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Abstract

We prove the existence of similar and multi-similar point configurations (or simplexes) in

sets of fractional Hausdorff dimension in Euclidean space. Let d ≥ 2 and E ⊂ Rd be a

compact set. For k ≥ 1, define

�k(E) =

{

(

|x1 − x2|, . . . , |x i − x j |, . . . , |xk − xk+1|
)

:
{

x i
}k+1

i=1
⊂ E

}

⊂ Rk(k+1)/2,

the (k + 1)-point configuration set of E . For k ≤ d , this is (up to permutations) the set of

congruences of (k + 1)-point configurations in E ; for k > d , it is the edge-length set of

(k + 1)-graphs whose vertices are in E . Previous works by a number of authors have found

values sk,d < d so that if the Hausdorff dimension of E satisfies dimH(E) > sk,d , then

�k(E) has positive Lebesgue measure. In this paper we study more refined properties of

�k(E), namely the existence of similar or multi–similar configurations. For r ∈ R, r > 0,

let

�r
k(E) := {t ∈ �k (E) : r t ∈ �k (E)} ⊂ �k (E) .

We show that if dimH(E) > sk,d , for a natural measure νk on �k(E), one has νk

(

�r
k(E)

)

> 0

all r ∈ R+. Thus, in E there exist many pairs of (k+1)-point configurations which are similar

by the scaling factor r . We extend this to show the existence of multi–similar configurations

of any multiplicity. These results can be viewed as variants and extensions, for compact thin

sets, of theorems of Furstenberg, Katznelson and Weiss [7], Bourgain [2] and Ziegler [11]

for sets of positive density in Rd .
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1 Introduction

Furstenberg, Katznelson and Weiss [7] proved that if A ⊂ R2 has positive upper Lebesgue

density and Aδ denotes its δ-neighborhood, then, given vectors u, v in R2, there exists r0

such that, for all r > r0 and any δ > 0, there exists {x, y, z} ⊂ Aδ forming a triangle similar

to {0, u, v}, i.e., congruent to {0, ru, rv} for some scaling factor r > 0. Under the same

assumptions, Bourgain [2] proved in Rd that if u1, . . . , uk ∈ Rd , k ≤ d , there exists r0 such

that, for all r > r0 and any δ > 0, there exists {x1, x2, . . . , xk+1} ⊂ Aδ forming a simplex

similar to {0, u1, . . . , uk} via scaling r . Perhaps the most general result of this approximate

similarity type is due to Ziegler [11].

Bourgain also showed that if k < d and the simplex is non-degenerate, i.e., of positive

k-dimensional volume, then the conclusion in [2] holds for exact similarities (δ = 0): for r

sufficiently large, there exists {x1, x2, . . . , xk+1} ⊂ A similar to {0, u1, . . . , uk} via scaling

r . The purpose of this paper is to prove variants of such exact similarity results for compact

sets E of Hausdorff dimension dimH(E) < d , sometimes referred to as thin sets. The

statements necessarily need to be different in this context than for sets of positive upper

Lebesgue density since, e.g., in a compact E the distances between points are bounded above

by diam(E). More fundamental restrictions are known: e.g., there exist compact subsets of R2

of full Hausdorff dimension that do not contain vertices of any equilateral triangle (Falconer

[6]). Nevertheless, we are able to prove that if dimH(E) is above a threshold, then given any

r > 0 there exist many pairs (in fact, a set of positive measure in an appropriate sense) of

(k + 1)-point configurations which are similar via the scaling factor r and whose vertices

are, as in [2], in E itself and not just in a δ-neighborhood of E . We also treat what we call

multi-similarities: multiple configurations in E which are jointly similar to each other via

multiple scaling factors.

We now turn to the results of this paper; to state them, some definitions are needed.

Definition 1 Let d ≥ 2, E ⊂ Rd be a compact set, and μ a Frostman measure on E . For

1 ≤ k ≤ d , denote points of R(k+1
2 ) = Rk(k+1)/2 by t := (t i j ), and for x1, . . . , xk+1 ∈ Rd ,

let v k,d(x1, . . . , xk+1) ∈ Rk(k+1)/2 be the vector with entries |x i − x j |, 1 ≤ i < j ≤ k + 1,

listed in the lexicographic order.

(i) The k-simplex set or (k + 1)-point configuration set of E is

�k(E) :=
{

v k,d(x1, . . . , xk+1) : x j ∈ E
}

⊂ Rk(k+1)/2. (1.1)

Note that the k-simplex will necessarily be degenerate if k > d .

(ii) Define a measure νk on Rk(k+1)/2, induced by a Frostman measure 1 μ on E , by the

relation, for f (t ) ∈ C0

(

Rk(k+1)/2
)

,
∫

Rk(k+1)/2
f (t) dνk(t) :=

∫

. . .

∫

f
(

v k,d

(

x1, . . . , xk+1
))

dμ(x1) · · · dμ(xk+1).

(1.2)

Remark 1 For k ≤ d , �k(E) can be considered, modulo the symmetric group Sk+1 acting on

the x i , as the set of congruence classes of (k + 1)-point configurations in E , or equivalently

1 Recall that a compact E ⊂ Rd always supports a Frostman measure; see [10] for the definition of Frostman

measures and their basic properties.
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the set of (possibly degenerate) k-simplexes in Rd spanned by points of E . The measure νk is

supported on �k(E) and has total mass at most μ(E)k+1. The action of the finite group Sk+1

will be irrelevant for our results, which are expressed in terms of certain sets of configurations

having positive k(k + 1)/2-dimensional Lebesgue measure. (The situation when k > d is

discussed below.)

The study of the Lebesgue measure of the distance set �1(E) for thin sets was begun in

1986 by Falconer [5] and has led to many important results, comprising too large a literature

to summarize here. Most directly relevant, the best results currently known for the positivity

of the measure of �k(E), 1 < k ≤ d , are due to Erdoğan, Hart and Iosevich [4] and

Greenleaf, Iosevich, Liu and Palsson [8]. The former proved that the Lebesgue measure

L
k(k+1)/2(�k(E)) > 0 if dimH(E) > d+k+1

2
, while the latter obtained the threshold dk+1

k+1
,

improved to 8
5

for k = d = 2. We note that all of these results, except for [9], are proven by

establishing that the measure νk defined by (1.2) has a density in L2(Rk(k+1)/2).

Definition 2 Let d ≥ 2, k ≥ 1. The L2-threshold for the k-simplex problem (or (k+1)-point

configuration problem) in Rd is

sk,d := inf

{

s : dimH(E) > s �⇒ νk is absolutely continuous and

∫

�k (E)

ν2
k (t) dt < ∞

}

,

where E runs over all compact sets E ⊂ Rd .

Thus, sk,d is less than or equal to the values mentioned in the paragraph above.

The case of k > d needs to be treated somewhat differently, since in that range the

set �k(E) ⊂ Rk(k+1)/2 has lower dimension than Rk(k+1)/2 and so cannot have positive

Lebesgue measure, regardless of the Hausdorff dimension of E . This stems from the fact

that, when k > d , specifying the k(k + 1)/2 pairwise distances between k + 1 points in Rd

gives an over-determined system: knowing only some of the distances determines the rest.

Thus, although �k(E) still makes sense, the setup has to be modified. In Chatzikonstantinou,

Iosevich, Mkrtchyan and Pakianathan [3] it was shown that for k > d the set of congruence

classes of (k+1)-tuples of elements of E can be naturally viewed as a subset of Rd(k+1)−(d+1
2 );

if m := d(k+1)−
(

d+1
2

)

appropriately chosen distances are specified, then the other distances

are determined, up to finitely many possibilities. Let P be such a collection of m edges. In

the terminology of [3], P is a maximally independent (in Rd ) subset of the edges of the

complete graph on k + 1 vertices. Extend the definition of v k,d to the case k > d by setting

v k,d(x1, . . . , xk+1) =
(∣

∣x i − x j
∣

∣

)

(i, j)∈P
∈ Rm , where the entries in the range are ordered

lexicographically. Using this, we can define a measure νk on Rm and a set �k(E) ⊂ Rm

similarly to (1.2) in Definition 1. Note that νk and �k(E) will depend on the choice of P ,

but for our purposes this is irrelevant, so we will fix a particular P once and for all.

While v k,d(x1, . . . , xk+1) doesn’t determine the congruence class of (x1, . . . , xk+1)

uniquely, it identifies it up to a finite number of possibilities. The number of these pos-

sibilities is bounded above by a constant ud,k , depending only on d and k. In this sense,

congruence classes of (k +1)-tuples of elements of a compact set E in Rd for k > d ≥ 2 can

be naturally viewed as a subset of Rm . It was shown in [3] that if k > d and the Hausdorff

dimension of E is greater than d − 1
k+1

, then the m-dimensional Lebesgue measure of the set

of congruence classes of (k + 1)-point configurations with endpoints in E is positive, and,

as with most of the results for k ≤ d , this was shown by first establishing that the measure

νk defined by (1.2) has a density in L2(Rm).
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With the theorems of [2,7,11] in mind, obtaining more refined structural information about

�k(E) is of natural interest. Since E is compact in our setting, the questions need to reflect

the fact, that all the pairwise distances are bounded. We will show that, if dimH(E) > sk,d ,

then among the k-simplexes of E , all possible similarity scaling factors, 0 < r < ∞,

occur, and each one does so with positive νk-measure. Furthermore, we show that what we

call multi-similarities of arbitrarily high multiplicity occur as well. Thus, this holds for the

values of dimH(E) in the settings of all of the previous results referred to above where

L
k(k+1)/2(�k(E)) > 0 has been obtained, with the possible exception of [9].

To make this more precise, for r ∈ R+ := (0,∞) let

�r
k(E) := {t ∈ �k (E) : r t ∈ �k (E)} ⊂ �k (E) , (1.3)

the set of all k-simplexes t in E for which there is also a simplex in E similar to t via the

scaling factor r . Interchanging the roles of the two simplexes in such a pair, {t , r t } ⊂ �k(E),

note for later use that

�
1/r

k (E) = �r
k(E). (1.4)

One can not only look for similar pairs {t , r t } ⊂ �k(E), but more generally for similar-

ities of higher multiplicity.

Definition 3 A collection {t , r1t , . . . , rn−1t } ⊂ �k(E), with {1, r1, . . . , rn−1} pairwise

distinct, is an n-similarity of k-simplexes in E , also referred to as a multi-similarity of multi-

plicity n.

Our main results are the following. All are obtained under the assumptions that d ≥ 2,

k ≥ 1, E ⊂ Rd is compact, μ is a Frostman measure on E and νk is the measure induced by

μ as in Definition 1. The following three results establish (quantitatively) the existence in E

of many multi-similarities of multiplicities 2, 3 and n ≥ 3, resp.

Theorem 1 Let d ≥ 2, E ⊂ Rd compact and k ≥ 1. Suppose that dimH(E) > sk,d , the

L2-threshold for the k-simplex problem from Def. 2. Then there is a lower bound, uniform in

r , 0 < r < ∞,

νk(�
r
k(E)) ≥ C(k, E) > 0.

With the same notation and assumptions as in Theorem 1, we also have:

Theorem 2 Suppose that dimH(E) > sk,d . Then there exist distinct r1, r2 > 0, with

νk

(

�
r1

k (E) ∩ �
r2

k (E)
)

> 0.

In fact, for any partition R+ =
∐

α∈A Rα with each Rα 
= ∅ and countable, there exist

distinct α1, α2 ∈ A and r1 ∈ Rα1 , r2 ∈ Rα2 , such that νk

(

�
r1

k (E) ∩ �
r2

k (E)
)

> 0.

Theorem 3 Suppose that dimH(E) > sk,d . Then for all n ∈ N, there exists an M =

M(n, k, E) ∈ N such that for any distinct r1, . . . , rM ∈ R+, there exist distinct ri1 , . . . , rin

such that

νk

(

�
ri1

k (E) ∩ �
ri2

k (E) ∩ · · · ∩ �
rin

k (E)

)

> 0.

Remark 2 More explicitly, Theorem 1 says that, given any r > 0, there exist (k + 1)-

point configurations {x1, x2, . . . , xk+1} and {y1, y2, . . . , yk+1} in E which are similar via

the scaling factor r , i.e., there exists a translation τ ∈ Rd and a rotation θ ∈ Od(R) such

123



Existence of similar point configurations… 859

that y j = rθ(x j + τ), 1 ≤ j ≤ k + 1. Thus, among the (k + 1)-point configurations or

k-simplexes in E , in the terminology of Definition 3, there exist (many) 2-similarities.

Furthermore, Theorem 2 states that there exist 3-similarities in E , i.e., triples of (k + 1)-

point configurations, {x j }, {y j }, {z j } in E and scalings r1, r2 so that y j = r1θ1(x j +

τ1), z j = r2θ2(x j + τ2) for appropriate θ1, θ2 ∈ Od(R) and τ1, τ2 ∈ Rd , and furthermore

that r1, r2 can be arranged to lie in different subsets of a partition of R+ as stated. For

example, decomposing R+ into the multiplicative cosets of Q+, there exist similarities of

multiplicity 3 with r2/r1 irrational; similarly, replacing the positive rationals with the positive

algebraic numbers, there exist such with r2/r1 transcendental.

Finally, Theorem 3 shows that there exist multi-similar (k + 1)-point configurations in

E of arbitrarily high multiplicity, and that the scaling factors can be chosen to come from

an arbitrary set of distinct elements of R+, as long as that set has large enough cardinality

relative to the desired similarity multiplicity.

Remark 3 We note that the conclusions of Remark 2 hold when k > d as well. Denot-

ing x := (x1, . . . , xk+1), the fact that v k,d(x) = v k,d(y) does not imply that x and y

are congruent and hence v k,d(x) = rv k,d(y) does not imply x and y are similar. How-

ever, the conclusions of Remark 2 still hold as follows. Recall from the introduction

that by results of Chatzikonstantinou, Iosevich, Mkrtchyan and Pakianathan [3], v k,d(x)

determines the congruence type of x up to at most a bounded number ud,k of choices.

Using Theorem 3 with n · ud,k instead of n we see that there exist x, xi1 , . . . , xinud,k
and

ri1 , . . . , rinud,k
such that v k,d(x), ri1 v k,d(x1), . . . , rinud,k

v k,d(xnud,k
) are all congruent. It fol-

lows that x, xi1 , . . . , xinud,k
all fall within at most ud,k congruence classes; thus, by the pigeon

hole principle, at least n+1 of them must be in some congruence class. This argument applies

to the conclusions of Remark 2 for the other Theorems as well.

2 Proofs of Theorems 2 and 3

We start by showing that Theorems 2 and 3 follow from Theorem 1 by measure-theoretic

arguments. To prove Theorem 2, let R+ =
∐

α∈A Rα be a partition of R+ into a (necessarily

uncountable) collection of nonempty countable subsets. From the definition (1.3), it follows

that each �r
k(E) is νk-measurable. Hence, if for each α ∈ A, with slight abuse of notation

we define the set

�α
k (E) :=

⋃

r∈Rα

�r
k(E),

then, being a countable union of measurable sets, each �α
k (E) is νk-measurable. Furthermore,

combining Rα 
= ∅, the monotonicity of νk and Theorem 1, one sees that each νk(�
α
k (E)) >

0. However, νk(�k(E)) ≤ μ(E)k+1 < ∞, and no finite (or even σ -finite) measure space

can be the pairwise disjoint union of an uncountable collection of measurable subsets of

positive measure. Thus, there must exist α1 
= α2 such that �
α1

k (E) ∩ �
α2

k (E) 
= ∅; it

follows that there are r j ∈ Rα j
, j = 1, 2, such that �

r1

k (E) ∩ �
r2

k (E) 
= ∅. For the full

claim of Theorem 2, that there exist distinct α1, α2 ∈ A and r1 ∈ Rα1 , r2 ∈ Rα2 , such that

νk

(

�
r1

k (E) ∩ �
r2

k (E)
)

> 0, first make a choice of one representative from each of the Rα ,

then choose an arbitrary countably infinite subset of these, and finally apply Theorem 3.

For the proof of Theorem 3, we use the uniform lower bound from Theorem 1,

νk(�
r
k(E)) ≥ C(E, k) > 0, ∀r ∈ R+, combined with νk(�k(E)) < ∞. Theorem 3
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then follows from the following measure-theoretic pigeon-hole principle, which might be of

independent interest and whose proof is deferred to the Appendix, Sect. 1.

Lemma 1 Let X = (X , M, σ ) be a finite measure space. For 0 < c < σ(X), let Mc = {A ∈

M : σ(A) ≥ c}. Then, for every n ∈ N, there exists an N = N (X , c, n) ∈ N such that for

any collection {A1, . . . , AN } ⊂ Mc of cardinality N , there is a subcollection {Ai1 , . . . , Ain }

of cardinality n such that σ(Ai1 ∩ · · · ∩ Ain ) > 0 and hence Ai1 ∩ · · · ∩ Ain 
= ∅.

3 Proof of Theorem 1

To keep the exposition simple, we first prove Theorem 1 in the case k ≤ d . In Sects. 3

and 4 we will assume k ≤ d . In the case k > d the arguments are very similar. Since

v k,d(x1, . . . , xk+1) determines the congruence type of (x1, . . . , xk+1) up to at most ud,k

choices, the constant uk,d will appear throughout the proof. However, since the results here

are up to multiplicative constants, this doesn’t play any essential role.

For ε > 0, define a smooth approximation of νk on Rk(k+1)/2 by the density

νε
k (t) =

∫

. . .

∫

∏

1≤i< j≤k+1

σ ε
ti j

(x i − x j )

k+1
∏

l=1

dμ(x l), (3.1)

where σt is the normalized surface measure on the sphere of radius t in Rd and σ ε
t (x) := σt ∗

ρε(x), with ρ ∈ C∞
0 (Rd), ρ ≥ 0, supp(ρ) ⊂ {|t | < 1},

∫

ρ = 1 and ρε(x) = ε−dρ(ε−1x).

Then each νε
k ∈ C∞

0 and νε
k → νk weak∗ as ε → 0. Thus,

νk(�
r
k(E)) = lim

ε→0

∫

Rk(k+1)/2
νε

k (r t) dνk(t).

By (1.2), for ε fixed,

∫

Rk(k+1)/2
νε

k (r t) dνk(t) =

∫

νε
k

(

r(x1 − x2), . . . , r(xk − xk+1)

)

dμ(x1) . . . dμ(xk+1).

Using the definition in (3.1), we see that this is

≈ ε−(k+1
2 )

∫

. . .

∫

{| |x i −x j |−r|yi −y j | |<ε; 1≤i< j≤k+1}
dμ(x1) . . . dμ(xk+1)dμ(y1) . . . dμ(yk+1),

(3.2)

which we denote by Iε . Here, and throughout, we write X � Y (resp. X ≈ Y ) if there exist

constants 0 < c < C , depending only on k, E and the choice of ρ (and thus implicitly on

d), such that X � CY (resp., cY ≤ X ≤ CY ). Also, we denote the 2(k + 1)-fold product

measure in (3.2) and similar occurences by μ2(k+1).

For each rotation θ ∈ Od(R), define a measure λr ,θ on Rd by

∫

f (z) dλr ,θ (z) =

∫ ∫

f (u − rθv) dμ(u)dμ(v), f ∈ C0

(

Rd
)

.

This is the push-forward of μ×μ under the map (u, v) → u −rθv, has total mass ||λr ,θ || =

μ(E)2, and is supported in E − rθ E . We show below that, if dimH(E) > sk,d , for a.e. θ ,

the measure λr ,θ is absolutely continuous with a density in Lk+1(Rd), which we denote by

λr ,θ (·). Let dθ denote the Haar probability measure on Od(R).
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Proposition 1 With the notation above,

lim inf
ε→0

Iε ≈

∫ ∫

(

λr ,θ (z)
)k+1

dz dθ. (3.3)

By definition, the quantity on the right hand side of (3.3) is finite if dimH(E) > sk,d ,

the L2-threshold for the k-simplex problem. Prop. 1 was proved in [8] in the case r = 1;

the proof in the general case is similar, but we supply it in the next section for the sake of

completeness.

Continuing with the proof of Theorem 1, by Hölder we have

μ(E)2 =

∫ ∫

λr ,θ (z) · 1 dz dθ (3.4)

≤

(∫∫

(

λr ,θ (z)
)k+1

dz dθ

)
1

k+1

×

(

∫∫

supp(λr,θ )×Od (R)

1
k+1

k dz dθ

)
k

k+1

.

Since supp(λr ,θ ), being contained in E − rθ E , has Lebesgue measure � (1 + rd)μ(E), we

divide both sides of (3.4) by the second factor on the right hand side and raise to the k + 1

power to obtain

μ(E)k+1(1 + rd)−(k+1) �

∫∫

(

λr ,θ (z)
)k+1

dz dθ.

Combining this with Proposition 1, we conclude that, for dimH(E) > sk,d and 0 < r ≤ 1,

lim inf
ε→0

∫

νε
k (r t) dνk(t) ≈

∫ ∫

(

λr ,θ (z)
)k+1

dz dθ � 1. (3.5)

It follows that lim infε→0 νk({t : r t ∈ �k,ε(E)}) � 1, where �k,ε(E) is the ε-neighborhood

of �k(E). Since the sets {t : r t ∈ �k,ε(E)} are nested as ε ↘ 0, we conclude that, for

0 < r ≤ 1,

νk({t : r t ∈ �k(E)}) � 1. (3.6)

However, by (1.4), νk ({t : r t ∈ �k(E)}) = νk

({

t : r−1t ∈ �k(E)
})

; therefore, (3.6)

holds for 1 ≤ r < ∞ as well. This completes the proof of Theorem 1, up to the verifi-

cation of Proposition 1.

4 Proof of Proposition 1

We will follow closely the argument in [8, Sect. 2]. It will be convenient to denote an ordered

(k +1)-tuple (x1, . . . , xk+1) of elements of Rd by x. If the corresponding set {x1, . . . , xk+1}

is a nondegenerate simplex (i.e., affinely independent), then

π(x) := span{x2 − x1, . . . , xk+1 − x1}

is a k-dimensional linear subspace of Rd . �(x) will denote the (unoriented) simplex generated

by {x1, . . . , xk+1}, i.e., the closed convex hull, which is contained in the affine plane x1+π(x).

Both π(x) and �(x) are independent of the order of the x j . If {x1, . . . , xk+1} is similar to

{y1, . . . , yk+1} by a scaling factor r , then, up to permutation of y1, . . . , yk+1, there exists

a θ ∈ O(d) such that x j − x1 = rθ(y j − y1), 2 ≤ j ≤ k + 1, which is equivalent with

x j − x i = rθ(y j − yi ), 1 ≤ i < j ≤ k + 1, and �(x) = (x1 − rθ y1) + rθ�(y).
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The group O(d) acts on the Grassmanians G(k, d) and G(d − k, d) of k (resp., d − k)

dimensional linear subspaces of Rd , and if x is similar to y, one has π(x) = θπ(y) and

π(x)⊥ = θ
(

π(y)⊥
)

. The set of θ ∈ O(d) fixing π(x) is a conjugate of O(d − k) ⊂ O(d),

and we refer to this as the stabilizer of x, denoted Stab(x).

For x, y similar, let θ̃ ∈ O(d) be such that it transforms y to x. I.e. we have π(x) = θ̃π(y)

and x i − x j = r θ̃ω(yi − y j ) for all ω ∈ Stab(y). For each y, take a cover of O(d)/Stab(y)

by balls of radius ε (with respect to some Riemannian metric) with finite overlap. Since the

dimension of O(d)/Stab(y) is that of O(d)/O(d − k), namely

d(d − 1)

2
−

(d − k)(d − k − 1)

2
= kd −

k(k + 1)

2
,

one needs N (ε) � ε
−

(

kd−
k(k+1)

2

)

balls to cover it. In these balls, choose sample points,

θ̃m(y), 1 ≤ m ≤ N (ε).

One sees that
{

(x, y) :

∣

∣

∣
|x i − x j | − r |yi − y j |

∣

∣

∣
≤ ε, 1 ≤ i < j ≤ k + 1

}

⊆

N (ε)
⋃

m=1

{

(x, y) :

∣

∣

∣
(x i − x j ) − r θ̃m(y)ω(yi − y j )

∣

∣

∣
� ε,

∀ 1 ≤ i < j ≤ k + 1, ω ∈ Stab(y)

}

.

Thus, the right hand side of (3.2) is bounded above by

ε−
k(k+1)

2

N (ε)
∑

m=1

μ2(k+1)
{

(x, y) :

∣

∣

∣
(x i − x j ) − r θ̃m(y)ω(yi − y j )

∣

∣

∣
� ε, (4.1)

∀ 1 ≤ i < j ≤ k + 1, ω ∈ Stab(y)

}

.

When picking the N (ε) balls, if each point of O(d)/Stab(y) is covered by at most p = p(d)

of the balls, then the quantity in (4.1) also becomes, when multiplied by 1/p, a lower bound

for (3.2). Thus, the right hand side of (3.2) is comparable to the quantity in (4.1), which can

be rewritten as

ε−kd

N (ε)
∑

m=1

εkd−
k(k+1)

2 μ2(k+1)
{

(x, y) :

∣

∣

∣
(x i − r θ̃m(y)ωyi ) − (x j − r θ̃m(y)ωy j )

∣

∣

∣
� ε,

∀ 1 ≤ i < j ≤ k + 1, ω ∈ Stab(y)

}

.(4.2)

Since this holds for any choice of sample points θ̃m(y), we can pick these points such that

they minimize (up to a factor of 1/2, say) the quantity

μ2(k+1)
{

(x, y) :

∣

∣

∣
(x i − r θ̃m(y)ωyi ) − (x j − r θ̃m(y)ωy j )

∣

∣

∣
≤ ε,

∀ 1 ≤ i < j ≤ k + 1, ω ∈ Stab(y)

}

.

The N (ε) preimages, under the natural projection from O(d), of the balls used to cover

O(d)/Stab(y) are ε-tubular neighborhoods of the preimages of the sample points θ̃m(y),

which we denote T ε
1 , . . . , T ε

N (ε)
. Since dim(O(d)/Stab(y)) = kd − k(k+1)

2
, each T ε

m has
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measure ∼ εkd−
k(k+1)

2 with respect to the Haar measure dθ . Since the infimum over a set is

less than or equal to the average over the set, it follows that

μ2(k+1)
{

(x, y) :

∣

∣

∣
(x i − r θ̃m(y)ωyi ) − (x j − r θ̃m(y)ωy j )

∣

∣

∣
≤ ε,

∀ 1 ≤ i < j ≤ k + 1, ω ∈ Stab(y)

}

≈
1

εkd−
k(k+1)

2

∫

T ε
m

μ2(k+1)
{

(x, y) :

∣

∣

∣
(x i − rθ yi ) − (x j − rθ y j )

∣

∣

∣
≤ ε, 1 ≤ i < j ≤ k + 1

}

dθ.

The quantity in (4.2) is thus

≈ ε−kd

N (ε)
∑

m=1

∫

T ε
m

μ2(k+1)
{

(x, y) :

∣

∣

∣
(x i − rθ yi ) − (x j − rθ y j )

∣

∣

∣
≤ε, 1 ≤ i < j ≤k + 1

}

dθ,

which, since the collection {T ε
m} have pointwise finite overlap (uniformly in ε), is

≈ ε−kd

∫

μ2(k+1)
{

(x, y) :

∣

∣

∣
(x i − rθ yi ) − (x j − rθ y j )

∣

∣

∣
≤ ε, 1 ≤ i < j ≤ k + 1

}

dθ,

and taking the lim inf, we obtain a quantity comparable to the expression (3.3). This completes

the proof of Proposition 1, and thus Theorems 1, 2, and 3.

5 Open question

The following is a natural question pertaining to the subject matter of Theorem 1:

In [1] it was shown that if E is a compact subset of Rd , of Hausdorff dimension greater

than d+1
2

, then there exists a non-empty open interval I such that, for any t ∈ I , there exist

x1, x2, . . . , xk+1 ∈ E such that |x j+1 − x j | = t , 1 ≤ j ≤ k. In view of Theorem 1, it seems

reasonable to ask: given any r > 0, do there exist x, y, z ∈ E such that |x − z| = r |x − y|?

This can be regarded as a pinned version of the case k = 1 of Theorem 1, in the sense that the

endpoint x is common to both segments whose length is being compared. Similar questions

can be raised when k > 1.

Appendix: Ameasure-theoretic pigeon hole principle

Unable to find Lemma 1 in the literature, and believing that it should be useful for other prob-

lems, we prove it here. Without loss of generality the total measure σ(X) can be normalized

to be equal to 1, so for the proof we restate the result as

Lemma 2 Let X = (X , M, σ ) be a probability space. For 0 < c < 1, let Mc = {A ∈

M : σ(A) ≥ c}. Then, for every n ∈ N, there exists an N = N (X , c, n) ∈ N such that,

for any collection {A1, . . . , AN } ⊂ Mc of cardinality at least N , there is a subcollection

{Ai1 , . . . , Ain } of cardinality n such that σ(Ai1 ∩· · ·∩ Ain ) > 0 and hence Ai1 ∩· · ·∩ Ain 
= ∅.

To start the proof, first we establish the following claim, which is a quantitative strength-

ening of the statement for n = 2:
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Claim 1 Let X = (X , M, σ ) be a probability space. Then for any 0 < c < 1 there exists

Pc ∈ N such that for any N > Pc, if {A1, . . . , AN } ⊂ Mc, then there exist distinct i, j ≤ N

such that σ(Ai ∩ A j ) ≥ c3/3.

Proof Suppose not. Let S ⊂ (0, 1) be the set of all c ∈ (0, 1) such that the statement

of the claim is false, and suppose c ∈ S. Then for every N ∈ N there exists a subset

{A1, . . . , A2N } ⊂ Mc such that σ(Ai ) ≥ c for all i but σ(Ai ∩ A j ) < c3/3 for all i 
= j .

Consider the sets A2i−1 ∪ A2i , i = 1, . . . , N . We have

σ(A2i−1 ∪ A2i ) = σ(A2i−1) + σ(A2i ) − σ(A2i−1 ∩ A2i ) > c + c −
c3

3
= 2c −

c3

3
.

Since σ(X) = 1 ≥ σ(A2i−1 ∪ A2i ), this implies 1 > 2c − c3

3
. In particular, since c < 1, we

have c � 0.52 < 3/5; hence [3/5, 1) ∩ S = ∅. Moreover,

σ
(

(A2i−1 ∪ A2i ) ∩ (A2 j−1 ∪ A2 j )
)

= σ
(

(A2i−1 ∩ A2 j ) ∪ (A2i−1 ∩ A2 j−1) ∪ (A2i ∩ A2 j ) ∪ (A2i ∩ A2 j−1)
)

≤ σ(A2i−1 ∩ A2 j ) + σ(A2i−1 ∩ A2 j−1) + σ(A2i ∩ A2 j ) + σ(A2i ∩ A2 j−1)

< 4
c3

3
≤

(2c − c3/3)3

3
since 0 < c < 1.

Thus, there exist N sets, namely A1 ∪ A2, . . . , A2N−1 ∪ A2N , such that each has measure at

least f (c) := 2c − c3

3
but all pairwise intersections have measure less than

f (c)3

3
.

Thus, we have shown that if c ∈ S then f (c) ∈ S as well. However if 0 < c < 1, then

there exists k ∈ N such that f k(c) > 3/5 and is thus /∈ S (where f k denotes f composed

with itself k times). It follows that S must be empty. ��

We use Claim 1 as a building block for the proof of Lemma 2, which is by induction on

n. If n = 1, then we can take N = 1, since any Ai1 ∈ Mc satisfies the statement. If n = 2

then any N ≥ �1/c� suffices, since there cannot be more than 1/c pairwise disjoint sets of

measure ≥ c each; alternatively, one may simply invoke Claim 1.

Now suppose that the conclusion of Lemma 2 holds for some n, n ≥ 2. Set N =

2N (X , c3/3, n) + Pc, and suppose {A1, . . . , AN } ⊂ Mc is a collection of cardinality N .

Since N > Pc, by Claim 1 there exist distinct i, j ≤ N such that σ(Ai ∩ A j ) > c3

3
. Let

B1 = Ai ∩ A j . Removing Ai and A j from the collection we still have N − 2 > Pc sets, so

can find another pair whose intersection has measure at least c3

3
. Repeating this procedure

N (X , c3/3, n) times, one finds sets B1, . . . , BN (X ,c3/3,n) ∈ Mc3/3. By the induction hypoth-

esis there exist 0 < i1 < i2 < · · · < in ≤ N (X , c3/3, n) such that σ(Bi1 ∩ · · · ∩ Bin ) > 0.

Since Bi1 ∩ · · · ∩ Bin is the intersection of 2n distinct sets from the collection {A1, . . . , AN },

the intersection of any n +1 of those 2n will have positive measure, completing the induction

step. ��
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