, 9) 7& Oa \V/([L’, Y, 9) € Z(fh
then Cy C (T*X \ 0) x (7Y \ 0). If in addition one demands that
rank|d, , odop(x,y,0)] = N, V (z,y,0) € Xy,
then X4 is smooth, dim(Xs) = di + dy, and the map

(3.1) S 3 (2,9, 0) = (2,de (2,9,0) 1y, —0,0 (2,9,0)) € Cy
is an immersion, whose image is an immersed canonical relation; the phase function
¢ is said to parametrize Cy.

For a canonical relation C' C (T*X \ 0) x (T*Y \ 0) and m € R, one defines
I''(X,Y;C) = I"™(C), the class of Fourier integral operators A : E'(Y) — D'(X) of
order m, as the collection of operators whose Schwartz kernels are locally finite sums
of oscillatory integrals of the form

K(z,y) = / @Oz, y, 0) db,
RN
. N d d . .
where a(x,y,6) is a symbol of order m — 5 + ©3%2 and ¢ is a phase function as

above, parametrizing some Cy, C C.

The FIO relevant for this paper are the generalized Radon transforms Ry deter-
mined by defining functions ® : X x Y — RF satisfying (1.2). The Schwartz kernel
of each R; is a smooth multiple of 0x(®(x,y) —t), where & is the delta distribution
on R*. From the Fourier inversion representation of &, we see that Ry has kernel

K(a,y) = / SR D5 ) 1(6) do,
Rk
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where b € Cg°. Since the amplitude is a symbol of order 0, Ry is an FIO of order

0+ % — dlZdQ = —d1+cif_2k associated with the canonical relation parametrized as in

(3.1) by ¢(x,y,60) = (®(x,y) — ) - 0, which is the twisted conormal bundle of the
incidence relation Zy,

k k
Cr=NZl:={(2,) _do®;(2,9)0;59,— > _ du®;(,9)8;) : (2,y) € Z, 6 € R¥\ 0}
i =1

For W-valued defining functions ®, as in Thm. 1.6, this discussion is modified slightly
by introducing local coordinates on W.

For a general canonical relation, C', the natural projections 7y : T*X x T*Y —
T*X and g : T*X x T*Y — T*Y restrict to C', and by abuse of notation we
refer to the restricted maps with the same notation. One can show that, at any
point ¢y = (o, £0; Yo, o) € C, one has corank(D7y)(cy) = corank(Dmg)(co); we say
that the canonical relation C' is nondegenerate if this corank is zero at all points
of C, ie., if Dr; and D7y are of maximal rank. If dim(X) = dim(Y"), then C is
nondegenerate iff 7, mr are local diffeomorphisms, and then C'is a local canonical
graph, i.e., locally near any ¢y € C' equal to the graph of a canonical transformation.
If dim(X) =d; > dy = dim(Y), then C is nondegenerate iff 77 is an immersion and
7 is a submersion. To describe the L2-Sobolev estimates for FIO associated with

o . . Sy |d1 —dy|
C, it is convenient to normalize the order by considering A € I™ 7 . One has

Theorem 3.1. Suppose that dim(X) = dy, dim(Y) = dy, C C (T*X \0) x (T*Y \ 0)
. . . _ ldj—dg]|
1s a nondegenerate canonical relation, and A € I~ 2~ has a compactly supported

Schwartz kernel. Then A: L*(Y) — L*  (X) for all s € R.

In particular, if C'is a local canonical graph, then A € I™ = A: L2 — L[> :
this is relevant to a number of the Corollaries above.

On the other hand, for Cors. 2.2 and 2.3, the canonical relations cannot be
canonical graphs, since the dimensions of X and Y differ, but the canonical rela-
tions are nondegenerate. For Cor. 2.2, parametrized by the pair of phase functions
o*((a,7),y;0) = (Jy —a| —r Ft)0 on R x R4 x (R\ 0), C; is, away from r Ft = 0,
given by

Cy = {(a,r,0w,F|0;a + (r £t)w,0w) : (a,7) € R"™M we S R\ 0}

One sees by inspection that Dmg has rank 2d everywhere and thus C} is nondegen-
erate away from {r ¢ = 0} (in fact, its natural extension across those points is also
smooth and nondegenerate, but for our purposes we will not need that). Thus, when
localized away from r = =¢, the operators R, are in 1~271(C;) and by Thm. 3.1
map L3(RY) — L2, ;5 (RT).
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Returning to general C, if the corank of Dmy (and thus that of D7g) is < k at
all points of C, then an A € I"™(C) maps no worse than L2(Y) — L3, o(X).
However, for classes of C' for which 7, and/or wg degenerate in specific ways, the
loss of derivatives is often less than k/2. The first and best known result of this type
is the following, which we use in the analysis below of Cors. 2.6 and 2.7. Suppose
dim(X) = dim(Y) = d and at any degenerate points ¢g € C' C (T*X \0) x (T*Y"\ 0),
both 7, and 7z have Whitney fold singularities. Such C' were introduced by Melrose
and Taylor [28] and called folding canonical relations (also called two-sided folds [12]).

Theorem 3.2. [28] If C' is a folding canonical relation and A € I"™(X,Y;C) with
compactly supported Schwartz kernel, then A: L3(Y) — L2 (X), Vs € R.

4. PROOF OF THEOREM 1.6

To begin the proof, recall® that if £ C R is a compact set with dimy(E) > s,
then there exists a Frostman measure on E: a probability measure p, supported on
E and of finite s-energy:

/ / |z =y dp(z) duly) < oo,
EJE
or equivalently,

(4.1) /E A - ¢ de < oo,

Since p € &'(RY), i € C* and thus it follows from (4.1) that u € L?s—d)/2 (R%). This

last fact also holds in the more general setting of £ C X, a compact subset of a
d-dimensional manifold X with dimy(E) > s.

Now, in the context of Thm. 1.6, suppose that dim(X) = dy, dim(Y) = do,
E C X, F CY, with dimy(F) + dimy(F) > d; + k + 26s. Then we can find sy, so
such that dimy(F) > sq, dimy(F') > s, also satisfying

(42) S1+ 8y >dy +k+ 2ﬁ<1>

If ®: X xY — W satisfies (1.2), then choices of Frostman measures p;, ps on E, F,
relative to s1, So, resp., induce a configuration measure v on W, defined by

o) = [ ma{y € F i (w9) € AY) diula),
E
or equivalently, for g € Co(W),

2We refer to the monographs of Mattila [25, 26] for background definitions and results.
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/W o®)dv = [ /E  o(@(9)) din(a) dial)

We claim that v is absolutely continuous (with respect to Lebesgue measure in
any coordinate system on W), and its density is a continuous function, v(f). First,
note that one can formally write

(4.3) v(t) = (R pas i)
with the pairing on the right hand between elements of Sobolev spaces on X. Since

i € L, 4y 0(X) and pip € L) 5(Y'), and the hypothesis (1.11) for Thm. 1.6 is

that, for any s € R, Ry : L2(Y) — L2,

Sobolev orders of the left- and right-side terms in (4.3) is
81—d1+82—d2+d2— 1

k
5 5 5 —6¢:§(81+82—d1—/€—2ﬁ¢)>0,

with the inequality due to (4.2). Thus, the integral representing (4.3) in terms

—

of 11, Ry is absolutely convergent by Cauchy-Schwarz, and by continuity of the
integral it depends continuously on the parameter ¢ .

(ds—k) /25 (X ) uniformly in t, the sum of the

(4.4)

To make this rigorous we argue as follows, restricting the analysis to the case when
® : X xY — RF; the proof extends to general W using local coordinates on W.
For a x € Cg°(R*) supported in a sufficiently small ball, Y = 1 near 0, and with
[xdt =1, set x(t) := e_kx(g) the associated approximation to the identity, which
converges to 6(f) weakly as e — 0F. Define R to be the operator with Schwartz
kernel K&(7,y) = x(®(z,y) — £). Then RS p2 € C*°(X) and depends smoothly on
¢, and thus we can represent v as the weak limit of absolutely continuous measures
with smooth densities:

v= O AR )

Now, the operators Rt € I~°°(Cy), with symbols which converge in the Fréchet
topology on the space of symbols as € — 0 to the symbol of R;. Since the singular
limits R satisfy (1.11), so do the R uniformly in e. Hence, v(t), being the uniform

limit of smooth functions of ¢, is continuous. Furthermore, since €* - x¢ is bounded
below by a constant times the characteristic function of the ball of radius € in R¥,
with constant Cs uniform in ¢ we have that

(4.5) v(B(t,€)) = (% pa) ({(z,y) : |®(z,y) — ﬂ <e}) < Coe".

So far, we have shown that v(f) is continuous, so that it is positive on an open
set. Hence, Ag(FE, F) is open; to conclude the proof, we need to show that it is
nonempty. However, this follows because, as a further consequence of the analysis
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above, it follows that Ag(E, F') has positive k-dimensional Lebesque measure. In
fact, since if {B(Fj, ej)} is any cover of Ag(FE, F'), we have

L= (E) - pa(F) = (1 X o) (E x F) <> (i % pa) (@7 (B(E, 7))

= ZV(B (t),e)) < C@Zeﬁ

by (4.5), so that >, |B(t;,¢;)|x > C% is bounded below. Hence Ag(F, F) has
positive k-dimensional Lebesgue measure and is therefore nonempty; by the first
part of the proof, it in fact has nonempty interior. Q.E.D.

5. DETAILS OF THE EXAMPLES AND COROLLARIES

This section contains calculations and additional details to show how some of the
Corollaries in Sec. 2 follow from the Theorems.

5.1. Mattila-Sjolin and generalizations (Cors. 1.2 and 1.3). The results
of Mattila-Sjolin [27] and losevich-Mourgoglou-Taylor [22] follow immediately from
Thm. 1.1 as indicated in the discussion below Cor. 1.2: For ¢ > 0, the spherical
mean operators R; are FIO of order —(d — 1)/2 associated to canonical relations
which are (under the various assumptions) local canonical graphs and thus map
L? — L2 Hd=1)/25 furthermore, by standard facts about the dependence on symbols
and canonical relations, the operator norms (for fixed s) are uniform as ¢ ranges over
any compact subinterval of (0, 00). For the Riemannian setting of Cor. 1.3, one uses
the fact that the same results hold within the conjugate locus [39].

Similarly, as indicated in the discussion above its statement, the analysis behind
Cor. 2.1 concerning distances from points to lines in R? or hyperplanes in R? consists
of standard facts about the L? regularity of the Radon transform.

5.2. Spheres-points (Cor. 2.2). Let S; = {(a,r) : a € R? r > 0} C R denote
the (d + 1)-dimensional space of spheres in R?, and Z be the smooth points of
{((a,r),y) € Sy x R : |y —a| =r £ t}. For t =0, the twisted conormal bundle

Co = N*Z} C (T*R*™™\ 0) x (T*R*\ 0)

is the same canonical relation as for the solution operator mapping the Cauchy data
on R? to the solution of the wave equation on R*', which is well-known to be
nondegenerate (see, e.g., [29, 36]). For ¢t > 0, C; is the union of two copies of Cp,
translated by Ft in the r variable, and thus is also nondegenerate. By Thm. 3.1, if
A€ I™i(C,), then A : L2(R?Y) — L2 (R1), with norm that is bounded above
as t ranges over a compact interval in (0, 00). Hence, (1.11) is satisfied with G = 0,
and so Thm. 1.6 applies with d; =d+ 1, dy =d, k =1 and ¢ = 0; thus, if £ C Sy
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and F' C R? with dimy(FE) + dimy(F) > (d+ 1) +1+2-0=d + 2, then Ag(E, F)
has nonempty interior.

5.3. Lines-points in R? (Cor. 2.3). We identify M 4, the Grassmannian of ori-
ented affine lines in RY, with the tangent bundle 7S !: (w,v) € TS*! corresponds
to the line Ly, := {v+ sw: s € R}. (Here, we identify v € T,,S*! with the vector
v e RY v L w.) Then define

1 1
(I)((w> 'U)a y) - §d28t(y, Lw,v)z = §d28t(y -, 'UJ_)2

1 1 2
= §(|y—?f|2 —(((y—v)-w)w)?) = §}Hi(v )|
where I11 denotes orthogonal projection onto w*. Then
' ((w,v),y) = (= ((y = v) -w)is(y — v). I (v = y); ~IL;(v =),

where i, denotes the inclusion of T,,S*! <= R? and i, its transpose. Note that
Hi(v—y)#0iff y ¢ R-w. Thus, for t > 0,

Zt = {((M,U),y) S Ml,d X Rd : d’iSt(y,Lw7v) = T,} = {(I) = t2}
is smooth and satisfies (1.2) for

(@,v),9) ¢ 2" = {((w,0),y) 1 y € Lo},

since II;(v — y) # 0 at those points. As coordinates on the (3d — 3)-dimensional
Zy\ 2" we may use y € R, w € 8! and v € {v € T,;S"" : |[v| = t}. Letting
0 € R\ 0 be the additional cotangent variable on Cy = N*(Z;\ Z;""?)’, the projection
R C, — T*R? is
(y,W, v, 9) - (y’ —0- Ht(v - y))>

so that
D(11; (v —y))

D(w,v)
Thus, C; is nondegenerate and Thm. 1.6, with d; = 2d — 2, dy = d, k = 1 and
Bs = 0, implies that if E C M, 3 and F C R? are compact with

rk(DﬂR):(d+1)+rk( ):(d+1)+(d—1):2d.

dimy (E) + dimy(F) > (2d —2) + 1+ 0 = 2d — 1,

then Ag(E, F') has nonempty interior.
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5.4. Lines-lines (Cor. 2.4). Using the same notation as for lines-points, we now
consider pairs of lines in RY, say L = L, L' := Ly, with (w,v), (W',0") € TS L.
Then, parametrizing L' by s’ — v/ + s'w’, we have

Mk (v — (o + 5|

w

dist(L,L')* = inf dist(y’,L)* = inf

y'eL y'eL

A calculation shows that the critical point of the quadratic function of s’ in the last
expression is 8’ = (v — ') - W', and thus

1 1
P((w,v), (&, v)) := Gdist(L, I')* = 2| TI (v — %l

=lv—v = ((v=70) W' = ((v-2) ww+(v-0) )(w- w')w‘Q.
By a slightly more complicated calculation than in the lines-points case, one sees that
this satisfies the double fibration condition away from a lower- dimensional singular
set, and the canonical relations C; are nondegenerate. Hence by Thm. 1.6, again
with dy = 2d — 2, k =1, B = 0, it follows that if £/, ' C M, 4 are compact sets of
lines with dimy (E) + dimy(F) > 2d — 1, then Ag(E, F') has nonempty interior.

5.5. Ensembles of quadratic forms (Cor. 2.5). Writing each Q;(z) = 27 A;x
with A; (d x d) symmetric, the nonsingularity of Cj implies that all notrivial linear
combinations of the A; are nonsingular, which implies that at all z—y # 0 and t e R
with ¢; # 0 for all j, the gradients of the Q);(x — y) — t; are linearly independent,
so that ®(z,y) = Q(z — y) does in fact satisfy (1.2). Furthermore, X7 := {z € R? :
Q1(z) = -+ = Qk(x) = 0} is a smooth codimension k surface, and the operator Ry
is convolution with a smooth multiple of surface measure on ;.

5.6. Heisenberg spheres (Cors. 2.6 and 2.7). For simplicity, we only treat the
case of the Heisenberg group H', with the proof for general nondegenerate step two
groups being similar. Rather than the original ® : H! x H' — R? in (2.2), for
simplicity we square the first component and work with

. 1
(5.1) Oz, y) =1t = (\x’ — [ w5 —ys + ) (212 — Sczyl)) €R%
Evaluating D®' = [D,®, —D,®|, one sees that D,® and D,® have rank 2 away from
the lower dimensional set Z*™9 := {2/ = ¢/}, so that for t € Ry xR, Zy := {(z,y) :
®(x,y) =t} is smooth, codimension k& = 2 in H' x H'. On Z; we can use 2 € H'
and w = (2' — y')//t1 € S! as coordinates. The phase function for R; is

1

¢{(xaya 9) = (|$, - y'|2 - t1>91 + <$3 —Ys+ 2 (55192 - 36291)) 0,
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and on the resulting 6-dimensional canonical relation C; we can use z, w and
6 € R?\ 0 as coordinates. With respect to these,

7z, w,0) = (x; 2vt101w + (1/2)05] (w), 92),

where the cotangent variables have been split into £ = (£, &3) and J is the standard
2 x 2 symplectic matrix above (2.2). From this we see that

D¢’
rk(Drp) = 4+ rk(D(w’ 00) ,

and this = 6 where 0; # 0. Furthermore, at the hypersurface {0;} C C%, the kernel
of Dry, is spanned by a vector with a nonzero 9/96; component, so that ker(Dny) is
transverse to {#; = 0} and thus 7, has a Whitney fold singularity at the points where
it is not a local canonical graph. By symmetry, the same is true for 7, and thus Cy is
a folding canonical relation, so that by Thm. 3.2, there is a loss of 1/6 derivatives on
L?-based Sobolev spaces. Hence, Thm. 1.6 applies with d; = 3, k = 2 and 4 = 1/6.
Hence, for £, F C H' with dimy(E) +dimy(F) > 3+2+2-(1/6) = 16/3, As(E, F)
has nonempty interior.

6. FINAL COMMENT

We observe that the threshold in Thm. 1.1 cannot in general be lowered. Returning
to the setting of Steinhaus’ theorem, one has k = d, ®(z,y) = x — y, and for each
t € R? the operator Ry is just translation by ¢, which is an FIO of order 0 associated
with a canonical graph. Hence B = 0 and d%k + B = d. The resulting sufficient
lower bound in Thm. 1.1 is then dimy (E) > d, so that the theorem is vacuous in this
case, and does not imply Steinhaus’ result. However, the threshold d;r—k + B¢ cannot
be lowered in this case: Falconer’s original counterexamples related to the distance
problem (see [8, Thm. 2.4]) can be modified to show that for any s < d there is an
E C R? with dimy(E) = s and int(E — F) = (), showing that the range of dimy(E)
in Thm. 1.1 cannot in general be lowered below the endpoint d%k + Be. Of course,
this leaves open the possibility of improvement for other, specific ®.

REFERENCES

[1] J. Adams, P. Lax and R. Phillips, On matrices whose real linear combinations are nonsingular,
Proc. Amer. Math. Soc. 16 (1965), 318-322. 8

[2] M. Bennett, A. Tosevich and K. Taylor, Finite chains inside thin subsets of R?, Anal. & PDE
9 (2016), no. 3, 597-614. 2

[3] P. Birklbauer, Ph.D. thesis, University of Rochester, 2019. 6

[4] P. Birklbauer, A. Tosevich and T. Pham, Distances from points to planes, Acta Arith. 186
(2018), no. 3, 219-224. 6

[5] V. Chan, I. Laba and M. Pramanik, Finite configurations in sparse sets, J. d’Analyse Math.
128 (2016), 289-335. 2, 3



CONFIGURATION SETS WITH NONEMPTY INTERIOR 18

[6] X. Du, L. Guth, Y. Ou, H. Wang, B. Wilson and R. Zhang, Weighted restriction estimates and
application to Falconer distance set problem, https://arxiv.org/abs/1802.10186 (2018). 2
[7] B. Erdogan, A bilinear Fourier extension theorem and applications to the distance set problem,
Int. Math. Res. Not. 2005, no. 23, 1411-1425. 2
[8] K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1986), 206-212.
2, 4,17
[9] R. Fraser, S. Guo and M. Pramanik, Polynomial Roth theorems on sets of fractional dimensions,
https://arxiv.org/abs/1904.1123 (2019). 3
[10] L. Grafakos, A. Greenleaf, A. Iosevich and E. Palsson, Multilinear generalized Radon transforms
and point configurations, Forum Math. 27 (2015), no. 4, 2323-2360. 2
[11] A. Greenleaf, A. losevich and M. Pramanik, On necklaces inside thin subsets of R?, Math.
Research Lett. 24 (2017), no. 2, 347-362. 2
[12] A. Greenleaf and A. Seeger, Fourier integral operators with fold singularities, Jour. Reine u.
Angew. Math. 455 (1994), 35-56. 12
[13] V. Guillemin and S. Sternberg, Geometric asymptotics. Math. Surveys 14. Amer. Math. Soc.,
Providence, R.I., 1977. 3
[14] V. Guillemin and S. Sternberg, Some problems in integral geometry and some related problems
in microlocal analysis, Amer. J. Math. 101 (1979), no. 4, 915-955. 2
[15] L. Guth, A. Iosevich, Y. Ou and H. Wang, On Falconer distance set problem in the plane,
https://arxiv.org/abs/1808.09346; Inventiones math., to appear. 2
[16] S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces
and Grassmann manifolds, Acta Math. 113 (1965), 153-180. 2, 6
[17] K. Henriot, I. Laba, M. Pramanik, On polynomial configurations in fractal sets, Anal. PDE 9
(2016), no. 5, 1153-1184. 3
[18] L. Hormander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79-183. 9
[19] L. Hormander, The Analysis of Linear Partial Differential Operators, III and IV. Grund. math.
Wissen. 274 and 275. Springer-Verlag, Berlin, 1985. 9
[20] A. Tosevich, M. Janczak and J. Passant, A multi-parameter variant of the Erdos distance
problem, https://arxiv.org/abs/1712.04060 (2017). 4
[21] A. Tosevich and B. Liu, Pinned distance problem, slicing measures, and local smoothing esti-
mates, Trans. Amer. Math. Soc. 371 (2019), no. 6, 4459-4474. 2
[22] A. Tosevich, M. Mourgoglou and K. Taylor, On the Mattila-Sjolin theorem for distance sets,
Ann. Acad. Sci. Fenn. Math. 37 (2012), no. 2, 557-562. 4, 14
[23] A. Tosevich and K. Taylor, Finite trees inside thin subsets of R?
https://arxiv.org/abs/1903.02662 (2019). 2
[24] B. Krause, A non-linear Roth Theorem for fractals of sufficiently large dimension,
https://arxiv.org/abs/1904.10562 (2019). 2
[25] P. Mattila, Geometry of sets and measures in Fuclidean spaces. Fractals and rectifiability.
Cambridge Studies in Adv. Math. 44. Cambridge Univ. Pr., Cambridge, 1995. 12
[26] P. Mattila, Fourier analysis and Hausdor(f dimension. Cambridge Studies in Adv. Math. 150.
Cambridge Univ. Press, 2015. 12
[27] P. Mattila and P. Sj6lin, Regularity of distance measures and sets, Math. Nachr. 204 (1999),
157-162. 1, 4, 14
[28] R. Melrose and M. Taylor, Near peak scattering and the corrected Kirchhoff approximation for
a convex obstacle, Adv. Math. 55 (1985), 242-315. 8, 12



CONFIGURATION SETS WITH NONEMPTY INTERIOR 19

[29] G. Mockenhaupt, A. Seeger and C. Sogge, Wave front sets, local smoothing and Bourgain’s
circular maximal theorem, Ann. of Math. (2) 136 (1992), no. 1, 207-218. 14

[30] D. Miiller and A. Seeger, Singular spherical mazimal operators on a class of two step nilpotent
Lie groups, Israel J. Math 141 (2004), 315-340. 8, 9

[31] A. Nevo and S. Thangavelu, Pointwise ergodic theorems for radial averages on the Heisenberg
group, Adv. Math. 127 (1997), no. 2, 307-334. 8

[32] T. Pham, N. D. Phuong, N. M. Sang, C. Valculescu and L. A. Vinh, Distinct distances between
points and lines in Fg, Forum Math. 30 (2018), no. 4, 799-808. 6

[33] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I,
Acta Math. 157 (1986), no. 1-2, 99-157. 3

[34] N. D. Phuong, T. Pham and L. A. Vinh, Incidences between planes over finite fields, Proc.
Amer. Math. Soc. 147 (2019), no. 5, 2185-2196. 6

[35] K. Simon and K. Taylor, Interior of sums of planar sets and curves,
https://arxiv.org/abs/1707.01420 (2017). 4

[36] C. Sogge, Fourier Integrals in Classical Analysis. Cambridge Tracts in Math. 105. Cambridge
Univ. Press, 1993. 14

[37] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals. Princeton University Press, Princeton, 1993. 4

[38] H. Steinhaus, Sur les distances des points dans les ensembles de mesure positive, Fund. Math.
1 (1920), 93-104. 1

[39] T. Tsujishita, Spherical means on Riemannian manifolds, Osaka Jour. Math. 13 (1976), no. 3,
591-597. 4, 14

[40] L. A. Vinh, On point-line incidences in vector spaces over finite fields, Discrete Appl. Math.
177 (2014), 146-151. 6

[41] T. Wolff, Decay of circular means of Fourier transforms of measures, Int. Math. Res. Not. 10
(1999) 547-567. 2

F-mail address: allan@math.rochester.edu
FE-mail address: iosevich@math.rochester.edu
E-mail address: taylor.2952Qosu.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NY 14627
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NY 14627

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210



	1. Introduction
	2. Examples
	2.1. Generalized distance sets
	2.2. Higher dimensional configuration sets

	3. Background
	4. Proof of theorem ??
	5. Details of the examples and corollaries
	5.1. Mattila-Sjölin and generalizations (Cors. ?? and ??)
	5.2. Spheres-points (Cor. ??).
	5.3. Lines-points in Rd (Cor. ??)
	5.4. Lines-lines (Cor. ??)
	5.5. Ensembles of quadratic forms (Cor. ??) 
	5.6. Heisenberg spheres (Cors. ?? and ??) 

	6. Final comment
	References

