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Abstract

Blackwell approachability is a framework for reasoning about
repeated games with vector-valued payoffs. We introduce
predictive Blackwell approachability, where an estimate of
the next payoff vector is given, and the decision maker tries to
achieve better performance based on the accuracy of that es-
timator. In order to derive algorithms that achieve predictive
Blackwell approachability, we start by showing a powerful
connection between four well-known algorithms. Follow-the-
regularized-leader (FTRL) and online mirror descent (OMD)
are the most prevalent regret minimizers in online convex
optimization. In spite of this prevalence, the regret match-
ing (RM) and regret matching™ (RM™ ) algorithms have been
preferred in the practice of solving large-scale games (as the
local regret minimizers within the counterfactual regret min-
imization framework). We show that RM and RM™ are the
algorithms that result from running FTRL and OMD, respec-
tively, to select the halfspace to force at all times in the under-
lying Blackwell approachability game. By applying the pre-
dictive variants of FTRL or OMD to this connection, we ob-
tain predictive Blackwell approachability algorithms, as well
as predictive variants of RM and RM ™. In experiments across
18 common zero-sum extensive-form benchmark games, we
show that predictive RM™ coupled with counterfactual regret
minimization converges vastly faster than the fastest prior al-
gorithms (CFR™, DCFR, LCFR) across all games but two of
the poker games, sometimes by two or more orders of mag-
nitude.

1 Introduction

Extensive-form games (EFGs) are the standard class of
games that can be used to model sequential interaction,
outcome uncertainty, and imperfect information. Opera-
tionalizing these models requires algorithms for comput-
ing game-theoretic equilibria. A recent success of EFGs is
the use of Nash equilibrium for several recent poker Al
milestones, such as essentially solving the game of limit
Texas hold’em (Bowling et al. 2015), and beating top hu-
man poker pros in no-limit Texas hold’em with the Libratus
Al (Brown and Sandholm 2017). A central component of all
recent poker Als has been a fast iterative method for com-
puting approximate Nash equilibrium at scale. The leading
approach is the counterfactual regret minimization (CFR)
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framework, where the problem of minimizing regret over
a player’s strategy space of an EFG is decomposed into a
set of regret-minimization problems over probability sim-
plexes (Zinkevich et al. 2007; Farina, Kroer, and Sandholm
2019c). Each simplex represents the probability over actions
at a given decision point. The CFR setup can be combined
with any regret minimizer for the simplexes. If both players
in a zero-sum EFG repeatedly play each other using a CFR
algorithm, the average strategies converge to a Nash equilib-
rium. Initially regret matching (RM) was the prevalent sim-
plex regret minimizer used in CFR. Later, it was found that
by alternating strategy updates between the players, taking
linear averages of strategy iterates over time, and using a
variation of RM called regret-matching™ (RM™ ) (Tammelin
2014) leads to significantly faster convergence in practice.
This variation is called CFR*. Both CFR and CFR™ guar-
antee convergence to Nash equilibrium at a rate of 71/,
CFR™ has been used in every milestone in developing poker
Als in the last decade (Bowling et al. 2015; Moravcik et al.
2017; Brown and Sandholm 2017, 2019b). This is in spite
of the fact that its theoretical rate of convergence is the same
as that of CFR with RM (Tammelin 2014; Farina, Kroer,
and Sandholm 2019a; Burch, Moravcik, and Schmid 2019),
and there exist algorithms which converge at a faster rate
of T~ (Hoda et al. 2010; Kroer et al. 2020; Farina, Kroer,
and Sandholm 2019b). In spite of this theoretically-inferior
convergence rate, CFR™ has repeatedly performed favorably
against T-! methods for EFGs (Kroer, Farina, and Sand-
holm 2018b; Kroer et al. 2020; Farina, Kroer, and Sand-
holm 2019b; Gao, Kroer, and Goldfarb 2021). Similarly, the
follow-the-regularized-leader (FTRL) and online mirror de-
scent (OMD) regret minimizers, the two most prominent al-
gorithms in online convex optimization, can be instantiated
to have a better dependence on dimensionality than RM™
and RM, yet RM™ has been found to be superior (Brown,
Kroer, and Sandholm 2017).

There has been some interest in connecting RM to the
more prevalent (and more general) online convex optimiza-
tion algorithms such as OMD and FTRL, as well as classi-
cal first-order methods. Waugh and Bagnell (2015) showed
that RM is equivalent to Nesterov’s dual averaging algorithm
(which is an offline version of FTRL), though this equiva-
lence requires specialized step sizes that are proven correct
by invoking the correctness of RM itself. Burch (2018) stud-



ies RM and RM™, and contrasts them with mirror descent
and other prox-based methods.

We show a strong connection between RM, RM, and
FTRL, OMD. This connection arises via Blackwell ap-
proachability, a framework for playing games with vector-
valued payoffs, where the goal is to get the average pay-
off to approach some convex target set. Blackwell originally
showed that this can be achieved by repeatedly forcing the
payoffs to lie in a sequence of halfspaces containing the tar-
get set (Blackwell 1956). Our results are based on extend-
ing an equivalence between approachability and regret min-
imization (Abernethy, Bartlett, and Hazan 2011). We show
that RM and RM™ are the algorithms that result from run-
ning FTRL and OMD, respectively, to select the halfspace to
force at all times in the underlying Blackwell approachabil-
ity game. The equivalence holds for any constant step size.
Thus, RM and RMT, the two premier regret minimizers in
EFG solving, turn out to follow exactly from the two most
prevalent regret minimizers from online optimization theory.
This is surprising for several reasons:

* RM™ was originally discovered as a heuristic modifica-
tion of RM in order to avoid accumulating large nega-
tive regrets. In contrast, OMD and FTRL were developed
separately from each other.

* When applying FTRL and OMD directly to the strat-
egy space of each player, Farina, Kroer, and Sandholm
(2019b, 2020) found that FTRL seems to perform better
than OMD, even when using stochastic gradients. This
relationship is reversed here, as RM™ is vastly faster nu-
merically than RM.

* The dual averaging algorithm (whose simplest variant is
an offline version of FTRL), was originally developed
in order to have increasing weight put on more recent
gradients, as opposed to OMD which has constant or
decreasing weight (Nesterov 2009). Here this relation-
ship is reversed: OMD (which we show has a close link
to RM™) thresholds away old negative regrets, whereas
FTRL keeps them around. Thus OMD ends up being
more reactive to recent gradients in our setting.

e FTRL and OMD both have a step-size parameter that
needs to be set according to the magnitude of gradients,
while RM and RM™ are parameter free (which is a desir-
able feature from a practical perspective). To reconcile
this seeming contradiction, we show that the step-size
parameter does not affect which halfspaces are forced,
so any choice of step size leads to RM and RM ™.

Leveraging our connection, we study the algorithms that
result from applying predictive variants of FTRL and OMD
to choosing which halfspace to force. By applying predic-
tive OMD we get the first predictive variant of RM™, that
is, one that has regret that depends on how good the se-
quence of predicted regret vectors is (as a side note of their
paper, Brown and Sandholm (2019a) also tried a heuris-
tic for optimism/predictiveness by counting the last regret
vector twice in RM™, but this does not yield a predic-
tive algorithm). We call our regret minimizer predictive re-
gret matching™ (PRM™). We go on to instantiate CFR with
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PRM™ using the two standard techniques—alternation and
quadratic averaging—-and find that it often converges much
faster than CFR™ and every other prior CFR variant, some-
times by several orders of magnitude. We show this on a
large suite of common benchmark EFGs. However, we find
that on poker games (except shallow ones), discounted CFR
(DCFR) (Brown and Sandholm 2019a) is the fastest. We
conclude that our algorithm based on PRM™ yields the new
state-of-the-art convergence rate for the remaining games.
Our results also highlight the need to test on EFGs other
than poker, as our non-poker results invert the superiority of
prior algorithms as compared to recent results on poker.

2 Online Linear Optimization,
Regret Minimizers, and Predictions

At each time ¢, an oracle for the online linear optimization
(OLO) problem supports the following two operations, in
order: NEXTSTRATEGY returns a point xzt € D C R",
and OBSERVELOSS receives a loss vector £¢ that is meant
to evaluate the strategy x! that was last output. Specifically,
the oracle incurs a loss equal to (£, z!). The loss vector £¢
can depend on all past strategies that were output by the ora-
cle. The oracle operates online in the sense that each strategy
x! can depend only on the decision !, ..., z!~! output in
the past, as well as the loss vectors £', ..., €'~ that were
observed in the past. No information about the future losses

L8, 011 . is available to the oracle at time ¢. The objective
of the oracle is to make sure the regret
T T T
RT(&):=> (¢ a') =) (' a)=> (£ a' - ),
t=1 t=1 t=1

which measures the difference between the total loss in-
curred up to time 7' compared to always using the fixed
strategy &, does not grow too fast as a function of time 7.
Oracles that guarantee that RT (%) grow sublinearly in T
in the worst case for all £ € D (no matter the sequence
of losses £1, ..., €7 observed) are called regret minimizers.
While most theory about regret minimizers is developed un-
der the assumption that the domain D is convex and com-
pact, in this paper we will need to consider sets D that are
convex and closed, but unbounded (hence, not compact).

Incorporating Predictions

A recent trend in online learning has been concerned with
constructing oracles that can incorporate predictions of the
next loss vector £! in the decision making (Chiang et al.
2012; Rakhlin and Sridharan 2013a,b). Specifically, a pre-
dictive oracle differs from a regular (that is, non-predictive)
oracle for OLO in that the NEXTSTRATEGY function re-
ceives a prediction m? € R™ of the next loss £* at all times
t. Conceptually, a “good” predictive regret minimizer should
guarantee a superior regret bound than a non-predictive re-
gret minimizer if m? ~ £¢ at all times t. Algorithms ex-
ist that can guarantee this. For instance, it is always pos-
sible to construct an oracle that guarantees that RT
01431, ||€ —mt||2), which implies that the regret stays
constant when m/! is clairvoyant. In fact, even stronger re-
gret bounds can be attained: for example, Syrgkanis et al.



Algorithm 1: (Predictive) FTRL
1 L°«+~0€eR"”

2> function NEXTSTRATEGY(m?)
> Set m' = 0 for non-predictive version

3 | return arg min{(Lt_1 +mt &) + lgo(ﬁ:)}
zeD n

4 function OBSERVELOSS(£")

s |Lt+ L7 4 ¢

(2015) show that the sharper Regret bounded by Variation in
Utilities (RVU) condition can be attained, while Farina et al.
(2019a) focus on stable-predictivity.

FTRL, OMD, and their Predictive Variants

Follow-the-regularized-leader (FTRL) (Shalev-Shwartz and
Singer 2007) and online mirror descent (OMD) are the two
best known oracles for the online linear optimization prob-
lem. Their predictive variants are relatively new and can be
traced back to the works by Rakhlin and Sridharan (2013a)
and Syrgkanis et al. (2015). Since the original FTRL and
OMD algorithms correspond to predictive FTRL and pre-
dictive OMD when the prediction m! is set to the 0 vector
at all ¢, the implementation of FTRL in Algorithm 1 and
OMD in Algorithm 2 captures both algorithms. In both al-
gorithm, n > 0 is an arbitrary step size parameter, D C R”
is a convex and closed set, and ¢ : D — R>g is a 1-
strongly convex differentiable regularizer (with respect to
some norm || - ||). The symbol D (/) used in OMD de-
notes the Bregman divergence associated with ¢, defined as
Dy (x| c) = p(x)—p(c)—(Ve(c),x—c) forallxz, c € D.

We state regret guarantees for (predictive) FTRL and (pre-
dictive) OMD in Proposition 1. Our statements are slightly
more general than those by Syrgkanis et al. (2015), in that
we (i) do not assume that the domain is a simplex, and (ii) do
not use quantities that might be unbounded in non-compact
domains D. A proof of the regret bounds is in Appendix A
of the full version of the paper! for FTRL and Appendix B
for OMD.

Proposition 1. Az all times T, the regret cumulated by (pre-
dictive) FTRL (Algorithm 1) and (predictive) OMD (Algo-
rithm 2) compared to any strategy € D is bounded as

(:f:) T 1 T—1
R(#) < *"7+n2 et —m|E—— 3 ettt a2,
t=1 t=1

where ¢ = 4 for FTRL and ¢ = 8 for OMD, and where || - ||«
denotes the dual of the norm || - || with respect to which ¢ is
1-strongly convex.

Proposition 1 implies that, by appropriately setting the
step size parameter (for example, n = T~1/2), (predictive)
FTRL and (predictive) OMD guarantee R (&) = O(T"/?)
for all &. Hence, (predictive) FTRL and (predictive) OMD
are regret minimizers.

'The full version of this paper is at arxiv.org/abs/2007.14358.
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Algorithm 2: (Predictive) OMD
i 2° € D such that Vip(2°) = 0

> function NEXTSTRATEGY(m?)
> Set m! = 0 for non-predictive version

1 _
3 | return arg min{(mt, &)+ =Dy (& 2" 1)}
€D n

4 function OBSERVELOSS(£Y)

1 _
5 zteargmin{(ﬁt,ﬁ)—&—va(ﬁHzt 1)}
2€D n

3 Blackwell Approachability

Blackwell approachability (Blackwell 1956) generalizes the
problem of playing a repeated two-player game to games
whose utilites are vectors instead of scalars. In a Blackwell
approachability game, at all times ¢, two players interact in
this order: first, Player 1 selects an action ! € X’; then,
Player 2 selects an action y* € ; finally, Player 1 incurs the
vector-valued payoff u(x?, y?) € R?, where w is a biaffine
function. The sets X', Y of player actions are assumed to be
compact convex sets. Player 1°s objective is to guarantee that
the average payoff converges to some desired closed convex
target set S C R?. Formally, given target set S C R?, Player
1’s goal is to pick actions &', 2, ... € X such that no mat-
ter the actions y!, y2, ..

. € Y played by Player 2,
1 X
é—T;u(mt,yt) —0 as T — o0

2

min
3es

(D

A central concept in the theory of Blackwell approacha-
bility is the following.

Definition 1 (Approachable halfspace, forcing function).
Let (X,Y,u(-,-),S) be a Blackwell approachability game
as described above and let H C RY be a halfspace, that
is, a set of the form H = {x € R? : a'x < b} for some
a € R% b € R. The halfspace H is said to be forceable if
there exists a strategy of Player 1 that guarantees that the
payoff is in H no matter the actions played by Player 2. In
symbols, H is forceable if there exists x* € X such that for
ally € Y, u(x*,y) € H. When this is the case, we call
action x* a forcing action for H.

Blackwell’s approachability theorem (Blackwell 1956)
states that goal (1) can be attained if and only if all halfs-
paces H D S are forceable. Blackwell approachability has a
number of applications and connections to other problems in
the online learning and game theory literature (e.g., (Black-
well 1954; Foster 1999; Hart and Mas-Colell 2000)).

In this paper we leverage the Blackwell approachabil-
ity formalism to draw new connections between FTRL and
OMD with RM and RMT, respectively. We also intro-
duce predictive Blackwell approachability, and show that it
can be used to develop new state-of-the-art algorithms for
simplex domains and imperfect-information extensive-form
Zero-sum games.



Algorithm 3: From OLO to (predictive) approachability

Data: D C R" convex and closed, s.t. K :=C° NBy C D C C°
L online linear optimization algorithm for domain D

1 function NEXTSTRATEGY(v")
> Set v* = 0 for non-predictive version
2 0" «— L NEXTSTRATEGY(—v")
3 return =’ forcing action for H' = {x : (8*),z) < 0}

4+ function RECEIVEPAYOFF(u(z!, y"))
s | L.OBSERVELOSs(—u(z’,y"))

4 From Online Linear Optimization to
Blackwell Approachability

Abernethy, Bartlett, and Hazan (2011) showed that it is al-
ways possible to convert a regret minimizer into an algo-
rithm for a Blackwell approachability game (that is, an al-
gorithm that chooses actions z? at all times ¢ in such a way
that goal (1) holds no matter the actions y',y?, ... played
by the opponent).?

In this section, we slightly extend their constructive proof
by allowing more flexibility in the choice of the domain of
the regret minimizer. This extra flexibility will be needed
to show that RM and RM™ can be obtained directly from
FTRL and OMD, respectively.

We start from the case where the target set in the Black-
well approachability game is a closed convex cone C' C R™.
As Proposition 2 shows, Algorithm 3 provides a way of
playing the Blackwell approachability game that guarantees
that (1) is satisfied (the proof is in Appendix C in the full
version of the paper). In broad strokes, Algorithm 3 works
as follows (see also Figure 1): the regret minimizer has as
its decision space the polar cone to C (or a subset thereof),
and its decision is used as the normal vector in choosing
a halfspace to force. At time t, the algorithm plays a forc-
ing action x! for the halfspace H; induced by the last deci-
sion B! output by the OLO oracle £. Then, £ incurs the loss
—u(xt, y), where u is the payoff function of the Blackwell
approachability game.

Proposition 2. Let (X, Y, u(-,-),C) be an approachability
game, where C C R" is a closed convex cone, such that
each halfspace H O C'is approachable (Definition 1). Let
K = C°NBY, where C° = {x e R" : (x,y) < 0Vy € C}
denotes the polar cone o C and By = {x € R" : ||z|]2 <
1} is the unit ball. Finally, let L be an oracle for the OLO
problem (for example, the FTRL or OMD algorithm) whose
domain of decisions is any closed convex set D, such that
IC C D C C°. Then, at all times T, the distance between
the average payoff cumulated by Algorithm 3 and the target
cone C'is upper bounded as

1 T
a t t
S_T;u(w 7y)

2Gordon’s Lagrangian Hedging (Gordon 2005, 2007) partially
overlaps with the construction by Abernethy, Bartlett, and Hazan
(2011). We did not investigate to what extent the predictive point
of view we adopted in the paper could apply to Gordon’s result.

1
<= RE (&
< eyl (@)

min
seC

2
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Figure 1: Pictorial depiction of Algorithm 3’s inner working:
at all times ¢, the algorithm plays a forcing action for the
halfspace H' induced by the last decision output by L.

where Rz (&) is the regret cumulated by L up to time T com-
pared to always playing & € K.

As K is compact, by virtue of £ being a regret minimizer,
11 -maxgex RT(2) — 0as T — oo, Algorithm 3 satisfies
the Blackwell approachability goal (1). The fact that Propo-
sition 2 applies only to conic target sets does not limit its
applicability. Indeed, Abernethy, Bartlett, and Hazan (2011)
showed that any Blackwell approachability game with a
non-conic target set can be efficiently transformed to another
one with a conic target set. In this paper, we only need to fo-
cus on conic target sets.

The construction by Abernethy, Bartlett, and Hazan
(2011) coincides with Proposition 2 in the special case
where the domain D is set to D = K. In the next section,
we will need our added flexibility in the choice of D: in or-
der to establish the connection between RM* and OMD, it
is necessary to set D = C° # K.

5 Connecting FTRL, OMD with RM, RM*

Constructing a regret minimizer for a simplex domain
A" = {z € Rxg : ||z||1 = 1} can be reduced to con-
structing an algorithm for a particular Blackwell approach-
ability game I' := (A™,R", u(-,-),R%,) that we now de-
scribe (Hart and Mas-Colell 2000). For all ¢« € {1,...,n},
the i-th component of the vector-valued payoff function u
measures the change in regret incurred at time ¢, compared
to always playing the i-th vertex e; of the simplex. Formally,
u: A™ x R® — R" is defined as

u(x' ) = (£, "1 — £ )
where 1 is the n-dimensional vector whose components are
all 1. It is known that I" is such that the halfspace H, =
{x e R" : (x,a) < 0} D RZ, is forceable (Definition 1)
forall a € RZ. A forcing action for H,, is given by g(a) =
a/|lall; € A™ when @ # 0; whena = 0, any x € A" isa
forcing action. The following is known.
Lemma 1. The regret R (&) = + SO (8 ®t — &) cumu-
lated up to any time T by the decisions x*,... T € A"

compared to any & € A" is related to the distance of the
average Blackwell payoff from the target cone RZ , as

T
u(z’, £)
t=1

3)

2



Algorithm 4: (Predictive) regret matching
1’4« 0eR", 2« 1/nec A"
2> function NEXTSTRATEGY(m?)
> Set m' = 0 for non-predictive version
3 0 — [P+ (m' a1 —mf] T
4 if ' # Oreturn ' < 6" / |01
5 else return ' < arbitrary point in A"

¢ function OBSERVELOSS(£})

7 ‘ et T (e - 2

So, a strategy for the Blackwell approachability game I is a
regret-minimizing strategy for the simplex domain A™.

When the approachability game I' is solved by means of
the constructive proof of Blackwell’s approachability theo-
rem (Blackwell 1956), one recovers a particular regret mini-
mizer for the domain A™ known as the regret matching (RM)
algorithm (Hart and Mas-Colell 2000). The same cannot
be said for the closely related RM™ algorithm (Tammelin
2014), which converges significantly faster in practice than
RM, as has been reported many times.

We now uncover deep and surprising connections be-
tween RM, RM™ and the OLO algorithms FTRL, OMD by
solving I' using Algorithm 3. Let L%ﬂ be the FTRL algo-
rithm instantiated over the conic domain D = R%, with the
1-strongly convex regularizer p(x) = 1/2 ||a:||d§ and an arbi-
trary step size parameter 7). Similarly, let £ be the OMD
algorithm instantiated over the same domain D = RZ,

with the same convex regularizer ¢(z) = 1/2 ||z|2. Since
RZ, = (R%,)°, D satisfies the requirements of Proposi-

tion 2. So, L™ and £)™ can be plugged into Algorithm 3 to
compute a strategy for the Blackwell approachability game
I". When that is done, the following can be shown (all proofs
for this section are in Appendix D in the full version of the
paper).

Theorem 1 (FTRL reduces to RM). For all n > 0, when Al-
gorithm 3 is set up with D = RY; and regret minimizer E%”

to play U, it produces the same iterates as the RM algorithm.

Theorem 2 (OMD reduces to RM™). For all n > 0, when
Algorithm 3 is set up with D = RY, and regret minimizer

D;’]md to play T, it produces the same iterates as the RM™
algorithm.

Pseudocode for RM and RM™ is given in Algorithms 4
and 5 (when m! = 0). In hindsight, the equivalence between
RM and RM™ with FTRL and OMD is clear. The computa-
tion of @' on Line 3 in both PRM and PRM™ corresponds
to the closed-form solution for the minimization problems
of Line 4 in FTRL and Line 3 in OMD, respectively, in ac-
cordance with Line 2 of Algorithm 3. Next, Lines 4 and 5 in
both PRM and PRM™ compute the forcing action required
in Line 3 of Algorithm 3 using the function g defined above.
Finally, in accordance with Line 6 of Algorithm 3, Line 7 of
PRM corresponds to Line 6 of FTRL, and Line 7 of PRM™
to Line 5 of OMD.

5367

Algorithm 5: (Predictive) regret matching™
122 0eR™, 2%« 1/nec A"
2 function NEXTSTRATEGY(m})
> Set m' = 0 for non-predictive version
3 0 — [z (m! 21— m" T
4 if 8° # O return ' + 6* / ||0*||
5 else return 2 <— arbitrary point in A™

¢ function OBSERVELOSS(£")
AR AR (AN S I Al

6 Predictive Blackwell Approachability, and
Predictive RM and RM*

It is natural to wonder whether it is possible to devise an
algorithm for Blackwell approachability games that is able
to guarantee faster convergence to the target set when good
predictions of the next vector payoff are available. We call
this setup predictive Blackwell approachability. We answer
the question in the positive by leveraging Proposition 2.
Since the loss incurred by the regret minimizer is £% =
—u(xt, y*) (Line 5 in Algorithm 3), any prediction v’ of
the payoff u(x!, y!) is naturally a prediction about the next
loss incurred by the underlying regret minimizer £ used in
Algorithm 3. Hence, as long as the prediction is propagated
as in Line 2 in Algorithm 3, Proposition 2 holds verbatim. In
particular, we prove the following. All proofs for this section
are in Appendix E in the full version of the paper.

Proposition 3. Let (X,V,u(-,-),S) be a Blackwell ap-
proachability game, where every halfspace H O S is ap-
proachable (Definition 1). For all T, given predictions v'
of the payoff vectors, there exist algorithms for playing the
game (that is, pick ' € X at all t) that guarantee

T 1 2 T
<—(1+ 2 Ju(zly)—v'|3).

1
Tzu(wf y')
t=1

We now focus on how predictive Blackwell approachabil-
ity ties into our discussion of RM and RM™. In Section 5 we
showed that when Algorithm 3 is used in conjunction with
FTRL and OMD on the Blackwell approachability game I"
of Section 5, the iterates coincide with those of RM and
RM™, respectively. In the rest of this section we investi-
gate the use of predictive FTRL and predictive OMD in that
framework. Specifically, we use predictive FTRL and pred-
itictive OMD as the regret minimizers to solve the Blackwell
approachability game introduced in Section 5, and coin the
resulting predictive regret minimization algorithms for sim-
plex domains predictive regret matching (PRM) and predic-
tive regret matching™ (PRM™ ), respectively. Ideally, starting
from the prediction ! of the next loss, we would want the
prediction v? of the next utility in the equivalent Blackwell
game I (Section 5) to be v* = (m!, £')1 — m! to maintain
symmetry with (2). However, v? is computed before ! is
computed, and ! depends on v?, so the previous expression
requires the computation of a fixed point. To sidestep this
issue, we let

min||§—

s€S

'Ut

<mt7mt71>1 _ mt



instead. We give pseudocode for PRM and PRM™ as Algo-
rithms 4 and 5. In the rest of this section, we discuss formal
guarantees for PRM and PRM ™.

Theorem 3 (Correctness of PRM, PRM™). Ler LI and

E%md* denote the predictive FTRL and predictive OMD algo-
rithms instantiated with the same choice of regularizer and
domain as in Section 5, and predictions vt as defined above
for the Blackwell approachability game T'. For all n > 0,
when Algorithm 3 is set up with D = RZ, the regret min-

imizer E%‘l* (resp., E%md* ) to play T, it produces the same
iterates as the PRM (resp., PRM™ ) algorithm. Furthermore,

PRM and PRM™ are regret minimizer for the domain A",
and at all times T' satisfy the regret bound

T 1/2
RY(#) < \/§<Z u(z’, £') — vt%) :

At a high level, the main insight behind the regret bound of
Theorem 3 is to combine Proposition 2 with the guarantees
of predictive FTRL and predictive OMD (Proposition 1). In
particular, combining (3) with Proposition 2, we find that the
regret R cumulated by the strategies «*, ..., & produced
up to time 7' by PRM and PRM™ satisfies

“

where £ = E,fn‘“* for PRM and £ = E%md* for PRM™. Since
the domain of the maximization on the right hand side is a
subset of the domain D = R%, of £, the bound in Proposi-
tion 1 holds, and in particular

112 T
()< [E: )
BRI @<, e, Ty Y @€~

m
1 T
< <%+sz||u<wﬁet> —vt|§>7 (5)
t=1

where in the first inequality we used the fact that ¢(&) =
|£/|2/2 by construction and in the second inequality we
used the definition of unit ball BY. Finally, using the fact
that the iterates produced by PRM and PRM* do not de-
pend on the chosen step size 17 > 0 (first part of Theorem 3),
we conclude that (5) must hold true for any 7 > 0, and so in
particular also the 7 > 0 that minimizes the right hand side:

T
. . 1
max R(#) < %2%{277 + n; u(at, ) - vté}
T 1/2
- f?(Z Ju(a!, €) - v2||§> :
t=1

7 Experiments

We conduct experiments on solving two-player zero-sum
games. As mentioned previously, for EFGs the CFR frame-
work is used for decomposing regrets into local regret mini-
mization problems at each simplex corresponding to a de-
cision point in the game (Zinkevich et al. 2007; Farina,
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Kroer, and Sandholm 2019a), and we do the same. How-
ever, as the regret minimizer for each local decision point,
we use PRM™ instead of RM. In addition, we apply two
heuristics that usually lead to better practical performance:
we use quadratic averaging of the strategy iterates, that is,
we average the sequence-form strategies wl, . ,wT using

the formula W Zf:l t?x!, and we use the alter-

nating updates scheme. We call this algorithm PCFR™. We
compare PCFR™ to the prior state-of-the-art CFR variants:
CFRY (Tammelin 2014), Discounted CFR (DCFR) with its
recommended parameters (Brown and Sandholm 2019a),
and Linear CFR (LCFR) (Brown and Sandholm 2019a).

We conduct the experiments on common benchmark
games. We show results on seven games in the main body of
the paper. An additional 11 games are shown in the appendix
of the full version of the paper. The experiments shown in
the main body are representative of those in the appendix.
A description of all the games is in Appendix G in the full
version of the paper, and the results are shown in Figure 2.
The x-axis shows the number of iterations of each algorithm.
Every algorithm pays almost exactly the same cost per itera-
tion, since the predictions require only one additional thresh-
olding step in PCFR ™. For each game, the top plot shows on
the y-axis the Nash gap, while the bottom plot shows the
accuracy in our predictions of the regret vector, measured as
the average ¢5 norm of the difference between the actual loss
£! received and its prediction m! across all regret minimiz-
ers at all decision points in the game. For all non-predictive
algorithms (CFRT, LCFR, and DCFR), we let m! = 0. For
our predictive algorithm, we set m? = £~ at all times
t > 2 and m! = 0. Both y-axes are in log scale. On Bat-
tleship and Pursuit-evasion, PCFR™ is faster than the other
algorithms by 3-6 orders of magnitude already after 500 it-
erations, and around 10 orders of magnitude after 2000 it-
erations. On Goofspiel, PCFR™ is also significantly faster
than the other algorithms, by 0.5-1 order of magnitude. Fi-
nally, in the River endgame, our only poker experiment here,
PCFR™ is slightly faster than CFR ™, but slower than DCFR.
Finally, PRM™T converges very rapidly on the smallmatrix
game, a 2-by-2 matrix game where CFR™ and other RM-
based methods converge at a rate slower than T—! (Farina,
Kroer, and Sandholm 2019b). Across all non-poker games in
the appendix, we also find that PCFR™ beats the other algo-
rithms, often by several orders of magnitude. We conclude
that PCFR™T seems to be the fastest method for solving non-
poker EFGs. The only exception to the non-poker-game em-
pirical rule is Liar’s Dice (game [B]), where our predictive
method performs comparably to DCFR. In the appendix, we
also test CFR™ with quadratic averaging (as opposed to the
linear averaging that CFR™ normally uses). This does not
change any of our conclusions, except that for Liar’s Dice,
CFR™ performs comparably to DCFR and PCFR™ when us-
ing quadratic averaging (in fact, quadratic averaging hurts
CFR™ in every game except poker and Liar’s Dice).

We tested on three poker games, the River endgame
shown here (which is a real endgame encountered by the Li-
bratus Al (Brown and Sandholm 2017) in the man-machine
“Brains vs. Artificial Intelligence: Upping the Ante” com-



[A] Goofspiel [B] Liar’s dice

[C] Battleship [D] River endgame
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Figure 2: Performance of PCFRT, CFR*, DCFR, and LCFR on five EFGs. In all plots, the x axis is the number of iterations of
each algorithm. For each game, the top plot shows that the Nash gap on the y axis (on a log scale), the bottom plot shows and

the average prediction error (on a log scale).

petition), as well as Kuhn and Leduc poker in the appendix.
On Kuhn poker, PCFR™ is extremely fast and the fastest of
the algorithms. That game is known to be significantly easier
than deeper EFGs for predictive algorithms (Farina, Kroer,
and Sandholm 2019b). On Leduc poker as well as the River
endgame, the predictions in PCFR™ do not seem to help as
much as in other games. On the River endgame, the perfor-
mance is essentially the same as that of CFR™*. On Leduc
poker, it leads to a small speedup over CFR™. On both of
those games, DCFR is fastest. In contrast, DCFR actually
performs worse than CFR™ in our non-poker experiments,
though it is sometimes on par with CFRT. In the appendix,
where we try quadratic averaging in CFR™, we find that for
poker games this does speed up CFR™T, and allows it to be
slightly faster than PCFR™ on the River endgame and Leduc
poker. We conclude that PCFR™ is much faster than CFR™
and DCFR on non-poker games, whereas on poker games
DCEFR is the fastest.

The convergence rate of PCFR™ is closely related to
how good the predictions m! of £! are. On Battleship and
Pursuit-evasion, the predictions become extremely accurate
very rapidly, and PCFR™ converges at an extremely fast rate.
On Goofspiel, the predictions are fairly accurate (the error is
of the order 10~°) and PCFR™ is still significantly faster
than the other algorithms. On the River endgame, the aver-
age prediction error is of the order 10~3, and PCFR* per-
forms on par with CFR™, and slower than DCFR. Similar
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trends prevail in the experiments in the appendix. Additional
experimental insights are described in the appendix.

8 Conclusions and Future Research

We extended Abernethy, Bartlett, and Hazan (2011)’s re-
duction of Blackwell approachability to regret minimiza-
tion beyond the compact setting. This extended reduction al-
lowed us to show that FTRL applied to the decision of which
halfspace to force in Blackwell approachability is equiva-
lent to the regret matching algorithm. OMD applied to the
same problem turned out to be equivalent to RM™. Then, we
showed that the predictive variants of FTRL and OMD yield
predictive algorithms for Blackwell approachability, as well
as predictive variants of RM and RM™. Combining PRM™
with CFR, we introduced the PCFR™ algorithm for solving
EFGs. Experiments across many common benchmark games
showed that PCFR™ outperforms the prior state-of-the-art
algorithms on non-poker games by orders of magnitude.
This work also opens future directions. Can PRM™ guar-
antee T—! convergence on matrix games like optimistic
FTRL and OMD, or do the less stable updates prevent
that? Can one develop a predictive variant of DCFR, which
is faster on poker domains? Can one combine DCFR and
PCFR™, so DCFR would be faster initially but PCFR™
would overtake? If the cross-over point could be approxi-
mated, this might yield a best-of-both-worlds algorithm.
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