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Abstract

We prove the existence of similar and multi-similar point configurations (or simplexes) in
sets of fractional Hausdorff dimension in Euclidean space. Let d > 2 and E C R? be a
compact set. For k > 1, define

. . N k+1
AW(E) = {(|x1 T T T —xk+1|) : {x’}, c E} C RFK+D/2,
i=

the (k + 1)-point configuration set of E. For k < d, this is (up to permutations) the set of
congruences of (k + 1)-point configurations in E; for k > d, it is the edge-length set of
(k + 1)-graphs whose vertices are in E. Previous works by a number of authors have found
values sx4 < d so that if the Hausdorff dimension of E satisfies dimy (E) > sk 4, then
Ak (E) has positive Lebesgue measure. In this paper we study more refined properties of
Ay (E), namely the existence of similar or multi—similar configurations. For r € R, r > 0,
let

ALE) :={t € Ak (E) :rt € Ap(E)} C Ak (E).

We show thatif dimy (E) > sk, 4, for anatural measure vy on Ag (E), one has vg (A; (E)) >0
allr € Ry Thus, in E there exist many pairs of (k4 1)-point configurations which are similar
by the scaling factor r. We extend this to show the existence of multi—similar configurations
of any multiplicity. These results can be viewed as variants and extensions, for compact thin
sets, of theorems of Furstenberg, Katznelson and Weiss [7], Bourgain [2] and Ziegler [11]
for sets of positive density in R¥.
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1 Introduction

Furstenberg, Katznelson and Weiss [7] proved that if A C R? has positive upper Lebesgue
density and A denotes its 8-neighborhood, then, given vectors u, v in R?, there exists ro
such that, for all > rg and any § > 0, there exists {x, y, z} C As forming a triangle similar
to {0, u, v}, i.e., congruent to {0, ru, rv} for some scaling factor » > 0. Under the same
assumptions, Bourgain [2] proved in RY thatif u!, ..., uF € R, k < d, there exists ro such
that, for all » > rg and any § > 0, there exists {xl, x2 ..., xk'H} C As forming a simplex
similar to {0, «!, ..., u*} via scaling r. Perhaps the most general result of this approximate
similarity type is due to Ziegler [11].

Bourgain also showed that if k < d and the simplex is non-degenerate, i.e., of positive
k-dimensional volume, then the conclusion in [2] holds for exact similarities (§ = 0): for r
sufficiently large, there exists {x1 X2, xk'H} C A similar to {0, ul, ..., uk} via scaling
r. The purpose of this paper is to prove variants of such exact similarity results for compact
sets E of Hausdorff dimension dimy(E) < d, sometimes referred to as thin sets. The
statements necessarily need to be different in this context than for sets of positive upper
Lebesgue density since, e.g., in a compact E the distances between points are bounded above
by diam(E). More fundamental restrictions are known: e.g., there exist compact subsets of R?
of full Hausdorff dimension that do not contain vertices of any equilateral triangle (Falconer
[6]). Nevertheless, we are able to prove that if dimy (E) is above a threshold, then given any
r > 0 there exist many pairs (in fact, a set of positive measure in an appropriate sense) of
(k 4+ 1)-point configurations which are similar via the scaling factor » and whose vertices
are, as in [2], in E itself and not just in a §-neighborhood of E. We also treat what we call
multi-similarities: multiple configurations in E which are jointly similar to each other via
multiple scaling factors.

We now turn to the results of this paper; to state them, some definitions are needed.

Definition1 Letd > 2, E C R? be a compact set, and p a Frostman measure on E. For
1 < k < d, denote points of R(3) = Rk*+D/2 byt := (t'/), and for x', ..., x**! € RY,
letvig(x!, ..., xk*1) € RA&+D/2 be the vector with entries |x —x/|, 1 <i < j <k+1,
listed in the lexicographic order.

(i) The k-simplex set or (k + 1)-point configuration set of E is

A(E) = [vk,d(xl, My e E} C RKK+D/2, (1.1)

Note that the k-simplex will necessarily be degenerate if k > d.
(i) Define a measure vx on RE¢+D/2 induced by a Frostman measure ''ywonkE, by the
relation, for f(t) € Co (R¥K+1/2),

/ F(t) dvi(t) ::/.../f(vk,d (xl,...,ka)) duGehy - dp(FH.
REG+1)/2
(12)

Remqu 1 Fork < d, Ay (E) can be considered, modulo the symmetric group Sk acting on
the x*, as the set of congruence classes of (k 4 1)-point configurations in E, or equivalently

! Recall that a compact E C RY always supports a Frostman measure; see [10] for the definition of Frostman
measures and their basic properties.
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the set of (possibly degenerate) k-simplexes in R? spanned by points of £. The measure vy, is
supported on A (E) and has total mass at most p(E )k+1_The action of the finite group Sk+1
will be irrelevant for our results, which are expressed in terms of certain sets of configurations
having positive k(k + 1)/2-dimensional Lebesgue measure. (The situation when k > d is
discussed below.)

The study of the Lebesgue measure of the distance set Aj(E) for thin sets was begun in
1986 by Falconer [5] and has led to many important results, comprising too large a literature
to summarize here. Most directly relevant, the best results currently known for the positivity
of the measure of Ax(E), 1 < k < d, are due to Erdogan, Hart and Iosevich [4] and
Greenleaf, losevich, Liu and Palsson [8]. The former proved that the Lebesgue measure
LKHDR(A(E)) > 0if dimy(E) > 43 while the latter obtained the threshold 45!,
improved to % for k = d = 2. We note that all of these results, except for [9], are proven by

establishing that the measure v defined by (1.2) has a density in L2 (RkK+D/2y

Definition2 Letd > 2, k > 1. The L2-threshold for the k-simplex problem (or (k+ 1)-point
configuration problem) in R? is

Sk,q := Inf {s :dimy (E) > s = v is absolutely continuous and/ v,%(t) dt < oo} ,
A

k(E)

where E runs over all compact sets £ C R?.

Thus, sk 4 is less than or equal to the values mentioned in the paragraph above.

The case of k > d needs to be treated somewhat differently, since in that range the
set Ag(E) C RKK(+D/2 hag lower dimension than RFKT1D/2 and so cannot have positive
Lebesgue measure, regardless of the Hausdorff dimension of E. This stems from the fact
that, when k > d, specifying the k(k 4 1)/2 pairwise distances between k + 1 points in R?
gives an over-determined system: knowing only some of the distances determines the rest.
Thus, although Ay (E) still makes sense, the setup has to be modified. In Chatzikonstantinou,
Tosevich, Mkrtchyan and Pakianathan [3] it was shown that for k > d the set of congruence
classes of (k+1)-tuples of elements of E can be naturally viewed as a subset of REK+D— ‘) ;
ifm:=dk+1)— (d;r]) appropriately chosen distances are specified, then the other distances
are determined, up to finitely many possibilities. Let P be such a collection of m edges. In
the terminology of [3], P is a maximally independent (in R¥) subset of the edges of the
complete graph on k + 1 vertices. Extend the definition of v 4 to the case k > d by setting
Vk,d(xl, xRy = (|xi —xJ |)(i hep € R™, where the entries in the range are ordered
lexicographically. Using this, we can define a measure vr on R™ and a set Ay (E) C R™
similarly to (1.2) in Definition 1. Note that vy and Ay (E) will depend on the choice of P,
but for our purposes this is irrelevant, so we will fix a particular P once and for all.

While Vk,d(xl, R xk'H) doesn’t determine the congruence class of (xl, R xk+1)
uniquely, it identifies it up to a finite number of possibilities. The number of these pos-
sibilities is bounded above by a constant u, x, depending only on d and k. In this sense,
congruence classes of (k 4 1)-tuples of elements of a compact set E in R? fork > d > 2 can
be naturally viewed as a subset of R™. It was shown in [3] that if kK > d and the Hausdorff
dimension of E is greater than d — ﬁ then the m-dimensional Lebesgue measure of the set
of congruence classes of (k + 1)-point configurations with endpoints in E is positive, and,
as with most of the results for k& < d, this was shown by first establishing that the measure
v defined by (1.2) has a density in L2(]Rm).
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With the theorems of [2,7,11] in mind, obtaining more refined structural information about
A (E) is of natural interest. Since E is compact in our setting, the questions need to reflect
the fact, that all the pairwise distances are bounded. We will show that, if dimy (E) > sk 4,
then among the k-simplexes of E, all possible similarity scaling factors, 0 < r < oo,
occur, and each one does so with positive vx-measure. Furthermore, we show that what we
call multi-similarities of arbitrarily high multiplicity occur as well. Thus, this holds for the
values of dimy(E) in the settings of all of the previous results referred to above where
LKE+D/2(AL(E)) > 0 has been obtained, with the possible exception of [9].

To make this more precise, for r € Ry := (0, co) let

WE) ={t € Ay (E) :rt € AL (E)} C Ay (E), (1.3)

the set of all k-simplexes t in E for which there is also a simplex in E similar to t via the
scaling factor r. Interchanging the roles of the two simplexes in such a pair, {t, rt} C Ax(E),
note for later use that 1

A/ (E) = Nj(E). (1.4)

One can not only look for similar pairs {t, rt} C A;(E), but more generally for similar-
ities of higher multiplicity.

Definition 3 A collection {t, rit, ..., r,—1t} C Ap(E), with {1,r,...,r,—1} pairwise
distinct, is an n-similarity of k-simplexes in E, also referred to as a multi-similarity of multi-
plicity n.

Our main results are the following. All are obtained under the assumptions that d > 2,
k>1,EcCRis compact, u is a Frostman measure on E and vy is the measure induced by
1 as in Definition 1. The following three results establish (quantitatively) the existence in E
of many multi-similarities of multiplicities 2, 3 and n > 3, resp.

Theorem 1 Let d > 2, E C R? compact and k > 1. Suppose that dimy (E) > sp.4, the
L2-threshold for the k-simplex problem from Def. 2. Then there is a lower bound, uniform in
r,0<r < oo

v (AL(E)) = C(k, E) > 0.
With the same notation and assumptions as in Theorem 1, we also have:

Theorem 2 Suppose that dimy(E) > s 4. Then there exist distinct ry, rp > 0, with
vk (A} (E) N AR (E)) > 0.

In fact, for any partition Ry = ][, 4 Ra with each Ry # ¥ and countable, there exist
distinct a1, 00 € Aandry € Ry, 12 € Ry,, such that vy (AZ‘ (E)N A? (E)) > 0.

Theorem 3 Suppose that dimy(E) > skq4. Then for all n € N, there exists an M =
M(n, k, E) € N such that for any distinct ry, ..., ry € Ry, there exist distinct r;, ..., r;
such that

n

Ve (A,’jl (E)N AP (E)n .- Al (E)) > 0.
Remark 2 More explicitly, Theorem 1 says that, given any r > 0, there exist (k + 1)-

point configurations {x', x2, ..., x**!} and {y', y2, ..., y**!} in E which are similar via
the scaling factor r, i.e., there exists a translation 7 € R? and a rotation 6 € Oy4(R) such
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that yj =r0(x) +1), 1< j < k + 1. Thus, among the (k + 1)-point configurations or
k-simplexes in E, in the terminology of Definition 3, there exist (many) 2-similarities.

Furthermore, Theorem 2 states that there exist 3-similarities in E, i.e., triples of (k + 1)-
point configurations, {x/}, {y/}, {z/} in E and scalings r{, rp so that y/ = ri601(x/ +
71), 20 = mb(x! + v) for appropriate 01,0, € Ogz(R) and 71, 77 € R4, and furthermore
that ry, rp can be arranged to lie in different subsets of a partition of R as stated. For
example, decomposing R into the multiplicative cosets of QQ, there exist similarities of
multiplicity 3 with rp /ry irrational; similarly, replacing the positive rationals with the positive
algebraic numbers, there exist such with r,/ry transcendental.

Finally, Theorem 3 shows that there exist multi-similar (k + 1)-point configurations in
E of arbitrarily high multiplicity, and that the scaling factors can be chosen to come from
an arbitrary set of distinct elements of R, as long as that set has large enough cardinality
relative to the desired similarity multiplicity.

Remark 3 We note that the conclusions of Remark 2 hold when k > d as well. Denot-
ing X := (x!, ..., x**1), the fact that Vi.d(X) = Vi.a(y) does not imply that x and y
are congruent and hence v 4(x) = rvy 4(y) does not imply x and y are similar. How-
ever, the conclusions of Remark 2 still hold as follows. Recall from the introduction
that by results of Chatzikonstantinou, Iosevich, Mkrtchyan and Pakianathan [3], v, 4(x)
determines the congruence type of X up to at most a bounded number u, x of choices.
Using Theorem 3 with n - ug ) instead of n we see that there exist X, X;, ..., iy and
Fits oo Figy suchthat v 4(x), 7, Vi,a(X1), ..., Finug v k.d Xnuy ;) are all congruent. It fol-
lows thatx, X;;, ..., iy o all fall within at most u4 x congruence classes; thus, by the pigeon
hole principle, at least n+ 1 of them must be in some congruence class. This argument applies
to the conclusions of Remark 2 for the other Theorems as well.

2 Proofs of Theorems 2 and 3

We start by showing that Theorems 2 and 3 follow from Theorem 1 by measure-theoretic
arguments. To prove Theorem 2,let Ry =[], 4 R« be a partition of R into a (necessarily
uncountable) collection of nonempty countable subsets. From the definition (1.3), it follows
that each AZ(E ) is vr-measurable. Hence, if for each o € A, with slight abuse of notation
we define the set

AY(E) = | ] AL(E).

reRy

then, being a countable union of measurable sets, each Ag (E) is vg-measurable. Furthermore,
combining R, # ¥, the monotonicity of v; and Theorem 1, one sees that each v; (A (E)) >
0. However, v (Ar(E)) < w(E)**! < oo, and no finite (or even o-finite) measure space
can be the pairwise disjoint union of an uncountable collection of measurable subsets of
positive measure. Thus, there must exist @; # «» such that AZ‘(E) N Azz(E) #* 0 it
follows that there are r; € Ry, j = 1,2, such that A}' (E) N A2 (E) # . For the full
claim of Theorem 2, that there exist distinct oy, p € A andr; € Ry, 2 € Rq,, such that
Vk (A;‘ (E)yN Af (E )) > (0, first make a choice of one representative from each of the R,
then choose an arbitrary countably infinite subset of these, and finally apply Theorem 3.
For the proof of Theorem 3, we use the uniform lower bound from Theorem 1,
v(AL(E)) > C(E, k) > 0, Vr € Ry, combined with vg(Ar(E)) < oo. Theorem 3
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then follows from the following measure-theoretic pigeon-hole principle, which might be of
independent interest and whose proof is deferred to the Appendix, Sect. 1.

Lemma 1 Let X = (X, M, o) be a finite measure space. For) < ¢ < o(X), let M. ={A €
M : 0 (A) > c}. Then, for every n € N, there exists an N = N(X, c,n) € N such that for
any collection {Ay, ..., Ay} C M. of cardinality N, there is a subcollection {A;,, . .., A;,}
of cardinality n such that o (A;; N--- N A;) > 0and hence A;; N---NA;, # 0.

3 Proof of Theorem 1

To keep the exposition simple, we first prove Theorem 1 in the case k < d. In Sects. 3
and 4 we will assume k < d. In the case k > d the arguments are very similar. Since
Vk,d(x], ..., x¥*1y determines the congruence type of (x!, ..., Xk up to at most ug i
choices, the constant uy 4 will appear throughout the proof. However, since the results here
are up to multiplicative constants, this doesn’t play any essential role.

For € > 0, define a smooth approximation of v; on RFK+1/2 by the density

k+1

vg(t):/.../ I a,fj(xi—x'/)l_[du(xl), (3.1)
=1

I<i<j<k+l

where oy is the normalized surface measure on the sphere of radius # in R? and of (x) 1= o7 %
pe(x), with p € CP(RY), p = 0, supp(p) C {|t| <1}, [p =1 and pe(x) = e “p(e'x).
Then each v; € C§° and vf — v weak™ as € — 0. Thus,

v (A(E)) = lim vE(rt) dvg (t).

€—0 JRkk+1)/2

By (1.2), for € fixed,

/ Ve (rt) dvg (t) = / Vg (r()c1 — X%,k - xk+l)) du(xh . dp(x*,
Rk(k+1)/2
Using the definition in (3.1), we see that this is

~ e () / f dpe) . dptduG" L dp i,
{1 = |=r|yi =y | | <e; 1=i<j<k+1}

(3.2)
which we denote by I.. Here, and throughout, we write X < Y (resp. X ~ Y) if there exist
constants 0 < ¢ < C, depending only on k, E and the choice of p (and thus implicitly on
d), such that X < CY (resp., cY < X < CY). Also, we denote the 2(k + 1)-fold product
measure in (3.2) and similar occurences by 2D

For each rotation 6 € O4(R), define a measure A, g on R4 by

/ F@ di () = / f f = rov) dudu(), f € Co (RY).

This is the push-forward of © x u under the map (u, v) — u —r6v, has total mass ||A, g|| =
w(E)?, and is supported in E — r0 E. We show below that, if dimy (E) > s¢ 4, for a.e. 0,
the measure A, g is absolutely continuous with a density in LF1(R?), which we denote by
Ar.0(-). Let d9 denote the Haar probability measure on Oy4(R).

@ Springer



Existence of similar point configurations. .. 861

Proposition 1 With the notation above,
lim inf I, ~ / / (o @) dzdo. (3.3)
e—0

By definition, the quantity on the right hand side of (3.3) is finite if dimy (E) > sS4,
the L>-threshold for the k-simplex problem. Prop. 1 was proved in [8] in the case r = I;
the proof in the general case is similar, but we supply it in the next section for the sake of
completeness.

Continuing with the proof of Theorem 1, by Holder we have

W(E)? = //.)»r,e(z)~1dzd0 (3.4)

_k_

L =]
k+1
S(//(Ar,@(Z))kH dzd9> x // 1 dza0) .
SUpp(ir,9) x 0q(R)

Since supp(A, ¢), being contained in E — r6 E, has Lebesgue measure < (1 + r¢)u(E), we
divide both sides of (3.4) by the second factor on the right hand side and raise to the k + 1
power to obtain

(EYH (1 4 pf)=0+D < / / (hro ) dzae.

Combining this with Proposition 1, we conclude that, for dimy (E) > sg g and 0 < r < 1,

lim inf f v (rt) dug (8) ~ / f (o @) dzdo 2 1. (3.3)

It follows that lim infe_ o v ({t : 't € A (E)}) 2 1, where Ak ((E) is the e-neighborhood
of Ai(E). Since the sets {t : rt € Ay (E)} are nested as € \ 0, we conclude that, for
0<r<l,

vr({t:rt € Ap(E)}) 2 1. (3.6)

However, by (1.4), v ({t : rt € Ap(E)}) = v ({t rlte Ak(E)}); therefore, (3.6)
holds for 1 < r < oo as well. This completes the proof of Theorem 1, up to the verifi-
cation of Proposition 1.

4 Proof of Proposition 1

We will follow closely the argument in [8, Sect. 2]. It will be convenient to denote an ordered
(k+ 1)-tuple (x1, ..., x*¥*1) of elements of RY by x. If the corresponding set (xd, ..., Xk

is a nondegenerate simplex (i.e., affinely independent), then
T(X) ;= span{x2 — xl, . ,xk+1 — xl}

is a k-dimensional linear subspace of R?. A(x) will denote the (unoriented) simplex generated

by {x Lo, xhtl },1.e., the closed convex hull, which is contained in the affine plane x Ly (x).
Both 7 (x) and A(x) are independent of the order of the x/. If {xl, e, xk‘H} is similar to
{y', ..., y¥*1} by a scaling factor r, then, up to permutation of y', ..., y¥*! there exists

a_@ € Q(d) such that_xj —x'=r8(7/ —y", 2 < j < k+ 1, which is equivalent with
x—xi=r0(/ —y),1<i<j<k+1and AX) = (x! —roy)) + roA(y).
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The group O(d) acts on the Grassmanians G (k, d) and G(d — k, d) of k (resp., d — k)
dimensional linear subspaces of R4, and if x is similar to y, one has 7(x) = 6w (y) and
T(x)+ = G(n(y)J—). The set of 6 € O(d) fixing 7 (x) is a conjugate of O(d — k) C O(d),
and we refer to this as the stabilizer of x, denoted Stab(x).

For x, y similar, let 8 € O(d) be such that it transforms ytox. Le. we have w(x) = o (y)
and x' —xJ = réa)(yi — yJ) for all w € Stab(y). For each y, take a cover of Q(d)/Stab(y)
by balls of radius € (with respect to some Riemannian metric) with finite overlap. Since the
dimension of O(d)/Stab(y) is that of O(d)/O(d — k), namely

dd—1) d-k(d—-k—-1) k(k+1)

=kd ,
2 2 2

_(kq— k=D . .
one needs N(e) < € ( 2 ) balls to cover it. In these balls, choose sample points,

On(y), 1 <m < N(e).
One sees that

[y |w —ad| =iy =yl se 1< j s k+1)

N (€)
c U {xy:|a’ =) —riumoc’ - vh| S
m=1

V1§i<j§k+1,a)eStab(y)].

Thus, the right hand side of (3.2) is bounded above by

_ k(k+D) . . - . .
Y 2 oy sl ) el - )| Se @

m=1

Vi<i<j<k+l, weStab(y)}.

When picking the N (¢) balls, if each point of O (d)/Stab(y) is covered by at most p = p(d)
of the balls, then the quantity in (4.1) also becomes, when multiplied by 1/ p, a lower bound
for (3.2). Thus, the right hand side of (3.2) is comparable to the quantity in (4.1), which can
be rewritten as

N(e)
k(k+1) . - . . - .
3 MR 20 ) 16l = r o) — (& = ey S e,

m=1

Vi<i<j<k+lwe Stab(y)}.(4.2)

Since this holds for any choice of sample points 6,,(y), we can pick these points such that
they minimize (up to a factor of 1/2, say) the quantity

M2<k+1){

&Y ¢ |G = ey = (7 = B ey < e,
Vi<i <j§k+1,weStab(y)].

The N (€) preimages, under the natural projection from O(d), of the balls used to cover
O(d)/Stab(y) are e-tubular neighborhoods of the preimages of the sample points 6, (y),

which we denote Tf, ..., Tg,,. Since dim(O(d)/Stab(y)) = kd — *"52 each T¢ has
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kd_k(k+1)

measure ~ € 2~ with respect to the Haar measure d6. Since the infimum over a set is
less than or equal to the average over the set, it follows that

2(k+]){

2 ) o = B @y = (& =l Wey))| <€,

Vl§i<j§k+l,a)eStab(y)}
1

~ k(k+1)
ha—EEED

f,ﬁ“‘“){(x,y) : ‘(xi —rOy) — () —r@yj)‘ <e 1§i<j§k+1} do.
i

The quantity in (4.2) is thus

Ne)
~e kS [0 {(X,y) : ‘(xi — 0y — () —r@yj)‘ge, l<i<j<k+ 1}d6,

m=1 Te

which, since the collection {7}, } have pointwise finite overlap (uniformly in €), is
~€*’<d/;¢2<k“> {(x, v): ‘(xi —rOy) — () —r9yj)‘ <e l<i<j §k+1}d9,

and taking the lim inf, we obtain a quantity comparable to the expression (3.3). This completes
the proof of Proposition 1, and thus Theorems 1, 2, and 3.

5 Open question

The following is a natural question pertaining to the subject matter of Theorem 1:

In [1] it was shown that if E is a compact subset of R, of Hausdorff dimension greater
than %, then there exists a non-empty open interval / such that, for any ¢ € I, there exist
x!,x2, ..., x*1 ¢ E suchthat |x/*! —x/| = ¢, 1 < j < k. In view of Theorem 1, it seems
reasonable to ask: given any r > 0, do there exist x, y, z € E such that |x — z| = r|x — y|?
This can be regarded as a pinned version of the case k = 1 of Theorem 1, in the sense that the
endpoint x is common to both segments whose length is being compared. Similar questions

can be raised when k > 1.

Appendix: A measure-theoretic pigeon hole principle

Unable to find Lemma 1 in the literature, and believing that it should be useful for other prob-
lems, we prove it here. Without loss of generality the total measure o (X) can be normalized
to be equal to 1, so for the proof we restate the result as

Lemma2 Let X = (X, M, o) be a probability space. For 0 < ¢ < 1, let M, = {A €
M : 0 (A) > c}. Then, for every n € N, there exists an N = N(X,c,n) € N such that,
for any collection (A1, ..., AN} C M. of cardinality at least N, there is a subcollection
{Ai,. ..., Ai,} of cardinality n suchthat o (A;;N- - -NA;,) > 0and hence A;;N---NA;, # .

To start the proof, first we establish the following claim, which is a quantitative strength-
ening of the statement for n = 2:
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Claim1 Let X = (X, M, o) be a probability space. Then for any 0 < ¢ < 1 there exists
P. € Nsuchthat forany N > P.,if {A;,..., Ay} C M., then there exist distincti, j < N
such that o (A; N Aj) > ¢3/3.

Proof Suppose not. Let S C (0, 1) be the set of all ¢ € (0, 1) such that the statement
of the claim is false, and suppose ¢ € S. Then for every N € N there exists a subset
{A1,..., Aoy} C M, such that o (A;) > c foralli but o (A; N A;) < /3 foralli # j.
Consider the sets Ay; 1 U Ap;,i =1,..., N. We have

3 3

C
0(Azi—-1UAg) =0(Azi—1) +0(A2) —0(Agi—1 NAg) >c+c— 3= 2c¢ — 3

Since 0 (X) =1 > 0(Azi—1 U Ay;), this implies 1 > 2¢ — § In particular, since ¢ < 1, we
have ¢ < 0.52 < 3/5; hence [3/5, 1) N S = @. Moreover,
0 ((A2i—1 U Azi) N (Azj—1 U Azj))
=0 ((A2i—1 N A2j) U (Agi—1 NAgj_1) U (A2 N Agj) U (A N Azj_1))
< G(Azi 1NA)+0(Az_1NAzj_1) +0(A2 NA2j) +0 (A NAzj_1)

2¢ — 3/3)3
<43 _Qsin060<c< 1.
Thus, there exist N sets namely A1 U A», ..., Aoy—1 U Ay, such that each has measure at
least f(c) :=2c — % but all pairwise intersections have measure less than Lo (‘)

Thus, we have shown that if ¢ € S then f(c) € S as well. However if 0 < ¢ < 1, then
there exists k € N such that f¥(c) > 3/5 and is thus ¢ S (where f* denotes f composed
with itself k times). It follows that S must be empty. O

We use Claim 1 as a building block for the proof of Lemma 2, which is by induction on
n.If n = 1, then we can take N = 1, since any A;, € M, satisfies the statement. If n = 2
then any N > [1/c] suffices, since there cannot be more than 1/c pairwise disjoint sets of
measure > ¢ each; alternatively, one may simply invoke Claim 1.

Now suppose that the conclusion of Lemma 2 holds for some n, n > 2. Set N =
2N (X, c3/3 n) + P., and suppose {Aj, ..., Ay} C M, is a collection of cardinality N.
Since N > P, by Claim 1 there exist distinct i, j < N such that 0(4; N A;) > 7 Let
By = A; N Aj. Removing A; and A; from the collection we stlll have N — 2 > P, sets, so

can find another pair whose intersection has measure at least < ﬁ. Repeating this procedure

N(X, c3/3, n) times, one finds sets By, . . ., By (x.¢3/3.n) € M3,3. By the induction hypoth-
esis there exist 0 < i| < iy < --- < iy, < N(X, c3/3, n) such that o (B;; N - - B;,)) > 0.
Since B;; N ---N B;, is the intersection of 2n distinct sets from the collection {Al, ..., AN},
the intersection of any n + 1 of those 2n will have positive measure, completing the induction
step. O
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